The Power of Analyzing Processes

Are you thinking BIG enough? Over the past few years, the quality of discussion regarding a ‘process’ and its interfaces between different departments has developed radically. Organizations increasingly reject guesswork, individual assessments, or blame-shifting and instead focus on objective facts: the display of throughput times, process variants, and their optimization.

But while data can hold valuable insights into business, users, customer bases, and markets, companies are sometimes unsure how best to analyze and harness their data. In fact, the problem isn’t usually a lack of data; it’s a breakdown in leveraging useful data. Being unsure how to interpret, explore, and analyze processes can paralyze any go-live, leading to a failure in the efficient interaction of processes and business operations. Without robust data analysis, your business could be losing money, talent, and even clients.

After all, analyzing processes is about letting data tell its true story for improved understanding.

The “as-is” processes

Analyzing the as-is current state helps organizations document, track, and optimize processes for better performance, greater efficiency, and improved outcomes. By contextualizing data, we gain the ability to navigate and organize processes to negate bottlenecks, set business preferences, and plan an optimized route through process mining initiatives. This focus can help across an entire organization, or on one or more specific processes or trends within a department or team.

There are several vital goals/motivations for implementing current state analysis, including:

  • Saving money and improving ROI;
  • Improving existing processes or creating new processes;
  • Increasing customer satisfaction and journeys;
  • Improving business coordination and organizational responsiveness;
  • Complying with new regulatory standards;
  • Adapting methods following a merger or acquisition.

The “to-be” processes

Simply put, if as-is maps where your processes are, to-be maps where you want them to… be. To-be process mapping documents what you want the process to look like, and by using the as-is diagram, you can work with stakeholders to identify developments and improvements of the current process, then outline those changes on your to-be roadmap.

This analysis can help you make optimal decisions for your business and innovative OpEx imperatives. For instance, at leading data companies like Google and Amazon, data is used in such a way that the analysis results make the decisions! Just think of the power Recommendation Engines, PageRank, and Demand Forecasting Systems have over the content we see. To achieve this, advanced techniques of machine learning and statistical modeling are applied, resulting in mechanically improved results from the data. Interestingly, because these techniques reference large-scale data sets and reflect analysis and results in real-time, they are applied to areas that extend beyond human decision-making.

Also, by analyzing and continuously monitoring qualitative and quantitative data, we gain insights across potential risks and ongoing improvement opportunities, too. The powerful combination of process discovery, process analysis, and conformance checking supports a collaborative approach to process improvement, giving you game-changing insights into your business. For example:

  • Which incidents would I like to detect and act upon proactively?
  • Where would task prioritization help improve overall performance?
  • Where do I know that increased transparency would help the company?
  • How can I utilize processes in place of gut feeling/experience?

Further, as the economic environment continues to change rapidly, and modern organizations keep adopting process-based approaches to ensure they are achieving their business goals, process analysis naturally becomes the perfect template for any company.

With this, process mining technology can help modern businesses manage process challenges beyond the boundaries of implementation. We can evaluate the proof of concept (PoC) for any proposed improvements, and extract relevant information from a homogenous data set. Of course, process modeling and business process management (BPM) are available to solve the potentially tricky integration phase.

Process mining and analysis initiatives

Process mining and discovery initiatives can also provide critical insights throughout the automation and any Robotic Process Automation (RPA) journey, from defining the strategy to continuous improvement and innovation. Data-based process mining can even extend process analysis across teams and individuals, decreasing incident resolution times, and subsequently improving working habits via the discovery and validation of automation opportunities.

A further example of where process mining and strategic process analysis/alignment is already paying dividends is IT incident management. Here, “incident” is an unplanned interruption to an IT service, which may be complete unavailability or merely a reduction in quality. The goal of the incident management process is to restore regular service operation as quickly as possible and to minimize the impact on business operations. Incident management is a critical process in Information Technology Library (ITIL).

Process mining can also further drive improvement in as-is incident management processes as well as exceptional and unwanted process steps, by increasing visibility and transparency across IT processes. Process mining will swiftly analyze the different working habits across teams and individuals, decreasing incident resolution times, and subsequently improving customer impact cases.

Positive and practical experiences with process mining across industries have also led to the further dynamic development of tools, use cases, and the end-user community. Even with very experienced process owners, the visualization of processes can skyrocket improvement via new ideas and discussion.

However, the potential performance gains are more extensive, with the benefits of using process mining for incident management, also including:

  • Finding out how escalation rules are working and how the escalation is done;
  • Calculating incident management KPIs, including SLA (%);
  • Discovering root causes for process problems;
  • Understanding the effect of the opening interface (email, web form, phone, etc.);
  • Calculating the cost of the incident process;
  • Aligning the incident management system with your incident management process.

Robotic Process Automation (RPA)

Robotic process automation (RPA) provides a virtual workforce to automatize manual, repetitive, and error-prone tasks. However, successful process automation requires specific knowledge about the intended (and potential) benefits, effective training of the robots, and continuous monitoring of their performance and processes.

With this, process mining supports organizations throughout the lifecycle of RPA initiatives by monitoring and benchmarking robots to ensure sustainable benefits. These insights are especially valuable for process miners and managers with a particular interest in process automation. By unlocking the experiences with process mining, a company better understands what is needed today, for tomorrow’s process initiatives.

To further upgrade the impact of robot-led automation, there is also a need for a solid understanding of legacy systems, and an overview of automation opportunities. Process mining tools provide key insights throughout the entire RPA journey, from defining the strategy to continuous improvement and innovation.

Benefits of process mining and analysis within the RPA lifecycle include:

  1. Overviews of processes within the company, based on specific criteria;
  2. Identification of processes suitable for RPA implementation during the preparation phase;
  3. Mining the optimal process flow/process path;
  4. Understanding the extent to which RPA can be implemented in legacy processes and systems;
  5. Monitoring and analysis of RPA performance during the transition/handover of customization;
  6. Monitoring and continuous improvement of RPA in the post-implementation phase.

The process of better business understanding

Every organization is different and brings with it a variety of process-related questions. Yet some patterns are usually repeated. For example, customers who introduce data supported process analysis as part of business transformation initiatives will typically face challenges in harmonizing processes from fragmented sectors and regional locations. Here it helps enormously to base actions on data and statistics from the respective processes, instead of relying on the instincts and estimations of individuals.

With this, process analysis which is supported by data, enables a fact-based discussion, and builds a bridge between employees, process experts and management. This helps avoid siloed thinking, as well as allowing the transparent design of handovers and process steps which cross departmental boundaries within an organization.

In other words, to unlock future success and transformation, we must be processing… today.

Find out more about process mining with Signavio Process Intelligence, and see how it can help your organization uncover the hidden value of process, generate fresh ideas, and save time and money.

Das Potenzial von Prozessanalysen

Haben Sie das große Ganze im Blick? Die Diskussion rund um einen Prozess und seine Schnittstellen zwischen verschiedenen Abteilungen hat sich in den vergangenen Jahren verändert und eine neue Qualität erhalten. Unternehmen möchten nicht mehr erraten, wie die Abläufe organisiert sind. Stattdessen konzentrieren sie sich auf objektive Fakten wie Durchlaufzeiten, Prozessvarianten und deren Optimierung.

Daten liefern wertvolle Erkenntnisse über das Unternehmen, Benutzer, Kundenstämme und Märkte. Diese Daten müssen jedoch bestmöglich analysiert und genutzt werden, was oftmals eine Herausforderung darstellt. Tatsächlich ist für gewöhnlich nicht die Menge an Daten das Problem, sondern deren Aufschlüsselung und erfolgreiche Nutzung. Unsicherheiten bei der Bewertung und Analyse von Prozessen können den Go-Live behindern und das Zusammenspiel von Prozessen und Geschäftsabläufen ineffizient machen. Ohne eine zuverlässige Datenanalyse könnte Ihr Unternehmen Kapital, Talente und sogar Kunden verlieren.

So geht es bei der Prozessanalyse letztlich darum, aus Daten Erkenntnisse zu gewinnen, die zu einem besseren Verständnis Ihres Unternehmens und der geschäftlichen Abläufe führen.

Die „Ist“-Prozesse

Die Analyse des Ist-Zustands hilft Unternehmen, Prozesse zu dokumentieren, nachzuverfolgen und zu optimieren, mit dem Ziel, die Leistung und Effizienz zu steigern und bessere Geschäftsergebnisse zu erzielen. Die Kontextualisierung von Daten eröffnet Ihnen die Möglichkeit, Prozesse zu steuern und zu organisieren, Engpässe zu beseitigen, geschäftliche Präferenzen festzulegen und mithilfe von Process-Mining-Initiativen eine optimale Strategie zu planen. Dies kann sowohl auf Unternehmensebene als auch nur auf einen bestimmten Prozess innerhalb einer Abteilung oder eines Teams angewandt werden.

Es gibt mehrere wichtige Ziele und Gründe für die Analyse des Ist-Zustands, wie beispielsweise:

  • Kosteneinsparungen und Verbesserung des ROI
  • Optimierung bestehender Prozesse oder Schaffung neuer Prozesse
  • Steigerung der Kundenzufriedenheit und -erlebnisse
  • Verbesserung der Koordination von Geschäften und der Reaktionsfähigkeit des Unternehmens
  • Einhaltung neuer regulatorischer Standards
  • Anpassung von Methoden nach einer Fusion oder Akquisition

 Die „Soll“-Prozesse

Einfach ausgedrückt: Der Ist-Zustand stellt dar, wie Ihre Prozesse aktuell verlaufen, der Soll-Zustand, wie Ihre Prozesse zukünftig verlaufen sollen. Bei der Planung der Soll-Prozesse wird der zukünftige Prozessverlauf dokumentiert. Mithilfe des Ist-Diagramms können Sie gemeinsam mit Stakeholdern Entwicklungs- und Optimierungsmöglichkeiten des aktuellen Prozesses identifizieren und notwendige Änderungen dann in Ihrer Roadmap der Soll-Prozesse skizzieren.

Solch eine Analyse kann Ihnen dabei helfen, optimale geschäftliche und innovative OpEx-Entscheidungen für Ihr Unternehmen zu treffen. Führende Unternehmen wie Google und Amazon nutzen Daten beispielsweise, um auf der Basis von Analyseergebnissen datengesteuerte Entscheidungen zu treffen. Oder denken Sie an die Vorteile, die Ihnen Recommendation Engines, PageRank- und Demand-Forecasting-Systeme bieten. Grundlage hierfür sind fortschrittliche Techniken des maschinellen Lernens und der statistischen Modellierung, die zu verbesserten Datenergebnissen führen. Interessanterweise werden diese Techniken – da sie sich auf umfangreiche Datensätze beziehen und Analysen und Ergebnisse in Echtzeit widerspiegeln – auf Bereiche angewendet, die über die menschliche Entscheidungsfindung hinausgehen.

Die Analyse und kontinuierliche Überwachung von qualitativen und quantitativen Daten ermöglicht es uns zudem, Erkenntnisse über potenzielle Risiken und Verbesserungspotenziale zu erhalten. Mithilfe der leistungsstarken Kombination aus Process Discovery, Prozessanalyse und Conformance-Check können Sie Prozesse verbessern und gewinnbringende Informationen über das eigene Unternehmen erhalten. Zum Beispiel:

  • Über welche Vorfälle möchte ich sofort informiert werden, um entsprechend proaktiv zu handeln?
  • An welchen Stellen kann eine bessere Priorisierung der Aufgaben dabei helfen, die Performance des Unternehmens zu verbessern?
  • Wie kann mehr Transparenz mein Unternehmen voranbringen?
  • Wie lerne ich, in Prozessen zu denken, anstatt nur auf das Bauchgefühl zu vertrauen?

Das geschäftliche Umfeld verändert sich kontinuierlich. Um Schritt zu halten, müssen moderne Unternehmen prozessbasierte Ansätze verfolgen und dabei ist die Prozessanalyse die perfekte Basis.

Mithilfe der Process-Mining-Technologie können moderne Unternehmen ihre Prozessherausforderungen über die Grenzen der Implementierung hinweg bewältigen. Dabei können wir den Proof of Concept für alle vorgeschlagenen Verbesserungen auswerten und relevante Informationen aus einem homogenen Datensatz gewinnen. Zudem kann mithilfe von Prozessmodellierung und Business Process Management (BPM) die möglicherweise schwierige Integrationsphase überwunden werden.

Initiativen für Process-Mining und Prozessanalyse

Process-Mining- und Process-Discovery-Initiativen liefern wichtige Einblicke in den Automatisierungsstatus und in jede Phase der Robotic Process Automation (RPA) – von der Festlegung der Strategie bis zur kontinuierlichen Optimierung und Innovation. Durch datenbasiertes Process Mining kann die Prozessanalyse sogar auf Teams und einzelne Personen ausgedehnt werden. Indem Automatisierungsmöglichkeiten ermittelt und validiert werden, können IT-Störfälle schneller behoben und die Arbeitsgewohnheiten verbessert werden.

Ein weiterer Bereich, in dem sich die Vorteile von Process Mining und der strategischen Prozessanalyse/-ausrichtung bereits auszahlen, ist das IT-Incident-Management. Als „Incident“ wird ein IT-Störfall bezeichnet. Hierbei kann es sich um den vollständigen Ausfall oder um die eingeschränkte Ausführung eines IT-Services handeln. Ziel des Incident-Managements ist es, den IT-Service so schnell wie möglich wiederherzustellen und die Auswirkungen auf den Geschäftsbetrieb zu minimieren. Daher zählt das IT-Incident- Management zu den kritischen Prozessen der Information Technology Library (ITIL).

Process Mining hat das Potenzial, die Incident-Management-Prozesse im Ist-Zustand zu verbessern. Zudem trägt es zu einer höheren Transparenz über die IT-Prozesse bei und bietet so Informationen über außergewöhnliche und unerwünschte Prozessschritte. Durch die Methode ist es ebenfalls möglich, die unterschiedlichen Arbeitsgewohnheiten von verschiedenen Personen und auch Teams zu erfassen. Die Bearbeitungszeiten von Störfällen lassen sich auf diese Weise reduzieren und die Auswirkungen auf Kundenprozesse besser überblicken.

Positive und praktische Erfahrungen mit branchenübergreifendem Process Mining haben zudem zu einer dynamischen Entwicklung von Tools, Anwendungsfällen und auch der Benutzer-Community geführt. Selbst sehr erfahrene Prozessverantwortliche stellen fest, dass durch die Visualisierung von Prozessen neue Ideen und Anregungen für weitere Verbesserungen entstehen.

Der Einsatz von Process Mining für das Incident-Management bietet jedoch noch weitaus mehr potenzielle Vorteile:

  • Ermittlung der Regeln und Abläufe für Eskalationen,
  • Berechnung von Incident-Management-KPIs einschließlich Service Level Agreements (SLA),
  • Ursachenforschung für auftretende Prozessprobleme,
  • Verständnis über die zugrunde liegende Schnittstelle und deren Auswirkung (E-Mail, Webformular, Telefon usw.),
  • Kostenberechnung für störungsanfällige Prozesse,
  • Verknüpfung der Incident-Management-Systeme mit den entsprechenden Prozessen für auftretende Störungen.

Robotic Process Automation (RPA)

RPA (Robotic Process Automation) ermöglicht die Automatisierung manueller, sich wiederholender und fehleranfälliger Aufgaben. Dies setzt jedoch voraus, dass Prozessverantwortliche genau wissen, wie und mit welchem Ziel sie Software-Roboter einsetzen und ihre Leistung messen.

Daher bietet die Kombination aus RPA und Process Mining Unternehmen viele Vorteile: Über den gesamten RPA-Zyklus hinweg können sie die Leistung und die Vorteile ihrer Software-Roboter messen und sie bestmöglich für ihr Szenario einsetzen. Damit eignet sich Process Mining hervorragend als Vorbereitung für Prozessautomatisierung: Durch Process Mining verstehen wir besser, was wir heute für erfolgreiche Prozessinitiativen von morgen benötigen.

Um die Vorteile der robotergesteuerten Automatisierung vollumfänglich auszuschöpfen, müssen Organisationen nicht nur ihre bestehenden Systeme verstehen, sondern auch Möglichkeiten zur Automatisierung ermitteln. Process-Mining-Tools bieten während des gesamten RPA-Zyklus wertvolle Erkenntnisse über die Prozessdaten: von der Festlegung der Strategie bis hin zu kontinuierlichen Verbesserungen und Innovationen.

Zu den Vorteilen von Process Mining und Prozessanalyse im RPA-Zyklus zählen:

  1. Überblick der Prozesslandschaft in einem Unternehmen, basierend auf spezifischen Kriterien,
  2. Identifikation von Prozessen, die während der Vorbereitungsphase für RPA geeignet sind,
  3. Erarbeitung des optimalen Prozessflusses,
  4. Besseres Verständnis darüber, wie RPA auch in veralteten Prozessen und IT-Systemen eingesetzt werden kann,
  5. Überwachung und Analyse der Leistung von RPA-Initiativen während der Implementierungsphase,
  6. Überwachung und kontinuierliche Verbesserung von RPA nach der Implementierung.

Der Weg zu besseren Erkenntnissen

Jedes Unternehmen ist anders und bringt damit ganz unterschiedliche Fragen in Bezug auf seine Prozesse mit. Einige Muster sind trotzdem erkennbar. Beispielsweise stehen Kunden, die datengestützte Prozessanalysen im Rahmen der Geschäftstransformation einführen, in der Regel vor der Herausforderung, Prozesse aus unterschiedlichen Sparten oder Standorten zu harmonisieren. An dieser Stelle sollten Organisationen sich die Daten und Statistiken der jeweiligen Prozesse vor Augen zu führen, anstatt sich auf das Gefühl oder auf die Einschätzung Einzelner zu verlassen.

Auf diese Weise führt eine datengestützte Prozessanalyse zu faktenbasierten Diskussionen und bildet eine wichtige Brücke zwischen der Fachabteilung, Prozessverantwortlichen und dem Management. So lassen sich vor allem Übergaben und abteilungsübergreifende Schritte transparent gestalten und Silo-Denken vermeiden.

Mit anderen Worten: Die richtigen Prozesse von heute sorgen für eine erfolgreiche Transformation von morgen.

Erfahren Sie mehr über Process Mining mit Signavio Process Intelligence und wie Ihr Unternehmen den versteckten Mehrwert von Prozessen für sich nutzen, neue Ideen generieren sowie Zeit und Kosten sparen kann.

Von BI zu PI: Der nächste Schritt auf dem Weg zu datengetriebenen Entscheidungen

„Alles ist stetig und fortlaufend im Wandel.“ „Das Tempo der Veränderungen nimmt zu.“ „Die Welt wird immer komplexer und Unternehmen müssen Schritt halten.“ Unternehmen jeder Art und Größe haben diese Sätze schon oft gehört – vielleicht zu oft! Und dennoch ist es für den Erfolg eines Unternehmens von entscheidender Bedeutung, sich den Veränderungen anzupassen.

Read this article in English: 
“From BI to PI: The Next Step in the Evolution of Data-Driven Decisions”

Sie müssen die zugrunde liegenden organisatorischen Bausteine verstehen, um sicherzustellen, dass die von Ihnen getroffenen Entscheidungen sich auch in die richtige Richtung entwickeln. Es geht sozusagen um die DNA Ihres Unternehmens: die Geschäftsprozesse, auf denen Ihre Arbeitsweise basiert, und die alles zu einer harmonischen Einheit miteinander verbinden. Zu verstehen, wie diese Prozesse verlaufen und an welcher Stelle es Verbesserungsmöglichkeiten gibt, kann den Unterschied zwischen Erfolg und Misserfolg ausmachen.

Unternehmen, die ihren Fokus auf Wachstum gesetzt haben, haben dies bereits erkannt. In der Vergangenheit wurde Business Intelligence als die Lösung für diese Herausforderung betrachtet. In jüngerer Zeit sehen sich zukunftsorientierte Unternehmen damit konfrontiert, Lösungen zu überwachen, die mit dem heutigen Tempo der Veränderungen Schritt halten können. Gleichzeitig erkennen diese Unternehmen, dass die zunehmende Komplexität der Geschäftsprozesse dazu führt, dass herkömmliche Methoden nicht mehr ausreichen.

Anpassung an ein sich änderndes Umfeld? Die Herausforderungen von BI

Business Intelligence ist nicht notwendigerweise überholt oder unnötig. In einer schnelllebigen und sich ständig verändernden Welt stehen die BI-Tools und -Lösungen jedoch vor einer Reihe von Herausforderungen. Hierzu können zählen:

  • Hohe Datenlatenz – Die Datenlatenz gibt an, wie lange ein Benutzer benötigt, um Daten beispielsweise über ein Business-Intelligence-Dashboard abzurufen. In vielen Fällen kann dies mehr als 24 Stunden dauern. Ein geschäftskritischer Zeitraum, da Unternehmen Geschäftschancen für sich nutzen möchten, die möglicherweise ein begrenztes Zeitfenster haben.
  • Unvollständige Datensätze – Business Intelligence verfolgt einen breiten Ansatz, sodass Prüfungen möglicherweise zwar umfassend, aber nicht tief greifend sind. Dies erhöht die Wahrscheinlichkeit, dass Daten übersehen werden; insbesondere in Fällen, in denen die Prüfungsparameter durch die Tools selbst nur schwer geändert werden können.
  • Erkennung statt Analyse – Business-Intelligence-Tools sind in erster Linie darauf ausgelegt, Daten zu finden. Der Fokus hierbei liegt vor allem auf Daten, die für ihre Benutzer nützlich sein können. An dieser Stelle endet jedoch häufig die Leistungsfähigkeit der Tools, da sie Benutzern keine einfachen Optionen bieten, die Daten tatsächlich zu analysieren. Die Möglichkeit, umsetzbare Erkenntnisse zu gewinnen, verringert sich somit.
  • Eingeschränkte Skalierbarkeit – Im Allgemeinen bleibt Business Intelligence ein Bereich für Spezialisten und Experten mit dem entsprechenden Know-how, über das Mitarbeiter im operativen Bereich oftmals nicht verfügen. Ohne umfangreiches Verständnis für die geschäftlichen Prozesse und deren Analyse innerhalb des Unternehmens bleibt die optimierte Anwendung eines bestimmten Business-Intelligence-Tools aber eingeschränkt.
  • Nicht nachvollziehbare Metriken – Werden Metriken verwendet, die nicht mit den Geschäftsprozessen verknüpft sind, kann Business Intelligence kaum positive Veränderungen innerhalb eines Unternehmens unterstützen. Für Benutzer ist es schwierig, Ergebnisse richtig auszuwerten und zu verstehen und diese Ergebnisse zweckdienlich zu nutzen.

Process Intelligence: der nächste wegweisende Schritt

Es bedarf einer effektiveren Methode zur Prozessanalyse, um eine effiziente Arbeitsweise und fundierte Entscheidungsfindung sicherzustellen. An dieser Stelle kommt Process Intelligence (PI) ins Spiel. PI bietet die entscheidenden Hintergrundinformationen für die Beantwortung von Fragen, die mit Business-Intelligence-Tools unbeantwortet bleiben.

Process Intelligence ermöglicht die durchgehende Visualisierung von Prozessabläufen mithilfe von Rohdaten. Mit dem richtigen Process-Intelligence-Tool können diese Rohdaten sofort analysiert werden, sodass Prozesse präzise angezeigt werden. Der Endbenutzer kann diese Informationen nach Bedarf einsehen und bearbeiten, ohne eine Vorauswahl für die Analyse treffen zu müssen.

Zum Vergleich: Da Business Intelligence vordefinierte Analysekriterien benötigt, kann BI nur dann wirklich nützlich sein, wenn diese Kriterien auch definiert sind. Unternehmen können verzögerte Analysen vermeiden, indem sie Process Intelligence zur Ermittlung der Hauptursache von Prozessproblemen nutzen, und dann die richtigen Kriterien zur Bestimmung des Analyserahmens auswählen.

Anschließend können Sie Ihre Systemprozesse analysieren und erkennen die Diskrepanzen und Varianten zwischen dem angestrebten Geschäftsprozess und dem tatsächlichen Verlauf Ihrer Prozesse. Und je schneller Sie Echtzeit-Einblicke in Ihre Prozesse gewinnen, desto schneller können Sie in Ihrem Unternehmen positive Veränderungen auf den Weg bringen.

Kurz gesagt: Business Intelligence eignet sich dafür, ein breites Verständnis über die Abläufe in einem Unternehmen zu gewinnen. Für einige Unternehmen kann dies ausreichend sein. Für andere hingegen ist ein Überblick nicht genug.

Sie suchen nach einer Möglichkeit um festzustellen, wie jeder Prozess in Ihrer Organisation tatsächlich funktioniert? Die Antwort hierauf lautet Software. Software, die Prozesserkennung, Prozessanalyse und Konformitätsprüfung miteinander kombiniert.

Mit den richtigen Process-Intelligence-Tools können Sie nicht nur Daten aus den verschiedenen IT-Systemen in Ihrem Unternehmen gewinnen, sondern auch Ihre End-to-End-Prozesse kontinuierlich überwachen. So erhalten Sie Erkenntnisse über mögliche Risiken und Verbesserungspotenziale. PI steht für einen kollaborativen Ansatz zur Prozessverbesserung, der zu einem bahnbrechenden Verständnis über die Abläufe in Ihrem Unternehmen führt, und wie diese optimiert werden können.

Erhöhtes Potenzial mit Signavio Process Intelligence

Mit Signavio Process Intelligence erhalten Sie wegweisende Erkenntnisse über Ihre Prozesse, auf deren Basis Sie bessere Geschäftsentscheidungen treffen können. Erlangen Sie eine vollständige Sicht auf Ihre Abläufe und ein Verständnis dafür, was in Ihrer Organisation tatsächlich geschieht.

Als Teil der Signavio Business Transformation Suite lässt sich Signavio Process Intelligence perfekt mit der Prozessmodellierung und -automatisierung kombinieren. Als eine vollständig cloudbasierte Process-Mining-Lösung erleichtert es die Software, organisationsweit zusammenzuarbeiten und Wissen zu teilen.

Generieren Sie neue Ideen, sparen Sie Aufwand und Kosten ein und optimieren Sie Ihre Prozesse. Erfahren Sie mehr über Signavio Process Intelligence.

From BI to PI: The Next Step in the Evolution of Data-Driven Decisions

“Change is a constant.” “The pace of change is accelerating.” “The world is increasingly complex, and businesses have to keep up.” Organizations of all shapes and sizes have heard these ideas over and over—perhaps too often! However, the truth remains that adaptation is crucial to a successful business.

Read this article in German: Von der Datenanalyse zur Prozessverbesserung: So gelingt eine erfolgreiche Process-Mining-Initiative


Of course, the only way to ensure that the decisions you make are evolving in the right way is to understand the underlying building blocks of your organization. You can think of it as DNA; the business processes that underpin the way you work and combine to create a single unified whole. Knowing how those processes operate, and where the opportunities for improvement lie, can be the difference between success and failure.

Businesses with an eye on their growth understand this already. In the past, Business Intelligence was seen as the solution to this challenge. In more recent times, forward-thinking organizations see the need for monitoring solutions that can keep up with today’s rate of change, at the same time as they recognize that increasing complexity within business processes means traditional methods are no longer sufficient.

Adapting to a changing environment? The challenges of BI

Business Intelligence itself is not necessarily defunct or obsolete. However, the tools and solutions that enable Business Intelligence face a range of challenges in a fast-paced and constantly changing world. Some of these issues may include:

  • High data latency – Data latency refers to how long it takes for a business user to retrieve data from, for example, a business intelligence dashboard. In many cases, this can take more than 24 hours, a critical time period when businesses are attempting to take advantage of opportunities that may have a limited timeframe.
  • Incomplete data sets – The broad approach of Business Intelligence means investigations may run wide but not deep. This increases the chances that data will be missed, especially in instances where the tools themselves make the parameters for investigations difficult to change.
  • Discovery, not analysis – Business intelligence tools are primarily optimized for exploration, with a focus on actually finding data that may be useful to their users. Often, this is where the tools stop, offering no simple way for users to actually analyze the data, and therefore reducing the possibility of finding actionable insights.
  • Limited scalability – In general, Business Intelligence remains an arena for specialists and experts, leaving a gap in understanding for operational staff. Without a wide appreciation for processes and their analysis within an organization, the opportunities to increase the application of a particular Business Intelligence tool will be limited.
  • Unconnected metrics – Business Intelligence can be significantly restricted in its capacity to support positive change within a business through the use of metrics that are not connected to the business context. This makes it difficult for users to interpret and understand the results of an investigation, and apply these results to a useful purpose within their organization.

Process Intelligence: the next evolutionary step

To ensure companies can work efficiently and make the best decisions, a more effective method of process discovery is needed. Process Intelligence (PI) provides the critical background to answer questions that cannot be answered with Business Intelligence tools.

Process Intelligence offers visualization of end-to-end process sequences using raw data, and the right Process Intelligence tool means analysis of that raw data can be conducted straight away, so that processes are displayed accurately. The end-user is free to view and work with this accurate information as they please, without the need to do a preselection for the analysis.

By comparison, because Business Intelligence requires predefined analysis criteria, only once the criteria are defined can BI be truly useful. Organizations can avoid delayed analysis by using Process Intelligence to identify the root causes of process problems, then selecting the right criteria to determine the analysis framework.

Then, you can analyze your system processes and see the gaps and variants between the intended business process and what you actually have. And of course, the faster you discover what you have, the faster you can apply the changes that will make a difference in your business.

In short, Business Intelligence is suitable for gaining a broad understanding of the way a business usually functions. For some businesses, this will be sufficient. For others, an overview is not enough.

They understand that true insights lie in the detail, and are looking for a way of drilling down into exactly how each process within their organization actually works. Software that combines process discovery, process analysis, and conformance checking is the answer.

The right Process Intelligence tools means you will be able to automatically mine process models from the different IT systems operating within your business, as well as continuously monitor your end-to-end processes for insights into potential risks and ongoing improvement opportunities. All of this is in service of a collaborative approach to process improvement, which will lead to a game-changing understanding of how your business works, and how it can work better.

Early humans evolved from more primitive ancestors, and in the process, learned to use more and more sophisticated tools. For the modern human, working in a complex organization, the right tool is Process Intelligence.

Endless Potential with Signavio Process Intelligence

Signavio Process Intelligence allows you to unearth the truth about your processes and make better decisions based on true evidence found in your organization’s IT systems. Get a complete end-to-end perspective and understanding of exactly what is happening in your organization in a matter of weeks.

As part of Signavio Business Transformation Suite, Signavio Process Intelligence integrates perfectly with Signavio Process Manager and is accessible from the Signavio Collaboration Hub. As an entirely cloud-based process mining solution, the tool makes it easy to collaborate with colleagues from all over the world and harness the wisdom of the crowd.

Find out more about Signavio Process Intelligence, and see how it can help your organization generate more ideas, save time and money, and optimize processes.

Von der Datenanalyse zur Prozessverbesserung: So gelingt eine erfolgreiche Process-Mining-Initiative

Den Prozessdaten auf der Spur: Systematische Datenanalyse kombiniert mit Prozessmanagement

Die Digitalisierung verändert Organisationen aller Branchen. In zahlreichen Unternehmen werden alltägliche Betriebsabläufe softwarebasiert modelliert, automatisiert und optimiert. Damit hinterlässt fast jeder Prozess elektronische Spuren in den CRM-, ERP- oder anderen IT-Systemen einer Organisation. Process Mining gilt als effektive Methode, um diese Datenspuren zusammenzuführen und für umfassende Auswertungen zu nutzen. Sie kombiniert die systematische Datenanalyse mit Geschäftsprozessmanagement: Dabei werden Prozessdaten aus den verschiedenen IT-Systemen einer Organisation extrahiert und mit Hilfe von Data-Science-Technologien visualisiert und ausgewertet.

Read this article in English: From BI to PI: The Next Step in the Evolution of Data-Driven Decisions


Professionelle Process-Mining-Lösungen erlauben, die Ergebnisse dieser Prozessauswertungen auf Dashboards darzustellen und nach bestimmten Prozessen, Transaktionen, Abteilungen oder Kunden zu filtern. So ist es möglich, die Performance, Durchlaufzeiten und die Kosten einzelner Betriebsabläufe zu erfassen. Prozessverantwortliche werden auf diesem Wege auf Verzögerungen, ineffiziente Abläufe und mögliche Prozessverbesserungen aufmerksam.

Praxisbeispiel: Einkaufsprozess – Prozessabweichungen als Kosten- und Risikofaktor

Ein Beispiel aus dem Unternehmensalltag ist ein einfacher Einkaufsprozess: Ein Mitarbeiter benötigt einen neuen Laptop. Im Normalfall beginnt der Prozess mit der Anfrage des Mitarbeiters, die durch seinen Manager bestätigt wird. Ist kein Laptop vorrätig, löst das für den Einkauf zuständige Team die Bestellung aus. Zu einem späteren Zeitpunkt wird der Laptop dem Mitarbeiter übergeben und das Unternehmen erhält eine Rechnung. Diese Rechnung wird geprüft und fristgemäß gemäß den vorgegebenen Konditionen beglichen. Obwohl dieser alltägliche Prozess nicht sehr komplex ist, weicht er im Unternehmensalltag häufig vom modellierten Idealzustand ab, was unnötige Kosten und möglicherweise auch Risiken verursacht.

Die Gründe sind vielfältig:

  • Freigaben fehlen
  • Während des Bestellprozesses sind Informationen unvollständig
  • Rechnungen werden aufgrund von unvollständigen Informationen mehrfach korrigiert

Process Mining ermöglicht, den gesamten Prozessverlauf alltäglicher Betriebsabläufe unter die Lupe zu nehmen und faktenbasierte Diskussionen zwischen den Fachabteilungen, Prozessverantwortlichen sowie dem Management in einer Organisation anzuregen. So werden unternehmensweite Prozessverbesserungen möglich – vorausgesetzt, die Methode wird richtig angewandt und ist strategisch durchdacht. Doch wie gelingt eine erfolgreiche unternehmensweite Process-Mining-Initiative über Abteilungsgrenzen hinaus?

Wie sich eine erfolgreiche Process-Mining-Initiative auf den Weg bringen lässt

Jedes Unternehmen ist einzigartig und geht mit unterschiedlichen Fragestellungen an eine Process-Mining-Initiative heran: ob einzelne Prozesse gezielt verbessert, Prozesslebenszyklen verkürzt oder abteilungsübergreifende Abläufe an unterschiedlichen Standorten miteinander verglichen werden. Sie alle haben etwas gemeinsam: Eine erfolgreiche Process-Mining-Initiative erfordert ein strategisches Vorgehen.

Schritt 1: Mit Weitsicht planen und richtig kommunizieren

Wie definiere ich die Ziele und den Umfang der Process-Mining-Initiative?

Die Anfangsphase einer Process-Mining-Initiative dient der Planung und entscheidet häufig über den Erfolg eines Projektes. In erster Linie kommt es darauf an, die Ziele des Projektes zu definieren und die Erfolgsfaktoren zu bestimmen. Die Ziele einer erfolgreichen Process-Mining-Initiative sind SMART definiert: spezifisch, messbar, attainable/relevant, reasonable/umsetzbar und zeitgebunden/time-bound. Mögliche Ziele für das Projekt lassen sich zum Beispiel wie folgt formulieren:

  • Prozessdauer auf 25 Tage reduzieren
  • Hauptunterschiede zwischen zwei Ländern hinsichtlich bestimmter Prozesse identifizieren
  • Prozessautomatisierung um 25% steigern

Unter diesen Voraussetzungen lässt sich auch der Rahmen der Process-Mining-Initiative festlegen: Sie halten fest, welche Prozesse, konkret betroffen sind und wie sie mit den IT-Systemen und Mitarbeiterrollen in Ihrer Organisation verknüpft sind.

Welche Rollen und Verantwortlichkeiten gibt es?

Die Ziele Ihrer Process-Mining-Initiative sollten unternehmensweit geteilt werden: Dies erfordert neben einer klaren Strategie eine transparente Kommunikation in der gesamten Organisation: Indem Sie Ihren Mitarbeitern das nötige Wissen an die Hand geben, um die Initiative erfolgreich mitzugestalten, sichern Sie sich auch ihre Unterstützung.

So verstehen sie nicht nur, warum dieses Projekt sinnvoll ist, sondern sind auch in der Lage, das Wissen auf ihre individuelle Rolle und Situation zu übertragen. Im Rahmen einer Process-Mining-Initiative sind verschiedene Projektbeteiligte in unterschiedlichen Rollen aktiv:

Während Projektträger verantwortlich für die Prozessanalyse sind (z. B. Chief Procurement Officer oder Process Owner), wissen Prozessexperten, wie ein bestimmter Prozess verläuft und kennen die verschiedenen Variationen. Sie nutzen Methoden wie Process Mining, um ihr Wissen zu vertiefen und Diskussionen über die gewonnenen Daten anzustoßen. Sie arbeiten eng mit Business-Analysten zusammen, die die Prozessanalyse vorantreiben. Datenexperten wiederum verfolgen die einzelnen Spuren, die ein Prozess in der IT-Landschaft einer Organisation hinterlässt und bereiten sie so auf, dass sie Aufschluss über die Performance eines Prozesses geben.

Wie gestaltet sich die Zusammenarbeit?

Diese unterschiedlichen Rollen gilt es im Rahmen einer erfolgreichen Process-Mining-Initiative an einen Tisch zu bringen: So können die gewonnen Erkenntnisse gemeinsam im Team interpretiert und diskutiert werden, um die richtigen Veränderungen anzustoßen. Die daraus gewonnen Prozessverbesserungen spiegeln das Know-how des gesamten Teams wider und sind das Ergebnis einer erfolgreichen Zusammenarbeit.

Schritt 2: Die technischen Voraussetzungen schaffen

Wie werden Prozessdaten systemübergreifend aggregiert und aufbereitet?

Nun wird es Zeit für die technischen Vorbereitungen: Entscheidend ist es, alle Anforderungen an die beteiligten IT-Systeme zu durchdenken und die IT-Verantwortlichen so früh wie möglich einzubeziehen. Um valide Daten für Prozessverbesserungen zu generieren, sind diese drei Teilschritte nötig:

  1.  Datenextraktion: Relevante Daten aus unterschiedlichen IT-Systemen werden aggregiert (Datenquellen sind datenbasierte Tabellen aus ERP- und CRM-Lösungen, analytische Daten wie Reports, Logdateien, CSV-Dateien usw.)
  2.  Datenumwandlung gemäß den Anforderungen für Process Mining: Die extrahierten Daten werden in Cases (Abfolge verschiedener Prozessschritte) umgewandelt, mit einem Zeitstempel versehen und in Event-Logs gespeichert.
  3.  Datenübertragung: Die Process-Mining-Software greift auf die gespeicherten Event-Logs zu.

Welche Rolle spielen Konnektoren?

Diese Teilschritte werden erfahrungsgemäß mittels eines Software-Konnektors durchgeführt und in regelmäßigen Abständen wiederholt. Ein Software-Konnektor hat die Aufgabe, die Daten aus der IT-Landschaft eines Unternehmens nach den Anforderungen der Process-Mining-Lösung zu übersetzen. Er wird speziell für die Kombination mit bestimmten IT-Systemen wie SAP, Oracle oder Salesforce entwickelt und steuert die gesamte Datenintegration von der Extraktion über die Umwandlung bis zur Datenübertragung.

Process-Mining-Lösungen wie Signavio Process Intelligence verfügen über Standardkonnektoren sowie über eine API für individuell entwickelte Konnektoren. Im Rahmen der technischen Vorbereitungen gilt es, mit Blick auf das jeweilige Szenario über die Möglichkeiten der Umsetzbarkeit zu entscheiden und andere technische Lösungen zu evaluieren.

Schritt 3: Von der Prozessanalyse zur Prozessverbesserung

Wie lassen sich die ermittelten Daten für Verbesserungen nutzen?

Sind die umgewandelten Daten in der Process-Mining-Lösung verfügbar, beginnt die Prozessauswertung. Durch IT-gestütztes Process Mining erhalten Prozessexperten die Möglichkeit, alle vorliegenden Daten zu visualisieren und einzelne Prozesse detailliert auszuwerten. Die vorliegenden Prozesse werden nun hinsichtlich unterschiedlicher Faktoren untersucht, etwa mit Blick auf Durchlaufzeiten, Performance und den Prozessfluss. Im direkten Vergleich lässt sich auf diesem Wege ermitteln, welche Faktoren sich auf die Erfolgskennzahlen auswirken und an welchen Stellen Verzögerungen oder Abweichungen auftreten.

Die so gewonnen Erkenntnisse bilden eine wichtige Grundlage für faktenbasierte Diskussionen zwischen den verschiedenen Stakeholdern der Process-Mining-Initiative. Doch erst die konkreten Schritte, die aus dieser Datenbasis abgeleitet werden, entscheiden über den Erfolg des Projektes: Entscheidend ist, wie diese Erkenntnisse in die Praxis umgesetzt werden.


Eine Process-Mining-Lösung, die nicht als reines Analysetool zur Verfügung steht, sondern in eine umfassende Lösung für die Modellierung, Automatisierung und Analyse professioneller Geschäftsprozesse integriert ist, erleichtert den Schritt von der Business Process Discovery zur Prozessverbesserung. Schließlich gilt es, konkrete Prozessverbesserungen und Änderungen zu planen, in den Unternehmensalltag zu integrieren und die Ergebnisse auszuwerten – auch über das Ende der Process-Mining-Initiative hinaus.

Warum ist ein Process-Mining-Projekt nie vollständig abgeschlossen?  

Wer einmal mit der Prozessverbesserung beginnt, wird feststellen: Viele weitere Stellen in den Prozessen warten nur darauf, verbessert zu werden. Daher lohnt es sich, einige Wochen nach der initialen Prozessverbesserung neue Daten zu extrahieren, um herauszufinden, welche Veränderungen nachweislich zu mehr Effizienz geführt haben. Eine kontinuierliche Messung und Auswertung erleichtert einen umfassenden Blick auf die eigene Organisation:

  • Funktionieren die überarbeiteten Prozesse wie geplant?
  • Haben Prozessveränderungen unvorhersehbare Effekte?
  • Treten Schwachstellen in anderen Prozessen auf?
  • Haben sich die Prozesse verändert, seitdem sie überarbeitet wurden?
  • Wie lässt sich ein bestimmter Prozess weiter verbessern?

Somit lässt sich zusammenfassen: Wem es gelingt, die Datenspuren in den IT-Systemen der eigenen Organisation zu verfolgen, ist auf dem richtigen Weg zur kontinuierlichen Verbesserung. Davon profitieren nicht nur die Prozesse und IT-Systeme, sondern auch die Mitarbeiter in den Organisationen.

Process-Mining: Es werde Licht


Nur wer seine Prozesse kennt, kann sie optimieren

Gewachsene und in verschiedenen Systemen umgesetzte Prozesse sind meist nicht definiert und dokumentiert. Wer hat einen Prozess wann, warum und wofür angelegt? Nach welchem Schema verläuft er? Gibt es verschiedene Prozessvarianten, die durch unterschiedliche Parameter gesteuert sind? Diese Fragen können viele Unternehmen nicht beantworten und ihre betrieblichen Abläufe nicht optimieren – mit der Folge, dass sie weder ihre Transparenz steigern noch die Kosten senken und von Wettbewerbsvorteilen profitieren können.

Ohne transparente, aktuelle und einheitliche Prozessdokumentation ist der Aufwand zur Aneignung des Prozesswissens unnötig hoch – zumal die Intransparenz sehr teuer ist. Insbesondere für Unternehmen im Finance-Umfeld ist eine transparente, aktuelle Dokumentation Pflicht. Nur so können Wirtschaftsprüfer oder Revisionsabteilungen Unregelmäßigkeiten und Verstöße gegen Compliance-Richtlinien in Prozessen identifizieren und nachweisen, dass Firmen normative Vorgaben wie die Mindestanforderungen an das Risikomanagement (MaRisk) der BaFin (Bundesanstalt für Finanzdienstleistungsaufsicht) einhalten.

Prozesse sichtbar machen

Durchblick gewährt das Process-Mining. Es macht die in Technik verborgenen Prozesse sichtbar. Als Bestandteil des Business-Process-Managements (BPM) ermöglicht es, Prozesse aus ihren digitalen Spuren in ERP-, CRM- oder proprietären Systemen zu rekonstruieren und auszuwerten. Viele Unternehmen wissen nicht, wie viele digitale Abläufe es gibt, wie sie chronologisch vonstattengehen, wie sie zusammenhängen, welche Prozessvariante wie viele Anwender wie häufig durchlaufen – und was das kostet. Ausgangspunkt des Process-Minings ist eine Sammlung der Prozessschritte. Mit statistischen Modellen lässt sich dann der Kernprozess ermitteln, der als Basis für alle Prozessabläufe Abweichungen offenbart.

Beispiel: Bestellanforderung in SAP anlegen

Der Standardprozess ist einfach: Bestellanforderung ins SAP-System eingeben, an Prozessfreigeber senden, von ihm prüfen und freigeben lassen. Die Realität könnte aber so sein: Mitarbeiter A bittet Mitarbeiter B per E-Mail, den Prozess einer Bestellanforderung in SAP anzulegen. Also sammelt Mitarbeiter B Informationen in einer Excel-Liste und legt sie auf dem Server ab – und weicht damit vom Standard ab. Da Mitarbeiter B die Freigabe des Vorgesetzten von A benötigt, fragt er ihn per E-Mail, ob er die Bestellung auslösen darf – eine weitere Abweichung. Nach Freigabe schickt Mitarbeiter B die Bestellung an den Lieferanten, ohne den Prozess in SAP anzulegen – schließlich drängt die Zeit. Die Folge: Im ERP-System fehlen Bestellanforderung und Freigabe. Wieso und warum, ist im Nachhinein nicht mehr nachvollziehbar.

Prozesse visualisieren und modellieren

Licht ins Dunkel bringt die Prozessvisualisierung. Sind Prozesse in Dashboards, Diagrammen, Tabellen und Tachoelementen dargestellt, können Unternehmen einfach nachvollziehen, wie Prozesse samt Varianten ablaufen und wie sie verknüpft sind. Auf Basis der Visualisierung ist es möglich, einzelne Abläufe zu modellieren: Man überträgt Prozessabläufe in ein standardisiertes Modell, das Prozessinformationen wie In- und Outputs, beteiligte Rollen, Dokumente und IT-Systeme beinhaltet. Umfangreiche Analysen und Simulationen erlauben dann, Prozesse zu bewerten und Optimierungspotenziale aufzudecken. Ist nachvollziehbar, wie ein Gesamtprozess mit allen Varianten abläuft, können Unternehmen Modifikationen abbauen und einen effizienten Prozess definieren.

Prozesse freigeben, versionieren und publizieren

Neben der Prozessvisualisierung sollte die Process-Mining-Lösung auch die Prozessfreigabe unter Berücksichtigung der Governance-Vorgaben unterstützen. Das erlaubt, Mitarbeitern Rollen wie Prozesseigner, -freigeber oder -prüfer zuzuweisen und eine automatisierte Freigabe zu etablieren. Sind die Daten sauber versioniert und zentral abgelegt, ist für eine lückenlose Dokumentation gesorgt. Um die Mitarbeiter entsprechend zu informieren, sollte das Tool eine einfache Publizierung unterstützen und Informationen zu Risiken, Kennzahlen und IT-Systemen bereitstellen. Außerdem sollten sich Mitarbeiter in die Prozessgestaltung einbringen können.

Informationen auslesen und auswerten – auch in der Cloud

Um eine Prozessdokumentation automatisiert zu erstellen, braucht es einen Algorithmus, der prozessrelevante Informationen aus allen IT-Systemen und Applikationen in das BPM-Tool einspielt. Über Konnektoren zu SAP ERP, Microsoft Dynamics CRM und proprietären IT-Lösungen lässt es sich an Bestandssysteme nahtlos anbinden. Das erlaubt, Informationen zielführend abzugleichen, bedarfsgerecht aufzubereiten und gewinnbringend zu nutzen. Idealerweise ist eine Process-Mining-Software fester Bestandteil eines BPM-Systems (BPMS), das die Prozessplanung, -ausführung, -analyse und -optimierung unterstützt. Eine Monitoring-Komponente sollte es gestatten, Kennzahlen zu erfassen, zu überwachen und auszuwerten. Für maximale Flexibilität ist gesorgt, wenn sich das BPM-System in der Cloud betreiben und bedarfsgerecht anpassen lässt. So können Anwender auf zyklische Lastspitzen mit einem individuellen Ressourcenmanagement reagieren.

Augen auf bei der Anbieter-Auswahl

Neben dem Funktionsumfang ist auch der IT-Dienstleister wichtig. Idealerweise bietet er eine BPM-Suite mit Process-Mining als Teilkomponente. Ein großer, internationaler IT-Systemintegrator mit Erfahrung in allen Branchen hat die nötige Manpower und Erfahrung für komplexe BPM-Projekte. Im Idealfall bietet er Unternehmen State-of-the-art-Technologie und stellt ihnen kompetente, erfahrene Prozessberater zur Seite, die sie in technischen Belangen wie Setup, Integration und Inbetriebnahme sowie dem Auslesen der Daten aus IT-Systemen unterstützen – für eine zielführende Prozessoptimierung und ein wirksames Change-Management. Wenn der Dienstleister über das BPM-Projekt hinaus wertvolle Hilfestellung leistet, können Unternehmen dank Process-Mining wettbewerbsfähiger, innovativer und damit langfristig erfolgreicher werden.

Process Mining – Der Trend für 2018

Etwa seit dem Jahr 2010 erlebt Process Mining einerseits als Technologie und Methode einen Boom, andererseits fristet Process Mining noch ein gewisses Nischendasein. Wie wird sich dieser Trend 2018 und 2019 entwickeln?

Was ist Process Mining?

Process Mining (siehe auch: Artikel über Process Mining) ist ein Verfahren der Datenanalyse mit dem Ziel der Visualisierung und Analyse von Prozessflüssen. Es ist ein Data Mining im Sinne der Gewinnung von Informationen aus Daten heraus, nicht jedoch Data Mining im Sinne des unüberwachten maschinellen Lernens. Konkret formuliert, ist Process Mining eine Methode, um Prozess datenbasiert zur Rekonstruieren und zu analysieren. Im Mittelpunkt stehen dabei Zeitstempel (TimeStamps), die auf eine Aktivität (Event) in einem IT-System hinweisen und sich über Vorgangnummern (CaseID) verknüpfen lassen.

Process Mining als Analyseverfahren ist zweiteilig: Als erstes muss über eine Programmiersprache (i.d.R. PL/SQL oder T-SQL, seltener auch R oder Python) ein Skript entwickelt werden, dass auf die Daten eines IT-Systems (meistens Datenbank-Tabellen eines ERP-Systems, manchmal auch LogFiles z. B. von Webservern) zugreift und die darin enthaltenden (und oftmals verteilten) Datenspuren in ein Protokoll (ein sogenanntes EventLog) überführt.

Ist das EventLog erstellt, wird diese in ein Process Mining Tool geladen, dass das EventLog visuell als Flow-Chart darstellt, Filter- und Analysemöglichkeiten anbietet. Auch Alertings, Dashboards mit Diagrammen oder Implementierungen von Machine Learning Algorithmen (z. B. zur Fraud-Detection) können zum Funktionsumfang dieser Tools gehören. Die angebotenen Tools unterscheiden sich von Anbieter zu Anbieter teilweise erheblich.

Welche Branchen setzen bislang auf Process Mining?

Diese Analysemethodik hat sicherlich bereits in allen Branchen ihren Einzug gefunden, jedoch arbeiten gegenwärtig insbesondere größere Industrieunternehmen, Energieversorger, Handelsunternehmen und Finanzdienstleister mit Process Mining. Process Mining hat sich bisher nur bei einigen wenigen Mittelständlern etabliert, andere denken noch über die Einführung nach oder haben noch nie etwas von Process Mining gehört.

Auch Beratungsunternehmen (Prozess-Consulting) und Wirtschaftsprüfungen (Audit) setzen Process Mining seit Jahren ein und bieten es direkt oder indirekt als Leistung für ihre Kunden an.

Welche IT-Systeme und Prozesse werden analysiert?

Und auch hier gilt: Alle möglichen operativen Prozesse werden analysiert, beispielsweise der Gewährleistungsabwicklung (Handel/Hersteller), Kreditgenehmigung (Banken) oder der Vertragsänderungen (Kundenübergabe zwischen Energie- oder Telekommunikationsanbietern). Entsprechend werden alle IT-Systeme analysiert, u. a. ERP-, CRM-, PLM-, DMS- und ITS-Systeme.

Allen voran werden Procure-to-Pay- und Order-to-Cash-Prozesse analysiert, die für viele Unternehmen typische Einstiegspunkte in Process Mining darstellen, auch weil einige Anbieter von Process Mining Tools die nötigen Skripte (ggf. als automatisierte Connectoren) der EventLog-Generierung aus gängigen ERP-Systemen für diese Prozesse bereits mitliefern.

Welche Erfolge wurden mit Process Mining bereits erreicht?

Die Erfolge von Process Mining sind in erster Linie mit der gewonnenen Prozesstransparenz zu verbinden. Process Mining ist eine starke Analysemethode, um Potenziale der Durchlaufzeiten-Optimierung aufzudecken. So lassen sich recht gut unnötige Wartezeiten und störende Prozesschleifen erkennen. Ebenfalls eignet sich Process Mining wunderbar für die datengetriebene Prozessanalyse mit Blick auf den Compliance-Check bis hin zur Fraud-Detection.

Process Mining ist als Methode demnach sehr erfolgreich darin, die Prozessqualität zu erhöhen. Das ist natürlich an einen gewissen Personaleinsatz gebunden und funktioniert nicht ohne Schulungen, bedingt jedoch i.d.R. weniger eingebundene Mitarbeiter als bei klassischen Methoden der Ist-Prozessanalyse.

Ferner sollten einige positive Nebeneffekte Erwähnung finden. Durch den Einsatz von Process Mining, gerade wenn dieser erst nach einigen Herausforderungen zum Erfolg wurde, konnte häufig beobachtet werden, dass involvierte Mitarbeiter ein höheres Prozessbewustsein entwickelt haben, was sich auch indirekt bemerkbar machte (z. B. dadurch, dass Soll-Prozessdokumentationen realitätsnäher gestaltet wurden). Ein großer Nebeneffekt ist ganz häufig eine verbesserte Datenqualität und das Bewusstsein der Mitarbeiter über Datenquellen, deren Inhalte und Wissenspotenziale.

Wo haperte es bisher?

Ins Stottern kam Process Mining bisher insbesondere an der häufig mangelhaften Datenverfügbarkeit und Datenqualität in vielen IT-Systemen, insbesondere bei mittelständischen Unternehmen. Auch die Eigenständigkeit der Process Mining Tools (Integration in die BI, Anbindung an die IT, Lizenzkosten) und das fehlen von geschulten Mitarbeiter-Kapazitäten für die Analyse sorgen bei einigen Unternehmen für Frustration und Zweifel am langfristigen Erfolg.

Als Methode schwächelt Process Mining bei der Aufdeckung von Möglichkeiten der Reduzierung von Prozesskosten. Es mag hier einige gute Beispiele für die Prozesskostenreduzierung geben, jedoch haben insbesondere Mittelständische Unternehmen Schwierigkeiten darin, mit Process Mining direkt Kosten zu senken. Dieser Aspekt lässt insbesondere kostenfokussierte Unternehmer an Process Mining zweifeln, insbesondere wenn die Durchführung der Analyse mit hohen Lizenz- und Berater-Kosten verbunden ist.

Was wird sich an Process Mining ändern müssen?

Bisher wurde Process Mining recht losgelöst von anderen Themen des Prozessmanagements betrachtet, woran die Tool-Anbieter nicht ganz unschuldig sind. Process Mining wird sich zukünftig mehr von der Stabstelle mit Initiativ-Engagement hin zur Integration in den Fachbereichen entwickeln und Teil des täglichen Workflows werden. Auch Tool-seitig werden aktuelle Anbieter für Process Mining Software einem verstärkten Wettbewerb stellen müssen. Process Mining wird toolseitig enger Teil der Unternehmens-BI und somit ein Teil einer gesamtheitlichen Business Intelligence werden.

Um sich von etablierten BI-Anbietern abzusetzen, implementieren und bewerben einige Anbieter für Process Mining Software bereits Machine Learning oder Deep Learning Algorithmen, die selbstständig Prozessmuster auf Anomalien hin untersuchen, die ein Mensch (vermutlich) nicht erkennen würde. Process Mining mit KI wird zu Process Analytics, und somit ein Trend für die Jahre 2018 und 2019.

Für wen wird Process Mining 2018 interessant?

Während größere Industrieunternehmen, Großhändler, Banken und Versicherungen längst über Process Mining Piloten hinaus und zum produktiven Einsatz übergegangen sind (jedoch von einer optimalen Nutzung auch heute noch lange entfernt sind!), wird Process Mining zunehmend auch für mittelständische Unternehmen interessant – und das für alle geschäftskritischen Prozesse.

Während Process Mining mit ERP-Daten bereits recht verbreitet ist, wurden andere IT-Systeme bisher seltener analysiert. Mit der höheren Datenverfügbarkeit, die dank Industrie 4.0 und mit ihr verbundene Konzepte wie M2M, CPS und IoT, ganz neue Dimensionen erlangt, wird Process Mining auch Teil der Smart Factory und somit der verstärkte Einsatz in der Produktion und Logistik absehbar.

Lesetipp: Process Mining 2018 – If you can’t measure it, you can’t improve it: Process Mining bleibt auch im neuen Jahr mit hoher Wahrscheinlichkeit ein bestimmendes Thema in der Datenanalytik. Sechs Experten teilen ihre Einschätzungen zur weiteren Entwicklung 2018 und zeigen auf, warum das Thema von so hoher Relevanz ist. ( – 10. Januar 2018)

Process Analytics – Data Analysis for Process Audit & Improvement

Process Mining: Innovative data analysis for process optimization and audit

Step-by-Step: New ways to detect compliance violations with Process Analytics

In the course of the advancing digitization, an enormous upheaval of everyday work is currently taking place to ensure the complete recording of all steps in IT systems. In addition, companies are increasingly confronted with increasingly demanding regulatory requirements on their IT systems.

Read this article in German:
“Process Mining: Innovative Analyse von Datenspuren für Audit und Forensik “

The unstoppable trend towards a connected world will further increase the possibilities of process transparency, but many processes in the company area are already covered by one or more IT systems. Each employee, as well as any automated process, leaves many data traces in IT backend systems, from which processes can be replicated retroactively or in real time. These include both obvious processes, such as the entry of a recorded purchase order or invoice, as well as partially hidden processes, such as the modification of certain entries or deletion of these business objects.

1 Understanding Process Analytics

Process Analytics is a data-driven methodology of the actual process analysis, which originates in forensics. In the wake of the increasing importance of computer crime, it became necessary to identify and analyze the data traces that potential criminals left behind in IT systems in order to reconstruct the event as much as possible.

With the trend towards Big Data Analytics, Process Analytics has not only received new data bases, but has also been further developed as an analytical method. In addition, the visualization enables the analyst or the report recipient to have a deeper understanding of even more complex business processes.

While conventional process analysis primarily involves employee interviews and monitoring of the employees at the desk in order to determine actual processes, Process Analytics is a leading method, which is purely fact-based and thus objectively approaching the processes. It is not the employees who are asked, but the IT systems, which not only store all the business objects recorded in a table-oriented manner, but also all process activities. Every IT system for enterprise purposes log all relevant activities of the whole business process, in the background and invisible to the users, such as orders, invoices or customer orders, with a time stamp.

2 The right choice of the processes to analyze

Today almost every company works with at least one ERP system. As other systems are often used, it is clear which processes can not be analyzed: Those processes, which are still carried out exclusively on paper and in the minds of the employees, which are typical decision-making processes at the strategic level and not logged in IT systems.

Operational processes, however, are generally recorded almost seamlessly in IT systems. Furthermore, almost all operational decisions are recorded by status flags in datasets.

The operational processes, which can be reconstructed and analyzed with Process Mining very well and which are of equal interest from the point of view of compliance, include for example:

– Procurement

– Logistics / Transport

– Sales / Ordering

– Warranty / Claim Management

– Human Resource Management

Process Analytics enables the greatest possible transparency across all business processes, regardless of the sector and the department. Typical case IDs are, for example, sales order number, procurement order number, customer or material numbers.

3 Selection of relevant IT systems

In principle, every IT system used in the company should be examined with regard to the relevance for the process to be analyzed. As a rule, only the ERP system (SAP ERP or others) is relevant for the analysis of the purchasing processes. However, for other process areas there might be other IT systems interesting too, for example separate accounting systems, a CRM or a MES system, which must then also be included.

Occasionally, external data should also be integrated if they provide important process information from externally stored data sources – for example, data from logistics partners.

4 Data Preparation

Before the start of the data-driven process analysis, the data directly or indirectly indicating process activities must be identified, extracted and processed in the data sources. The data are stored in database tables and server logs and are collected via a data warehousing procedure and converted into a process protocol or – also called – event log.

The event log is usually a very large and wide table which, in addition to the actual process activities, also contains parameters which can be used to filter cases and activities. The benefit of this filter option is, for example, to show only process flows where special product groups, prices, quantities, volumes, departments or employee groups are involved.

5 Analysis Execution

The actual inspection is done visually and thus intuitively with an interactive process flow diagram, which represents the actual processes as they could be extracted from the IT systems. The event log generated by the data preparation is loaded into a data visualization software (e.g. Celonis PM Software), which displays this log by using the case IDs and time stamps and transforms this information in a graphical process network. The process flows are therefore not modeled by human “process thinkers”, as is the case with the target processes, but show the real process flows given by the IT systems. Process Mining means, that our enterprise databases “talk” about their view of the process.

The process flows are visualized and statistically evaluated so that concrete statements can be made about the process performance and risk estimations relevant to compliance.

6 Deviation from target processes

The possibility of intuitive filtering of the process presentation also enables an analysis of all deviation of our real process from the desired target process sequences.

The deviation of the actual processes from the target processes is usually underestimated even by IT-affine managers – with Process Analytics all deviations and the general process complexity can now be investigated.

6 Detection of process control violations

The implementation of process controls is an integral part of a professional internal control system (ICS), but the actual observance of these controls is often not proven. Process Analytics allows circumventing the dual control principle or the detection of functional separation conflicts. In addition, the deliberate removal of internal control mechanisms by executives or the incorrect configuration of the IT systems are clearly visible.

7 Detection of previously unknown behavioral patterns

After checking compliance with existing controls, Process Analytics continues to be used to recognize previously unknown patterns in process networks, which point to risks or even concrete fraud cases and are not detected by any control due to their previously unknown nature. In particular, the complexity of everyday process interlacing, which is often underestimated as already mentioned, only reveals fraud scenarios that would previously not have been conceivable.

8 Reporting – also possible in real time

As a highly effective audit analysis, Process Analytics is already an iterative test at intervals of three to twelve months. After the initial implementation, compliance violations, weak or even ineffective controls, and even cases of fraud, are detected reliably. The findings can be used in the aftermath to stop the weaknesses. A further implementation of the analysis after a waiting period makes it possible to assess the effectiveness of the measures taken.

In some application scenarios, the seamless integration of the process analysis with the visual dashboard to the IT system landscape is recommended so that processes can be monitored in near real-time. This connection can also be supplemented by notification systems, so that decision makers and auditors are automatically informed about the latest process bottlenecks or violations via SMS or e-mail.


Process Analytics is, in the course of the digitalization, the highly effective methodology from the area of ​​Big Data Analysis for detecting compliance-relevant events throughout the company and also providing visual support for forensic data analysis. Since this is a method, and not a software, an expansion of the IT system landscape, especially for entry, is not absolutely necessary, but can be carried out by internal or external employees at regular intervals.

Interview – Process Mining ist ein wichtiger Treiber der Prozessautomatisierung

Interview mit Prof. Scheer, Erfinder des etablierten ARIS-Konzepts, über die Bedeutung von Big Data für die Prozessoptimierung

Prof. Dr. Dr. h.c. mult. August-Wilhelm Scheer

Copyright – Scheer GmbH

Prof. Dr. Dr. h.c. mult. August-Wilhelm Scheer war Gründer der IDS Scheer AG und Direktor des von ihm gegründeten Instituts für Wirtschaftsinformatik an der Universität des Saarlandes in Saarbrücken. Es ist der Erfinder des bekannten ARIS-Konzeptes und heute Alleingesellschafter und Beiratsvorsitzender der Scheer GmbH (, einem Consulting- und Software-Haus in Saarbrücken. Daneben gehören zur Scheer Gruppe  Beteiligungen an Start- up Unternehmen.

Data Science Blog: Herr Prof. Scheer, Sie sind der Erfinder des ARIS-Konzepts in den 90er-Jahren, mit dem viele Unternehmen in den darauffolgenden Jahren ihr betriebliches Informationssystem überarbeiten konnten. Auch heute arbeiten viele Unternehmen an der Umsetzung dieses Konzepts. Was hat sich heute verändert?

Prof. Scheer: Auch heute noch bilden Prozessmodelle die Grundlage der digitalen Prozessautomatisierung, indem sie menschliche Arbeitsleistung innerhalb der Modelle durch IT ­Systeme unterstützen oder ersetzen. Die Scheer GmbH setzt diesen modellgetriebenen Ansatz erfolgreich in großen BPM und SAP ­Einführungsprojekten ein. Hierfür wurden in den vergangenen Jahren industriespezifische Referenzmodelle entwickelt, die unter der Bezeichnung „Performance Ready“ eine beachtliche Beschleunigung hervorbringen.

Weitere Treiber der Automatisierung sind die technische Weiterentwicklung der IT, insbesondere durch prozessorientierte Architekturen der Anwendungssoftware, sowie Big Data, Data Mining, Cloud Computing und Hardware ­Infrastruktur. Gleichzeitig werden neuere Forschungsergebnisse zu Modellierungsmethoden, der Künstlichen Intelligenz und Data Mining zunehmend in der Praxis der digitalen Geschäftsprozessorganisation umgesetzt.

Data Science Blog: Zu Zeiten der ARIS-Einführung steckte die Geschäftswelt, insbesondere die Industrie, gerade im Trend zum Lean Management. Heute ist es ähnlich mit dem Trend zu Big Data und Analytics. Welche Synergien gibt es hier im Kontext von Data Analytics?

Prof. Scheer: Mit der Implementierung einer lauffähigen Prozesslösung ist der enge BPM ­Ansatz von der  Problemerkennung bis zum lauffertigen Anwendungssystem abgeschlossen. In der Realität können jedoch auch unvorhergesehenen Abweichungen auftreten oder Störungen entstehen. Derartige Abweichungen begründen das Interesse an der Auswertung realer Prozessinstanzen. Die automatische Suche in Datenbeständen, um unerwartete Muster und Zusammenhänge zu erkennen und diese in gut verständlicher, häufig grafischer Form aufzubereiten, wird generell als Datamining bezeichnet und gehört zum Gebiet der Data Analytics. Wird dieses Vorgehen auf Geschäftsprozesse angewendet, so wird es als Process Mining bezeichnet. Es geht also  darum, die Spuren der Geschäftsprozesse während ihrer Ausführung in einer Logdatei zu erfassen und ihr Verhalten zu beobachten (Monitoring).

Data Science Blog: Welche Anwendungsfälle sind mit Process Mining zu bewältigen? Und welche Mehrwerte werden Ihrer Erfahrung nach daraus generiert?

Prof. Scheer: Beim Process Mining generiert ein komplexer Algorithmus aus den Datenspuren der Logdatei von Anwendungssystemen automatisch ein Ist-­Prozessmodell. Aus den Vergleichen des bestehenden Soll-­Modells mit den Datenspuren der Logdatei und des generierten Ist-Modells werden Abweichungen ermittelt. Diese werden analysiert, um das Soll-Modell an die Realität anzupassen und organisatorische Verbesserungsvorschläge zu entwickeln. Process Mining kann Auskunft geben, ob bei der Prozessausführung Compliance ­Regeln eingehalten oder verletzt werden, an welchen Stellen Kapazitätsengpässe entstehen, ob von vorgesehenen Kapazitätszuordnungen abgewichen wurde, wie sich Durchlaufzeiten und Qualität verhalten usw.. Die Ergänzung des BPM ­Ansatzes um das Process Mining, insbesondere auch durch den Einsatz von KI ­Techniken, führt zu einer neuen Qualität des Prozessmanagements und wird deshalb als intelligentes BPM (iBPM) bezeichnet.

Data Science Blog: Welche analytischen Methoden kommen zum Einsatz und auf welche Software-Technologien setzen Sie dabei?

Prof. Scheer: Das Process Mining wird gegenwärtig wissenschaftlich intensiv mit formalen Methoden bearbeitet. Ziel dieser Forschungen ist es, das Process Mining durch Entwicklung komplexer Algorithmen nahezu vollständig zu automatisieren. Der Verzicht auf den Einsatz menschlichen Fachwissens führt aber z. T. zu einer überhöhten Komplexität der Algorithmen für Aufgaben, die ein erfahrener Prozessmanager intuitiv leicht und besser erledigen kann. Hier ist eine Kombination aus Automatik und Fachwissen sinnvoller. Die Unternehmen der Scheer Gruppe legen den Fokus auf die Modellierung und das mehr strategische BPM und sehen Process Mining als Ergänzung dieses Ansatzes. Die Software „Scheer Process Mining“ folgt diesem Ansatz und sieht sie als Ergänzung ihrer modellbasierten BPMS ­Software „Scheer BPaaS“ und „Scheer E2EBridge“. Weiterhin unterstützen unsere Berater in vielen Projekten das Produkt „ARIS PPM“ der Software AG.

Data Science Blog: Sind die datengetriebenen Prozessanalysen vorerst abgeschlossen, geht es an die Umsetzung der Verbesserungen. Wie unterstützen Sie Unternehmen dabei, diese herbei zu führen? Und in wie weit können datengetriebene Entscheidungssysteme realisiert werden, die die Vision des autonomen Unternehmens im Sinne der Industrie 4.0 einen Schritt näher bringen?

Prof. Scheer: Sowohl langfristige strategische BPM Projekte als auch kurzfristig taktische Umsetzungen aus Process Mining Aktivitäten werden von der Scheer Gruppe unterstützt. Aber wir schauen auch in die Zukunft. Im Rahmen von Machine Learning werden Algorithmen entwickelt, die aus Beobachtungen ein Systemverhalten erkennen (lernen), um es dann für Prognosen auszuwerten. Als bekannteste Verfahren sind künstliche neuronale Netze zu nennen. Diese bilden Funktionen des menschlichen Gehirns ab. Interessante Anwendungsfälle gibt es bereits in der Fertigung. An Produktionsanlagen werden heute zahlreiche Sensoren angebracht, die Temperatur, Schwingungen, Energieverbrauch usw. kontinuierlich messen. Diese Datenströme können als Input ­Größen von neuronalen Netzen ausgewertet und zu Prognosen genutzt werden. Das Unternehmen IS ­Predict, das zur Scheer Gruppe gehört, hat dazu eigene Algorithmen auf Basis von KI entwickelt und führt seit Jahren erfolgreich Projekte zu Predictive Maintenance und zur vorausschauenden Qualitätssteuerung durch. 

Data Science Blog: Process Mining ist somit ein spannendes Zukunftsthema. Unter welchen Rahmenbedingungen sollten derartige Projekte durchgeführt werden? Was sind Ihrer Erfahrung nach die Kriterien zum Erfolg?

Prof. Scheer: Zunächst ist es sehr wichtig, das Thema aus der Business-Perspektive anzugehen und sich nicht zu früh mit technologischen Fragen auseinanderzusetzen: Welche Fragen sollen durch Process Mining beantwortet werden? Welche Informationsquellen werden hierfür benötigt?

Zu Beginn des Projekts sollte zunächst eine konkrete Aufgabenstellung angegangen werden, die auch von ihrer Größenordnung gut zu bewältigen ist. Je konkreter die Aufgabenstellung gewählt wird, desto größer ist die Erfolgswahrscheinlichkeit und umso schneller kann ein ROI erzielt werden. Natürlich bedeutet dies nicht, das „große Ganze“ zu vernachlässigen. Auch bei der Einführung von Process Mining gilt der Grundsatz „think big, start small“.

Data Science Blog: Datengetriebene Prozessanalysen bedingen interdisziplinäres Wissen. Welche Tipps würden Sie einem Prozessmanager geben, der sich in die Thematik einarbeiten möchte?

Prof. Scheer: Die Grundvoraussetzung für die Einführung von Process Mining ist ein gutes Verständnis aller Aspekte des Geschäftsmodells.  Darauf aufbauend sollte ein guter Überblick der Unternehmensprozesse und ihrer Ausprägung in den verschiedenen Unternehmensbereichen vorhanden sein. Immer wichtiger wird in diesem Zusammenhang das Thema der verschiedenen Arten von Daten und wie sie entlang der Prozesse entstehen bzw. angewendet werden. Hierbei sind für Process Mining insbesondere zwei Arten von Daten relevant:  Kennzahlen, die bei der Ausführung der Prozesse entstehen, die sog. Prozesskennzahlen oder Process KPIs. Neben den Process KPIs können mit Process Mining fachliche Daten, die während der Ausführung der Prozesse erfasst oder manipuliert werden, betrachtet werden. Mit den Process Mining Produkten von Scheer können beide Arten von Daten analysiert werden. Der Einstieg in die Datenanalyse erfolgt über das Process Analytics Dashboard. Weitergehende Informationen zu den Details der Prozesse liefert dann das Modul Process Explorer.

Process Mining: Innovative Analyse von Datenspuren für Audit und Forensik


Neue Möglichkeiten zur Aufdeckung von Compliance-Verstößen mit Process Analytics

Im Zuge der fortschreitenden Digitalisierung findet derzeit ein enormer Umbruch der alltäglichen Arbeit hin zur lückenlosen Erfassung aller Arbeitsschritte in IT-Systemen statt. Darüber hinaus sehen sich Unternehmen mit zunehmend verschärften Regulierungsanforderungen an ihre IT-Systeme konfrontiert.

Der unaufhaltsame Trend hin zur vernetzten Welt („Internet of Things“) wird die Möglichkeiten der Prozesstransparenz noch weiter vergrößern – jedoch werden bereits jetzt viele Prozesse im Unternehmensbereich über ein oder mehrere IT-Systeme erfasst. Jeder Mitarbeiter, aber auch jeder automatisiert ablaufende Prozess hinterlässt viele Datenspuren in IT-Backend-Systemen, aus denen Prozesse rückwirkend oder in Echtzeit nachgebildet werden können. Diese umfassen sowohl offensichtliche Prozesse, wie etwa den Eintrag einer erfassten Bestellung oder Rechnung, als auch teilweise verborgene Prozesse, wie beispielsweise die Änderung bestimmter Einträge oder Löschung dieser Geschäftsobjekte. 

english-flagRead this article in English:
“Process Analytics – Data Analysis for Process Audit & Improvement”

1 Das Verständnis von Process Analytics

Process Analytics ist eine datengetriebene Methodik der Ist-Prozessanalyse, die ihren Ursprung in der Forensik hat. Im Kern des dieser am Zweck orientierten Analyse steht das sogenannte Process Mining, eine auf die Rekonstruktion von Prozessen ausgerichtetes Data Mining. Im Zuge der steigenden Bedeutung der Computerkriminalität wurde es notwendig, die Datenspuren, die potenzielle Kriminelle in IT-Systemen hinterließen, zu identifizieren und zu analysieren, um das Geschehen so gut wie möglich zu rekonstruieren.

Mit dem Trend hin zu Big Data Analytics hat Process Analytics nicht nur neue Datengrundlagen erhalten, sondern ist als Analysemethode weiterentwickelt worden. Zudem ermöglicht die Visualisierung dem Analysten oder Berichtsempfänger ein tief gehendes Verständnis auch komplexerer Geschäftsprozesse.

Während in der konventionellen Prozessanalyse vor allem Mitarbeiterinterviews und Beobachtung der Mitarbeiter am Schreibtisch durchgeführt werden, um tatsächlich gelebte Prozesse zu ermitteln, ist Process Analytics eine führende Methode, die rein faktenbasiert und damit objektiv an die Prozesse herangeht. Befragt werden nicht die Mitarbeiter, sondern die IT-Systeme, die nicht nur alle erfassten Geschäftsobjekte tabellenorientiert abspeichern, sondern auch im Hintergrund – unsichtbar für die Anwender – jegliche Änderungsvorgänge z. B. an Bestellungen, Rechnungen oder Kundenaufträgen lückenlos mit einem Zeitstempel (oft Sekunden- oder Millisekunden-genau) protokollieren.

2 Die richtige Auswahl der zu betrachtenden Prozesse

Heute arbeitet nahezu jedes Unternehmen mit mindestens einem ERP-System. Da häufig noch weitere Systeme eingesetzt werden, lässt sich klar herausstellen, welche Prozesse nicht analysiert werden können: Solche Prozesse, die noch ausschließlich auf Papier und im Kopf der Mitarbeiter ablaufen, also typische Entscheiderprozesse auf oberster, strategischer Ebene, die nicht in IT-Systemen erfasst und dementsprechend nicht ausgewertet werden können. Operative Prozesse werden hingegen in der Regel nahezu lückenlos in IT-Systemen erfasst und operative Entscheidungen protokolliert.

Zu den operativen Prozessen, die mit Process Analytics sehr gut rekonstruiert und analysiert werden können und gleichermaßen aus Compliance-Sicht von höchstem Interesse sind, gehören beispielsweise Prozesse der:

  • Beschaffung
  • Logistik / Transport
  • Vertriebs-/Auftragsvorgänge
  • Gewährleistungsabwicklung
  • Schadensregulierung
  • Kreditgewährung

Process Analytics bzw. Process Mining ermöglicht unabhängig von der Branche und dem Fachbereich die größtmögliche Transparenz über alle operativen Geschäftsprozesse. Für die Audit-Analyse ist dabei zu beachten, dass jeder Prozess separat betrachtet werden sollte, denn die Rekonstruktion erfolgt anhand von Vorgangsnummern, die je nach Prozess unterschiedlich sein können. Typische Vorgangsnummern sind beispielsweise Bestell-, Auftrags-, Kunden- oder Materialnummern.

3 Auswahl der relevanten IT-Systeme

Grundsätzlich sollte jedes im Unternehmen eingesetzte IT-System hinsichtlich der Relevanz für den zu analysierenden Prozess untersucht werden. Für die Analyse der Einkaufsprozesse ist in der Regel nur das ERP-System (z. B. SAP ERP) von Bedeutung. Einige Unternehmen verfügen jedoch über ein separates System der Buchhaltung (z.B. DATEV) oder ein CRM/SRM (z. B. von Microsoft), die dann ebenfalls einzubeziehen sind.

Bei anderen Prozessen können außer dem ERP-/CRM-System auch Daten aus anderen IT-Systemen eine entscheidende Rolle spielen. Gelegentlich sollten auch externe Daten integriert werden, wenn diese aus extern gelagerten Datenquellen wichtige Prozessinformationen liefern – beispielsweise Daten aus der Logistik.

4 Datenaufbereitung

Vor der datengetriebenen Prozessanalyse müssen die Daten, die auf Prozessaktivitäten direkt oder indirekt hindeuten, in den Datenquellen identifiziert, extrahiert und aufbereitet werden. Die Daten liegen in Datenbanktabellen und Server-Logs vor und werden über ein Data Warehousing Verfahren zusammengeführt und in ein Prozessprotokoll (unter den Process Minern i.d.R. als Event Log bezeichnet) umformuliert.

Das Prozessprotokoll ist in der Regel eine sehr große und breite Tabelle, die neben den eigentlichen Prozessaktivitäten auch Parameter enthält, über die sich Prozesse filtern lassen, beispielsweise Informationen über Produktgruppen, Preise, Mengen, Volumen, Fachbereiche oder Mitarbeitergruppen.

5 Prüfungsdurchführung

Die eigentliche Prüfung erfolgt visuell und somit intuitiv vor einem Prozessflussdiagramm, das die tatsächlichen Prozesse so darstellt, wie sie aus den IT-Systemen extrahiert werden konnten.

Process Mining – Beispielhafter Process Flow mit Fluxicon Disco (

Das durch die Datenaufbereitung erstellte Prozessprotokoll wird in eine Datenvisualisierungssoftware geladen, die dieses Protokoll über die Vorgangsnummern und Zeitstempel in einem grafischen Prozessnetzwerk darstellt. Die Prozessflüsse werden also nicht modelliert, wie es bei den Soll-Prozessen der Fall ist, sondern es „sprechen“ die IT-Systeme.

Die Prozessflüsse werden visuell dargestellt und statistisch ausgewertet, so dass konkrete Aussagen über die im Hinblick auf Compliance relevante Prozess-Performance und -Risiken getroffen werden können.

6 Abweichung von Soll-Prozessen

Die Möglichkeit des intuitiven Filterns der Prozessdarstellung ermöglicht auch die gezielte Analyse von Ist-Prozessen, die von den Soll-Prozessverläufen abweichen.

Die Abweichung der Ist-Prozesse von den Soll-Prozessen wird in der Regel selbst von IT-affinen Führungskräften unterschätzt – mit Process Analytics lassen sich nun alle Abweichungen und die generelle Prozesskomplexität auf ihren Daten basierend untersuchen.

6 Erkennung von Prozesskontrollverletzungen

Die Implementierung von Prozesskontrollen sind Bestandteil eines professionellen Internen Kontrollsystems (IKS), die tatsächliche Einhaltung dieser Kontrollen in der Praxis ist jedoch häufig nicht untersucht oder belegt. Process Analytics ermöglicht hier die Umgehung des Vier-Augen-Prinzips bzw. die Aufdeckung von Funktionstrennungskonflikten. Zudem werden auch die bewusste Außerkraftsetzung von internen Kontrollmechanismen durch leitende Mitarbeiter oder die falsche Konfiguration der IT-Systeme deutlich sichtbar.

7 Erkennung von bisher unbekannten Verhaltensmustern

Nach der Prüfung der Einhaltung bestehender Kontrollen, also bekannter Muster, wird Process Analytics weiterhin zur Neuerkennung von bislang unbekannten Mustern in Prozessnetzwerken, die auf Risiken oder gar konkrete Betrugsfälle hindeuten und aufgrund ihrer bisherigen Unbekanntheit von keiner Kontrolle erfasst werden, genutzt. Insbesondere durch die – wie bereits erwähnt – häufig unterschätzte Komplexität der alltäglichen Prozessverflechtung fallen erst durch diese Analyse Fraud-Szenarien auf, die vorher nicht denkbar gewesen wären. An dieser Stelle erweitert sich die Vorgehensweise des Process Mining um die Methoden des maschinellen Lernens (Machine Learning), typischerweise unter Einsatz von Clustering, Klassifikation und Regression.

8 Berichterstattung – auch in Echtzeit möglich

Als hocheffektive Audit-Analyse ist Process Analytics bereits als iterative Prüfung in Abständen von drei bis zwölf Monaten ausreichend. Nach der erstmaligen Durchführung werden bereits Compliance-Verstöße, schwache oder gar unwirksame Kontrollen und gegebenenfalls sogar Betrugsfälle zuverlässig erkannt. Die Erkenntnisse können im Nachgang dazu genutzt werden, um die Schwachstellen abzustellen. Eine weitere Durchführung der Analyse nach einer Karenzzeit ermöglicht dann die Beurteilung der Wirksamkeit getroffener Maßnahmen.

In einigen Anwendungsszenarien ist auch die nahtlose Anbindung der Prozessanalyse mit visuellem Dashboard an die IT-Systemlandschaft zu empfehlen, so dass Prozesse in nahezu Echtzeit abgebildet werden können. Diese Anbindung kann zudem um Benachrichtigungssysteme ergänzt werden, so dass Entscheider und Revisoren via SMS oder E-Mail automatisiert über aktuellste Prozessverstöße informiert werden. Process Analytics wird somit zum Realtime Analytics.


Process Analytics ist im Zuge der Digitalisieurng die hocheffektive Methodik aus dem Bereich der Big Data Analyse zur Aufdeckung Compliance-relevanter Tatbestände im gesamten Unternehmensbereich und auch eine visuelle Unterstützung bei der forensischen Datenanalyse.