Interview – Nutzen und Motivation der medizinischen Datenanalyse

Interview mit Prof. Thomas Schrader zur Motivation des Erlernens von Clinical Data Analytics

Prof. Dr. Thomas Schrader ist Fachbereichsleiter Informatik und Medien an der TH Brandenburg und hat seinen Projekt- und Lehrschwerpunkt in der Medizininformatik. Als Experte für Data Science verknüpft er das Wissen um Informatik und Statistik mit einem medizinischen Verständnis. Dieses Wissen wird genutzt, um eine beweisorientierte Diagnose stellen, aber auch, um betriebswirtschaftliche Prozesse zu verbessern. Prof. Thomas Schrader ist zudem Dozent und Mitgestalter des Zertifikatskurses Clinical Data Analytics.

Data Science Blog: Wie steht es um die medizinische Datenanalyse? Welche Motivation gibt es dafür, diese zu erlernen und anzuwenden?

Die Digitalisierung ist inzwischen auch in der Medizin angekommen. Befunde, Laborwerte und Berichte werden elektronisch ausgetauscht und stehen somit digital zur Verfügung. Ob im Krankenhaus, im Medizinischen Versorgungszentrum oder in der ambulanten Praxis, medizinische Daten dienen zur Befunderhebung, Diagnosestellung oder zur Therapiekontrolle.

Über mobile Anwendungen, Smart Phones und Smart Watches werden ebenfalls Daten erhoben und PatientInnen stellen diese zur Einsicht zur Verfügung.

Die Verwaltung der Daten und die richtige Nutzung der Daten wird zunehmend zu einer notwendigen Kompetenz im medizinischen Berufsalltag. Jetzt besteht die Chance, den Umgang mit Daten zu erlernen, deren Qualität richtig zu beurteilen und den Prozess der fortschreitenden Digitalisierung zu gestalten.

Daten haben Eigenschaften, Daten haben eine Lebenszeit, einen Lebenszyklus. Ähnlich einem Auto, sind verschiedene Personen in unterschiedlichen Rollen daran beteiligt und verantwortlich , Daten zu erheben, zu speichern oder Daten zur Verfügung zu stellen. Je nach Art der Daten, abhängig von der Datenqualität lassen sich diese Daten weiterverwenden und ggf. Schlussfolgerungen ziehen. Die Möglichkeit aus Daten Wissen zu generieren, ist für die medizinische Arbeit eine große Chance und Herausforderung.

Data Science Blog: Bedeutet MDA gleich BigData?

Big Data ist inzwischen ein Buzzwort: Alles soll mit BigData und der Anwendung von künstlicher Intelligenz gelöst werden. Es entsteht aber der Eindruck, dass nur die großen Firmen (Google, Facebook u.a.) von BigData profitieren. Sie verwenden ihre Daten, um Zielgruppen zu differenzieren, zu identifizieren und Werbung zu personalisieren.

Medizinische Datenanalyse ist nicht BigData! Medizinische Datenanalyse kann lokal mit den Daten eines Krankenhauses, eines MVZ oder ambulanten Praxis durchgeführt werden. Explorativ wird das Wissen aus diesen Daten erschlossen. Es können schon auf dieser Ebene Indikatoren der medizinischen Versorgung erhoben werden. Es lassen sich Kriterien berechnen, die als Indikatoren für die Detektion von kritischen Fällen dienen.

Mit einer eigenen Medizinischen Datenanalyse lassen sich eigene Daten analysieren, ohne jemals die Kontrolle über die Daten abzugeben. Es werden dabei Methoden verwendet, die teilweise auch bei Big Data Anwendung finden.

Data Science Blog: Für wen ist das Erlernen der medizinischen Datenanalyse interessant?

Die Medizinische Datenanalyse ist für alle interessant, die sich mit Daten und Zahlen in der Medizin auseinandersetzen. Die Frage ist eigentlich, wer hat nichts mit Daten zu tun?

Im ersten Augenblick fallen die ambulant und klinisch tätigen ÄrztInnen ein, für die MDA wichtig wäre: in einer Ambulanz kommt ein für diese Praxis typisches Spektrum an PatientInnen mit ihren Erkrankungsmustern. MDA kann diese spezifischen Eigenschaften charakterisieren, denn darin liegt ja Wissen: Wie häufig kommen meine PatientInnen mit der Erkrankung X zu mir in die Praxis? Dauert bei einigen PatientInnen die Behandlungszeit eigentlich zu lange? Bleiben PatientInnen weg, obwohl sie noch weiter behandelt werden müssten? Dahinter liegen also viele Fragen, die sich sowohl mit der Wirtschaftlichkeit als auch mit der Behandlungsqualität auseinandersetzen. Diese sehr spezifischen Fragen wird Big Data übrigens niemals beantworten können.

Aber auch die Pflegekräfte benötigen eigentlich dringend Werkzeuge für die Bereitstellung und Analyse der Pflegedaten. Aktuell wird sehr über die richtige Personalbesetzung von Stationen und Pflegeeinrichtungen diskutiert. Das eigentliche Problem dabei ist, dass für die Beantwortung dieser Frage Zahlen notwendig sind: über dokumentierte Pflegehandlungen, Arbeitszeiten und Auslastung. Inzwischen wird damit begonnen, dieses Daten zu erheben, aber es fehlen eine entsprechende Infrastruktur dieses Daten systematisch zu erfassen, auszuwerten und in einen internationalen, wissenschaftlichen Kontext zu bringen. Auch hier wird Big Data keine Erkenntnisse bringen: weil keine Daten vorhanden sind und weil keine ExpertIn aus diesem Bereich die Daten untersucht.

Die Physio-, ErgotherapeutInnen und LogopädInnen stehen aktuell unter dem hohen Druck, einen Nachweis ihrer therapeutischen Intervention zu bringen. Es geht auch hier schlicht darum, ob auch zukünftig alle Therapieformen bezahlt werden. Über die Wirksamkeit von Physio-, Ergo- und Logopädie können nur Statistiken Auskunft geben. Auch diese Berufsgruppen profitieren von der Medizinischen Datenanalyse.

In den Kliniken gibt es Qualitäts- und Risikomanager. Deren Arbeit basiert auf Zahlen und Statistiken. Die Medizinische Datenanalyse kann helfen, umfassender, besser über die Qualität und bestehende Risiken Auskunft zu geben.

Data Science Blog: Was kann genau kann die medizinische Datenanalyse leisten?

Die Technische Hochschule Brandenburg bietet einen Kurs Medizinische/ Klinische Datenanalyse an. In diesem Kurs wird basierend auf dem Lebenszyklus von Daten vermittelt, welche Aufgaben zu leisten sind, um gute Analysen durchführen zu können. Das fängt bei der Datenerhebung an, geht über die richtige und sichere Speicherung der Daten unter Beachtung des Datenschutzes und die Analyse der Daten. Da aber gerade im medizinischen Kontext die Ergebnisse eine hohe Komplexität aufweisen können, kommt auch der Visualisierung und Präsentation von Daten eine besondere Bedeutung zu. Eine zentrale Frage, die immer beantwortet werden muss, ist, ob die Daten für bestimmte Aussagen oder Entscheidungen tauglich sind. Es geht um die Datenqualität. Dabei ist nicht immer die Frage zu beantworten, ob das “gute” oder “schlechte” Daten sind, sondern eher um die Beschreibung der spezifischen Eigenschaften von Daten und die daraus resultierenden Verwendungsmöglichkeiten.

Data Science Blog: Sie bieten an der TH Brandenburg einen Zertifikatskurs zum Erlernen der Datenanalyse im Kontext der Medizin an. Was sind die Inhalte des Kurses?

Der Kurs gliedert sich in drei Module:

– Modul 1 – Daten aus Klinik und Pflege – Von den Daten zur Information: In diesem Modul wird auf die unterschiedlichen Datenquellen eingegangen und deren Qualität näher untersucht. Daten allein sagen zuweilen sehr wenig, sie müssen in einen Zusammenhang gebracht werden, damit daraus verwertbare Informationen. Im Mittelpunkt stehen die Teile des Datenlebenszyklus, die sich mit der Erhebung und Speicherung der Daten beschäftigen.

– Modul 2 – Anwenden der Werkzeuge: Analysieren, Verstehen und Entscheiden – Von Information zum Wissen. Der Schritt von Information zu Wissen wird dann begangen, wenn eine Strukturierung und Analyse der Informationen erfolgt: Beschreiben, Zusammenfassen und Zusammenhänge aufdecken.

– Modul 3 – Best practice – Fallbeispiele: Datenanalyse für die Medizin von morgen – von smart phone bis smart home, von Registern bis sozialen Netzen: In diesem Modul wird an Hand von verschiedenen Beispielen der gesamte Datenlebenszyklus dargestellt und mit Analysen sowie Visualisierung abgeschlossen.

Data Science Blog: Was unterscheidet dieser Kurs von anderen? Und wie wird dieser Kurs durchgeführt?

Praxis, Praxis, Praxis. Es ist ein anwendungsorientierter Kurs, der natürlich auch seine theoretische Fundierung erhält aber immer unter dem Gesichtspunkt, wie kann das theoretische Wissen direkt für die Lösung eines Problems angewandt werden. Es werden Problemlösungsstrategien vermittelt, die dabei helfen sollen verschiedenste Fragestellung in hoher Qualität aufarbeiten zu können.

In wöchentlichen Online-Meetings wird das Wissen durch Vorlesungen vermittelt und in zahlreichen Übungen trainiert. In den kurzen Präsenzzeiten am Anfang und am Ende eines Moduls wird der Einstieg in das Thema gegeben, offene Fragen diskutiert oder abschließend weitere Tipps und Tricks gezeigt. Jedes Modul wird mit einer Prüfung abgeschlossen und bei Bestehen vergibt die Hochschule ein Zertifikat. Für den gesamten Kurs gibt es dann das Hochschulzertifikat „Clinical Data Analyst“.

Der Zertifikatskurs „Clinical Data Analytics“ umfasst die Auswertung von klinischen Daten aus Informationssystemen im Krankenhaus und anderen medizinischen und pflegerischen Einrichtungen. Prof. Thomas Schrader ist einer der Mitgestalter des Kurses. Weitere Informationen sind stets aktuell auf www.th-brandenburg.de abrufbar.

R oder Python – Die Sprache der Wahl in einem Data Science Weiterbildungskurs

Die KDnuggets, ein einflussreicher Newletter zu Data Mining und inzwischen auch zu Data Science, überraschte kürzlich mit der Meldung „Python eats away at R: Top Software for Analytics, Data Science, Machine Learning in 2018. Trends and Analysis“.[1] Grundlage war eine Befragung, an der mehr als 2300 KDNuggets Leser teilnahmen. Nach Bereinigung um die sogenannten „Lone Voters“, gingen insgesamt 2052 Stimmen in die Auswertung ein.

Demnach stieg der Anteil der Python-Nutzer von 2017 bis 2018 um 11% auf 65%, während mit 48% weniger als die Hälfte der Befragungsteilnehmer noch R nannten. Gegenüber 2017 ging der Anteil von R um 14% zurück. Dies ist umso bemerkenswerter, als dass bei keinem der übrigen Top Tools eine Verminderung des Anteils gemessen wurde.

Wir verzichten an dieser Stelle darauf, die Befragungsergebnisse selbst in Frage zu stellen oder andere Daten herbeizuziehen. Stattdessen nehmen wir erst einmal die Zahlen wie sie sind und konzedieren einen gewissen Python Hype. Das Python Konjunktur hat, zeigt sich z.B. in der wachsenden Zahl von Buchtiteln zu Python und Data Science oder in einem Machine Learning Tutorial der Zeitschrift iX, das ebenfalls auf Python fußt. Damit stellt sich die Frage, ob ein Weiterbildungskurs zu Data Science noch guten Gewissens auf R als Erstsprache setzen kann.

Der Beantwortung dieser Frage seien zwei Bemerkungen vorangestellt:

  1. Ob die eine Sprache „besser“ als die andere ist, lässt sich nicht abschließend beantworten. Mit Blick auf die Teilarbeitsgebiete des Data Scientists, also Datenzugriff, Datenmanipulation und Transformation, statistische Analysen und visuelle Aufbereitung zeigt sich jedenfalls keine prinzipielle Überlegenheit der einen über die andere Sprache.
  2. Beide Sprachen sind quicklebendig und werden bei insgesamt steigenden Nutzerzahlen dynamisch weiterentwickelt.

Das Beispiel der kürzlich gegründeten Ursa Labs[2] zeigt überdies, dass es zukünftig weniger darum gehen wird „Werkzeuge für eine einzelne Sprache zu bauen…“ als darum „…portable Bibliotheken zu entwickeln, die in vielen Programmiersprachen verwendet werden können“[3].

Die zunehmende Anwendung von Python in den Bereichen Data Science und Machine Learning hängt auch damit zusammen, dass Python ursprünglich als Allzweck-Programmiersprache konzipiert wurde. Viele Entwickler und Ingenieure arbeiteten also bereits mit Python ohne dabei mit analytischen Anwendungen in Kontakt zu kommen. Wenn diese Gruppen gegenwärtig mehr und mehr in den Bereichen Datenanalyse, Statistik und Machine Learning aktiv werden, dann greifen sie naturgemäß zu einem bekannten Werkzeug, in diesem Fall zu einer bereits vorhandenen Python Implementation.

Auf der anderen Seite sind Marketingfachleute, Psychologen, Controller und andere Analytiker eher mit SPSS und Excel vertraut. In diesen Fällen kann die Wahl der Data Science Sprache freier erfolgen. Für R spricht dann zunächst einmal seine Kompaktheit. Obwohl inzwischen mehr als 10.000 Erweiterungspakete existieren, gibt es mit www.r-project.org immer noch eine zentrale Anlaufstelle, von der über einen einzigen Link der Download eines monolithischen Basispakets erreichbar ist.

Demgegenüber existieren für Python mit Python 2.7 und Python 3.x zwei nach wie vor aktive Entwicklungszweige. Fällt die Wahl z.B. auf Python 3.x, dann stehen mit Python3 und Ipython3 wiederum verschiedene Interpreter zur Auswahl. Schließlich gibt es noch Python Distributionen wie Anaconda. Anaconda selbst ist in zwei „Geschmacksrichtungen“ (flavors) verfügbar als Miniconda und eben als Anaconda.

R war von Anfang an als statistische Programmiersprache konzipiert. Nach allen subjektiven Erfahrungen eignet es sich allein schon deshalb besser zur Erläuterung statistischer Methoden. Noch vor wenigen Jahren galt R als „schwierig“ und Statistikern vorbehalten. In dem Maße, in dem wissenschaftlich fundierte Software Tools in den Geschäftsalltag vordringen wird klar, dass viele der zunächst als „schwierig“ empfundenen Konzepte letztlich auf Rationalität und Arbeitsersparnis abzielen. Fehler, Bugs und Widersprüche finden sich in R so selbstverständlich wie in allen anderen Programmiersprachen. Bei der raschen Beseitigung dieser Schwächen kann R aber auf eine große und wache Gemeinschaft zurückgreifen.

Die Popularisierung von R erhielt durch die Gründung des R Consortiums zu Beginn des Jahres 2015 einen deutlichen Schub. Zu den Initiatoren dieser Interessengruppe gehörte auch Microsoft. Tatsächlich unterstützt Microsoft R auf vielfältige Weise unter anderem durch eine eigene Distribution unter der Bezeichnung „Microsoft R Open“, die Möglichkeit R Code in SQL Anweisungen des SQL Servers absetzen zu können oder die (angekündigte) Weitergabe von in Power BI erzeugten R Visualisierungen an Excel.

Der Vergleich von R und Python in einem fiktiven Big Data Anwendungsszenario liefert kein Kriterium für die Auswahl der Unterrichtssprache in einem Weiterbildungskurs. Aussagen wie x ist „schneller“, „performanter“ oder „besser“ als y sind nahezu inhaltsleer. In der Praxis werden geschäftskritische Big Data Anwendungen in einem Umfeld mit vielen unterschiedlichen Softwaresystemen abgewickelt und daher von vielen Parametern beeinflusst. Wo es um Höchstleistungen geht, tragen R und Python häufig gemeinsam zum Ergebnis bei.

Der Zertifikatskurs „Data Science“ der AWW e. V. und der Technischen Hochschule Brandenburg war schon bisher nicht auf R beschränkt. Im ersten Modul geben wir z.B. auch eine Einführung in SQL und arbeiten mit ETL-Tools. Im gerade zu Ende gegangenen Kurs wurde Feature Engineering auf der Grundlage eines Python Lehrbuchs[4] behandelt und die Anweisungen in R übersetzt. In den kommenden Durchgängen werden wir dieses parallele Vorgehen verstärken und wann immer sinnvoll auch auf Lösungen in Python hinweisen.

Im Vertiefungsmodul „Machine Learning mit Python“ schließlich ist Python die Sprache der Wahl. Damit tragen wir der Tatsache Rechnung, dass es zwar Sinn macht in die grundlegenden Konzepte mit einer Sprache einzuführen, in der Praxis aber Mehrsprachigkeit anzutreffen ist.

[1] https://www.kdnuggets.com/2018/05/poll-tools-analytics-data-science-machine-learning-results.html

[2] https://ursalabs.org/

[3] Statement auf der Ursa Labs Startseite, eigene Übersetzung.

[4] Sarkar, D et al. Practical Machine Learning with Python, S. 177ff.

Deep Learning and Human Intelligence – Part 1 of 2

Many people are under the impression that the new wave of data science, machine learning and/or digitalization is new, that it did not exist before. But its history is as long as the history of humanity and/or science itself.  The scientific discovery could hardly take place without the necessary data. Even the process of discovering the numbers included elements of machine learning: pattern recognition, comparison between different groups (ranking), clustering, etc. So what differentiates mathematical formulas from machine learning and how does it relate to artificial intelligence?

There is no difference between the two if seen from the perspective of formulas however, such a perspective limits the type of data to which they can be applied. Data stored via tables consist of structured data and are stored in so-called relational databases. The reason for such a data storage is the connection between different fields that assume a well-established structure in advance, such as a company’s sales or balance sheet. However, with the emergence of personal computers, many of the daily activities have been digitalized: music, pictures, movies, and so on. All this information is stored unrelated to other data and therefore called unstructured data.

IEEE International Conference on Computer Vision (ICCV), 2015, DOI: 10.1109/ICCV.2015.428

Copyright: IEEE International Conference on Computer Vision (ICCV), 2015, DOI: 10.1109/ICCV.2015.428

The essence of scientific discoveries was and will be structure. Not surprisingly, the mathematical formulas revolve around relations between variables – information, in general. For example, Galileo derived the law of falling balls from measuring the successive hight of a falling ball. The main difficulty was to obtain measurements at regular time intervals. What about if the data is not structured, which mathematical formula should be applied then? There is a distribution of people’s height, but no distribution for the pictures taken in all holidays for the last year, there is an amplitude for acoustic signals, but no function that detects the similarity between two songs. This is one of the reasons why machine learning focuses heavily on clustering and classification.

Roughly speaking, these simple examples are enough to categorize the difference between scientific discovery and machine learning. Science is about discovering relationships between different variables, Machine Learning tries to automatize processes. Every technical improvement is part of the automation, so why is everything different in this case? Because the current automation deals with human intelligence. The car automates the walking, the kitchen stove the fire, but Machine Learning parts of the human intelligence. There is a difference between the previous automation steps and those of human intelligence. All the previous ones are either outside the human body – such as Fire – or unconsciously executed (once learned) – walking, spinning, etc. The automation induced by Machine Learning affects a part of the human intelligence that we consciously perceive. Of course, today’s machine learning tools are unable to automate all human intelligence, but it is a fascinating step in that direction.

A breakthrough in Machine Learning tasks was achieved in 2012 when the first Deep Learning algorithm for detecting types of images, reached near-human accuracy. It could appreciate the likelihood that the image is a human face, a train, a ball or a fish without having “seen” the picture before. Such an algorithm can be used in various areas:  personally – facial recognition in pictures and/or social media – as tagging of images or videos, medicine – cancer detection, etc. For understanding such cutting-edge issues of classification, one cannot avoid understanding how Deep Learning works. To see the beauty of such algorithms and, at the same time, to be able to comprehend the difficulty of working with them, an example will be the best guide.

The building blocks of Deep Learning are neurons, operational units, which perform mathematical operations or logical operations like AND, OR, etc., and are modelled after the neurons in the brain. Already in the 1950’s two neuroscientist, Hubel and Wiesel, observed that not all neurons in the brain are responding in the same fashion to visual stimuli. Some responded only to horizontal lines, whereas others to vertical lines, with other words, the brain is constructed with specialized neurons. Groups of such neurons are called, in the Machine Learning community, layers. Like in the brain, neurons with different properties are clustered in different layers. This implies that layers have also specific properties and have to be arranged in a specific way, called architecture. It is this architecture which differentiates Deep Learning from Artificial Neuronal Networks (ANN are similar to a layer).

Unfortunately, scientists still haven’t figured out how the brain works, thus to discover how to train Deep Learning from data was not an easy task, and is also the reason why another example is used to explain the training of Deep Learning: the eye. One has always to remember: once it is known how Deep Learning works, it is simple to find example which illustrates the working mechanism.  For such an analogy, it is sufficient for someone without any knowledge about Deep Learning, to keep in mind only the elements that compose such architectures: input data, different layers of neurons, output layers, ReLu’s.

Input data are any type of information, in our example it is light. Of course, that Deep Learning is not limited only to images or videos, but also to sound and/or time series, which would imply that the example would be the ear and sound waves, or the brain and numbers.

Layers can be seen as cells in the eye. It is well known that the eye is formed of different layers connected to each other with each of them having different properties, functionalities. The same is true also for the layers of a Deep Learning architecture: one can see the neurons as cells of the layer as the tissue. While, mathematically, the neurons are nothing more than simple operations, usually linear weight functions, they can be seen as the properties of individual cells. Each layer has one weight matrix, which gives the neuron (and layer) specific properties depending on the data and the task at hand.

It is here that the architecture becomes very important. What Deep Learning offers is a default setting of the layers with unknown weights. One can see this as trying to build an eye knowing that there are different types of cells and different ways how tissues of such cells can be arranged, but not which cell exactly is needed (with what properties) and which arrangement of layers works best. Such an approach has the advantage that one is capable of building any type of organ desired, but the disadvantage is also very obvious: it is time consuming to find the appropriate cell properties and layers arrangements.

Still, the strategy of Deep Learning is a significant departure from the Machine Learning approaches. The performance of Machine Learning methods is as good as the features engineering performed by Data Scientists, and thus depending on the creativity of the Data Scientist. In the case of Deep Learning the engineers of the features is performed automatically as part of the model building. This is a huge improvement, as the only difficult task is to have enough data and computer power to find the right weights matrices. Such an endeavor was performed also by nature for the eye — and is also the reason why one can choose it as an example for Deep Learning — evolution. It is not surprising that Deep Learning is one of the best direction scientists have of Artificial Intelligence today.

The evolution of the eye can be seen, from the perspective of Data Scientists, as the continuous training of a Deep Learning architecture which enables to recognize and track one or more objects. The performance of the evolutional process can be summed up as the fine tuning of the cells which are getting more and more susceptible to light and the adaptation of layers to enable a better vision. Different animals in different environments and different targets — as the hawk and the fly — developed different eyes than humans, but they all work according to the same principle. The tasks that Deep Learning is performing today are similar, for example it can be used to drive cars but there is still a difference:  there is no connection to other organs. Deep Learning is not the approximation of an Artificial Organism, like an android, but a simplified Artificial Organ that can work on its own.

Returning to the working mechanism of the Deep Learning architecture, we can already follow the analogy of what happens if a ray of light is hitting the eye. Once the eye is fully adapted to the task, one can followed how the information enters the Deep Learning architecture (Artificial Eye) by penetrating the input layer. already here arises the question, what kind of eye is the best? One where a small source of light can reach as many neurons as possible, or the one where the light sources reaches only few neurons? In order to take such a decision, a last piece of the puzzle is required: ReLu. One can see them as synapses between neurons (cells) and/or similarly for tissue. By using continuous functions, such as the shape of the latter ‘S’ (called sigmoid), the information from one neuron will be distributed over a large number of other neurons. If one uses the maximum function, then only few neurons are updated with processed information from earlier layers.

Such sparse structures between neurons, was a major improvement in the development of the technique of training Deep Learning architectures. Again, it has a strong evolutionary analogy: energy efficiency. By needing less neurons, the tissues and architecture are both kept to a minimal size which enables flexibility in development and less energy. As the information is process by the different layers, the Artificial Eye is gathering more and more complex (non-linear) structures — the adapted features –, which help to decide, from past experience, what kind of object is detected.

This was part 1 of 2 of the article series. Part 2 will be published soon.

Interview – Die Herausforderungen der Sensor-Datenanalyse für die Automobilindustrie

Interview mit Andreas Festl von VIRTUAL VEHICLE

Andreas Festl ist Data Scientist bei VIRTUAL VEHICLE, ein führendes F&E Zentrum für die Automobil- und Bahnindustrie mit Sitz in Graz, Österreich. Das Zentrum konzentriert sich auf die konsequente Virtualisierung der Fahrzeugentwicklung. Wesentliches Element dabei ist die Verknüpfung von numerischer Simulation und Hardware-Testen, welche ein umfassendes HW-SW Systemdesign sicherstellt. Herr Festl forscht dort an Kontext-basierten Informationssystemen für den Einsatz im Fahrzeug und in der Entwicklung. Er ist ausgebildeter Mathematiker, der sich schon früh dem Thema Data Science verschrieben hat. Zusätzlich ist Herr Festl in der Lehre für Data and Information Science an der Fachhochschule Joanneum tätig.

Data Science Blog: Herr Festl, Sie sind technischer Data Scientist und arbeiten mit Daten, die zum großen Teil von Maschinen generiert werden. Was unterscheidet Ihren Arbeitsalltag vermutlich von den Data Scientists, die sich mit geschäftlichen Daten befassen?

Das wesentliche Merkmal an den Daten, mit denen wir arbeiten, ist die nicht vernachlässigbare zeitliche Komponente. Stellen Sie sich zum Beispiel eine Messung der Fahrzeuggeschwindigkeit vor: Dieses Messsignal kann natürlich nur dann sinnvoll interpretiert und verarbeitet werden, wenn die Zeit mitberücksichtigt wird. Die bloße Kenntnis der einzelnen Geschwindigkeitswerte hilft Ihnen ohne die korrekte Abfolge nicht weiter. Das führt dazu, dass viele Algorithmen aus dem Bereich des maschinellen Lernens nicht direkt auf diesen Daten arbeiten können.

Es existieren hier natürlich dennoch viele Möglichkeiten und Ansätze dafür, Wissen aus den Daten zu gewinnen; diese werden jedoch scheinbar noch nicht so oft verwendet, weshalb die verfügbare Software meist nicht für industrielle, sondern für akademische Nutzer ausgelegt ist. Ein wesentlicher Teil meiner Arbeit besteht deshalb darin, die passenden Libraries zu finden und diese für unsere Use-Cases anzupassen oder die Methode neu zu implementieren. Es gibt durchaus immer wieder Zeiten in denen meine Job-Beschreibung „mathematischer Programmierer“ lauten sollte und nicht “Data Scientist“. Ich denke, das ist im klassischen Bereich, der sich geschäftlichen Daten beschäftigt, vielleicht nicht mehr so häufig, da dort die verfügbare Software schon sehr ausgreift ist.

Außerdem beschreiben unsere Daten oft komplexe technische Prozesse in Fahrzeugkomponenten. Hier ist eine rege Kommunikation mit den jeweiligen Domänenexperten unerlässlich, damit ich auch als fachfremder Data Scientist den Prozess, der die Daten erzeugt, zumindest in Grundzügen verstehen kann. Dieser kommunikative Teil, in dem man sehr viel über verschiedenste Fachbereiche erfährt, ist für mich einer der schönsten Aspekte meiner Arbeit.

Data Science Blog: Wenn Data Science einem Laien erklärt wird, kommen häufig Beispiele von Kaufempfehlungen oder Gesundheitsprognosen von Fitness-Apps zur Sprache. Welches Beispiel würden Sie im Kontext von Automotive verwenden?

Die Möglichkeiten für den Einsatz von Data Science im Automotive Bereich sind extrem vielfältig – sie kann eigentlich über den gesamten Lebenszyklus eines Fahrzeugs gewinnbringend eingesetzt werden. Ein Einsatzbeispiel, das der Fahrer direkt positiv erleben kann, wäre die Predictive Maintenance von Fahrzeugteilen. Ähnlich zu den von Ihnen angesprochenen Fitness-Apps geht es hier darum eine „Gesundheitsprognose“ für die einzelnen Fahrzeugteile anhand von Messwerten zu erstellen. Im Idealfall müssen Sie Ihr Auto dann nicht mehr in fixen Service-Intervallen in die Werkstatt stellen, sondern das Auto meldet sich automatisch kurz bevor ein Teil ausgetauscht werden muss. Diese Meldung erschiene dann deshalb, weil die Messwerte darauf schließen lassen, dass es bald zu einem Defekt kommen wird und nicht einfach nach einem fixen, vorher definierten Zeitraum. Heute werden ja Teile oft einfach deswegen ausgetauscht, weil es der Wartungsplan so vorsieht – unabhängig von ihrer tatsächlichen Abnutzung.

Data Science Blog: Was sind denn gegenwärtig besonders interessante Anwendungsfälle und an welchen arbeiten Sie für die Zukunft?

Aus Sicht der Anwendung finde ich es besonders spannend durch Sensor-Signale auf Eigenschaften des Fahrers zu schließen. Die Methodik dazu entwickeln wir gerade in aktuellen Projekten. Es ist zum Beispiel durchaus denkbar, sicherheitsrelevante Ereignisse und Fahrmanöver zu identifizieren. Diese Informationen können dann vielseitig verwendet werden. Einige Beispiele dazu: Verkehrsplaner könnten damit automatisiert besonders gefährliche Kreuzungen angezeigt bekommen, Versicherer könnten ihren Kunden auf das individuelle Risikoverhalten abgestimmte Produkte anbieten oder Kunden könnten sich Ihren Taxifahrer über eine App nach seinem Fahrstil aussuchen. Denkbar wäre auch eine Diebstahlsicherung: Das Fahrzeug erkennt über den Fahrstil, dass es von einer unbefugten Person benutzt wird und löst daraufhin einen Alarm aus. Hier eröffnen sich viele Möglichkeiten.

Aus Sicht der Datenanalyse finde ich es besonders interessant, Algorithmen, die für ganz andere Aufgabenstellung entwickelt wurden, auf Probleme aus dem Automotive-Bereich anzuwenden. In einem unserer Projekte analysieren wir beispielsweise Software-Logfiles von Prüfständen und verwenden dazu Association Rules (eine Technik aus der Warenkorbanalyse) und Methoden, die normalerweise für das Untersuchen von Interaktionen in sozialen Netzwerken verwendet werden. Dass diese Übertragbarkeit gegeben ist finde ich extrem spannend.

Data Science Blog: Über welche Datenquellen verfügen Sie? Gibt es auch fahrzeugexterne Datenquellen, die sinnvoll sein könnten?

Da sprechen Sie natürlichen einen kritischen Punkt in jedem Data Science Projekt an: Ohne Daten geht nichts. Zusätzlich müssen die verwendeten Daten eine gewisse Qualität aufweisen und natürlich mit dem zu lösenden Problem in möglichst direktem Zusammenhang stehen.

Welche Datenquellen wir genau verwenden, hängt natürlich sehr stark vom konkretem Projekt ab. In industrienahen Projekten werden die Daten in der Regel vom Industriepartner bereitgestellt. Das kann dann alles Mögliche sein: Messungen von Prüfständen, Fertigungs-Protokolle, Wartungsdaten und vieles mehr.

Diese „Industrie-Daten“ unterliegen dann aber üblicherweise einer strengen Geheimhaltung und dürfen nicht in anderen Projekten verwendet werden. Deshalb haben wir im Unternehmen einen eigenen Datenlogger entwickelt, mit dem wir selber Daten aufnehmen können, die dann uns gehören. Diese Daten verwenden wir hauptsächlich in forschungsnahen Projekten, in denen die Ergebnisse publiziert werden sollen.

Fahrzeugexterne Datenquellen sind definitiv sinnvoll und werden immer mehr mit den klassischen Sensor-Daten fusioniert; oft ergibt sich dann durch eine Kombination von proprietären und offen verfügbaren Daten ein großer Mehrwert. In der vorhin angesprochenen Erkennung von sicherheitsrelevanten Ergebnissen spielt zum Beispiel das Wetter eine wesentliche Rolle: Eine zu schnell gefahrene Kurve ist bei Nässe oder Glätte deutlich gefährlicher als auf trockener Fahrbahn. Generell werden Daten über Umwelt und Infrastruktur immer wichtiger. Praktisch jeder fahrerzentrierte Dienst benötigt sie. Denken Sie zum Beispiel an Google Maps, das bereits heute die Bewegungsdaten von vielen Verkehrsteilnehmern gemeinsam analysiert um Vorhersagen über die Verkehrsdichte und damit über die optimale Route zu treffen.

Data Science Blog: Wie aufwändig gestaltet sich das Data Engineering, also die Datenbereitstellung und -zusammenführung?

Das ist definitiv ein schwieriges Unterfangen. Gerade Sensordaten erreichen schnell eine beachtliche Größe, die den Einsatz eines Big Data Technologie-Stacks erforderlich macht. Hier macht uns aber wieder die bereits angesprochene zeitliche Komponente unserer Daten zu schaffen. Die meisten Big Data Technologien skalieren ja, indem sie die Datenpunkte mehr oder weniger zufällig auf mehrere Rechner verteilen. Das ist bei unseren Daten aber nicht zulässig, die Reihenfolge der Daten ist hochrelevant! Hier müssen wir also entweder auf einer anderen Ebene parallelisieren oder Technologie mit spezieller Funktionalität für Zeitreihen verwenden.

Data Science Blog: Welche Technologien setzen Sie für die Datenbereitstellung und -analyse ein? Was halten Sie vom Einsatz von Open Source Software?

Wir implementieren unsere Analysen meist in R oder Python, manchmal kommen auch Matlab oder C# (letzteres meist für User Interfaces) zum Einsatz. Für Big Data Analysen verwenden wir meist Apache Spark über die R und Python APIs. Für die Datenablage und Bereitstellung verwenden wir hauptsächlich PostgreSQL mit Timescale Erweiterung, InfluxDB sowie Apache Hadoop. Grundsätzlich sind wir jedoch nicht auf bestimmte Technologien fixiert, sondern versuchen immer das jeweils beste Tool für den jeweiligen Einsatzzweck zu verwenden.

Ich finde es spricht nichts gegen den Einsatz von Open Source Software – wie Sie ja auch an unserem Technologie-Stack erkennen können. Ich habe aber auch nichts gegen Closed Source Software – es gibt in beiden Bereichen genug gute und schlechte Software. Worauf ich aber achte, ist keine neue Technologie zu verwenden, hinter der ein zu kleines Entwicklerteam oder gar nur ein einzelner Entwickler steht. Hier ist mir die Gefahr zu groß, dass die Entwicklung bald eingestellt wird und die Ergebnisse meiner Analysen nicht mehr nachvollziehbar sind.

Data Science Blog: Zum Abschluss noch eine Frage von jungen Nachwuchskräften, die davon träumen, eine Karriere als Data Scientist im Ingenieurwesen zu machen: Welche Voraussetzungen bzw. Eigenschaften sollte ein Data Scientist in Ihrem Bereich mitbringen?

Neben einer fundierten fachlichen Ausbildung sind Neugier und der Wille, Zusammenhänge zu verstehen, Eigenschaften, die für jeden Data Scientist sehr wichtig sind. Zusätzlich hilft es durchaus eine kommunikative Persönlichkeit zu sein: Es gilt in Workshops die richtigen Informationen über die Daten einzuholen – das ist nicht immer ganz leicht. Zusätzlich müssen natürlich regelmäßig die Resultate der jeweiligen Analysen einem oft fachfremden Publikum präsentiert werden.

Ständig wachsende Datenflut – Muss nun jeder zum Data Scientist werden?

Weltweit rund 163 Zettabyte – so lautet die Schätzung von IDC für die Datenmenge weltweit im Jahr 2025. Angesichts dieser kaum noch vorstellbaren Zahl ist es kein Wunder, wenn Anwender in Unternehmen sich überfordert fühlen. Denn auch hier muss vieles analysiert werden – eigene Daten aus vielen Bereichen laufen zusammen mit Daten Dritter, seien es Dienstleister, Partner oder gekaufter Content. Und all das wird noch ergänzt um Social Content – und soll dann zu sinnvollen Auswertungen zusammengeführt werden. Das ist schon für ausgesprochene Data Scientists keine leichte Aufgabe, von normalen Usern ganz zu schweigen. Doch es gibt eine gute Nachricht dabei: den Umgang mit Daten kann man lernen.

Echtes Datenverständnis – Was ist das?

Unternehmen versuchen heute, möglichst viel Kapital aus den vorhandenen Daten zu ziehen und erlauben ihren Mitarbeitern kontrollierten, aber recht weit gehenden Zugriff. Das hat denn auch etliche Vorteile, denn nur wer Zugang zu Daten hat, kann Prozesse beurteilen und effizienter gestalten. Er kann mehr Informationen zu Einsichten verwandeln, Entwicklungen an den realen Bedarf anpassen und sogar auf neue Ideen kommen. Natürlich muss der Zugriff auf Informationen gesteuert und kontrolliert sein, denn schließlich muss man nicht nur Regelwerken wie Datenschutzgrundverordnung gehorchen, man will auch nicht mit den eigenen Daten dem Wettbewerb weiterhelfen.

Aber davon abgesehen, liegt in der umfassenden Auswertung auch die Gefahr, von scheinbaren Erkenntnissen aufs Glatteis geführt zu werden. Was ist wahr, was ist Fake, was ein Trugschluss? Es braucht einige Routine um den Unsinn in den Daten erkennen zu können – und es braucht zuverlässige Datenquellen. Überlässt man dies den wenigen Spezialisten im Haus, so steigt das Risiko, dass nicht alles geprüft wird oder auf der anderen Seite Wichtiges in der Datenflut untergeht. Also brauchen auch solche Anwender ein gewisses Maß an Datenkompetenz, die nicht unbedingt Power User oder professionelle Analytiker sind. Aber in welchem Umfang? So weit, dass sie fähig sind, Nützliches von Falschem zu unterscheiden und eine zielführende Systematik auf Datenanalyse anzuwenden.

Leider aber weiß das noch nicht jeder, der mit Daten umgeht: Nur 17 Prozent von über 5.000 Berufstätigen in Europa fühlen sich der Aufgabe gewachsen – das sagt die Data-Equality-Studie von Qlik. Und für Deutschland sieht es sogar noch schlechter aus, hier sind es nur 14 Prozent, die glauben, souverän mit Daten umgehen zu können. Das ist auch nicht wirklich ein Wunder, denn gerade einmal 49 Prozent sind (in Europa) der Ansicht, ausreichenden Zugriff auf Daten zu haben – und das, obwohl 85 Prozent glauben, mit höherem Datenzugriff auch einen besseren Job machen zu können.

Mit Wissens-Hubs die ersten Schritte begleiten

Aber wie lernt man denn nun, mit Daten richtig oder wenigstens besser umzugehen? Den Datenwust mit allen Devices zu beherrschen? An der Uni offensichtlich nicht, denn in der Data-Equality-Studie sehen sich nur 10 Prozent der Absolventen kompetent im Umgang mit Daten. Bis der Gedanke der Datenkompetenz Eingang in die Lehrpläne gefunden hat, bleibt Unternehmen nur die Eigenregie  – ein „Learning by Doing“ mit Unterstützung. Wie viel dabei Eigeninitiative ist oder anders herum, wieviel Weiterbildung notwendig ist, scheint von Unternehmen zu Unternehmen unterschiedlich zu sein. Einige Ansätze haben sich jedoch schon bewährt:

  • Informationsveranstaltungen mit darauf aufbauenden internen und externen Schulungen
  • Die Etablierung von internen Wissens-Hubs: Data Scientists und Power-User, die ihr Know-how gezielt weitergeben: ein einzelne Ansprechpartner in Abteilungen, die wiederum ihren Kollegen helfen können. Dieses Schneeball-Prinzip spart viel Zeit.
  • Eine Dokumentation, die gerne auch informell wie ein Wiki oder ein Tutorial aufgebaut sein darf – mit der Möglichkeit zu kommentieren und zu verlinken. Nützlich ist auch ein Ratgeber, wie man Daten hinterfragt oder wie man Datenquellen hinter einer Grafik bewertet.
  • Management-Support und Daten-Incentives, die eine zusätzliche Motivation schaffen können. Dazu gehört auch, Freiräume zu schaffen, in denen sich Mitarbeiter mit Daten befassen können – Zeit, aber auch die Möglichkeit, mit (Test-)Daten zu spielen.

Darüber hinaus aber braucht es eine Grundhaltung, die sich im Unternehmen etablieren muss: Datenkompetenz muss zur Selbstverständlichkeit werden. Wird sie zudem noch spannend gemacht, so werden sich viele Mitarbeiter auch privat mit der Bewertung und Auswertung von Daten beschäftigen. Denn nützliches Know-how hat keine Nutzungsgrenzen – und Begeisterung steckt an.

Lexoro Data Science Survey

Wir von lexoro möchten die Community mit informativen Beiträgen fördern und erstellen dazu regelmäßige Mini-Studien. Die aktuelle Umfrage finden Sie in diesen Artikel eingebettet (siehe unten) oder mit einem Klick auf diesen Direktlink.

Data Science…more than Python, TensorFlow & Neural Networks

Künstliche Intelligenz, Data Science, Machine Learning – das sind die Schlagwörter der Stunde. Man kann sich den Berichten und Artikeln über die technologischen Entwicklungen, Trends und die Veränderungen, die uns bevorstehen kaum entziehen. Viele sind sich einig: Wir stehen vor einem Paradigmenwechsel vorangetrieben durch einen technologischen Fortschritt, dessen Geschwindigkeit – auch wenn es vielen zu schnell geht – exponentiell zunimmt. Und auch wenn wir noch am Anfang dieses neuen Zeitalters stehen, so sind die Veränderungen jetzt schon zu spüren – in den Unternehmen, in unserem Alltag, in unserer Kommunikation…

Der Arbeitsmarkt im Speziellen sieht sich auch einem starken Veränderungsprozess unterworfen. Berufe, die noch vor nicht allzu langer Zeit als nicht durch Maschinen ersetzbar galten, sind dabei zu verschwinden oder zumindest sich zu verändern. Gleichzeitig entstehen neue Jobs, neue Rollen, neue Verantwortungsbereiche. Kaum ein Unternehmen kommt daran vorbei sich den Herausforderungen dieses technologischen Wandels zu stellen. Neue Strukturen, Abteilungen, Arbeitsmodelle und Jobs entstehen.

Doch um auf die anfangs genannten Hype-Begriffe zurückzukommen – was verbirgt sich eigentlich hinter Data Science, Machine Learning und Artificial Intelligence?! Was macht einen guten Data Scientist eigentlich aus?

Die Antwort scheint aus Sicht vieler Manager einfach: im Studium Python lernen, regelmäßig Big Data Tools von Hadoop nutzen, sich in TensorFlow einarbeiten und etwas über Neural Networks lesen – und fertig ist der Data Scientist. Doch so einfach ist es leider nicht. Oder eher zum Glück?! Neue Job-Rollen erfordern auch neue Denkweisen im Recruiting! Wir entfernen uns von einem strikten Rollen-basiertem Recruiting und fokussieren uns immer mehr auf die individuellen Kompetenzen und Stärken der einzelnen Personen. Wir sind davon überzeugt, dass die treibenden Köpfe hinter der bereits laufenden Datenrevolution deutlich facettenreicher und vielschichtiger sind als sich das so mancher vielleicht wünschen mag.

Diesem Facettenreichtum und dieser Vielschichtigkeit wollen wir auf den Grund gehen und dieser Survey soll einen Beitrag dazu leisten. Welche Kompetenzen sollte ein guter Data Scientist aus Ihrer Sicht mitbringen? In welchen Bereichen würden Sie persönlich sich gerne weiterentwickeln? Haben Sie die Möglichkeiten dazu? Sind Sie auf dem richtigen Weg sich zu einem Data Scientist oder Machine Learning Expert zu entwickeln? Oder suchen Sie nach einem ganz anderen Karriereweg?
Mit einem Zeit-Investment von nur 5 Minuten leisten Sie einen wertvollen Beitrag zur Entwicklung unseres A.I.-Skillprints, der es ermöglichen wird, eine automatische, datengestützte Analyse Ihrer A.I.-bezogenen Fähigkeiten durchzuführen und Empfehlungen für eine optimale Karriereentwicklung zu erhalten.

Vielen Dank im Voraus für Ihre Teilnahme!

Das lexoro-Team


The 6 most in-demand AI jobs and how to get them

A press release issued in December 2017 by Gartner, Inc explicitly states, 2020 will be a pivotal year in Artificial Intelligence-related employment dynamics. It states AI will become “a positive job motivator”.

However, the Gartner report also sounds some alarm bells. “The number of jobs affected by AI will vary by industry-through 2019, healthcare, the public sector and education will see continuously growing job demand while manufacturing will be hit the hardest. Starting in 2020, AI-related job creation will cross into positive territory, reaching two million net-new jobs in 2025,” the press release adds.

This phenomenon is expected to strike worldwide, as a report carried by a leading Indian financial daily, The Hindu BusinessLine states. “The year 2018 will see a sharp increase in demand for professionals with skills in emerging technologies such as Artificial Intelligence (AI) and machine learning, even as people with capabilities in Big Data and Analytics will continue to be the most sought after by companies across sectors, say sources in the recruitment industry,” this news article says.

Before we proceed, let us understand what exactly does Artificial Intelligence or AI mean.

Understanding Artificial Intelligence

Encyclopedia Britannica explains AI as: “The ability of a digital computer or computer-controlled robot to perform tasks commonly associated with human beings.” Classic examples of AI are computer games that can be played solo on a computer. Of these, one can be a human while the other is the reasoning, analytical and other intellectual property a computer. Chess is one example of such a game. While playing Chess with a computer, AI will analyze your moves. It will predict and reason why you made them and respond accordingly.

Similarly, AI imitates functions of the human brain to a very great extent. Of course, AI can never match the prowess of humans but it can come fairly close.

What this means?

This means that AI technology will advance exponentially. The main objective for developing AI will not aim at reducing dependence on humans that can result in loss of jobs or mass retrenchment of employees. Having a large population of unemployed people is harmful to economy of any country. Secondly, people without money will not be able to utilize most functions that are performed through AI, which will render the technology useless.

The advent and growing popularity of AI can be summarized in words of Bill Gates. According to the founder of Microsoft, AI will have a positive impact on people’s lives. In an interview with Fox Business, he said, people would have more spare time that would eventually lead to happier life. However he cautions, it would be long before AI starts making any significant impact on our daily activities and jobs.

Career in AI

Since AI primarily aims at making human life better, several companies are testing the technology. Global online retailer Amazon is one amongst these. Banks and financial institutions, service providers and several other industries are expected to jump on the AI bandwagon in 2018 and coming years. Hence, this is the right time to aim for a career in AI. Currently, there exists a great demand for AI professionals. Here, we look at the top six employment opportunities in Artificial Intelligence.

Computer Vision Research Engineer

 A Computer Vision Research Engineer’s work includes research and analysis, developing software and tools, and computer vision technologies. The primary role of this job is to ensure customer experience that equals human interaction.

Business Intelligence Engineer

As the job designation implies, the role of a Business Intelligence Engineer is to gather data from multiple functions performed by AI such as marketing and collecting payments. It also involves studying consumer patterns and bridging gaps that AI leaves.

Data Scientist

A posting for Data Scientist on recruitment website Indeed describes Data Scientist in these words: “ A mixture between a statistician, scientist, machine learning expert and engineer: someone who has the passion for building and improving Internet-scale products informed by data. The ideal candidate understands human behavior and knows what to look for in the data.

Research and Development Engineer (AI)

Research & Development Engineers are needed to find ways and means to improve functions performed through Artificial Intelligence. They research voice and text chat conversations conducted by bots or robotic intelligence with real-life persons to ensure there are no glitches. They also develop better solutions to eliminate the gap between human and AI interactions.

Machine Learning Specialist

The job of a Machine Learning Specialist is rather complex. They are required to study patterns such as the large-scale use of data, uploads, common words used in any language and how it can be incorporated into AI functions as well as analyzing and improving existing techniques.

Researchers

Researchers in AI is perhaps the best-paid lot. They are required to research into various aspects of AI in any organization. Their role involves researching usage patterns, AI responses, data analysis, data mining and research, linguistic differences based on demographics and almost every human function that AI is expected to perform.

As with any other field, there are several other designations available in AI. However, these will depend upon your geographic location. The best way to find the demand for any AI job is to look for good recruitment or job posting sites, especially those specific to your region.

In conclusion

Since AI is a technology that is gathering momentum, it will be some years before there is a flood of people who can be hired as fresher or expert in this field. Consequently, the demand for AI professionals is rather high. Median salaries these jobs mentioned above range between US$ 100,000 to US$ 150,000 per year.

However, before leaping into AI, it is advisable to find out what other qualifications are required by employers. As with any job, some companies need AI experts that hold specific engineering degrees combined with additional qualifications in IT and a certificate that states you hold the required AI training. Despite, this is the best time to make a career in the AI sector.

Data Science Survey by lexoro.ai

Ergebnisse unserer ersten Data Science Survey

Wie denken Data Scientists über ihre Skills, ihre Karriere und ihre Arbeitgeber? Data Science, Machine Learning, Künstliche Intelligenz – mehr als bloße Hype-Begriffe und entfernte Zukunftsmusik! Wir stecken mitten in massiven strukturellen Veränderungen. Die Digitalisierungswelle der vergangenen Jahre war nur der Anfang. Jede Branche ist betroffen. Schnell kann ein Gefühl von Bedrohung und Angst vor dem Unbekannten aufkommen. Tatsächlich liegen aber nie zuvor dagewesene Chancen und Potentiale vor unseren Füßen. Die Herausforderung ist es diese zu erkennen und dann die notwendigen Veränderungen umzusetzen.
Diese Survey möchte deshalb die Begriffe Data Science und Machine Learning einmal genauer beleuchten. Was steckt überhaupt hinter diesen Begriffen? Was muss ein Data Scientist können? Welche Gedanken macht sich ein Data Scientist über seine Karriere? Und sind Unternehmen hinsichtlich des Themas Machine Learning gut aufgestellt? Nun möchten wir die Ergebnisse dieser Umfrage vorstellen:



Link zu den Ergebnissen der ersten Data Science Survey by lexoro.ai

Interesse an einem Austausch zu verschiedenen Karriereperspektiven im Bereich Data Science/ Machine Learning? Dann registrieren Sie sich direkt auf dem lexoro Talent Check-In und ein lexoro-Berater wird sich bei Ihnen melden.

Process Mining – Der Trend für 2018

Etwa seit dem Jahr 2010 erlebt Process Mining einerseits als Technologie und Methode einen Boom, andererseits fristet Process Mining noch ein gewisses Nischendasein. Wie wird sich dieser Trend 2018 und 2019 entwickeln?

Was ist Process Mining?

Process Mining (siehe auch: Artikel über Process Mining) ist ein Verfahren der Datenanalyse mit dem Ziel der Visualisierung und Analyse von Prozessflüssen. Es ist ein Data Mining im Sinne der Gewinnung von Informationen aus Daten heraus, nicht jedoch Data Mining im Sinne des unüberwachten maschinellen Lernens. Konkret formuliert, ist Process Mining eine Methode, um Prozess datenbasiert zur Rekonstruieren und zu analysieren. Im Mittelpunkt stehen dabei Zeitstempel (TimeStamps), die auf eine Aktivität (Event) in einem IT-System hinweisen und sich über Vorgangnummern (CaseID) verknüpfen lassen.

Process Mining als Analyseverfahren ist zweiteilig: Als erstes muss über eine Programmiersprache (i.d.R. PL/SQL oder T-SQL, seltener auch R oder Python) ein Skript entwickelt werden, dass auf die Daten eines IT-Systems (meistens Datenbank-Tabellen eines ERP-Systems, manchmal auch LogFiles z. B. von Webservern) zugreift und die darin enthaltenden (und oftmals verteilten) Datenspuren in ein Protokoll (ein sogenanntes EventLog) überführt.

Ist das EventLog erstellt, wird diese in ein Process Mining Tool geladen, dass das EventLog visuell als Flow-Chart darstellt, Filter- und Analysemöglichkeiten anbietet. Auch Alertings, Dashboards mit Diagrammen oder Implementierungen von Machine Learning Algorithmen (z. B. zur Fraud-Detection) können zum Funktionsumfang dieser Tools gehören. Die angebotenen Tools unterscheiden sich von Anbieter zu Anbieter teilweise erheblich.

Welche Branchen setzen bislang auf Process Mining?

Diese Analysemethodik hat sicherlich bereits in allen Branchen ihren Einzug gefunden, jedoch arbeiten gegenwärtig insbesondere größere Industrieunternehmen, Energieversorger, Handelsunternehmen und Finanzdienstleister mit Process Mining. Process Mining hat sich bisher nur bei einigen wenigen Mittelständlern etabliert, andere denken noch über die Einführung nach oder haben noch nie etwas von Process Mining gehört.

Auch Beratungsunternehmen (Prozess-Consulting) und Wirtschaftsprüfungen (Audit) setzen Process Mining seit Jahren ein und bieten es direkt oder indirekt als Leistung für ihre Kunden an.

Welche IT-Systeme und Prozesse werden analysiert?

Und auch hier gilt: Alle möglichen operativen Prozesse werden analysiert, beispielsweise der Gewährleistungsabwicklung (Handel/Hersteller), Kreditgenehmigung (Banken) oder der Vertragsänderungen (Kundenübergabe zwischen Energie- oder Telekommunikationsanbietern). Entsprechend werden alle IT-Systeme analysiert, u. a. ERP-, CRM-, PLM-, DMS- und ITS-Systeme.

Allen voran werden Procure-to-Pay- und Order-to-Cash-Prozesse analysiert, die für viele Unternehmen typische Einstiegspunkte in Process Mining darstellen, auch weil einige Anbieter von Process Mining Tools die nötigen Skripte (ggf. als automatisierte Connectoren) der EventLog-Generierung aus gängigen ERP-Systemen für diese Prozesse bereits mitliefern.

Welche Erfolge wurden mit Process Mining bereits erreicht?

Die Erfolge von Process Mining sind in erster Linie mit der gewonnenen Prozesstransparenz zu verbinden. Process Mining ist eine starke Analysemethode, um Potenziale der Durchlaufzeiten-Optimierung aufzudecken. So lassen sich recht gut unnötige Wartezeiten und störende Prozesschleifen erkennen. Ebenfalls eignet sich Process Mining wunderbar für die datengetriebene Prozessanalyse mit Blick auf den Compliance-Check bis hin zur Fraud-Detection.

Process Mining ist als Methode demnach sehr erfolgreich darin, die Prozessqualität zu erhöhen. Das ist natürlich an einen gewissen Personaleinsatz gebunden und funktioniert nicht ohne Schulungen, bedingt jedoch i.d.R. weniger eingebundene Mitarbeiter als bei klassischen Methoden der Ist-Prozessanalyse.

Ferner sollten einige positive Nebeneffekte Erwähnung finden. Durch den Einsatz von Process Mining, gerade wenn dieser erst nach einigen Herausforderungen zum Erfolg wurde, konnte häufig beobachtet werden, dass involvierte Mitarbeiter ein höheres Prozessbewustsein entwickelt haben, was sich auch indirekt bemerkbar machte (z. B. dadurch, dass Soll-Prozessdokumentationen realitätsnäher gestaltet wurden). Ein großer Nebeneffekt ist ganz häufig eine verbesserte Datenqualität und das Bewusstsein der Mitarbeiter über Datenquellen, deren Inhalte und Wissenspotenziale.

Wo haperte es bisher?

Ins Stottern kam Process Mining bisher insbesondere an der häufig mangelhaften Datenverfügbarkeit und Datenqualität in vielen IT-Systemen, insbesondere bei mittelständischen Unternehmen. Auch die Eigenständigkeit der Process Mining Tools (Integration in die BI, Anbindung an die IT, Lizenzkosten) und das fehlen von geschulten Mitarbeiter-Kapazitäten für die Analyse sorgen bei einigen Unternehmen für Frustration und Zweifel am langfristigen Erfolg.

Als Methode schwächelt Process Mining bei der Aufdeckung von Möglichkeiten der Reduzierung von Prozesskosten. Es mag hier einige gute Beispiele für die Prozesskostenreduzierung geben, jedoch haben insbesondere Mittelständische Unternehmen Schwierigkeiten darin, mit Process Mining direkt Kosten zu senken. Dieser Aspekt lässt insbesondere kostenfokussierte Unternehmer an Process Mining zweifeln, insbesondere wenn die Durchführung der Analyse mit hohen Lizenz- und Berater-Kosten verbunden ist.

Was wird sich an Process Mining ändern müssen?

Bisher wurde Process Mining recht losgelöst von anderen Themen des Prozessmanagements betrachtet, woran die Tool-Anbieter nicht ganz unschuldig sind. Process Mining wird sich zukünftig mehr von der Stabstelle mit Initiativ-Engagement hin zur Integration in den Fachbereichen entwickeln und Teil des täglichen Workflows werden. Auch Tool-seitig werden aktuelle Anbieter für Process Mining Software einem verstärkten Wettbewerb stellen müssen. Process Mining wird toolseitig enger Teil der Unternehmens-BI und somit ein Teil einer gesamtheitlichen Business Intelligence werden.

Um sich von etablierten BI-Anbietern abzusetzen, implementieren und bewerben einige Anbieter für Process Mining Software bereits Machine Learning oder Deep Learning Algorithmen, die selbstständig Prozessmuster auf Anomalien hin untersuchen, die ein Mensch (vermutlich) nicht erkennen würde. Process Mining mit KI wird zu Process Analytics, und somit ein Trend für die Jahre 2018 und 2019.

Für wen wird Process Mining 2018 interessant?

Während größere Industrieunternehmen, Großhändler, Banken und Versicherungen längst über Process Mining Piloten hinaus und zum produktiven Einsatz übergegangen sind (jedoch von einer optimalen Nutzung auch heute noch lange entfernt sind!), wird Process Mining zunehmend auch für mittelständische Unternehmen interessant – und das für alle geschäftskritischen Prozesse.

Während Process Mining mit ERP-Daten bereits recht verbreitet ist, wurden andere IT-Systeme bisher seltener analysiert. Mit der höheren Datenverfügbarkeit, die dank Industrie 4.0 und mit ihr verbundene Konzepte wie M2M, CPS und IoT, ganz neue Dimensionen erlangt, wird Process Mining auch Teil der Smart Factory und somit der verstärkte Einsatz in der Produktion und Logistik absehbar.

Lesetipp: Process Mining 2018 – If you can’t measure it, you can’t improve it: Process Mining bleibt auch im neuen Jahr mit hoher Wahrscheinlichkeit ein bestimmendes Thema in der Datenanalytik. Sechs Experten teilen ihre Einschätzungen zur weiteren Entwicklung 2018 und zeigen auf, warum das Thema von so hoher Relevanz ist. (www.internet-of-things.de – 10. Januar 2018)

Datenanalytische Denkweise: Müssen Führungskräfte Data Science verstehen?

Die Digitalisierung ist in Deutschland bereits seit Jahrzehnten am Voranschreiten. Im Gegensatz zum verbreiteten Glauben, dass die Digitalisierung erst mit der Innovation der Smartphones ihren Anfang fand, war der erste Schritt bereits die Einführung von ERP-Systemen. Sicherlich gibt es hier noch einiges zu tun, jedoch hat die Digitalisierung meines Erachtens nach das Plateau der Produktivität schon bald erreicht – Ganz im Gegensatz zur Datennutzung!

Die Digitalisierung erzeugt eine exponentiell anwachsende Menge an Daten, die ein hohes Potenzial an neuen Erkenntnissen für Medizin, Biologie, Agrawirtschaft, Verkehrswesen und die Geschäftswelt bedeuten. Es mag hier und da an Fachexperten fehlen, die wissen, wie mit großen und heterogenen Daten zu hantieren ist und wie sie zu analysieren sind. Das Aufleben dieser Experenberufe und auch neue Studengänge sorgen jedoch dafür, dass dem Mangel ein gewisser Nachwuchs entgegen steht.

Doch wie sieht es mit Führungskräften aus? Müssen Entscheider verstehen, was ein Data Engineer oder ein Data Scientist tut, wie seine Methoden funktionieren und an welche Grenzen eingesetzte Software stößt?

Datenanalytische Denkweise ist ein strategisches Gut

Als Führungskraft müssen Sie unternehmerisch denken und handeln. Wenn Sie eine neue geschäftliche Herausforderung erfolgreich bewältigen möchten, müssen Sie selbst Ideen entwickeln – oder diese zumindest bewerten – können, wie in Daten Antworten für eine Lösung gefunden werden können. Die meisten Führungskräfte reden sich erfahrungsgemäß damit heraus, dass sie selbst keine höheren Datenanalysen durchführen müssen. Unternehmen werden gegenwärtig bereits von Datenanalysten vorangetrieben und für die nahe Zukunft besteht kein Zweifel an der zunehmenden Bedeutung von Datenexperten für die Entscheidungsfindung nicht nur auf der operativen Ebene, bei der Dateningenieure sehr viele Entscheidungen automatisieren werden, sondern auch auf der strategischen Ebene.

Sie müssen kein Data Scientist sein, aber Grundkenntnisse sind der Schlüssel zum Erfolg

Hinter den Begriffen Big Data und Advanced Analytics – teilweise verhasste Buzzwords – stecken reale Methoden und Technologien, die eine Führungskraft richtig einordnen können muss, um über Projekte und Invesitionen entscheiden zu können. Zumindest müssen Manager ihre Mitarbeiter kennen und deren Rollen und Fähigkeiten verstehen, dabei dürfen sie sich keinesfalls auf andere verlassen. Übrigens wissen auch viele Recruiter nicht, wen genau sie eigentlich suchen!

Der Weg zum Data-Driven Decision Making: Abgrenzung von IT-Administration, Data Engineering und Data Science, in Anlehnung an Data Science for Business: What you need to know about data mining and data-analytic thinking

Stark vereinfacht betrachtet, dreht sich dabei alles um Analysemethodik, Datenbanken und Programmiersprachen. Selbst unabhängig vom aktuellen Analytcs-Trend, fördert eine Einarbeitung in diese Themenfelder das logische denken und kann auch sehr viel Spaß machen. Als positiven Nebeneffekt werden Sie eine noch unternehmerischere und kreativere Denkweise entwickeln!

Datenaffinität ist ein Karriere-Turbo!

Nicht nur der Bedarf an Fachexperten für Data Science und Data Engineering steigt, sondern auch der Bedarf an Führungskräften bzw. Manager. Sicherlich ist der Bedarf an Führungskräften quantitativ stets geringer als der für Fachexperten, immerhin braucht jedes Team nur eine Führung, jedoch wird hier oft vergessen, dass insbesondere Data Science kein Selbstzweck ist, sondern für alle Fachbereiche (mit unterschiedlicher Priorisierung) Dienste leisten kann. Daten-Projekte scheitern entweder am Fehlen der datenaffinen Fachkräfte oder am Fehlen von datenaffinen Führungskräften in den Fachabteilungen. Unverständnisvolle Fachbereiche tendieren schnell zur Verweigerung der Mitwirkung – bis hin zur klaren Arbeitsverweigerung – auf Grund fehlender Expertise bei Führungspersonen.

Andersrum betrachtet, werden Sie als Führungskraft Ihren Marktwert deutlich steigern, wenn Sie ein oder zwei erfolgreiche Projekte in Ihr Portfolio aufnehmen können, die im engen Bezug zur Datennutzung stehen.

Mit einem Data Science Team: Immer einen Schritt voraus!

Führungskräfte, die zukünftige Herausforderungen meistern möchten, müssen selbst zwar nicht Data Scientist werden, jedoch dazu in der Lage sein, ein kleines Data Science Team führen zu können. Möglicherweise handelt es sich dabei nicht direkt um Ihr Team, vielleicht ist es jedoch Ihre Aufgabe, das Team durch Ihren Fachbereich zu leiten. Data Science Teams können zwar auch direkt in einer Fachabteilung angesiedelt sein, sind häufig jedoch zentrale Stabstellen.

Müssen Sie ein solches Team für Ihren Fachbereich begleiten, ist es selbstverständlich notwendig, dass sie sich über gängige Verfahren der Datenanalyse, also auch der Statistik, und der maschinellen Lernverfahren ein genaueres Bild machen. Erkennen Data Scientists, dass Sie sich als Führungskraft mit den Verfahren auseinander gesetzt haben, die wichtigsten Prozeduren, deren Anforderungen und potenziellen Ergebnisse kennen oder einschätzen können, werden Sie mit entsprechendem Respekt belohnt und Ihre Data Scientists werden Ihnen gute Berater sein, wie sie Ihre unternehmerischen Ziele mit Daten erreichen werden.

Buchempfehlung:

Data Science für Unternehmen: Data Mining und datenanalytisches Denken praktisch anwenden (mitp Business)

Lesetipps: