Buzzword Bingo: Data Science – Teil I

Rund um das Thema Data Science gibt es unglaublich viele verschiedene Buzzwords, die Ihnen sicherlich auch schon vielfach begegnet sind. Sei es der Begriff Künstliche Intelligenz, Big Data oder auch Deep Learning. Die Bedeutung dieser Begriffe ist jedoch nicht immer ganz klar und häufig werden Begriffe auch vertauscht oder in missverständlichen Zusammenhängen benutzt. Höchste Zeit also, sich einmal mit den genauen Definitionen dieser Begriffe zu beschäftigen!

Buzzword Bingo: Data Science – Teil 1: Künstliche Intelligenz, Algorithmen & Maschinelles Lernen

Im ersten Teil unserer dreiteiligen Reihe „Buzzword Bingo Data Science“ beschäftigen wir uns zunächst mit den drei Begriffen „Künstliche Intelligenz“, „Algorithmus“ und „Maschinelles Lernen“.

Künstliche Intelligenz

Der im Bereich der Data Science u. a. am häufigsten genutzte Begriff ist derjenige der „Künstlichen Intelligenz“. Viele Menschen denken bei dem Begriff sofort an hochspezialisierte Maschinen à la „The Matrix“ oder „I, Robot“. Dabei ist der Begriff deutlich älter als viele denken. Bereits 1956 wurde der englische Begriff “artificial intelligence” zum ersten Mal in einem Workshop-Titel am US-amerikanischen Dartmouth College genutzt.

Heutzutage besitzt der Begriff der künstlichen Intelligenz keine allgemeingültige Definition. Es handelt sich bei künstlicher Intelligenz grundsätzlich um ein Teilgebiet der Informatik, das sich mit der Automatisierung von intelligentem Verhalten befasst. Es geht also darum, dass ein Computerprogramm auf eine Eingabe eine intelligente Reaktion zeigt. Zu beachten ist hierbei, dass eine künstliche Intelligenz nur ein scheinbar intelligentes Verhalten zeigen kann. Künstliche Intelligenz wird heutzutage sehr weit gefasst und kann vieles umfassen: von klassischen, regelbasierten Algorithmen bis hin zu selbstlernenden künstlichen neuronalen Netzen.

Das zentrale Forschungsziel ist die Entwicklung einer sogenannten Allgemeinen Künstlichen Intelligenz, also einer Maschine, die in der Lage sein wird, autonom beliebige Probleme zu lösen. Es gibt eine fortlaufende Debatte darüber, ob dieses Ziel jemals erreicht werden kann bzw. ob es erreicht werden sollte.

In den vergangenen Jahren ist auch die sogenannte xAI (engl. Explainable AI; erklärbare künstliche Intelligenz) in den Mittelpunkt der Forschungsinteressen gerückt. Dabei geht es um die Problematik, dass künstliche Intelligenzen sogenannte Black Boxen sind. Das bedeutet, dass ein menschlicher User die Entscheidung einer künstlichen Intelligenz üblicherweise nicht nachvollziehen kann. Eine xAI wäre im Vergleich jedoch eine Glass Box, die Entscheidungen einer solchen künstlichen Intelligenz wären für Menschen also nachvollziehbar.

Algorithmen

Algorithmen sind klar definierte, vorgegebene Prozeduren, mit denen klar definierte Aufgaben gelöst werden können. Dabei kann der Lösungsweg des Algorithmus entweder durch Menschen vorgegeben, also programmiert werden oder Algorithmen lernen durch Methoden des maschinellen Lernens selbstständig den Lösungsweg für eine Prozedur.

Im Bereich der Data Science bezeichnen wir mit Algorithmen kleine Programme, die scheinbar intelligent handeln. Dementsprechend stecken auch hinter künstlichen Intelligenzen Algorithmen. Werden Algorithmen mit klar definierten Eingaben versorgt, führen sie somit zu einem eindeutigen, konstanten Ergebnis. Dabei gilt aber leider auch der Grundsatz der Informatik „Mist rein, Mist raus“. Ein Algorithmus kann immer nur auf sinnvolle Eingaben sinnvolle Ausgaben erzeugen. Die Komplexität von Algorithmen kann sehr vielfältig sein und je komplexer ein solcher Algorithmus ist, desto „intelligenter“ erscheint er oftmals.

Maschinelles Lernen

Maschinelles Lernen ist ein Überbegriff für eine Vielzahl von Verfahren, mit denen ein Computer oder eine künstliche Intelligenz automatisch Muster in Daten erkennt. Beim maschinellen Lernen wird grundsätzlich zwischen dem überwachten und unüberwachten Lernen unterschieden.

Beim überwachten Lernen lernt ein Algorithmus den Zusammenhang zwischen bekannten Eingabe- und Ausgabewerten. Nachdem dieser Zusammenhang vom Algorithmus erlernt wurde, kann dieses maschinelle Modell dann auf neue Eingabewerte angewandt und somit unbekannte Ausgabewerte vorhergesagt werden. Beispielsweise könnte mithilfe einer Regression zunächst der Zusammenhang zwischen Lufttemperatur und dem Wochentag (jeweils bekannte Eingabewerte) sowie der Anzahl der verkauften Eiskugeln (für die Vergangenheit bekannte Ausgabewerte) in einem Freibad untersucht werden. Sobald dieser Zusammenhang einmal ausreichend genau bestimmt worden ist, kann er auch für die Zukunft fortgeschrieben werden. Das bedeutet, es wäre dann möglich, anhand des nächsten Wochentages sowie der vorhergesagten Lufttemperatur (bekannte Eingabewerte für die Zukunft) die Anzahl der verkauften Eiskugeln (unbekannte Ausgabewerte für die Zukunft) zu prognostizieren und somit die Absatzmenge genauer planen zu können.

Beim unüberwachten Lernen auf der anderen Seite sind nur Eingabedaten vorhanden, es gibt keine den Eingabedaten zugehörigen Ausgabedaten. Hier wird dann mit Methoden wie beispielsweise dem Clustering versucht, verschiedene Datenpunkte anhand ihrer Eigenschaften in verschiedene Gruppen aufzuteilen. Beispielsweise könnte ein Clustering-Algorithmus verschiedene Besucher:innen eines Webshops in verschiedene Gruppen einteilen: Es könnte beispielsweise eine Gruppe von Besucher:innen geben, die sehr zielstrebig ein einzelnes Produkt in den Warenkorb legen und ihren Kauf direkt abschließen. Andere Besucher:innen könnten allerdings viele verschiedene Produkte ansehen, in den Warenkorb legen und am Ende nur wenige oder vielleicht sogar gar keine Käufe tätigen. Wieder andere Kund:innen könnten unter Umständen lediglich auf der Suche nach Artikeln im Sale sein und keine anderen Produkte ansehen.

Aufgrund ihres Nutzungsverhaltens auf der Website könnte ein Clustering-Algorithmus mit ausreichend aufbereiteten Daten nun all diese Kund:innen in verschiedene Gruppen oder Cluster einteilen. Was der Algorithmus jedoch nicht leisten kann ist zu erklären, was die erkannten Cluster genau bedeuten. Hierfür braucht es nach wie vor menschliche Intelligenz gepaart mit Fachwissen.

Automatic Financial Trading Agent for Low-risk Portfolio Management using Deep Reinforcement Learning

This article focuses on autonomous trading agent to solve the capital market portfolio management problem. Researchers aim to achieve higher portfolio return while preferring lower-risk actions. It uses deep reinforcement learning Deep Q-Network (DQN) to train the agent. The main contribution of their work is the proposed target policy.

Introduction

Author emphasizes the importance of low-risk actions for two reasons: 1) the weak positive correlation between risk and profit suggests high returns can be obtained with low-risk actions, and 2) customer satisfaction decreases with increases in investment risk, which is undesirable. Author challenges the limitation of Supervised Learning algorithm since it requires domain knowledge. Thus, they propose Reinforcement Learning to be more suitable, because it only requires state, action and reward specifications.

The study verifies the method through the back-test in the cryptocurrency market because it is extremely volatile and offers enormous and diverse data. Agents then learn with shorter periods and are tested for the same period to verify the robustness of the method. 

2 Proposed Method

The overall structure of the proposed method is shown below.

The architecutre of the proposed trading agent system.

The architecutre of the proposed trading agent system.

2.1 Problem Definition

The portfolio consists of m assets and one base currency.

The price vector p stores the price p of all assets:

The portfolio vector w stores the amount of each asset:

At time 𝑡, the total value W_t of the portfolio is defined as the inner product of the price vector p_t and the portfolio vector w_t .

Finally, the goal is to maximize the profit P_t at the terminal time step 𝑇.

2.2 Asset Data Preprocessing

1) Asset Selection
Data is drawn from the Binance Exchange API, where top m traded coins are selected as assets.

2) Data Collection
Each coin has 9 properties, shown in Table.1, so each trade history matrix has size (α * 9), where α is the size of the target period converted into minutes.

3) Zero-Padding
Pad all other coins to match the matrix size of the longest coin. (Coins have different listing days)

Comment: Author pointed out that zero-padding may be lacking, but empirical results still confirm their method covering the missing data well.

4) Stack Matrices
Stack m matrices of size (α * 9) to form a block of size (m* α * 9). Then, use sliding window method with widow size w to create (α – w + 1) number of sequential blocks with size (w *  m * 9).

5) Normalization
Normalize blocks with min-max normalization method. They are called history block 𝜙 and used as input (ie. state) for the agent.

3. Deep Q-Network

The proposed RL-based trading system follows the DQN structure.

Deep Q-Network has 2 networks, Q- and Target network, and a component called experience replay. The Q-network is the agent that is trained to produce the optimal state-action value (aka. q-value).

Comment: Q-value is calculated by the Bellman equation, which, in short, consists of the immediate reward from next action, and the discounted value of the next state by following the policy for all subsequent steps.

 

Here,
Agent: Portfolio manager
Action a: Trading strategy according to the current state
State 𝜙 : State of the capital market environment
Environment: Has all trade histories for assets, return reward r and provide next state 𝜙’ to agent again

DQN workflow:

DQN gets trained in multiple time steps of multiple episodes. Let’s look at the workflow of one episode.

Training of a Deep Q-Network

Training of a Deep Q-Network

1) Experience replay selects an action according to the behavior policy, executes in the environment, returns the reward and next state. This experience set (\phi_t, a_t, r_r,\phi_{t+!}) is stored in the repository as a sample of training data.

2) From the repository of prior observations, take a random batch of samples as the input to both Q- and Target network. The Q-network takes the current state and action from each data sample and predicts the q-value for that particular action. This is the ‘Predicted Q-Value’.Comment: Author uses 𝜀-greedy algorithm to calculate q-value and select action. To simplify, 𝜀-greedy policy takes the optimal action if a randomly generated number is greater than 𝜀, which represents a tradeoff between exploration and exploitation.

The Target network takes the next state from each data sample and predicts the best q-value out of all actions that can be taken from that state. This is the ‘Target Q-Value’.

Comment: Author proposes a different target policy to calculate the target q-value.

3) The Predicted q-value, Target q-value, and the observed reward from the data sample is used to compute the Loss to train the Q-network.

Comment: Target Network is not trained. It is held constant to serve as a stable target for learning and will be updated with a frequency different from the Q-network.

4) Copy Q-network weights to Target network after n time steps and continue to next time step until this episode is finished.

The architecutre of the proposed trading agent system.

4.0 Main Contribution of the Research

4.1 Action and Reward

Agent determines not only action a but ratio , at which the action is applied.

  1. Action:
    Hold, buy and sell. Buy and sell are defined discretely for each asset. Hold holds all assets. Therefore, there are (2m + 1) actions in the action set A.

    Agent obtains q-value of each action through q-network and selects action by using 𝜀-greedy algorithm as behavior policy.
  2. Ratio:
    \sigma is defined as the softmax value for the q-value of each action (ie. i-th asset at \sigma = 0.5 , then i-th asset is bought using 50% of base currency).
  3. Reward:
    Reward depends on the portfolio value before and after the trading strategy. It is clipped to [-1,1] to avoid overfitting.

4.2 Proposed Target Policy

Author sets the target based on the expected SARSA algorithm with some modification.

Comment: Author claims that greedy policy ignores the risks that may arise from exploring other outcomes other than the optimal one, which is fatal for domains where safe actions are preferred (ie. capital market).

The proposed policy uses softmax algorithm adjusted with greediness according to the temperature term 𝜏. However, softmax value is very sensitive to the differences in optimal q-value of states. To stabilize  learning, and thus to get similar greediness in all states, author redefine 𝜏 as the mean of absolute values for all q-values in each state multiplied by a hyperparameter 𝜏’.

4.3 Q-Network Structure

This study uses Convolutional Neural Network (CNN) to construct the networks. Detailed structure of the networks is shown in Table 2.

Comment: CNN is a deep neural network method that hierarchically extracts local features through a weighted filter. More details see: https://towardsdatascience.com/stock-market-action-prediction-with-convnet-8689238feae3.

5 Experiment and Hyperparameter Tuning

5.1 Experiment Setting

Data is collected from August 2017 to March 2018 when the price fluctuates extensively.

Three evaluation metrics are used to compare the performance of the trading agent.

  • Profit P_t introduced in 2.1.
  • Sharpe Ratio: A measure of return, taking risk into account.

    Comment: p_t is the standard deviation of the expected return and P_f  is the return of a risk-free asset, which is set to 0 here.
  • Maximum Drawdown: Maximum loss from a peak to a through, taking downside risk into account.

5.2 Hyperparameter Optimization

The proposed method has a number of hyperparameters: window size mentioned in 2.2,  𝜏’ in the target policy, and hyperparameters used in DQN structure. Author believes the former two are key determinants for the study and performs GridSearch to set w = 30, 𝜏’ = 0.25. The other hyperparameters are determined using heuristic search. Specifications of all hyperparameters are summarized in the last page.

Comment: Heuristic is a type of search that looks for a good solution, not necessarily a perfect one, out of the available options.

5.3 Performance Evaluation

Benchmark algorithms:

UBAH (Uniform buy and hold): Invest in all assets and hold until the end.
UCRP (Uniform Constant Rebalanced Portfolio): Rebalance portfolio uniformly for every trading period.

Methods from other studies: hyperparameters as suggested in the studies
EG (Exponential Gradient)
PAMR (Passive Aggressive Mean Reversion Strategy)

Comment: DQN basic uses greedy policy as the target policy.

The proposed DQN method exhibits the best overall results out of the 6 methods. When the agent is trained with shorter periods, although MDD increases significantly, it still performs better than benchmarks and proves its robustness.

6 Conclusion

The proposed method performs well compared to other methods, but there is a main drawback. The encoding method lacked a theoretical basis to successfully encode the information in the capital market, and this opaqueness is a rooted problem for deep learning. Second, the study focuses on its target policy, while there remains room for improvement with its neural network structure.

Specification of Hyperparameters

Specification of Hyperparameters.

 

References

  1. Shin, S. Bu and S. Cho, “Automatic Financial Trading Agent for Low-risk Portfolio Management using Deep Reinforcement Learning”, https://arxiv.org/pdf/1909.03278.pdf
  2. Li, P. Zhao, S. C. Hoi, and V. Gopalkrishnan, “PAMR: passive aggressive mean reversion strategy for portfolio selection,” Machine learning, vol. 87, pp. 221-258, 2012.
  3. P. Helmbold, R. E. Schapire, Y. Singer, and M. K. Warmuth, “On‐line portfolio selection using multiplicative updates,” Mathematical Finance, vol. 8, pp. 325-347, 1998.

https://deepai.org/machine-learning-glossary-and-terms/softmax-layer#:~:text=The%20softmax%20function%20is%20a,can%20be%20interpreted%20as%20probabilities.

http://www.kasimte.com/2020/02/14/how-does-temperature-affect-softmax-in-machine-learning.html

https://towardsdatascience.com/reinforcement-learning-made-simple-part-2-solution-approaches-7e37cbf2334e

https://towardsdatascience.com/reinforcement-learning-explained-visually-part-4-q-learning-step-by-step-b65efb731d3e

https://towardsdatascience.com/reinforcement-learning-explained-visually-part-3-model-free-solutions-step-by-step-c4bbb2b72dcf

https://towardsdatascience.com/reinforcement-learning-explained-visually-part-5-deep-q-networks-step-by-step-5a5317197f4b

Wie Maschinen uns verstehen: Natural Language Understanding

Foto von Sebastian Bill auf Unsplash.

Natural Language Understanding (NLU) ist ein Teilbereich von Computer Science, der sich damit beschäftigt natürliche Sprache, also beispielsweise Texte oder Sprachaufnahmen, verstehen und verarbeiten zu können. Das Ziel ist es, dass eine Maschine in der gleichen Weise mit Menschen kommunizieren kann, wie es Menschen untereinander bereits seit Jahrhunderten tun.

Was sind die Bereiche von NLU?

Eine neue Sprache zu erlernen ist auch für uns Menschen nicht einfach und erfordert viel Zeit und Durchhaltevermögen. Wenn eine Maschine natürliche Sprache erlernen will, ist es nicht anders. Deshalb haben sich einige Teilbereiche innerhalb des Natural Language Understandings herausgebildet, die notwendig sind, damit Sprache komplett verstanden werden kann.

Diese Unterteilungen können auch unabhängig voneinander genutzt werden, um einzelne Aufgaben zu lösen:

  • Speech Recognition versucht aufgezeichnete Sprache zu verstehen und in textuelle Informationen umzuwandeln. Das macht es für nachgeschaltete Algorithmen einfacher die Sprache zu verarbeiten. Speech Recognition kann jedoch auch alleinstehend genutzt werden, beispielsweise um Diktate oder Vorlesungen in Text zu verwandeln.
  • Part of Speech Tagging wird genutzt, um die grammatikalische Zusammensetzung eines Satzes zu erkennen und die einzelnen Satzbestandteile zu markieren.
  • Named Entity Recognition versucht innerhalb eines Textes Wörter und Satzbausteine zu finden, die einer vordefinierten Klasse zugeordnet werden können. So können dann zum Beispiel alle Phrasen in einem Textabschnitt markiert werden, die einen Personennamen enthalten oder eine Zeit ausdrücken.
  • Sentiment Analysis klassifiziert das Sentiment, also die Gefühlslage, eines Textes in verschiedene Stufen. Dadurch kann beispielsweise automatisiert erkannt werden, ob eine Produktbewertung eher positiv oder eher negativ ist.
  • Natural Language Generation ist eine allgemeine Gruppe von Anwendungen mithilfe derer automatisiert neue Texte generiert werden sollen, die möglichst natürlich klingen. Zum Beispiel können mithilfe von kurzen Produkttexten ganze Marketingbeschreibungen dieses Produkts erstellt werden.

Welche Algorithmen nutzt man für NLP?

Die meisten, grundlegenden Anwendungen von NLP können mit den Python Modulen spaCy und NLTK umgesetzt werden. Diese Bibliotheken bieten weitreichende Modelle zur direkten Anwendung auf einen Text, ohne vorheriges Trainieren eines eigenen Algorithmus. Mit diesen Modulen ist ohne weiteres ein Part of Speech Tagging oder Named Entity Recognition in verschiedenen Sprachen möglich.

Der Hauptunterschied zwischen diesen beiden Bibliotheken ist die Ausrichtung. NLTK ist vor allem für Entwickler gedacht, die eine funktionierende Applikation mit Natural Language Processing Modulen erstellen wollen und dabei auf Performance und Interkompatibilität angewiesen sind. SpaCy hingegen versucht immer Funktionen bereitzustellen, die auf dem neuesten Stand der Literatur sind und macht dabei möglicherweise Einbußen bei der Performance.

Für umfangreichere und komplexere Anwendungen reichen jedoch diese Optionen nicht mehr aus, beispielsweise wenn man eine eigene Sentiment Analyse erstellen will. Je nach Anwendungsfall sind dafür noch allgemeine Machine Learning Modelle ausreichend, wie beispielsweise ein Convolutional Neural Network (CNN). Mithilfe von Tokenizern von spaCy oder NLTK können die einzelnen in Wörter in Zahlen umgewandelt werden, mit denen wiederum das CNN als Input arbeiten kann. Auf heutigen Computern sind solche Modelle mit kleinen Neuronalen Netzwerken noch schnell trainierbar und deren Einsatz sollte deshalb immer erst geprüft und möglicherweise auch getestet werden.

Jedoch gibt es auch Fälle in denen sogenannte Transformer Modelle benötigt werden, die im Bereich des Natural Language Processing aktuell state-of-the-art sind. Sie können inhaltliche Zusammenhänge in Texten besonders gut mit in die Aufgabe einbeziehen und liefern daher bessere Ergebnisse beispielsweise bei der Machine Translation oder bei Natural Language Generation. Jedoch sind diese Modelle sehr rechenintensiv und führen zu einer sehr langen Rechenzeit auf normalen Computern.

Was sind Transformer Modelle?

In der heutigen Machine Learning Literatur führt kein Weg mehr an Transformer Modellen aus dem Paper „Attention is all you need“ (Vaswani et al. (2017)) vorbei. Speziell im Bereich des Natural Language Processing sind die darin erstmals beschriebenen Transformer Modelle nicht mehr wegzudenken.

Transformer werden aktuell vor allem für Übersetzungsaufgaben genutzt, wie beispielsweise auch bei www.deepl.com. Darüber hinaus sind diese Modelle auch für weitere Anwendungsfälle innerhalb des Natural Language Understandings geeignet, wie bspw. das Beantworten von Fragen, Textzusammenfassung oder das Klassifizieren von Texten. Das GPT-2 Modell ist eine Implementierung von Transformern, dessen Anwendungen und die Ergebnisse man hier ausprobieren kann.

Was macht den Transformer so viel besser?

Soweit wir wissen, ist der Transformer jedoch das erste Transduktionsmodell, das sich ausschließlich auf die Selbstaufmerksamkeit (im Englischen: Self-Attention) stützt, um Repräsentationen seiner Eingabe und Ausgabe zu berechnen, ohne sequenzorientierte RNNs oder Faltung (im Englischen Convolution) zu verwenden.

Übersetzt aus dem englischen Originaltext: Attention is all you need (Vaswani et al. (2017)).

In verständlichem Deutsch bedeutet dies, dass das Transformer Modell die sogenannte Self-Attention nutzt, um für jedes Wort innerhalb eines Satzes die Beziehung zu den anderen Wörtern im gleichen Satz herauszufinden. Dafür müssen nicht, wie bisher, Recurrent Neural Networks oder Convolutional Neural Networks zum Einsatz kommen.

Was dieser Mechanismus konkret bewirkt und warum er so viel besser ist, als die vorherigen Ansätze wird im folgenden Beispiel deutlich. Dazu soll der folgende deutsche Satz mithilfe von Machine Learning ins Englische übersetzt werden:

„Das Mädchen hat das Auto nicht gesehen, weil es zu müde war.“

Für einen Computer ist diese Aufgabe leider nicht so einfach, wie für uns Menschen. Die Schwierigkeit an diesem Satz ist das kleine Wort „es“, dass theoretisch für das Mädchen oder das Auto stehen könnte. Aus dem Kontext wird jedoch deutlich, dass das Mädchen gemeint ist. Und hier ist der Knackpunkt: der Kontext. Wie programmieren wir einen Algorithmus, der den Kontext einer Sequenz versteht?

Vor Veröffentlichung des Papers „Attention is all you need“ waren sogenannte Recurrent Neural Networks die state-of-the-art Technologie für solche Fragestellungen. Diese Netzwerke verarbeiten Wort für Wort eines Satzes. Bis man also bei dem Wort „es“ angekommen ist, müssen erst alle vorherigen Wörter verarbeitet worden sein. Dies führt dazu, dass nur noch wenig Information des Wortes „Mädchen“ im Netzwerk vorhanden sind bis den Algorithmus überhaupt bei dem Wort „es“ angekommen ist. Die vorhergegangenen Worte „weil“ und „gesehen“ sind zu diesem Zeitpunkt noch deutlich stärker im Bewusstsein des Algorithmus. Es besteht also das Problem, dass Abhängigkeiten innerhalb eines Satzes verloren gehen, wenn sie sehr weit auseinander liegen.

Was machen Transformer Modelle anders? Diese Algorithmen prozessieren den kompletten Satz gleichzeitig und gehen nicht Wort für Wort vor. Sobald der Algorithmus das Wort „es“ in unserem Beispiel übersetzen will, wird zuerst die sogenannte Self-Attention Layer durchlaufen. Diese hilft dem Programm andere Wörter innerhalb des Satzes zu erkennen, die helfen könnten das Wort „es“ zu übersetzen. In unserem Beispiel werden die meisten Wörter innerhalb des Satzes einen niedrigen Wert für die Attention haben und das Wort Mädchen einen hohen Wert. Dadurch ist der Kontext des Satzes bei der Übersetzung erhalten geblieben.

Big Data mit Hadoop und Map Reduce!

Foto von delfi de la Rua auf Unsplash.

Hadoop ist ein Softwareframework, mit dem sich große Datenmengen auf verteilten Systemen schnell verarbeiten lassen. Es verfügt über Mechanismen, welche eine stabile und fehlertolerante Funktionalität sicherstellen, sodass das Tool für die Datenverarbeitung im Big Data Umfeld bestens geeignet ist. In diesen Fällen ist eine normale relationale Datenbank oft nicht ausreichend, um die unstrukturierten Datenmengen kostengünstig und effizient abzuspeichern.

Unterschiede zwischen Hadoop und einer relationalen Datenbank

Hadoop unterscheidet sich in einigen grundlegenden Eigenschaften von einer vergleichbaren relationalen Datenbank.

Eigenschaft Relationale Datenbank Hadoop
Datentypen ausschließlich strukturierte Daten alle Datentypen (strukturiert, semi-strukturiert und unstrukturiert)
Datenmenge wenig bis mittel (im Bereich von einigen GB) große Datenmengen (im Bereich von Terrabyte oder Petabyte)
Abfragesprache SQL HQL (Hive Query Language)
Schema Statisches Schema (Schema on Write) Dynamisches Schema (Schema on Read)
Kosten Lizenzkosten je nach Datenbank Kostenlos
Datenobjekte Relationale Tabellen Key-Value Pair
Skalierungstyp Vertikale Skalierung (Computer muss hardwaretechnisch besser werden) Horizontale Skalierung (mehr Computer können dazugeschaltet werden, um Last abzufangen)

Vergleich Hadoop und Relationale Datenbank

Bestandteile von Hadoop

Das Softwareframework selbst ist eine Zusammenstellung aus insgesamt vier Komponenten.

Hadoop Common ist eine Sammlung aus verschiedenen Modulen und Bibliotheken, welche die anderen Bestandteile unterstützt und deren Zusammenarbeit ermöglicht. Unter anderem sind hier die Java Archive Dateien (JAR Files) abgelegt, die zum Starten von Hadoop benötigt werden. Darüber hinaus ermöglicht die Sammlung die Bereitstellung von grundlegenden Services, wie beispielsweise das File System.

Der Map-Reduce Algorithmus geht in seinen Ursprüngen auf Google zurück und hilft komplexe Rechenaufgaben in überschaubarere Teilprozesse aufzuteilen und diese dann über mehrere Systeme zu verteilen, also horizontal zu skalieren. Dadurch verringert sich die Rechenzeit deutlich. Am Ende müssen die Ergebnisse der Teilaufgaben wieder zu seinem Gesamtresultat zusammengefügt werden.

Der Yet Another Resource Negotiator (YARN) unterstützt den Map-Reduce Algorithmus, indem er die Ressourcen innerhalb eines Computer Clusters im Auge behält und die Teilaufgaben auf die einzelnen Rechner verteilt. Darüber hinaus ordnet er den einzelnen Prozessen die Kapazitäten dafür zu.

Das Hadoop Distributed File System (HDFS) ist ein skalierbares Dateisystem zur Speicherung von Zwischen- oder Endergebnissen. Innerhalb des Clusters ist es über mehrere Rechner verteilt, um große Datenmengen schnell und effizient verarbeiten zu können. Die Idee dahinter war, dass Big Data Projekte und Datenanalysen auf großen Datenmengen beruhen. Somit sollte es ein System geben, welches die Daten auch stapelweise speichert und dadurch schnell verarbeitet. Das HDFS sorgt auch dafür, dass Duplikate von Datensätzen abgelegt werden, um den Ausfall eines Rechners verkraften zu können.

Map Reduce am Beispiel

Angenommen wir haben alle Teile der Harry Potter Romane in Hadoop PDF abgelegt und möchten nun die einzelnen Wörter zählen, die in den Büchern vorkommen. Dies ist eine klassische Aufgabe bei der uns die Aufteilung in eine Map-Funktion und eine Reduce Funktion helfen kann.

Bevor es die Möglichkeit gab, solche aufwendigen Abfragen auf ein ganzes Computer-Cluster aufzuteilen und parallel berechnen zu können, war man gezwungen, den kompletten Datensatz nacheinander zu durchlaufen. Dadurch wurde die Abfragezeit auch umso länger, umso größer der Datensatz wurde. Der einzige Weg, um die Ausführung der Funktion zu beschleunigen ist es, einen Computer mit einem leistungsfähigeren Prozessor (CPU) auszustatten, also dessen Hardware zu verbessern. Wenn man versucht, die Ausführung eines Algorithmus zu beschleunigen, indem man die Hardware des Gerätes verbessert, nennt man das vertikale Skalieren.

Mithilfe von MapReduce ist es möglich eine solche Abfrage deutlich zu beschleunigen, indem man die Aufgabe in kleinere Teilaufgaben aufsplittet. Das hat dann wiederum den Vorteil, dass die Teilaufgaben auf viele verschiedene Computer aufgeteilt und von ihnen ausgeführt werden kann. Dadurch müssen wir nicht die Hardware eines einzigen Gerätes verbessern, sondern können viele, vergleichsweise leistungsschwächere, Computer nutzen und trotzdem die Abfragezeit verringern. Ein solches Vorgehen nennt man horizontales Skalieren.

Kommen wir zurück zu unserem Beispiel: Bisher waren wir bildlich so vorgegangen, dass wir alle Harry Potter Teile gelesen haben und nach jedem gelesenen Wort die Strichliste mit den einzelnen Wörtern einfach um einen Strich erweitert haben. Das Problem daran ist, dass wir diese Vorgehensweise nicht parallelisieren können. Angenommen eine zweite Person will uns unterstützen, dann kann sie das nicht tun, weil sie die Strichliste, mit der wir gerade arbeiten, benötigt, um weiterzumachen. Solange sie diese nicht hat, kann sie nicht unterstützen.

Sie kann uns aber unterstützen, indem sie bereits mit dem zweiten Teil der Harry Potter Reihe beginnt und eine eigene Strichliste nur für das zweite Buch erstellt. Zum Schluss können wir dann alle einzelnen Strichlisten zusammenführen und beispielsweise die Häufigkeit des Wortes “Harry” auf allen Strichlisten zusammenaddieren.

MapReduce am Beispiel von Wortzählungen in Harry Potter Büchern

MapReduce am Beispiel von Wortzählungen in Harry Potter Büchern | Source: Data Basecamp

Dadurch lässt sich die Aufgabe auch relativ einfach horizontal skalieren, indem jeweils eine Person pro Harry Potter Buch arbeitet. Wenn wir noch schneller arbeiten wollen, können wir auch mehrere Personen mit einbeziehen und jede Person ein einziges Kapitel bearbeiten lassen. Am Schluss müssen wir dann nur alle Ergebnisse der einzelnen Personen zusammennehmen, um so zu einem Gesamtergebnis zu gelangen.

Das ausführliche Beispiel und die Umsetzung in Python findest Du hier.

Aufbau eines Hadoop Distributed File Systems

Der Kern des Hadoop Distributed File Systems besteht darin die Daten auf verschiedene Dateien und Computer zu verteilen, sodass Abfragen schnell bearbeitet werden können und der Nutzer keine langen Wartezeiten hat. Damit der Ausfall einer einzelnen Maschine im Cluster nicht zum Verlust der Daten führt, gibt es gezielte Replikationen auf verschiedenen Computern, um eine Ausfallsicherheit zu gewährleisten.

Hadoop arbeitet im Allgemeinen nach dem sogenannten Master-Slave-Prinzip. Innerhalb des Computerclusters haben wir einen Knoten, der die Rolle des sogenannten Masters übernimmt. Dieser führt in unserem Beispiel keine direkte Berechnung durch, sondern verteilt lediglich die Aufgaben auf die sogenannten Slave Knoten und koordiniert den ganzen Prozess. Die Slave Knoten wiederum lesen die Bücher aus und speichern die Worthäufigkeit und die Wortverteilung.

Dieses Prinzip wird auch bei der Datenspeicherung genutzt. Der Master verteilt Informationen aus dem Datensatz auf verschiedenen Slave Nodes und merkt sich, auf welchen Computern er welche Partitionen abgespeichert hat. Dabei legt er die Daten auch redundant ab, um Ausfälle kompensieren zu können. Bei einer Abfrage der Daten durch den Nutzer entscheidet der Masterknoten dann, welche Slaveknoten er anfragen muss, um die gewünschten Informationen zu erhalten.

Automated product quality monitoring using artificial intelligence deep learning

How to maintain product quality with deep learning

Deep Learning helps companies to automate operative processes in many areas. Industrial companies in particular also benefit from product quality assurance by automated failure and defect detection. Computer Vision enables automation to identify scratches and cracks on product item surfaces. You will find more information about how this works in the following infografic from DATANOMIQ and pixolution you can download using the link below.

How to maintain product quality with automatic defect detection - Infographic

How to maintain product quality with automatic defect detection – Infographic

Understanding Linear Regression with all Statistical Terms

Linear Regression Model – This article is about understanding the linear regression with all the statistical terms.

What is Regression Analysis?

regression is an attempt to determine the relationship between one dependent and a series of other independent variables.

Regression analysis is a form of predictive modelling technique which investigates the relationship between a dependent (target) and independent variable (s) (predictor). This technique is used for forecasting, time series modelling and finding the causal effect relationship between the variables. For example, relationship between rash driving and number of road accidents by a driver is best studied through regression.

Why do we use Regression Analysis?

As mentioned above, regression analysis estimates the relationship between two or more variables. Let’s understand this with an easy example:

Let’s say, you want to estimate growth in sales of a company based on current economic conditions. You have the recent company data which indicates that the growth in sales is around two and a half times the growth in the economy. Using this insight, we can predict future sales of the company based on current & past information.

There are multiple benefits of using regression analysis. They are as follows:

It indicates the significant relationships between dependent variable and independent variable. It indicates the strength of impact of multiple independent variables on a dependent variable. Regression analysis also allows us to compare the effects of variables measured on different scales, such as the effect of price changes and the number of promotional activities. These benefits help market researchers / data analysts / data scientists to eliminate and evaluate the best set of variables to be used for building predictive models.

There are various kinds of regression techniques available to make predictions. These techniques are mostly driven by three metrics (number of independent variables, type of dependent variables and shape of regression line).

Number of independent variables, shape of regression line and type of dependent variable.

Number of independent variables, shape of regression line and type of dependent variable.

What is Linear Regression?

Linear Regression is the supervised Machine Learning model in which the model finds the best fit linear line between the independent and dependent variable i.e it finds the linear relationship between the dependent and independent variable.

  • Equation of Simple Linear Regression, where bo is the intercept, b1 is coefficient or slope, x is the independent variable and y is the dependent variable.

Equation of Multiple Linear Regression, where bo is the intercept, b1,b2,b3,b4…,bn are coefficients or slopes of the independent variables x1,x2,x3,x4…,xn and y is the y=b_0+b_1x_1+b_2x_2+…+b_nx_n dependent variable.

Linear regression and its error termin per value

Linear regression and its error termin per value

Mathematical Approach:

Residual/Error = Actual values – Predicted Values
Sum of Residuals/Errors = Sum(Actual- Predicted Values)
Square of Sum of Residuals/Errors = (Sum(Actual- Predicted Values))^2

\sum(e_i^2)=\sum(y_i-\hat{y_i})^2

Application of Linear Regression:

Real-world examples of linear regression models
  1. Businesses often use linear regression to understand the relationship between advertising spending and revenue.
  2. Medical researchers often use linear regression to understand the relationship between drug dosage and blood pressure of patients.
  3. Agricultural scientists often use linear regression to measure the effect of fertilizer and water on crop yields.
  4. Data scientists for professional sports teams often use linear regression to measure the effect that different training regimens have on player performance.
  5. Stock predictions: A lot of businesses use linear regression models to predict how stocks will perform in the future. This is done by analyzing past data on stock prices and trends to identify patterns.
  6. Predicting consumer behavior: Businesses can use linear regression to predict things like how much a customer is likely to spend. Regression models can also be used to predict consumer behavior. This can be helpful for things like targeted marketing and product development. For example, Walmart uses linear regression to predict what products will be popular in different regions of the country.

Assumptions of Linear Regression:

Linearity: It states that the dependent variable Y should be linearly related to independent variables. This assumption can be checked by plotting a scatter plot between both variables.

Normality: The X and Y variables should be normally distributed. Histograms, KDE plots, Q-Q plots can be used to check the Normality assumption.

Homoscedasticity: The variance of the error terms should be constant i.e the spread of residuals should be constant for all values of X. This assumption can be checked by plotting a residual plot. If the assumption is violated then the points will form a funnel shape otherwise they will be constant.

Independence/No Multicollinearity: The variables should be independent of each other i.e no correlation should be there between the independent variables. To check the assumption, we can use a correlation matrix or VIF score. If the VIF score is greater than 5 then the variables are highly correlated.

The error terms should be normally distributed. Q-Q plots and Histograms can be used to check the distribution of error terms.

No Autocorrelation: The error terms should be independent of each other. Autocorrelation can be tested using the Durbin Watson test. The null hypothesis assumes that there is no autocorrelation. The value of the test lies between 0 to 4. If the value of the test is 2 then there is no autocorrelation.

 

 

 

Variational Autoencoders

After Deep Autoregressive Models and Deep Generative Modelling, we will continue our discussion with Variational AutoEncoders (VAEs) after covering up DGM basics and AGMs. Variational autoencoders (VAEs) are a deep learning method to produce synthetic data (images, texts) by learning the latent representations of the training data. AGMs are sequential models and generate data based on previous data points by defining tractable conditionals. On the other hand, VAEs are using latent variable models to infer hidden structure in the underlying data by using the following intractable distribution function: 

(1)   \begin{equation*} p_\theta(x) = \int p_\theta(x|z)p_\theta(z) dz. \end{equation*}

The generative process using the above equation can be expressed in the form of a directed graph as shown in Figure ?? (the decoder part), where latent variable z\sim p_\theta(z) produces meaningful information of x \sim p_\theta(x|z).

Architectures AE and VAE based on the bottleneck architecture. The decoder part work as a generative model during inference.

Figure 1: Architectures AE and VAE based on the bottleneck architecture. The decoder part work as
a generative model during inference.

Autoencoders

Autoencoders (AEs) are the key part of VAEs and are an unsupervised representation learning technique and consist of two main parts, the encoder and the decoder (see Figure ??). The encoders are deep neural networks (mostly convolutional neural networks with imaging data) to learn a lower-dimensional feature representation from training data. The learned latent feature representation z usually has a much lower dimension than input x and has the most dominant features of x. The encoders are learning features by performing the convolution at different levels and compression is happening via max-pooling.

On the other hand, the decoders, which are also a deep convolutional neural network are reversing the encoder’s operation. They try to reconstruct the original data x from the latent representation z using the up-sampling convolutions. The decoders are pretty similar to VAEs generative models as shown in Figure 1, where synthetic images will be generated using the latent variable z.

During the training of autoencoders, we would like to utilize the unlabeled data and try to minimize the following quadratic loss function:

(2)   \begin{equation*} \mathcal{L}(\theta, \phi) = ||x-\hat{x}||^2, \end{equation*}


The above equation tries to minimize the distance between the original input and reconstructed image as shown in Figure 1.

Variational autoencoders

VAEs are motivated by the decoder part of AEs which can generate the data from latent representation and they are a probabilistic version of AEs which allows us to generate synthetic data with different attributes. VAE can be seen as the decoder part of AE, which learns the set parameters \theta to approximate the conditional p_\theta(x|z) to generate images based on a sample from a true prior, z\sim p_\theta(z). The true prior p_\theta(z) are generally of Gaussian distribution.

Network Architecture

VAE has a quite similar architecture to AE except for the bottleneck part as shown in Figure 2. in AES, the encoder converts high dimensional input data to low dimensional latent representation in a vector form. On the other hand, VAE’s encoder learns the mean vector and standard deviation diagonal matrix such that z\sim \matcal{N}(\mu_z, \Sigma_x) as it will be performing probabilistic generation of data. Therefore the encoder and decoder should be probabilistic.

Training

Similar to AGMs training, we would like to maximize the likelihood of the training data. The likelihood of the data for VAEs are mentioned in Equation 1 and the first term p_\theta(x|z) will be approximated by neural network and the second term p(x) prior distribution, which is a Gaussian function, therefore, both of them are tractable. However, the integration won’t be tractable because of the high dimensionality of data.

To solve this problem of intractability, the encoder part of AE was utilized to learn the set of parameters \phi to approximate the conditional q_\phi (z|x). Furthermore, the conditional q_\phi (z|x) will approximate the posterior p_\theta (z|x), which is intractable. This additional encoder part will help to derive a lower bound on the data likelihood that will make the likelihood function tractable. In the following we will derive the lower bound of the likelihood function:

(3)   \begin{equation*} \begin{flalign} \begin{aligned} log \: p_\theta (x) = & \mathbf{E}_{z\sim q_\phi(z|x)} \Bigg[log \: \frac{p_\theta (x|z) p_\theta (z)}{p_\theta (z|x)} \: \frac{q_\phi(z|x)}{q_\phi(z|x)}\Bigg] \\ = & \mathbf{E}_{z\sim q_\phi(z|x)} \Bigg[log \: p_\theta (x|z)\Bigg] - \mathbf{E}_{z\sim q_\phi(z|x)} \Bigg[log \: \frac{q_\phi (z|x)} {p_\theta (z)}\Bigg] + \mathbf{E}_{z\sim q_\phi(z|x)} \Bigg[log \: \frac{q_\phi (z|x)}{p_\theta (z|x)}\Bigg] \\ = & \mathbf{E}_{z\sim q_\phi(z|x)} \Big[log \: p_\theta (x|z)\Big] - \mathbf{D}_{KL}(q_\phi (z|x), p_\theta (z)) + \mathbf{D}_{KL}(q_\phi (z|x), p_\theta (z|x)). \end{aligned} \end{flalign} \end{equation*}


In the above equation, the first line computes the likelihood using the logarithmic of p_\theta (x) and then it is expanded using Bayes theorem with additional constant q_\phi(z|x) multiplication. In the next line, it is expanded using the logarithmic rule and then rearranged. Furthermore, the last two terms in the second line are the definition of KL divergence and the third line is expressed in the same.

In the last line, the first term is representing the reconstruction loss and it will be approximated by the decoder network. This term can be estimated by the reparametrization trick \cite{}. The second term is KL divergence between prior distribution p_\theta(z) and the encoder function q_\phi (z|x), both of these functions are following the Gaussian distribution and has the closed-form solution and are tractable. The last term is intractable due to p_\theta (z|x). However, KL divergence computes the distance between two probability densities and it is always positive. By using this property, the above equation can be approximated as:

(4)   \begin{equation*} log \: p_\theta (x)\geq \mathcal{L}(x, \phi, \theta) , \: \text{where} \: \mathcal{L}(x, \phi, \theta) = \mathbf{E}_{z\sim q_\phi(z|x)} \Big[log \: p_\theta (x|z)\Big] - \mathbf{D}_{KL}(q_\phi (z|x), p_\theta (z)). \end{equation*}

In the above equation, the term \mathcal{L}(x, \phi, \theta) is presenting the tractable lower bound for the optimization and is also termed as ELBO (Evidence Lower Bound Optimization). During the training process, we maximize ELBO using the following equation:

(5)   \begin{equation*} \operatorname*{argmax}_{\phi, \theta} \sum_{x\in X} \mathcal{L}(x, \phi, \theta). \end{equation*}

.

Furthermore, the reconstruction loss term can be written using Equation 2 as the decoder output is assumed to be following Gaussian distribution. Therefore, this term can be easily transformed to mean squared error (MSE).

During the implementation, the architecture part is straightforward and can be found here. The user has to define the size of latent space, which will be vital in the reconstruction process. Furthermore, the loss function can be minimized using ADAM optimizer with a fixed batch size and a fixed number of epochs.

Figure 2: The results obtained from vanilla VAE (left) and a recent VAE-based generative model NVAE (right)

Figure 2: The results obtained from vanilla VAE (left) and a recent VAE-based generative
model NVAE (right)

In the above, we are showing the quality improvement since VAE was introduced by Kingma and
Welling [KW14]. NVAE is a relatively new method using a deep hierarchical VAE [VK21].

Summary

In this blog, we discussed variational autoencoders along with the basics of autoencoders. We covered
the main difference between AEs and VAEs along with the derivation of lower bound in VAEs. We
have shown using two different VAE based methods that VAE is still active research because in general,
it produces a blurry outcome.

Further readings

Here are the couple of links to learn further about VAE-related concepts:
1. To learn basics of probability concepts, which were used in this blog, you can check this article.
2. To learn more recent and effective VAE-based methods, check out NVAE.
3. To understand and utilize a more advance loss function, please refer to this article.

References

[KW14] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014.
[VK21] Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder, 2021.

Training of Deep Learning AI models

Ein KI Projekt richtig umsetzen : So geht’s

Sie wollen in Ihrem Unternehmen Kosten senken und effizientere Workflows einführen? Dann haben Sie vielleicht schon darüber nachgedacht, Prozesse mit Künstlicher Intelligenz zu automatisieren. Für einen gelungenen Start, besprechen wir nun, wie ein KI-Projekt abläuft und wie man es richtig umsetzt.

Wir von DATANOMIQ und pixolution teilen unsere Erfahrungen aus Deep Learning Projekten, wo es vor allem um die Optimierung und Automatisierung von Unternehmensprozessen rund um visuelle Daten geht, etwa Bilder oder Videos. Wir stellen Ihnen die einzelnen Projektschritte vor, verraten Ihnen, wo dabei die Knackpunkte liegen und wie alle Beteiligten dazu beitragen können, ein KI-Projekt zum Erfolg zu führen.

1. Erstgespräch

In einem Erstgespräch nehmen wir Ihre Anforderungen auf.

  • Bestandsaufnahme Ihrer aktuellen Prozesse und Ihrer Änderungswünsche: Wie sind Ihre aktuellen Prozesse strukturiert? An welchen Prozessen möchten Sie etwas ändern?
  • Zielformulierung: Welches Endergebnis wünschen Sie sich? Wie genau sollen die neuen Prozesse aussehen? Das Ziel sollte so detailliert wie möglich beschrieben werden.
  • Budget: Welches Budget haben Sie für dieses Projekt eingeplant? Zusammen mit dem formulierten Ziel gibt das Budget die Wege vor, die wir zusammen in dem Projekt gehen können. Meist wollen Sie durch die Einführung von KI Kosten sparen oder höhere Umsätze erreichen. Das spielt für Höhe des Budgets die entscheidende Rolle.
  • Datenlage: Haben Sie Daten, die wir für das Training verwenden können? Wenn ja, welche und wieviele Daten sind das? Ist eine kontinuierliche Datenerfassung vorhanden, die während des Projekts genutzt werden kann, oder muss dafür erst die Grundlage geschaffen werden?

2. Evaluation

In diesem Schritt evaluieren und planen wir mit Ihnen gemeinsam die Umsetzung des Projekts. Das bedeutet im Einzelnen folgendes.

Begutachtung der Daten und weitere Datenplanung

Wir sichten von Ihnen bereitgestellte Trainingsdaten, z.B. gelabelte Bilder, und machen uns ein Bild davon, ob diese für das Training sinnvoll verwendet werden können. Da man für Deep Learning sehr viele Trainingsdaten benötigt, ist das ein entscheidender Punkt. In die Begutachtung der Daten fließt auch die Beurteilung der Qualität und Ausgewogenheit ein, denn davon ist abhängig wie gut ein KI-Modell lernt und korrekte Vorhersagen trifft.

Wenn von Ihnen keinerlei Daten zum Projektstart bereitgestellt werden können, wird zuerst ein separates Projekt notwendig, das nur dazu dient, Daten zu sammeln. Das bedeutet für Sie etwa je nach Anwendbarkeit den Einkauf von Datensets oder Labeling-Dienstleistungen.
Wir stehen Ihnen dabei beratend zur Seite.

Während der gesamten Dauer des Projekts werden immer wieder neue Daten benötigt, um die Qualität des Modells weiter zu verbessern. Daher müssen wir mit Ihnen gemeinsam planen, wie Sie fortlaufend diese Daten erheben, falsche Predictions des Modells erkennen und korrigieren, sodass Sie diese uns bereitstellen können. Die richtig erkannten Daten sowie die falsch erkannten und dann korrigierten Daten werden nämlich in das nächste Training einfließen.

Definition des Minimum Viable Product (MVP)

Wir definieren mit Ihnen zusammen, wie eine minimal funktionsfähige Version der KI aussehen kann. Die Grundfrage hierbei ist: Welche Komponenten oder Features sollten als Erstes in den Produktivbetrieb gehen, sodass Sie möglichst schnell einen Mehrwert aus
der KI ziehen?

Ein Vorteil dieser Herangehensweise ist, dass Sie den neuen KI-basierten Prozess in kleinem Maßstab testen können. Gleichzeitig können wir Verbesserungen schneller identifizieren. Zu einem späteren Zeitpunkt können Sie dann skalieren und weitere Features aufnehmen. Die schlagenden Argumente, mit einem MVP zu starten, sind jedoch die Kostenreduktion und Risikominimierung. Anstatt ein riesiges Projekt umzusetzen wird ein kleines Mehrwert schaffendes Projekt geschnürt und in der Realität getestet. So werden Fehlplanungen und
-entwicklungen vermieden, die viel Geld kosten.

Definition der Key Performance Indicators (KPI)

Key Performance Indicators sind für die objektive Qualitätsmessung der KI und des Business Impacts wichtig. Diese Zielmarken definieren, was das geplante System leisten soll, damit es erfolgreich ist. Key Performance Indicators können etwa sein:

  • Durchschnittliche Zeitersparnis des Prozesses durch Teilautomatisierung
  • Garantierte Antwortzeit bei maximalem Anfrageaufkommen pro Sekunde
  • Parallel mögliche Anfragen an die KI
  • Accuracy des Modells
  • Zeit von Fertigstellung bis zur Implementierung des KI Modells

Planung in Ihr Produktivsystem

Wir planen mit Ihnen die tiefe Integration in Ihr Produktivsystem. Dabei sind etwa folgende Fragen wichtig: Wie soll die KI in der bestehenden Softwareumgebung und im Arbeitsablauf genutzt werden? Was ist notwendig, um auf die KI zuzugreifen?

Mit dem Erstgespräch und der Evaluation ist nun das Fundament für das Projekt gelegt. In den Folgeschritten treiben wir die Entwicklung nun immer weiter voran. Die Schritte 3 bis 5 werden dabei solange wiederholt bis wir von der minimal funktionsfähigen
Produktversion, dem MVP, bis zum gewünschten Endprodukt gelangt sind.

3. Iteration

Wir trainieren den Algorithmus mit dem Großteil der verfügbaren Daten. Anschließend überprüfen wir die Performance des Modells mit ungesehenen Daten.

Wie lange das Training dauert ist abhängig von der Aufgabe. Man kann jedoch sagen, dass das Trainieren eines Deep Learning Modells für Bilder oder Videos komplexer und zeitaufwändiger ist als bei textbasierten maschinellen Lernaufgaben. Das liegt daran, dass wir tiefe Modelle (mit vielen Layern) verwenden und die verarbeiteten Datenmengen in der Regel sehr groß sind.

Das Trainieren des Modells ist je nach Projekt jedoch nur ein Bruchstück des ganzen Entwicklungsprozesses, den wir leisten. Oft ist es notwendig, dass wir einen eigenen Prozess aufbauen, in den das Modell eingebettet werden kann, wie z.B. einen Webservice.

4. Integration

Ist eine akzeptable Qualitätsstufe des Modells nach dem Training erreicht, liefern wir Ihnen eine erste Produktversion aus. Üblicherweise stellen wir Ihnen die Version als Docker Image mit API zur Verfügung. Sie beginnen dann mit der Integration in Ihr System und Ihre Workflows. Wir begleiten Sie dabei.

5. Feedback erfassen

Nachdem die Integration in den Produktivbetrieb erfolgt ist, ist es sehr wichtig, dass Sie aus der Nutzung Daten sammeln. Nur so können Sie beurteilen, ob die KI funktioniert wie Sie es sich vorgestellt haben und ob es in die richtige Richtung geht. Es geht also darum, zu erfassen was das Modell im Realbetrieb kann und was nicht. Diese Daten sammeln Sie und übermitteln sie an uns. Wir speisen diese dann in nächsten Trainingslauf ein.

Es ist dabei nicht ungewöhnlich, dass diese Datenerfassung im Realbetrieb eine gewisse Zeit in Anspruch nimmt. Das ist natürlich davon abhängig, in welchem Umfang Sie Daten erfassen. Bis zum Beginn der nächsten Iteration können so üblicherweise Wochen oder sogar Monate vergehen.

Die nächste Iteration

Um mit der nächsten Iteration eine signifikante Steigerung der Ergebnisqualität zu erreichen, kann es notwendig sein, dass Sie uns mehr Daten oder andere Daten zur Verfügung stellen, die aus dem Realbetrieb anfallen.

Eine nächste Iteration kann aber auch motiviert sein durch eine Veränderung in den Anforderungen, wenn etwa bei einem Klassifikationsmodell neue Kategorien erkannt werden müssen. Das aktuelle Modell kann für solche Veränderungen dann keine guten Vorhersagen treffen und muss erst mit entsprechenden neuen Daten trainiert werden.

Tipps für ein erfolgreiches KI Projekt

Ein entscheidender Knackpunkt für ein erfolgreiches KI Projekt ist das iterative Vorgehen und schrittweise Einführen eines KI-basierten Prozesses, mit dem die Qualität und Funktionsbreite der Entwicklung gesteigert wird.

Weiterhin muss man sich darüber klar sein, dass die Bereitstellung von Trainingsdaten kein statischer Ablauf ist. Es ist ein Kreislauf, in dem Sie als Kunde eine entscheidende Rolle einnehmen. Ein letzter wichtiger Punkt ist die Messbarkeit des Projekts. Denn nur wenn die Zielwerte während des Projekts gemessen werden, können Rückschritte oder Fortschritte gesehen werden und man kann schließlich am Ziel ankommen.

Möglich wurde dieser Artikel durch die großartige Zusammenarbeit mit pixolution, einem Unternehmen für AI Solutions im Bereich Computer Vision (Visuelle Bildsuche und individuelle KI Lösungen).

Air Quality Forecasting Python Project

You will find the full python code and all visuals for this article here in this gitlab repository. The repository contains a series of analysis, transforms and forecasting models frequently used when dealing with time series. The aim of this repository is to showcase how to model time series from the scratch, for this we are using a real usecase dataset

This project forecast the Carbon Dioxide (Co2) emission levels yearly. Most of the organizations have to follow government norms with respect to Co2 emissions and they have to pay charges accordingly, so this project will forecast the Co2 levels so that organizations can follow the norms and pay in advance based on the forecasted values. In any data science project the main component is data, for this project the data was provided by the company, from here time series concept comes into the picture. The dataset for this project contains 215 entries and two components which are Year and Co2 emissions which is univariate time series as there is only one dependent variable Co2 which depends on time. from year 1800 to year 2014 Co2 levels were present in the dataset.

The dataset used: The dataset contains yearly Co2 emmisions levels. data from 1800 to 2014 sampled every 1 year. The dataset is non stationary so we have to use differenced time series for forecasting.

After getting data the next step is to analyze the time series data. This process is done by using Python. The data was present in excel file so first we need to read that excel file. This task is done by using Pandas which is python libraries to creates Pandas Data Frame. After that preprocessing like changing data types of time from object to DateTime performed for the coding purpose. Time series contain 4 main components Level, Trend, Seasonality and Noise. To study this component, we need to decompose our time series so that we can batter understand our time series and we can choose the forecasting model accordingly because each component behave different on the model. also by decomposing we can identify that the time series is multiplicative or additive.

CO2 emissions – plotted via python pandas / matplotlib

Decomposing time series using python statesmodels libraries we get to know trend, seasonality and residual component separately. the components multiply together to make the time series multiplicative and in additive time series components added together. Taking the deep dive to understand the trend component, moving average of 10 steps were applied which shows nonlinear upward trend, fit the linear regression model to check the trend which shows upward trend. talking about seasonality there were combination of multiple patterns over time period which is common in real world time series data. capturing the white noise is difficult in this type of data. the time series contains values from 1800 where the Co2 values are less then 1 because of no human activities so levels were decreasing. By the time numbers of industries and human activities are rapidly increasing which causes Co2 levels rapidly increasing. In time series the highest Co2 emission level was 18.7 in 1979. It was challenging to decide whether to consider this values which are less then 0.5 as white noise or not because 30% of the Co2 values were less then 1, in real world looking at current scenario the chances of Co2 emission level being 0 is near to impossible still there are chances that Co2 levels can be 0.0005. So considering each data point as a valuable information we refused to remove that entries.

Next step is to create Lag plot so we can see the correlation between the current year Co2 level and previous year Co2 level. the plot was linear which shows high correlation so we can say that the current Co2 levels and previous levels have strong relationship. the randomness of the data were measured by plotting autocorrelation graph. the autocorrelation graph shows smooth curves which indicates the time series is nonstationary thus next step is to make time series stationary. in nonstationary time series, summary statistics like mean and variance change over time.

To make time series stationary we have to remove trend and seasonality from it. Before that we use dickey fuller test to make sure our time series is nonstationary. the test was done by using python, and the test gives pvalue as output. here the null hypothesis is that the data is nonstationary while alternate hypothesis is that the data is stationary, in this case the significance values is 0.05 and the pvalues which is given by dickey fuller test is greater than 0.05 hence we failed to reject null hypothesis so we can say the time series is nonstationery. Differencing is one of the techniques to make time series stationary. On this time series, first order differencing technique applied to make the time series stationary. In first order differencing we have to subtract previous value from current value for all the data points. also different transformations like log, sqrt and reciprocal were applied in the context of making the time series stationary. Smoothing techniques like simple moving average, exponential weighted moving average, simple exponential smoothing and double exponential smoothing techniques can be applied to remove the variation between time stamps and to see the smooth curves.

Smoothing techniques also used to observe trend in time series as well as to predict the future values. But performance of other models was good compared to smoothing techniques. First 200 entries taken to train the model and remaining last for testing the performance of the model. performance of different models measured by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) as we are predicting future Co2 emissions so basically it is regression problem. RMSE is calculated by root of the average of squared difference between actual values and predicted values by the model on testing data. Here RMSE values were calculated using python sklearn library. For model building two approaches are there, one is datadriven and another one is model based. models from both the approaches were applied to find the best fitted model. ARIMA model gives the best results for this kind of dataset as the model were trained on differenced time series. The ARIMA model predicts a given time series based on its own past values. It can be used for any nonseasonal series of numbers that exhibits patterns and is not a series of random events. ARIMA takes 3 parameters which are AR, MA and the order of difference. Hyper parameter tuning technique gives best parameters for the model by trying different sets of parameters. Although The autocorrelation and partial autocorrelation plots can be use to decide AR and MA parameter because partial autocorrelation function shows the partial correlation of a stationary time series with its own lagged values so using PACF we can decide the value of AR and from ACF we can decide the value of MA parameter as ACF shows how data points in a time series are related.

Yearly difference of CO2 emissions – ARIMA Prediction

Apart from ARIMA, few other model were trained which are AR, ARMA, Simple Linear Regression, Quadratic method, Holts winter exponential smoothing, Ridge and Lasso Regression, LGBM and XGboost methods, Recurrent neural network (RNN) Long Short Term Memory (LSTM) and Fbprophet. I would like to mention my experience with LSTM here because it is another model which gives good result as ARIMA. the reason for not choosing LSTM as final model is its complexity. As ARIMA is giving appropriate results and it is simple to understand and requires less dependencies. while using lstm, lot of data preprocessing and other dependencies required, the dataset was small thus we used to train the model on CPU, otherwise gpu is required to train the LSTM model. we face one more challenge in deployment part. the challenge is to get the data into original form because the model was trained on differenced time series, so it will predict the future values in differenced format. After lot of research on the internet and by deeply understanding mathematical concepts finally we got the solution for it. solution for this issue is we have to add previous value from the original data from into first order differencing and then we have to add the last value of this time series into predicted values. To create the user interface streamlit was used, it is commonly used python library. the pickle file of the ARIMA model were used to predict the future values based on user input. The limit for forecasting is the year 2050. The project was uploaded on google cloud platform. so the flow is, first the starting year from which user want to forecast was taken and the end year till which year user want to forecast was taken and then according to the range of this inputs the prediction takes place. so by taking the inputs the pickle file will produce the future Co2 emissions in differenced format, then the values will be converted to original format and then the original values will be displayed on the user interface as well as the interactive line graph were displayed on the interface.

You will find the full python code and all visuals for this article here in this gitlab repository.

Deep Autoregressive Models

Deep Autoregressive Models

In this blog article, we will discuss about deep autoregressive generative models (AGM). Autoregressive models were originated from economics and social science literature on time-series data where obser- vations from the previous steps are used to predict the value at the current and at future time steps [SS05]. Autoregression models can be expressed as:

    \begin{equation*} x_{t+1}= \sum_i^t \alpha_i x_{t-i} + c_i, \end{equation*}

where the terms \alpha and c are constants to define the contributions of previous samples x_i for the future value prediction. In the other words, autoregressive deep generative models are directed and fully observed models where outcome of the data completely depends on the previous data points as shown in Figure 1.

Autoregressive directed graph.

Figure 1: Autoregressive directed graph.

Let’s consider x \sim X, where X is a set of images and each images is n-dimensional (n pixels). Then the prediction of new data pixel will be depending all the previously predicted pixels (Figure ?? shows the one row of pixels from an image). Referring to our last blog, deep generative models (DGMs) aim to learn the data distribution p_\theta(x) of the given training data and by following the chain rule of the probability, we can express it as:

(1)   \begin{equation*} p_\theta(x) = \prod_{i=1}^n p_\theta(x_i | x_1, x_2, \dots , x_{i-1}) \end{equation*}

The above equation modeling the data distribution explicitly based on the pixel conditionals, which are tractable (exact likelihood estimation). The right hand side of the above equation is a complex distribution and can be represented by any possible distribution of n random variables. On the other hand, these kind of representation can have exponential space complexity. Therefore, in autoregressive generative models (AGM), these conditionals are approximated/parameterized by neural networks.

Training

As AGMs are based on tractable likelihood estimation, during the training process these methods maximize the likelihood of images over the given training data X and it can be expressed as:

(2)   \begin{equation*} \max_{\theta} \sum_{x\sim X} log \: p_\theta (x) = \max_{\theta} \sum_{x\sim X} \sum_{i=1}^n log \: p_\theta (x_i | x_1, x_2, \dots, x_{i-1}) \end{equation*}

The above expression is appearing because of the fact that DGMs try to minimize the distance between the distribution of the training data and the distribution of the generated data (please refer to our last blog). The distance between two distribution can be computed using KL-divergence:

(3)   \begin{equation*} \min_{\theta} d_{KL}(p_d (x),p_\theta (x)) = log\: p_d(x) - log \: p_\theta(x) \end{equation*}

In the above equation the term p_d(x) does not depend on \theta, therefore, whole equation can be shortened to Equation 2, which represents the MLE (maximum likelihood estimation) objective to learn the model parameter \theta by maximizing the log likelihood of the training images X. From implementation point of view, the MLE objective can be optimized using the variations of stochastic gradient (ADAM, RMSProp, etc.) on mini-batches.

Network Architectures

As we are discussing deep generative models, here, we would like to discuss the deep aspect of AGMs. The parameterization of the conditionals mentioned in Equation 1 can be realized by different kind of network architectures. In the literature, several network architectures are proposed to increase their receptive fields and memory, allowing more complex distributions to be learned. Here, we are mentioning a couple of well known architectures, which are widely used in deep AGMs:

  1. Fully-visible sigmoid belief network (FVSBN): FVSBN is the simplest network without any hidden units and it is a linear combination of the input elements followed by a sigmoid function to keep output between 0 and 1. The positive aspects of this network is simple design and the total number of parameters in the model is quadratic which is much smaller compared to exponential [GHCC15].
  2. Neural autoregressive density estimator (NADE): To increase the effectiveness of FVSBN, the simplest idea would be to use one hidden layer neural network instead of logistic regression. NADE is an alternate MLP-based parameterization and more effective compared to FVSBN [LM11].
  3. Masked autoencoder density distribution (MADE): Here, the standard autoencoder neural networks are modified such that it works as an efficient generative models. MADE masks the parameters to follow the autoregressive property, where the current sample is reconstructed using previous samples in a given ordering [GGML15].
  4. PixelRNN/PixelCNN: These architecture are introducced by Google Deepmind in 2016 and utilizing the sequential property of the AGMs with recurrent and convolutional neural networks.
Different autoregressive architectures

Figure 2: Different autoregressive architectures (image source from [LM11]).

Results using different architectures

Results using different architectures (images source https://deepgenerativemodels.github.io).

It uses two different RNN architectures (Unidirectional LSTM and Bidirectional LSTM) to generate pixels horizontally and horizontally-vertically respectively. Furthermore, it ulizes residual connection to speed up the convergence and masked convolution to condition the different channels of images. PixelCNN applies several convolutional layers to preserve spatial resolution and increase the receptive fields. Furthermore, masking is applied to use only the previous pixels. PixelCNN is faster in training compared to PixelRNN. However, the outcome quality is better with PixelRNN [vdOKK16].

Summary

In this blog article, we discussed about deep autoregressive models in details with the mathematical foundation. Furthermore, we discussed about the training procedure including the summary of different network architectures. We did not discuss network architectures in details, we would continue the discussion of PixelCNN and its variations in upcoming blogs.

References

[GGML15] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: masked autoencoder for distribution estimation. CoRR, abs/1502.03509, 2015.

[GHCC15] Zhe Gan, Ricardo Henao, David Carlson, and Lawrence Carin. Learning Deep Sigmoid Belief Networks with Data Augmentation. In Guy Lebanon and S. V. N. Vishwanathan, editors, Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics, volume 38 of Proceedings of Machine Learning Research, pages 268–276, San Diego, California, USA, 09–12 May 2015. PMLR.

[LM11] Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In Geoffrey Gordon, David Dunson, and Miroslav Dudík, editors, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pages 29–37, Fort Lauderdale, FL, USA, 11–13 Apr 2011.
PMLR.

[SS05] Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Applications (Springer Texts in Statistics). Springer-Verlag, Berlin, Heidelberg, 2005.

[vdOKK16] A ̈aron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. CoRR, abs/1601.06759, 2016