Simple RNN

Prerequisites for understanding RNN at a more mathematical level

Writing the A gentle introduction to the tiresome part of understanding RNN Article Series on recurrent neural network (RNN) is nothing like a creative or ingenious idea. It is quite an ordinary topic. But still I am going to write my own new article on this ordinary topic because I have been frustrated by lack of sufficient explanations on RNN for slow learners like me.

I think many of readers of articles on this website at least know that RNN is a type of neural network used for AI tasks, such as time series prediction, machine translation, and voice recognition. But if you do not understand how RNNs work, especially during its back propagation, this blog series is for you.

After reading this articles series, I think you will be able to understand RNN in more mathematical and abstract ways. But in case some of the readers are allergic or intolerant to mathematics, I tried to use as little mathematics as possible.

Ideal prerequisite knowledge:

  • Some understanding on densely connected layers (or fully connected layers, multilayer perception) and how their forward/back propagation work.
  •  Some understanding on structure of Convolutional Neural Network.

*In this article “Densely Connected Layers” is written as “DCL,” and “Convolutional Neural Network” as “CNN.”

1, Difficulty of Understanding RNN

I bet a part of difficulty of understanding RNN comes from the variety of its structures. If you search “recurrent neural network” on Google Image or something, you will see what I mean. But that cannot be helped because RNN enables a variety of tasks.

Another major difficulty of understanding RNN is understanding its back propagation algorithm. I think some of you found it hard to understand chain rules in calculating back propagation of densely connected layers, where you have to make the most of linear algebra. And I have to say backprop of RNN, especially LSTM, is a monster of chain rules. I am planing to upload not only a blog post on RNN backprop, but also a presentation slides with animations to make it more understandable, in some external links.

In order to avoid such confusions, I am going to introduce a very simplified type of RNN, which I call a “simple RNN.” The RNN displayed as the head image of this article is a simple RNN.

2, How Neurons are Connected

How to connect neurons and how to activate them is what neural networks are all about. Structures of those neurons are easy to grasp as long as that is about DCL or CNN. But when it comes to the structure of RNN, many study materials try to avoid showing that RNNs are also connections of neurons, as well as DCL or CNN(*If you are not sure how neurons are connected in CNN, this link should be helpful. Draw a random digit in the square at the corner.). In fact the structure of RNN is also the same, and as long as it is a simple RNN, and it is not hard to visualize its structure.

Even though RNN is also connections of neurons, usually most RNN charts are simplified, using blackboxes. In case of simple RNN, most study material would display it as the chart below.

But that also cannot be helped because fancier RNN have more complicated connections of neurons, and there are no longer advantages of displaying RNN as connections of neurons, and you would need to understand RNN in more abstract way, I mean, as you see in most of textbooks.

I am going to explain details of simple RNN in the next article of this series.

3, Neural Networks as Mappings

If you still think that neural networks are something like magical spider webs or models of brain tissues, forget that. They are just ordinary mappings.

If you have been allergic to mathematics in your life, you might have never heard of the word “mapping.” If so, at least please keep it in mind that the equation y=f(x), which most people would have seen in compulsory education, is a part of mapping. If you get a value x, you get a value y corresponding to the x.

But in case of deep learning, x is a vector or a tensor, and it is denoted in bold like \boldsymbol{x} . If you have never studied linear algebra , imagine that a vector is a column of Excel data (only one column), a matrix is a sheet of Excel data (with some rows and columns), and a tensor is some sheets of Excel data (each sheet does not necessarily contain only one column.)

CNNs are mainly used for image processing, so their inputs are usually image data. Image data are in many cases (3, hight, width) tensors because usually an image has red, blue, green channels, and the image in each channel can be expressed as a height*width matrix (the “height” and the “width” are number of pixels, so they are discrete numbers).

The convolutional part of CNN (which I call “feature extraction part”) maps the tensors to a vector, and the last part is usually DCL, which works as classifier/regressor. At the end of the feature extraction part, you get a vector. I call it a “semantic vector” because the vector has information of “meaning” of the input image. In this link you can see maps of pictures plotted depending on the semantic vector. You can see that even if the pictures are not necessarily close pixelwise, they are close in terms of the “meanings” of the images.

In the example of a dog/cat classifier introduced by François Chollet, the developer of Keras, the CNN maps (3, 150, 150) tensors to 2-dimensional vectors, (1, 0) or (0, 1) for (dog, cat).

Wrapping up the points above, at least you should keep two points in mind: first, DCL is a classifier or a regressor, and CNN is a feature extractor used for image processing. And another important thing is, feature extraction parts of CNNs map images to vectors which are more related to the “meaning” of the image.

Importantly, I would like you to understand RNN this way. An RNN is also just a mapping.

*I recommend you to at least take a look at the beautiful pictures in this link. These pictures give you some insight into how CNN perceive images.

4, Problems of DCL and CNN, and needs for RNN

Taking an example of RNN task should be helpful for this topic. Probably machine translation is the most famous application of RNN, and it is also a good example of showing why DCL and CNN are not proper for some tasks. Its algorithms is out of the scope of this article series, but it would give you a good insight of some features of RNN. I prepared three sentences in German, English, and Japanese, which have the same meaning. Assume that each sentence is divided into some parts as shown below and that each vector corresponds to each part. In machine translation we want to convert a set of the vectors into another set of vectors.

Then let’s see why DCL and CNN are not proper for such task.

  • The input size is fixed: In case of the dog/cat classifier I have mentioned, even though the sizes of the input images varies, they were first molded into (3, 150, 150) tensors. But in machine translation, usually the length of the input is supposed to be flexible.
  • The order of inputs does not mater: In case of the dog/cat classifier the last section, even if the input is “cat,” “cat,” “dog” or “dog,” “cat,” “cat” there’s no difference. And in case of DCL, the network is symmetric, so even if you shuffle inputs, as long as you shuffle all of the input data in the same way, the DCL give out the same outcome . And if you have learned at least one foreign language, it is easy to imagine that the orders of vectors in sequence data matter in machine translation.

*It is said English language has phrase structure grammar, on the other hand Japanese language has dependency grammar. In English, the orders of words are important, but in Japanese as long as the particles and conjugations are correct, the orders of words are very flexible. In my impression, German grammar is between them. As long as you put the verb at the second position and the cases of the words are correct, the orders are also relatively flexible.

5, Sequence Data

We can say DCL and CNN are not useful when you want to process sequence data. Sequence data are a type of data which are lists of vectors. And importantly, the orders of the vectors matter. The number of vectors in sequence data is usually called time steps. A simple example of sequence data is meteorological data measured at a spot every ten minutes, for instance temperature, air pressure, wind velocity, humidity. In this case the data is recorded as 4-dimensional vector every ten minutes.

But this “time step” does not necessarily mean “time.” In case of natural language processing (including machine translation), which you I mentioned in the last section, the numberings of each vector denoting each part of sentences are “time steps.”

And RNNs are mappings from a sequence data to another sequence data.

In case of the machine translation above, the each sentence in German, English, and German is expressed as sequence data \boldsymbol{G}=(\boldsymbol{g}_1,\dots ,\boldsymbol{g}_{12}), \boldsymbol{E}=(\boldsymbol{e}_1,\dots ,\boldsymbol{e}_{11}), \boldsymbol{J}=(\boldsymbol{j}_1,\dots ,\boldsymbol{j}_{14}), and machine translation is nothing but mappings between these sequence data.


*At least I found a paper on the RNN’s capability of universal approximation on many-to-one RNN task. But I have not found any papers on universal approximation of many-to-many RNN tasks. Please let me know if you find any clue on whether such approximation is possible. I am desperate to know that. 

6, Types of RNN Tasks

RNN tasks can be classified into some types depending on the lengths of input/output sequences (the “length” means the times steps of input/output sequence data).

If you want to predict the temperature in 24 hours, based on several time series data points in the last 96 hours, the task is many-to-one. If you sample data every ten minutes, the input size is 96*6=574 (the input data is a list of 574 vectors), and the output size is 1 (which is a value of temperature). Another example of many-to-one task is sentiment classification. If you want to judge whether a post on SNS is positive or negative, the input size is very flexible (the length of the post varies.) But the output size is one, which is (1, 0) or (0, 1), which denotes (positive, negative).

*The charts in this section are simplified model of RNN used for each task. Please keep it in mind that they are not 100% correct, but I tried to make them as exact as possible compared to those in other study materials.

Music/text generation can be one-to-many tasks. If you give the first sound/word you can generate a phrase.

Next, let’s look at many-to-many tasks. Machine translation and voice recognition are likely to be major examples of many-to-many tasks, but here name entity recognition seems to be a proper choice. Name entity recognition is task of finding proper noun in a sentence . For example if you got two sentences “He said, ‘Teddy bears on sale!’ ” and ‘He said, “Teddy Roosevelt was a great president!” ‘ judging whether the “Teddy” is a proper noun or a normal noun is name entity recognition.

Machine translation and voice recognition, which are more popular, are also many-to-many tasks, but they use more sophisticated models. In case of machine translation, the inputs are sentences in the original language, and the outputs are sentences in another language. When it comes to voice recognition, the input is data of air pressure at several time steps, and the output is the recognized word or sentence. Again, these are out of the scope of this article but I would like to introduce the models briefly.

Machine translation uses a type of RNN named sequence-to-sequence model (which is often called seq2seq model). This model is also very important for other natural language processes tasks in general, such as text summarization. A seq2seq model is divided into the encoder part and the decoder part. The encoder gives out a hidden state vector and it used as the input of the decoder part. And decoder part generates texts, using the output of the last time step as the input of next time step.

Voice recognition is also a famous application of RNN, but it also needs a special type of RNN.

*To be honest, I don’t know what is the state-of-the-art voice recognition algorithm. The example in this article is a combination of RNN and a collapsing function made using Connectionist Temporal Classification (CTC). In this model, the output of RNN is much longer than the recorded words or sentences, so a collapsing function reduces the output into next output with normal length.

You might have noticed that RNNs in the charts above are connected in both directions. Depending on the RNN tasks you need such bidirectional RNNs.  I think it is also easy to imagine that such networks are necessary. Again, machine translation is a good example.

And interestingly, image captioning, which enables a computer to describe a picture, is one-to-many-task. As the output is a sentence, it is easy to imagine that the output is “many.” If it is a one-to-many task, the input is supposed to be a vector.

Where does the input come from? I mentioned that the last some layers in of CNN are closely connected to how CNNs extract meanings of pictures. Surprisingly such vectors, which I call a “semantic vectors” is the inputs of image captioning task (after some transformations, depending on the network models).

I think this articles includes major things you need to know as prerequisites when you want to understand RNN at more mathematical level. In the next article, I would like to explain the structure of a simple RNN, and how it forward propagate.

* I make study materials on machine learning, sponsored by DATANOMIQ. I do my best to make my content as straightforward but as precise as possible. I include all of my reference sources. If you notice any mistakes in my materials, please let me know (email: And if you have any advice for making my materials more understandable to learners, I would appreciate hearing it.

Über die Integration symbolischer Inferenz in tiefe neuronale Netze

Tiefe neuronale Netze waren in den letzten Jahren eine enorme Erfolgsgeschichte. Viele Fortschritte im Bereich der KI, wie das Erkennen von Objekten, die fließende Übersetzung natürlicher Sprache oder das Spielen von GO auf Weltklasseniveau, basieren auf tiefen neuronalen Netzen. Über die Grenzen dieses Ansatzes gab es jedoch nur wenige Berichte. Eine dieser Einschränkungen ist die Unfähigkeit, aus einer kleinen Anzahl von Beispielen zu lernen. Tiefe neuronale Netze erfordern in der Regel eine Vielzahl von Trainingsbeispielen, während der Mensch aus nur einem einzigen Beispiel lernen kann. Wenn Sie eine Katze einem Kind zeigen, das noch nie zuvor eine gesehen hat, kann es eine weitere Katze anhand dieser einzigen Instanz erkennen. Tiefe neuronale Netze hingegen benötigen Hunderttausende von Bildern, um zu erlernen, wie eine Katze aussieht. Eine weitere Einschränkung ist die Unfähigkeit, Rückschlüsse aus bereits erlerntem Allgemeinwissen zu ziehen. Beim Lesen eines Textes neigen Menschen dazu, weitreichende Rückschlüsse auf mögliche Interpretationen des Textes zu ziehen. Der Mensch ist dazu in der Lage, weil er Wissen aus sehr unterschiedlichen Bereichen abrufen und auf den Text anwenden kann.

Diese Einschränkungen deuten darauf hin, dass in tiefen neuronalen Netzen noch etwas Grundsätzliches fehlt. Dieses Etwas ist die Fähigkeit, symbolische Bezüge zu Entitäten in der realen Welt herzustellen und sie in Beziehung zueinander zu setzen. Symbolische Inferenz in Form von formaler Logik ist seit Jahrzehnten der Kern der klassischen KI, hat sich jedoch als spröde und komplex in der Anwendung erwiesen. Gibt es dennoch keine Möglichkeit, tiefe neuronale Netze so zu verbessern, dass sie in der Lage sind, symbolische Informationen zu verarbeiten? Tiefe neuronale Netzwerke wurden von biologischen neuronalen Netzwerken wie dem menschlichen Gehirn inspiriert. Im Wesentlichen sind sie ein vereinfachtes Modell der Neuronen und Synapsen, die die Grundbausteine des Gehirns ausmachen. Eine solche Vereinfachung ist, dass statt mit zeitlich begrenzten Aktionspotenzialen nur mit einem Aktivierungswert gearbeitet wird. Aber was ist, wenn es nicht nur wichtig ist, ob ein Neuron aktiviert wird, sondern auch, wann genau. Was wäre, wenn der Zeitpunkt, zu dem ein Neuron feuert, einen relationalen Kontext herstellt, auf den sich diese Aktivierung bezieht? Nehmen wir zum Beispiel ein Neuron, das für ein bestimmtes Wort steht. Wäre es nicht sinnvoll, wenn dieses Neuron jedes Mal ausgelöst würde, wenn das Wort in einem Text erscheint? In diesem Fall würde das Timing der Aktionspotenziale eine wichtige Rolle spielen. Und nicht nur das Timing einer einzelnen Aktivierung, sondern auch das Timing aller eingehenden Aktionspotenziale eines Neurons relativ zueinander wäre wichtig. Dieses zeitliche Muster kann verwendet werden, um eine Beziehung zwischen diesen Eingangsaktivierungen herzustellen. Wenn beispielsweise ein Neuron, das ein bestimmtes Wort repräsentiert, eine Eingabesynapse für jeden Buchstaben in diesem Wort hat, ist es wichtig, dass das Wort Neuron nur dann ausgelöst wird, wenn die Buchstabenneuronen in der richtigen Reihenfolge zueinander abgefeuert wurden. Konzeptionell könnten diese zeitlichen Unterschiede als Relationen zwischen den Eingangssynapsen eines Neurons modelliert werden. Diese Relationen definieren auch den Zeitpunkt, zu dem das Neuron selbst im Verhältnis zu seinen Eingangsaktivierungen feuert. Aus praktischen Gründen kann es sinnvoll sein, der Aktivierung eines Neurons mehrere Slots zuzuordnen, wie z.B. den Anfang und das Ende eines Wortes. Andernfalls müssten Anfang und Ende eines Wortes als zwei getrennte Neuronen modelliert werden. Diese Relationen sind ein sehr mächtiges Konzept. Sie ermöglichen es, die hierarchische Struktur von Texten einfach zu erfassen oder verschiedene Bereiche innerhalb eines Textes miteinander in Beziehung zu setzen. In diesem Fall kann sich ein Neuron auf eine sehr lokale Information beziehen, wie z.B. einen Buchstaben, oder auf eine sehr weitreichende Information, wie z.B. das Thema eines Textes.

Eine weitere Vereinfachung im Hinblick auf biologische neuronale Netze besteht darin, dass mit Hilfe einer Aktivierungsfunktion die Feuerrate eines einzelnen Neurons angenähert wird. Zu diesem Zweck nutzen klassische neuronale Netze die Sigmoidfunktion. Die Sigmoidfunktion ist jedoch symmetrisch bezüglich großer positiver oder negativer Eingangswerte, was es sehr schwierig macht, ausssagenlogische Operationen mit Neuronen mit der Sigmoidfunktion zu modellieren. Spiking-Netzwerke hingegen haben einen klaren Schwellenwert und ignorieren alle Eingangssignale, die unterhalb dieses Schwellenwerts bleiben. Daher ist die ReLU-Funktion oder eine andere asymmetrische Funktion eine deutlich bessere Annäherung für die Feuerrate. Diese Asymmetrie ist auch für Neuronen unerlässlich, die relationale Informationen verarbeiten. Das Neuron, das ein bestimmtes Wort repräsentiert, muss nämlich für alle Zeitpunkte, an denen das Wort nicht vorkommt, völlig inaktiv bleiben.

Ebenfalls vernachlässigt wird in tiefen neuronalen Netzwerken die Tatsache, dass verschiedene Arten von Neuronen in der Großhirnrinde vorkommen. Zwei wichtige Typen sind die bedornte Pyramidenzelle, die in erster Linie eine exzitatorische Charakteristik aufweist, und die nicht bedornte Sternzelle, die eine hemmende aufweist. Die inhibitorischen Neuronen sind besonders, weil sie es ermöglichen, negative Rückkopplungsschleifen aufzubauen. Solche Rückkopplungsschleifen finden sich normalerweise nicht in einem tiefen neuronalen Netzwerk, da sie einen inneren Zustand in das Netzwerk einbringen. Betrachten wir das folgende Netzwerk mit einem hemmenden Neuron und zwei exzitatorischen Neuronen, die zwei verschiedene Bedeutungen des Wortes “August” darstellen.

Beide Bedeutungen schließen sich gegenseitig aus, so dass das Netzwerk nun zwei stabile Zustände aufweist. Diese Zustände können von weiteren Eingangssynapsen der beiden exzitatorischen Neuronen abhängen. Wenn beispielsweise das nächste Wort nach dem Wort ‘August’ ein potenzieller Nachname ist, könnte eine entsprechende Eingabesynapse für das Entitätsneuron August-(Vorname) das Gewicht dieses Zustands erhöhen. Es ist nun wahrscheinlicher, dass das Wort “August” als Vorname und nicht als Monat eingestuft wird. Aber bedenken Sie, dass beide Zustände evaluiert werden müssen. In größeren Netzwerken können viele Neuronen durch negative oder positive Rückkopplungsschleifen verbunden sein, was zu einer großen Anzahl von stabilen Zuständen im Netzwerk führen kann.

Aus diesem Grund ist ein effizienter Optimierungsprozess erforderlich, der den besten Zustand in Bezug auf eine Zielfunktion ermittelt. Diese Zielfunktion könnte darin bestehen, die Notwendigkeit der Unterdrückung stark aktivierter Neuronen zu minimieren. Diese Zustände haben jedoch den enormen Vorteil, dass sie es erlauben, unterschiedliche Interpretationen eines bestimmten Textes zu berücksichtigen. Es ist eine Art Denkprozess, in dem verschiedene Interpretationen bewertet werden und die jeweils stärkste als Ergebnis geliefert wird. Glücklicherweise lässt sich die Suche nach einem optimalen Lösungszustand recht gut optimieren.

Der Grund, warum wir in diesen Rückkopplungsschleifen hemmende Neuronen benötigen, ist, dass sonst alle gegenseitig unterdrückenden Neuronen vollständig miteinander verbunden sein müssten. Das würde zu einer quadratisch zunehmenden Anzahl von Synapsen führen.

Durch die negativen Rückkopplungsschleifen, d.h. durch einfaches Verbinden einer negativen Synapse mit einem ihrer Vorläuferneuronen, haben wir plötzlich den Bereich der nichtmonotonen Logik betreten. Die nichtmonotone Logik ist ein Teilgebiet der formalen Logik, in dem Implikationen nicht nur zu einem Modell hinzugefügt, sondern auch entfernt werden. Es wird davon ausgegangen, dass eine nichtmonotone Logik erforderlich ist, um Schlussfolgerungen für viele Common Sense Aufgaben ziehen zu können. Eines der Hauptprobleme der nichtmonotonen Logik ist, dass sie oft nicht entscheiden kann, welche Schlussfolgerungen sie ziehen soll und welche eben nicht. Einige skeptische oder leichtgläubige Schlussfolgerungen sollten nur gezogen werden, wenn keine anderen Schlussfolgerungen wahrscheinlicher sind. Hier kommt die gewichtete Natur neuronaler Netze zum Tragen. In neuronalen Netzen können nämlich eher wahrscheinliche Zustände weniger wahrscheinliche Zustände unterdrücken.

Beispielimplementierung innerhalb des Aika-Frameworks

An dieser Stelle möchte ich noch einmal das Beispielneuron für das Wort ‘der’ vom Anfang aufgreifen. Das Wort-Neuron besteht aus drei Eingabesynapsen, die sich jeweils auf die einzelnen Buchstaben des Wortes beziehen. Über die Relationen werden die Eingabesynapsen nun zueinander in eine bestimmte Beziehung gesetzt, so dass das Wort ‘der’ nur erkannt wird, wenn alle Buchstaben in der korrekten Reihenfolge auftreten.
Als Aktivierungsfunktion des Neurons wird hier der im negativen Bereich abgeschnittene (rectified) hyperbolische Tangens verwendet. Dieser hat gerade bei einem UND-verknüpfenden Neuron den Vorteil, dass er selbst bei sehr großen Werten der gewichteten Summe auf den Wert 1 begrenzt ist. Alternativ kann auch die ReLU-Funktion (Rectified Linear Unit) verwendet werden. Diese eignet sich insbesondere für ODER-verknüpfende Neuronen, da sie die Eingabewerte unverzerrt weiterleitet.
Im Gegensatz zu herkömmlichen neuronalen Netzen gibt es hier mehrere Bias Werte, einen für das gesamte Neuron (in diesem Fall auf 5.0 gesetzt) und einen für jede Synapse. Intern werden diese Werte zu einem gemeinsamen Bias aufsummiert. Es ist schon klar, dass dieses Aufteilen des Bias nicht wirklich gut zu Lernregeln wie der Delta-Rule und dem Backpropagation passt, allerdings eignen sich diese Lernverfahren eh nur sehr begrenzt für diese Art von neuronalem Netzwerk. Als Lernverfahren kommen eher von den natürlichen Mechanismen Langzeit-Potenzierung und Langzeit-Depression inspirierte Ansätze in Betracht.


Obwohl tiefe neuronale Netze bereits einen langen Weg zurückgelegt haben und mittlerweile beeindruckende Ergebnisse liefern, kann es sich doch lohnen, einen weiteren Blick auf das Original, das menschliche Gehirn und seine Schaltkreise zu werfen. Wenn eine so inhärent komplexe Struktur wie das menschliche Gehirn als Blaupause für ein neuronales Modell verwendet werden soll, müssen vereinfachende Annahmen getroffen werden. Allerdings ist bei diesem Prozess Vorsicht geboten, da sonst wichtige Aspekte des Originals verloren gehen können.


  1. Der Aika-Algorithm
    Lukas Molzberger
  2. Neuroscience: Exploring the Brain
    Mark F. Bear, Barry W. Connors, Michael A. Paradiso
  3. Neural-Symbolic Learning and Reasoning: A Survey and Interpretation
    Tarek R. Besold, Artur d’Avila Garcez, Sebastian Bader; Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb, ; Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, Gerson Zaverucha
  4. Deep Learning: A Critical Appraisal
    Gary Marcus
  5. Nonmonotonic Reasoning
    Gerhard Brewka, Ilkka Niemela, Mirosław Truszczynski

Einstieg in Natural Language Processing – Teil 2: Preprocessing von Rohtext mit Python

Dies ist der zweite Artikel der Artikelserie Einstieg in Natural Language Processing.

In diesem Artikel wird das so genannte Preprocessing von Texten behandelt, also Schritte die im Bereich des NLP in der Regel vor eigentlichen Textanalyse durchgeführt werden.


Um eingelesenen Rohtext in ein Format zu überführen, welches in der späteren Analyse einfacher ausgewertet werden kann, sind eine ganze Reihe von Schritten notwendig. Ganz allgemein besteht der erste Schritt darin, den auszuwertenden Text in einzelne kurze Abschnitte – so genannte Tokens – zu zerlegen (außer man bastelt sich völlig eigene Analyseansätze, wie zum Beispiel eine Spracherkennung anhand von Buchstabenhäufigkeiten ect.).

Was genau ein Token ist, hängt vom verwendeten Tokenizer ab. So bringt NLTK bereits standardmäßig unter anderem BlankLine-, Line-, Sentence-, Word-, Wordpunkt- und SpaceTokenizer mit, welche Text entsprechend in Paragraphen, Zeilen, Sätze, Worte usw. aufsplitten. Weiterhin ist mit dem RegexTokenizer ein Tool vorhanden, mit welchem durch Wahl eines entsprechenden Regulären Ausdrucks beliebig komplexe eigene Tokenizer erstellt werden können.

Üblicherweise wird ein Text (evtl. nach vorherigem Aufsplitten in Paragraphen oder Sätze) schließlich in einzelne Worte und Interpunktionen (Satzzeichen) aufgeteilt. Hierfür kann, wie im folgenden Beispiel z. B. der WordTokenizer oder die diesem entsprechende Funktion word_tokenize() verwendet werden.

Stemming & Lemmatizing

Andere häufig durchgeführte Schritte sind Stemming sowie Lemmatizing. Hierbei werden die Suffixe der einzelnen Tokens des Textes mit Hilfe eines Stemmers in eine Form überführt, welche nur den Wortstamm zurücklässt. Dies hat den Zweck verschiedene grammatikalische Formen des selben Wortes (welche sich oft in ihrer Endung unterscheiden (ich gehe, du gehst, er geht, wir gehen, …) ununterscheidbar zu machen. Diese würden sonst als mehrere unabhängige Worte in die darauf folgende Analyse eingehen.

Neben bereits fertigen Stemmern bietet NLTK auch für diesen Schritt die Möglichkeit sich eigene Stemmer zu programmieren. Da verschiedene Stemmer Suffixe nach unterschiedlichen Regeln entfernen, sind nur die Wortstämme miteinander vergleichbar, welche mit dem selben Stemmer generiert wurden!

Im forlgenden Beispiel werden verschiedene vordefinierte Stemmer aus dem Paket NLTK auf den bereits oben verwendeten Beispielsatz angewendet und die Ergebnisse der gestemmten Tokens in einer Art einfachen Tabelle ausgegeben:

Sehr ähnlich den Stemmern arbeiten Lemmatizer: Auch ihre Aufgabe ist es aus verschiedenen Formen eines Wortes die jeweilige Grundform zu bilden. Im Unterschied zu den Stemmern ist das Lemma eines Wortes jedoch klar als dessen Grundform definiert.


Auch das Vokabular, also die Menge aller verschiedenen Worte eines Textes, ist eine informative Kennzahl. Bezieht man die Größe des Vokabulars eines Textes auf seine gesamte Anzahl verwendeter Worte, so lassen sich hiermit Aussagen zu der Diversität des Textes machen.

Außerdem kann das auftreten bestimmter Worte später bei der automatischen Einordnung in Kategorien wichtig werden: Will man beispielsweise Nachrichtenmeldungen nach Themen kategorisieren und in einem Text tritt das Wort „DAX“ auf, so ist es deutlich wahrscheinlicher, dass es sich bei diesem Text um eine Meldung aus dem Finanzbereich handelt, als z. B. um das „Kochrezept des Tages“.

Dies mag auf den ersten Blick trivial erscheinen, allerdings können auch mit einfachen Modellen, wie dem so genannten „Bag-of-Words-Modell“, welches nur die Anzahl des Auftretens von Worten prüft, bereits eine Vielzahl von Informationen aus Texten gewonnen werden.

Das reine Vokabular eines Textes, welcher in der Variable “rawtext” gespeichert ist, kann wie folgt in der Variable “vocab” gespeichert werden. Auf die Ausgabe wurde in diesem Fall verzichtet, da diese im Falle des oben als Beispiel gewählten Satzes den einzelnen Tokens entspricht, da kein Wort öfter als ein Mal vorkommt.


Unter Stopwords werden Worte verstanden, welche zwar sehr häufig vorkommen, jedoch nur wenig Information zu einem Text beitragen. Beispiele in der beutschen Sprache sind: der, und, aber, mit, …

Sowohl NLTK als auch cpaCy bringen vorgefertigte Stopwordsets mit. 

Vorsicht: NLTK besitzt eine Stopwordliste, welche erst in ein Set umgewandelt werden sollte um die lookup-Zeiten kurz zu halten – schließlich muss jedes einzelne Token des Textes auf das vorhanden sein in der Stopworditerable getestet werden!


POS-Tagging steht für „Part of Speech Tagging“ und entspricht ungefähr den Aufgaben, die man noch aus dem Deutschunterricht kennt: „Unterstreiche alle Subjekte rot, alle Objekte blau…“. Wichtig ist diese Art von Tagging insbesondere, wenn man später tatsächlich strukturiert Informationen aus dem Text extrahieren möchte, da man hierfür wissen muss wer oder was als Subjekt mit wem oder was als Objekt interagiert.

Obwohl genau die selben Worte vorkommen, bedeutet der Satz „Die Katze frisst die Maus.“ etwas anderes als „Die Maus frisst die Katze.“, da hier Subjekt und Objekt aufgrund ihrer Reihenfolge vertauscht sind (Stichwort: Subjekt – Prädikat – Objekt ).

Weniger wichtig ist dieser Schritt bei der Kategorisierung von Dokumenten. Insbesondere bei dem bereits oben erwähnten Bag-of-Words-Modell, fließen POS-Tags überhaupt nicht mit ein.

Und weil es so schön einfach ist: Die obigen Schritte mit spaCy

Die obigen Methoden und Arbeitsschritte, welche Texte die in natürlicher Sprache geschrieben sind, allgemein computerzugänglicher und einfacher auswertbar machen, können beliebig genau den eigenen Wünschen angepasst, einzeln mit dem Paket NLTK durchgeführt werden. Dies zumindest einmal gemacht zu haben, erweitert das Verständnis für die funktionsweise einzelnen Schritte und insbesondere deren manchmal etwas versteckten Komplexität. (Wie muss beispielsweise ein Tokenizer funktionieren der den Satz “Schwierig ist z. B. dieser Satz.” korrekt in nur einen Satz aufspaltet, anstatt ihn an jedem Punkt welcher an einem Wortende auftritt in insgesamt vier Sätze aufzuspalten, von denen einer nur aus einem Leerzeichen besteht?) Hier soll nun aber, weil es so schön einfach ist, auch das analoge Vorgehen mit dem Paket spaCy beschrieben werden:

Dieser kurze Codeabschnitt liest den an spaCy übergebenen Rohtext in ein spaCy Doc-Object ein und führt dabei automatisch bereits alle oben beschriebenen sowie noch eine Reihe weitere Operationen aus. So stehen neben dem immer noch vollständig gespeicherten Originaltext, die einzelnen Sätze, Worte, Lemmas, Noun-Chunks, Named Entities, Part-of-Speech-Tags, ect. direkt zur Verfügung und können.über die Methoden des Doc-Objektes erreicht werden. Des weiteren liegen auch verschiedene weitere Objekte wie beispielsweise Vektoren zur Bestimmung von Dokumentenähnlichkeiten bereits fertig vor.

Die Folgende Übersicht soll eine kurze (aber noch lange nicht vollständige) Übersicht über die automatisch von spaCy generierten Objekte und Methoden zur Textanalyse geben:

Diese „Vollautomatisierung“ der Vorabschritte zur Textanalyse hat jedoch auch seinen Preis: spaCy geht nicht gerade sparsam mit Ressourcen wie Rechenleistung und Arbeitsspeicher um. Will man einen oder einige Texte untersuchen so ist spaCy oft die einfachste und schnellste Lösung für das Preprocessing. Anders sieht es aber beispielsweise aus, wenn eine bestimmte Analyse wie zum Beispiel die Einteilung in verschiedene Textkategorien auf eine sehr große Anzahl von Texten angewendet werden soll. In diesem Fall, sollte man in Erwägung ziehen auf ressourcenschonendere Alternativen wie zum Beispiel gensim auszuweichen.

Wer beim lesen genau aufgepasst hat, wird festgestellt haben, dass ich im Abschnitt POS-Tagging im Gegensatz zu den anderen Abschnitten auf ein kurzes Codebeispiel verzichtet habe. Dies möchte ich an dieser Stelle nachholen und dabei gleich eine Erweiterung des Pakets spaCy vorstellen: displaCy.

Displacy bietet die Möglichkeit, sich Zusammenhänge und Eigenschaften von Texten wie Named Entities oder eben POS-Tagging graphisch im Browser anzeigen zu lassen.

Nach ausführen des obigen Codes erhält man eine Ausgabe die wie folgt aussieht:

Nun öffnet man einen Browser und ruft die URL ‘’ auf (Achtung: localhost anstatt der IP funktioniert – warum auch immer – mit displacy nicht). Im Browser sollte nun eine Seite mit einem SVG-Bild geladen werden, welches wie folgt aussieht

Die Abbildung macht deutlich was POS-Tagging genau ist und warum es von Nutzen sein kann wenn man Informationen aus einem Text extrahieren will. Jedem Word (Token) ist eine Wortart zugeordnet und die Beziehung der einzelnen Worte durch Pfeile dargestellt. Dies ermöglicht es dem Computer zum Beispiel in dem Satzteil “der grüne Apfel”, das Adjektiv “grün” auf das Nomen “Apfel” zu beziehen und diesem somit als Eigenschaft zuzuordnen.

Nachdem dieser Artikel wichtige Schritte des Preprocessing von Texten beschrieben hat, geht es im nächsten Artikel darum was man an Texten eigentlich analysieren kann und welche Analysemöglichkeiten die verschiedenen für Python vorhandenen Module bieten.

Einstieg in Natural Language Processing – Teil 1: Natürliche vs. Formale Sprachen

Dies ist Artikel 1 von 4 der Artikelserie Einstieg in Natural Language Processing – Artikelserie.

Versuche und erste Ansätze, Maschinen beizubringen menschliche Sprache zu verstehen, gibt es bereits seit den 50er Jahren. Trotz der jahrzehntelangen Forschung und Entwicklung gelingt dies bis heute nicht umfassend. Woran liegt dies?

Um diese Frage zu beantworten, hilft es, sich die Unterschiede zwischen „natürlichen“, also sich selbstständig entwickelnden, typischerweise von Menschen gesprochenen Sprachen und den von Computern interpretieren formalen Sprachen klar zu machen. Formale Sprachen, wie zum Beispiel Python zum Ausführen der Codebeispiele in dieser Artikelserie, HTML (Hyper Text Markup Language) zur Darstellung von Webseiten und andere typische Programmier- und Skriptsprachen, sind üblicherweise sehr streng strukturiert.

Alle diese Sprachen weisen eine Reihe von Gemeinsamkeiten auf, welche es Computern einfach machen, sie korrekt zu interpretieren (also den Informationsinhalt zu “verstehen”). Das vermutlich auffälligste Merkmal formaler Sprachen ist eine relativ strikte Syntax, welche (wenn überhaupt) nur geringe Abweichungen von einem Standard erlaubt. Wie penibel die jeweilige Syntax oft einzuhalten ist, wird am ehesten deutlich, wenn diese verletzt wird:

Solche so genannten “Syntax Error”  gehören daher zu den häufigsten Fehlern beim Schreiben von Quellcode.

Ganz anders dagegen sieht es in der Kommunikation mit natürlichen Sprachen aus. Zwar fördert falsche Komma-Setzung in der Regel nicht die Leserlichkeit eines Textes, jedoch bleibt dieser in der Regel trotzdem verständlich. Auch macht es keinen Unterschied ob ich sage „Es ist heiß heute.“ oder „Heute ist es heiß.“. Genau wie in der deutschen Sprache funktioniert dieses Beispiel auch im Englischen sowie in anderen natürlichen Sprachen. Insbesondere Spanisch ist ein Beispiel für eine Sprache mit extrem variabler Satzstellung. Jedoch kann in anderen Fällen eine andere Reihenfolge der selben Worte deren Bedeutung auch verändern. So ist „Ist es heute heiß?“ ganz klar eine Frage, obwohl exakt die selben Worte wie in den Beispielsätzen oben vorkommen.

Ein weiterer wichtiger, hiermit verwandter Unterschied ist, dass es bei formalen Sprachen in der Regel einen Ausdruck gibt, welcher eine spezifische Bedeutung besitzt, während es in natürlichen Sprachen oft viele Synonyme gibt, die ein und dieselbe Sache (oder zumindest etwas sehr ähnliches) ausdrücken. Ein wahrer boolscher Wert wird in Python als

geschrieben. Es gibt keine andere Möglichkeit, diesen Wert auszudrücken (zumindest nicht ohne irgend eine Art von Operatoren wie das Doppelgleichheitszeichen zu benutzen und damit z. B. “0 == 0” zu schreiben).  Anders hingegen zum Beispiel in der Deutschen Sprache: Wahr, richtig, korrekt, stimmt, ja,

Um einen Vorstellung davon zu bekommen, wie verbreitet Synonyme in natürlichen Sprachen sind, lässt sich die Internetseite verwenden. Beispielshalber findet man dutzende Synonyme für das Wort „schnell“ hier:

Eine weitere große Schwierigkeit, welche in den meisten natürlichen Sprachen und nahezu allen Arten von Texten zu finden ist, stellen verschiedene grammatikalische Formen eines Wortes dar. So sind die Worte bin, wäre, sind, waren, wirst, werden… alles Konjugationen desselben Verbs, nämlich sein. Eine durchaus beeindruckende Übersicht über die verwirrende Vielfalt von Konjugationen dieses kleinen Wörtchens, findet sich unter:

Dieses Problem wird um so schwerwiegender, da viele Verben, insbesondere die am häufigsten genutzten, sehr unregelmäßige Konjugationsformen besitzen und damit keiner generellen Regel folgen. Daher ist computerintern oft ein Mapping für jede mögliche Konjugationsform bei vielen Verben die einzige Möglichkeit, an die Grundform zu kommen (mehr dazu in Teil 3 dieser Artikelserie).

Die Liste der sprachlichen Schwierigkeiten beim computergestützten Auswerten natürlicher Sprache ließe sich an diesem Punkt noch beliebig weiter fortsetzen:

  • Rechtschreibfehler
  • falsche Grammatik
  • Smileys
  • der „Substantivverkettungswahn“ im Deutschen
  • mehrdeutige Worte und Abkürzungen
  • abwegige Redewendungen (z. B. “ins Gras beißen”)
  • Ironie
  • und, und, und …

Ob und welche Rolle jede dieser Schwierigkeiten im einzelnen spielt, hängt natürlich sehr stark von den jeweiligen Texten ab und kann nicht pauschalisiert werden – ein typischer Chatverlauf wird ganz andere Probleme bereithalten als ein Wikipedia-Artikel. Wie man einige dieser Probleme in der Praxis vereinfachen oder sogar lösen kann und welche Ansätze und Methoden zur Verfügung stehen und regelmäßig zur Anwendung kommen wird im nächsten Teil dieser Artikelserie an praktischen Codebeispielen genauer unter die Lupe genommen.

NLTK vs. Spacy – Eine kurze Übersicht

Möchte man einen (oder auch einige) Text(e) mit den Methoden des natural language processings untersuchen um die darin verwendete Sprache auswerten oder nach bestimmten Informationen suchen, so sind insbesondere die Pakete NLTK und spaCy zu empfehlen (bei sehr vielen Texten sieht das schon wieder anders aus und wird am Ende der Artikelserie mit dem Paket gensim vorgestellt); beide bieten eine unglaubliche Vielzahl von Analysemöglichkeiten, vorgefertigten Wortsets, vortrainierte Stemmer und Lemmatiser, POS Tagger und, und, und…

Ist man vor allem an den Ergebnissen der Analyse selbst interessiert, so bietet sich spaCy an, da hier bereits mit wenigen Zeilen Code viele interessante Informationen generiert werden können.

Wer dagegen gerne selber bastelt oder wissen möchte wie die einzelnen Tools und Teilschritte genau funktionieren oder sich seine eigenen Stemmer, Tagger ect. trainieren will, ist vermutlich mit NLTK besser beraten. Zwar ist hier oft mehr Quellcode für das gleiche Ergebnis notwendig, allerdings kann das Preprocessing der Texte hierbei relativ einfach exakt den eigenen Vorstellungen angepasst werden. Zudem bietet NLTK eine Vielzahl von Beispieltexten und bereits fertig getagte Daten, mit welchen eigene Tagger trainiert und getestet werden können.

Einstieg in Natural Language Processing – Artikelserie

Unter Natural Language Processing (NLP) versteht man ein Teilgebiet der Informatik bzw. der Datenwissenschaft, welches sich mit der Analyse und Auswertung , aber auch der Synthese natürlicher Sprache befasst. Mit natürlichen Sprachen werden Sprachen wie zum Beispiel Deutsch, Englisch oder Spanisch bezeichnet, welche nicht geplant entworfen wurden, sondern sich über lange Zeit allein durch ihre Benutzung entwickelt haben. Anders ausgedrückt geht es um die Schnittstelle zwischen unserer im Alltag verwendeten und für uns Menschen verständlichen Sprache auf der einen, und um deren computergestützte Auswertung auf der anderen Seite.

Diese Artikelserie soll eine Einführung in die Thematik des Natural Language Processing sein, dessen Methoden, Möglichkeiten, aber auch der Grenzen . Im einzelnen werden folgende Themen näher behandelt:

1. Artikel – Natürliche vs. Formale Sprachen
2. Artikel – Preprocessing von Rohtext mit Python
3. Artikel – Möglichkeiten/Methoden der Textanalyse an Beispielen (erscheint demnächst…)
4. Artikel – NLP, was kann es? Und was nicht? (erscheint demnächst…)

Zur Verdeutlichung der beschriebenen Zusammenhänge und Methoden und um Interessierten einige Ideen für mögliche Startpunkte aufzuzeigen, werden im Verlauf der Artikelserie an verschiedenen Stellen Codebeispiele in der Programmiersprache Python vorgestellt.
Von den vielen im Internet zur Verfügung stehenden Python-Paketen zum Thema NLP, werden in diesem Artikel insbesondere die drei Pakete NLTK, Gensim und Spacy verwendet.

Aika: Ein semantisches neuronales Netzwerk

Wenn es darum geht Informationen aus natürlichsprachigen Texten zu extrahieren, stehen einem verschiedene Möglichkeiten zur Verfügung. Eine der ältesten und wohl auch am häufigsten genutzten Möglichkeiten ist die der regulären Ausdrücke. Hier werden exakte Muster definiert und in einem Textstring gematcht. Probleme bereiten diese allerdings, wenn kompliziertere semantische Muster gefunden werden sollen oder wenn verschiedene Muster aufeinander aufbauen oder miteinander interagieren sollen. Gerade das ist aber der Normalfall bei der Verarbeitung von natürlichem Text. Muster hängen voneinander ab, verstärken oder unterdrücken sich gegenseitig.
Prädestiniert um solche Beziehungen abzubilden wären eigentlich künstliche neuronale Netze. Diese haben nur das große Manko, dass sie keine strukturierten Informationen verarbeiten können. Neuronale Netze bringen von sich aus keine Möglichkeit mit, die relationalen Beziehungen zwischen Worten oder Phrasen zu verarbeiten. Ein weiteres Problem neuronaler Netze ist die Verarbeitung von Feedback-Schleifen, bei denen einzelne Neuronen von sich selbst abhängig sind. Genau diese Probleme versucht der Aika Algorithmus ( zu lösen.

Der Aika Algorithmus ist als Open Source Java-Bibliothek implementiert und dient dazu semantische Informationen in Texten zu erkennen und zu verarbeiten. Da semantische Informationen sehr häufig mehrdeutig sind, erzeugt die Bibliothek für jede dieser Bedeutungen eine eigene Interpretation und wählt zum Schluss die am höchsten gewichtete aus. Aika kombiniert dazu aktuelle Ideen und Konzepte aus den Bereichen des maschinellen Lernens und der künstlichen Intelligenz, wie etwa künstliche neuronale Netze, Frequent Pattern Mining und die auf formaler Logik basierenden Expertensysteme. Aika basiert auf der heute gängigen Architektur eines künstlichen neuronalen Netzwerks (KNN) und nutzt diese, um sprachliche Regeln und semantische Beziehungen abzubilden.

Die Knackpunkte: relationale Struktur und zyklische Abhängigkeiten

Das erste Problem: Texte haben eine von Grund auf relationale Struktur. Die einzelnen Worte stehen über ihre Reihenfolge in einer ganz bestimmten Beziehung zueinander. Gängige Methoden, um Texte für die Eingabe in ein KNN auszuflachen, sind beispielsweise Bag-of-Words oder Sliding-Window. Mittlerweile haben sich auch rekurrente neuronale Netze etabliert, die das gesamte Netz in einer Schleife für jedes Wort des Textes mehrfach hintereinander schalten. Aika geht hier allerdings einen anderen Weg. Aika propagiert die relationalen Informationen, also den Textbereich und die Wortposition, gemeinsam mit den Aktivierungen durch das Netzwerk. Die gesamte relationale Struktur des Textes bleibt also erhalten und lässt sich jederzeit zur weiteren Verarbeitung nutzen.

Das zweite Problem ist, dass bei der Verarbeitung von Text häufig nicht klar ist, in welcher Reihenfolge einzelne Informationen verarbeitet werden müssen. Wenn wir beispielsweise den Namen „August Schneider“ betrachten, können sowohl der Vor- als auch der Nachname in einem anderen Zusammenhang eine völlig andere Bedeutung annehmen. August könnte sich auch auf den Monat beziehen. Und genauso könnte Schneider eben auch den Beruf des Schneiders meinen. Einfache Regeln, um hier dennoch den Vor- und den Nachnamen zu erkennen, wären: „Wenn das nachfolgende Wort ein Nachname ist, handelt es sich bei August um einen Vornamen“ und „Wenn das vorherige Wort ein Vorname ist, dann handelt es sich bei Schneider um einen Nachnamen“. Das Problem dabei ist nur, dass unsere Regeln nun eine zyklische Abhängigkeit beinhalten. Aber ist das wirklich so schlimm? Aika erlaubt es, genau solche Feedback-Schleifen abzubilden. Wobei die Schleifen sowohl positive, als auch negative Gewichte haben können. Negative rekurrente Synapsen führen dazu, dass zwei sich gegenseitig ausschließende Interpretationen entstehen. Der Trick ist nun zunächst nur Annahmen zu treffen, also etwa dass es sich bei dem Wort „Schneider“ um den Beruf handelt und zu schauen wie das Netzwerk auf diese Annahme reagiert. Es bedarf also einer Evaluationsfunktion und einer Suche, die die Annahmen immer weiter variiert, bis schließlich eine optimale Interpretation des Textes gefunden ist. Genau wie schon der Textbereich und die Wortposition werden nun auch die Annahmen gemeinsam mit den Aktivierungen durch das Netzwerk propagiert.

Die zwei Ebenen des Aika Algorithmus

Aber wie lassen sich diese Informationen mit den Aktivierungen durch das Netzwerk propagieren, wo doch der Aktivierungswert eines Neurons für gewöhnlich nur eine Fließkommazahl ist? Genau hier liegt der Grund, weshalb Aika unter der neuronalen Ebene mit ihren Neuronen und kontinuierlich gewichteten Synapsen noch eine diskrete Ebene besitzt, in der es eine Darstellung aller Neuronen in boolscher Logik gibt. Aika verwendet als Aktivierungsfunktion die obere Hälfte der Tanh-Funktion. Alle negativen Werte werden auf 0 gesetzt und führen zu keiner Aktivierung des Neurons. Es gibt also einen klaren Schwellenwert, der zwischen aktiven und inaktiven Neuronen unterscheidet. Anhand dieses Schwellenwertes lassen sich die Gewichte der einzelnen Synapsen in boolsche Logik übersetzen und entlang der Gatter dieser Logik kann nun ein Aktivierungsobjekt mit den Informationen durch das Netzwerk propagiert werden. So verbindet Aika seine diskrete bzw. symbolische Ebene mit seiner subsymbolischen Ebene aus kontinuierlichen Synapsen-Gewichten.

Die Logik Ebene in Aika erlaubt außerdem einen enormen Effizienzgewinn im Vergleich zu einem herkömmlichen KNN, da die gewichtete Summe von Neuronen nur noch für solche Neuronen berechnet werden muss, die vorher durch die Logikebene aktiviert wurden. Im Falle eines UND-verknüpfenden Neurons bedeutet das, dass das Aktivierungsobjekt zunächst mehrere Ebenen einer Lattice-Datenstruktur aus UND-Knoten durchlaufen muss, bevor das eigentliche Neuron berechnet und aktiviert werden kann. Diese Lattice-Datenstruktur stammt aus dem Bereich des Frequent Pattern Mining und enthält in einem gerichteten azyklischen Graphen alle Teilmuster eines beliebigen größeren Musters. Ein solches Frequent Pattern Lattice kann in zwei Richtungen betrieben werden. Zum Einen können damit bereits bekannte Muster gematcht werden, und zum Anderen können auch völlig neue Muster damit erzeugt werden.

Da es schwierig ist Netze mit Millionen von Neuronen im Speicher zu halten, nutzt Aika das Provider Architekturpattern um selten verwendete Neuronen oder Logikknoten in einen externen Datenspeicher (z.B. eine Mongo DB) auszulagern, und bei Bedarf nachzuladen.

Ein Beispielneuron

Hier soll nun noch beispielhaft gezeigt werden wie ein Neuron innerhalb des semantischen Netzes angelegt werden kann. Zu beachten ist, dass Neuronen sowohl UND- als auch ODER-Verknüpfungen abbilden können. Das Verhalten hängt dabei alleine vom gewählten Bias ab. Liegt der Bias bei 0.0 oder einem nur schwach negativen Wert reicht schon die Aktivierung eines positiven Inputs aus um auch das aktuelle Neuron zu aktivieren. Es handelt sich dann um eine ODER-Verknüpfung. Liegt der Bias hingegen tiefer im negativen Bereich dann müssen mitunter mehrere positive Inputs gleichzeitig aktiviert werden damit das aktuelle Neuron dann auch aktiv wird. Jetzt handelt es sich dann um eine UND-Verknüpfung. Der Bias Wert kann der initNeuron einfach als Parameter übergeben werden. Um jedoch die Berechnung des Bias zu erleichtern bietet Aika bei den Inputs noch den Parameter BiasDelta an. Der Parameter BiasDelta nimmt einen Wert zwischen 0.0 und 1.0 entgegen. Bei 0.0 wirkt sich der Parameter gar nicht aus. Bei einem höheren Wert hingegen wird er mit dem Betrag des Synapsengewichts multipliziert und von dem Bias abgezogen. Der Gesamtbias lautet in diesem Beispiel also -55.0. Die beiden positiven Eingabesynapsen müssen also aktiviert werden und die negative Eingabesynapse darf nicht aktiviert werden, damit dieses Neuron selber aktiv werden kann. Das Zusammenspiel von Bias und Synpasengewichten ist aber nicht nur für die Aktivierung eines Neurons wichtig, sondern auch für die spätere Auswahl der finalen Interpretation. Je stärker die Aktivierungen innerhalb einer Interpretation aktiv sind, desto höher wird diese Interpretation gewichtet.
Um eine beliebige Graphstruktur abbilden zu können, trennt Aika das Anlegen der Neuronen von der Verknüpfung mit anderen Neuronen. Mit createNeuron(“E-Schneider (Nachname)”) wird also zunächst einmal ein unverknüpftes Neuron erzeugt, das dann über die initNeuron Funktion mit den Eingabeneuronen wortSchneiderNeuron, kategorieVornameNeuron und unterdrueckendesNeuron verknüpft wird. Über den Parameter RelativeRid wird hier angegeben auf welche relative Wortposition sich die Eingabesynapse bezieht. Die Eingabesynpase zu der Kategorie Vorname bezieht sich also mit -1 auf die vorherige Wortposition. Der Parameter Recurrent gibt an ob es sich bei dieser Synpase um eine Feedback-Schleife handelt. Über den Parameter RangeMatch wird angegeben wie sich der Textbereich, also die Start- und die Endposition zwischen der Eingabe- und der Ausgabeaktivierung verhält. Bei EQUALS sollen die Bereiche also genau übereinstimmen, bei CONTAINED_IN reicht es hingegen wenn der Bereich der Eingabeaktivierung innerhalb des Bereichs der Ausgabeaktivierung liegt. Dann kann noch über den Parameter RangeOutput angegeben werden, dass der Bereich der Eingabeaktivierung an die Ausgabeaktivierung weiterpropagiert werden soll.


Mit Aika können sehr flexibel umfangreiche semantische Modelle erzeugt und verarbeitet werden. Aus Begriffslisten verschiedener Kategorien, wie etwa: Vor- und Nachnamen, Orten, Berufen, Strassen, grammatikalischen Worttypen usw. können automatisch Neuronen generiert werden. Diese können dann dazu genutzt werden, Worte und Phrasen zu erkennen, einzelnen Begriffen eine Bedeutung zuzuordnen oder die Kategorie eines Begriffs zu bestimmen. Falls in dem zu verarbeitenden Text mehrdeutige Begriffe oder Phrasen auftauchen, kann Aika für diese jeweils eigene Interpretationen erzeugen und gewichten. Die sinnvollste Interpretation wird dann als Ergebnis zurück geliefert.