CCNA vs. CCNP vs. CCIE Security Certification

As more companies turn to cloud-based software and other advanced solutions, demand for expert IT professionals in the field increases. One popular vendor, Cisco Systems, Inc., makes underlying software and hardware businesses will use for their networks.

If you’re interested in pursuing a career in the data security industry, you may want to consider earning a Cisco security certification. However, there are many types of certificates available, and each one will deliver unique benefits to you and your job marketability.

Learn more about Cisco certifications and learn the difference between CCNA, CCNP and CCIE certifications to help you choose which path is right for you.

Why Earn Cisco Certifications?

The main reason why Cisco provides these security certifications is so IT professionals can fine-tune their skills and build upon their knowledge. When IT professionals earn a Cisco certification, they can use Cisco products and services more easily, help guide customers and troubleshoot customer problems.

A future employer may perceive candidates with certifications as more qualified, productive and someone with a “go-getter” attitude. According to Cisco’s website, 81% of employers associate certifications holders with higher quality and value of work contribution.

However, it’s important to research the various Cisco certifications to learn which ones are most suitable for you and what job you’re interested in. For example, Cisco offers different levels of certifications, ranging from entry-level to expert.

Below are three certifications from Cisco that may be a good fit for you.

CCNA — Cisco Certified Network Associate

A CCNA certification is highly sought after. This certification demonstrates a professional’s ability to install, configure, operate and troubleshoot networks, both routed and switched. No prerequisites are necessary for the CCNA certification. It’s considered an associate-level certification and is available in a few prominent areas, including:

  • Cloud
  • Collaboration
  • Industrial/IoT
  • Security
  • Routing and Switching
  • Service Provider
  • Wireless

One challenge in the data industry is the increased reliance on cloud environments. Using only one cloud provider is a business risk some companies are concerned about. Uptime Institute cites the concentration risk of cloud computing as a major challenge for data centers in 2022.

Earning a CCNA cloud certification may help you get hired for an entry-level position at a company and allow you to support a senior cloud engineer.

Common jobs that you can earn with a CCNA are an IT network engineer, associate networking engineer, network system administrator and cloud architecture and security professional.

CCNP — Cisco Certified Network Professional

The Cisco CCNP certification is a more advanced professional-level certification than the CCNA certification. With the CCNP, you should be able to implement higher-level networking solutions for a company. It will cover the fundamentals of LAN and WAN infrastructures. Here are some of the different areas you can earn a CCNP in:

  • Enterprise
  • Security
  • Service Provider
  • Collaboration
  • Data Center

You must pass some core exams before earning the CCNP certification. Someone looking for the CCNP certification must also qualify for Cisco’s IP switched network and IP routing technologies. This will help determine the candidate’s readiness for the CCNP certification.

Some jobs you may get with a CCNP certification are senior security/network engineer, network architecture, network manager and troubleshooting assistant.

CCIE — Cisco Certified Internetwork Expert

IT professionals who’ve secured the knowledge and technical skills to design, implement and configure security for Cisco solutions and IT resources would be ready to earn the CCIE certification. According to Cisco, an expert-level certification is accepted worldwide as the most prestigious certification in the tech industry. Here are some of the CCIE certifications:

  • Enterprise Infrastructure
  • Collaboration
  • Enterprise Wireless
  • Data Center
  • Security
  • Service Provider

CCIE certifications can open up a range of job opportunities, but it’s a challenging certification to earn. Earning a CCIE means that your end-to-end IT lifecycle skills are valid. You know exactly what you’re talking about regarding networking, LAN/WAN, IPv4 and IPv6 protocols, switches and routers, general information and installation and configuration of various network types.

Jobs you can earn with a CCIE certificate include network security architect, network security specialist, infrastructure consulting practitioner and cloud engineer/architect.

Where to Earn Cisco Certifications

Because Cisco certifications are in such high demand and can open up job opportunities, you may want to know how you can earn them. You earn certificates directly from Cisco’s website. Under Cisco’s Learn tab, there’s plenty of information about certifications, training, events, webinars, support and other services.

There are many online training programs that you can complete to help you prepare for the Cisco certification exams. Here are some websites that offer programs you may want to explore based on the certification you’d like to earn:

For CCNA

  • Udemy
  • ICOHS College
  • Pluralsight
  • Cybrary

For CCNP

  • Udemy
  • INE
  • Global Knowledge
  • Varsity Tutors

For CCIE

  • Udemy
  • Skillshare
  • PluralSight
  • Network Lessons
  • Koenig solutions

These examples are only a few, as other online training programs and resources can set you up for success.

Additionally, Cisco offers several resources on its website to help individuals prepare for certification exams. These include guided study groups and a free Cisco Networking Academy program.

Earning Cisco Certifications

Because many companies, especially large ones, will use Cisco products for their technology infrastructure. Potential IT candidates who list certifications on their resume or job application will have a competitive advantage in the hiring process.

Depending on your current skill level and knowledge, you should be able to determine which Cisco certification is right for you. Cisco’s website has extensive information on each certificate and what topics you’ll learn about. Consider earning a Cisco certification, whether it’s CCNA vs. CCNP vs. CCIE, to bolster your skills and improve your marketability.

Wie kann man sich zum/r Data Scientist ausbilden lassen?

Anzeige

Das allgegenwärtige Internet und die Digitalisierung haben heutzutage viele Veränderungen in den Geschäften überall auf der Welt mit sich gebracht. Aus diesem Grund wird Data Science immer wichtiger.

In der Data Science werden große Datenmengen an Informationen aus allen Arten von Quellen gesammelt, sowohl aus strukturierten als auch aus unstrukturierten Daten. Dazu werden Techniken und Theorien aus verschiedenen Bereichen der Statistik, der Informationswissenschaft, der Mathematik und der Informatik verwendet.

Datenexperten und -expertinnen, d. h. Data Scientists, beschäftigen sich genau mit dieser Arbeit. Wenn Du Data Scientist werden möchten, kannst Du eine große Karriere in der Data Science beginnen, indem Du Dich für eine beliebige geeignete Weiterbildung einschreibst, der Deinem Talent, Deinen Interessen und Deinen Fähigkeiten in einigen der wichtigsten Data-Science-Kurse entspricht.

Was machen Data Scientists?

Zunächst einmal ist es wichtig zu verstehen, was man eigentlich unter dem Begriff „Data Scientist” versteht. Data Scientist ist lediglich ein neuer Beruf, der in vielen Artikeln häufig zusammen mit dem der Data Analysts beschrieben wird, weil die erforderlichen Grundfertigkeiten recht ähnlich sind. Vor allem müssen Data Scientists die Fähigkeit haben, Daten aus MySQL-Datenbanken zu extrahieren, Pivot-Tabellen in Excel zu verwalten, Datenbankansichten zu erstellen und Analytics zu verwalten.

Data Scientists werden viele Stellen in Unternehmen angeboten, die mit der zunehmenden Verfügbarkeit von Daten konfrontiert sind und Personen brauchen, die ihnen bei der Entwicklung der Infrastruktur helfen, die sie zur Verwaltung der Daten benötigen. Oft handelt es sich um Unternehmen, die ihre ersten Schritte in diesem Bereich machen. Dafür benötigen sie eine Person mit grundlegenden Fähigkeiten in der Softwaretechnik, um den gesamten Prozess voranzutreiben.

Dann gibt es stark datenorientierte Unternehmen, für diejenigen Daten sozusagen Rohprodukt und Rohstoff darstellen. In diesen Unternehmen werden Datenanalyse und maschinelles Lernen recht intensiv betrieben, wodurch Personen mit guten mathematischen, statistischen oder sogar physikalischen Fähigkeiten benötigt werden.

Es gibt auch Unternehmen, die keine Daten als Produkt haben, aber ihre Zukunft auf sie und ihre Sinne planen und abstimmen. Diese Unternehmen werden immer mehr und brauchen sowohl Data Scientists mit grundlegenden Fähigkeiten als auch Data Scientists mit speziellen Kenntnissen, von Visualisierung bis hin zu Machine Learning.

Kompetenzen der Data Scientists

Die Grundlagen sind zunächst für alle, die im Bereich der Data Science arbeiten, dieselben. Unabhängig von den Aufgaben, die Data Scientists zu erfüllen haben, muss man grundlegende Softwaretechnik beherrschen.

Selbstverständlich müssen Data Scientists mit Programmiersprachen wie R oder Python und mit Datenbanksprachen wie SQL umgehen können. Sie bedienen sich dann statistischer, grundlegender Fähigkeiten um zu bestimmen, welche Techniken für die zu erreichenden Ziele am besten geeignet sind.

Ebenso sind beim Umgang mit großen Datenmengen und in sogenannten „datengetriebenen” Kontexten Techniken und Methoden des maschinellen Lernens wichtig: KNN-Algorithmen (Nächste-Nachbarn-Klassifikation für Mustererkennung), Random Forests oder Ensemble Techniken kommen hier zum Einsatz.

Entscheidend ist, die für den jeweiligen Kontext am besten geeignete Technik unterscheiden zu können, und dies bevor man die verschiedenen Werkzeuge beherrscht.

Die lineare Algebra und die multivariate Berechnung sind auch unerlässlich. Sie bilden die Grundlage für viele der oben beschriebenen Fähigkeiten und können sich als nützlich erweisen, wenn das mit den Daten arbeitende Team beschließt, intern eigene Implementierungen zu entwickeln.

Eins ist noch entscheidend. In einer idealen Welt werden die Daten korrekt identifiziert, da sie vollständig und kohärent sind. In der realen Welt muss sich der Data Scientist mit unvollkommenen Daten auseinandersetzen, d. h. mit fehlenden Werten, Inkonsistenzen und unterschiedlichen Formatierungen. Hier kann man von Munging sprechen, d. h. von der Tätigkeit, die sogenannten Rohdaten in Daten umzuwandeln, die ein einheitliches Format haben und somit in den Prozess der Aufnahme und Analyse einbezogen werden können.

Wenn Daten als wesentlich für Geschäftsentscheidungen sind, reicht es nicht aus, eine Person zu haben, die sie verarbeiten, analysieren und aufnehmen kann. Die Visualisierung und Kommunikation von Daten ist ebenso zentral. Daten zu visualisieren und zu kommunizieren bedeutet, anderen die angewandten Techniken und die erzielten Ergebnisse zu beschreiben. Daher ist es wichtig zu wissen, wie man Visualisierungswerkzeuge wie ggplot oder D3.js verwendet.

Ausbildungsmöglichkeiten und Bootcamps, um Data Scientist zu werden

Kurz gesagt gibt es zwei gängige Wege, um Data Scientist zu werden.

  • Auf der einen Seite kann man einen Universitätslehrgang absolvieren. Diese Art von Studiengang führt zu einem spezialisierten Abschluss, der nach einem dreijährigen Bachelorabschluss in Informatik, Mathematik oder Statistik absolviert werden kann. In den letzten Jahren wurden diese neuen Studiengänge an den europäischen Universitäten immer häufiger angeboten.
  • Auf der anderen Seite kann man sich für eine Weiterbildung zum/r Data Scientist anmelden, zum Beispiel eine Weiterbildung von DataScientest. Als national und international anerkannte Ausbildungsorganisation bietet DataScientest eine Weiterbildung zum/r Data Scientist an, die sich an Personen mit einem Bachelorabschluss und Kenntnissen in Kommunikation wendet. Ihr großer Vorteil ist die persönliche Betreuung, die allen Teilnehmer und Teilnehmerinnen angeboten wird, sowie ein Fernstudium, das 85% individuelles Coaching und 15% Masterclasses umfasst. Alles läuft über eine sichere Plattform, damit jeder Teilnehmer und jede Teilnehmerin codieren, Daten erforschen usw. können.

Bei dieser DataScientest-Weiterbildung haben die Lernenden die Wahl zwischen einer weitgehenden Ausbildung (10 Stunden pro Woche) oder einer Bootcamp-Ausbildung (35 Stunden pro Woche). 

Das am Ende des Kurses erworbene Zertifikat wird von der Pariser Universität La Sorbonne anerkannt.   

10 Best Resources To Learn Data Science Online in 2022

Today, data science is more than a buzzword. To simply put it, data science is an interdisciplinary field of gathering data from various sources and channels such as databases, analysing and transforming them into visualization and graphs. This basically facilitates the readability and understanding of the data to aid in soft-skills like insightful decision-making for any organization or business. In short, data science is a combination of incorporating scientific methods, different technologies, algorithms, and more when it comes to data.

Apart from the certified courses, as a data scientist, it is expected to have experience in various domains of computer science, including knowledge of a few programming languages such as Python and R as well as statistics and mathematics. An individual should be able to comprehend the data provided and be able to transform it into graphs which help in extracting insight for a particular business.

Best Resources To Learn Data Science

For those pursuing a career in data science, it is not just technical skills that matter, in business settings an individual is tasked with communicating complex ideas and making data-driven insightful decisions. As a result, people in the field of data science are expected to be effective communicators, leaders, and team members as well as high-level analytical thinkers too.

If we talk about applications of data science, it is used in myriad fields, including image and speech recognition, the gaming world, logistics and supply chain, healthcare, and risk detection, among others. It remains a limitless world indeed. Data scientists will continue to remain in high demand, while at the same time there is a substantial skill gap that needs to be currently addressed in the industry.

Here’s the lowdown on a few of the online resources—in no particular order—which can be checked out to learn data science. While a few of these educational platforms have been launched a couple of years ago, they would continue to hold equal relevance when it comes to resources for seeking in-depth knowledge related to everything in the field of data science.

1. Udemy

Udemy is a site that offers hands-on exercises while extending comprehensive data courses. At last count, there were about 10,000 data courses and almost 500 of which are free of cost. An individual can discover specialisations, including Python, Tableau, R, and many more. While offering real-world examples, Udemy courses are quite well-defined when it comes to specific topics.
The courses are suitable for beginners as well as experts in the field of data science.

2. Coursera

Coursera is another online learning platform that offers massive open online courses (MOOC), specialisations, and degrees in a range of subjects, and this includes data science as well. Some of the courses hosted on the platform include top-notch names such as Harvard University, University of Toronto, Johns Hopkins University, University of Michigan, and MITx, among others. Coursera courses can be audited for free and certificates can be obtained by paying the mentioned amount. The courses from Coursera are part of a particular specialisation, which is a micro-credential offered by Coursera. These specialisations also include a capstone project.

3. Pluralsight

Pluralsight remains an educational platform for learners through insights from instructor-led courses or online courses, which lay stress on basics and some straightforward scenarios. Courses taken online will require you to exert more effort to gain detailed insights, thus helping you in the longer run. Pluralsight introduces one to several video training courses for Software developers and IT administrators.

By using the service of Pluralsight, an individual can look forward to learning a lot of solutions. An individual can even get the key business objectives and even close the skill gaps in critical areas like cloud, design, security, and mobile data.

4. FlowingData

The website, which is produced by Dr. Nathan Yau, Ph.D., offers insights from experts about how to present, analyse, and understand data. This comes with practical guides to illustrate the points with real-time examples. In addition, the site also offers book recommendations, as well as provides insights related to the field of data science.
There are also articles which an individual can browse related to gaining more in-depth insight into the correlation between data science and the world around.

5. edX

edX is an online platform, which has been created as a tie-up between Harvard University and the Massachusetts Institute of Technology. This website has been designed with the idea to highlight courses in a wide range of disciplines and deliver them to a larger audience across the world. edX extends courses that are offered by 140 top-notch universities at free or nominal charges to make learning easy. The website includes at least 3,000 courses and has programs available for learners to excel in the field of data science.

6. Kaggle

Kaggle is an online learning platform that would be quite beneficial for individuals who already have some knowledge related to data science. In addition, most of the micro-courses require the users to have some prior knowledge in data science languages such as Python or R and machine learning. It remains an ideal site for upgrading skills and enhancing the capabilities in the field of data science. It offers extensive insights related to the field from experts.

7. GitHub

GitHub remains a renowned platform that uses Git, which is a DevOps tool used for source code management, to apply version control to a code. With over 40 million developers on its users list, it also opens up a lot of opportunities for data scientists to collaborate and manage projects together, besides gaining insights about the industry that continues to remain high in demand at the moment.

 

 

8. Reddit

This is a platform that comprises sub-forums, or subreddits, each focused on a subject matter of interest. Under this, the R/datascience subreddit has been titled the data science community, which remains one of the larger subreddit pages related to data science. Various data science professionals discuss relevant topics in data science. The data science subreddit remains insightful for individuals seeking a community that can provide related technical advice in the field of data science.

9. Udacity

Udacity Data Science Nanodegree remains an ideal certification program for those who remain well-versed with languages such as Python, SQL, machine learning, and statistics. In terms of content, Udacity Data Science Nanodegree remains quite advanced and introduces hands-on practice in the form of real-world projects. While Udacity doesn’t offer an all-inclusive course, it introduces separate courses for becoming an expert in the field of data science. Professionals who aspire to become data scientists are advised to take Udacity’s three courses namely Intro to Data Analysis, Introduction to Inferential Statistics, and Data Scientist Nanodegree. These three courses extend real-world projects, which are provided by industry experts. In addition, technical mentor support, flexible learning program, and personal career coach and career services are also offered to aspirants in the domain.

10. KDnuggets

KDnuggets remains a resourceful site on business analytics, big data, data mining, data science, and machine learning. The site is edited by Gregory Piatetsky-Shapiro, a co-founder of Knowledge Discovery and Data Mining Conferences. KDnuggets boasts of more than 4,00,000 unique visitors and has about 1,90,000 subscribers. The site also provides information related to tutorials, certificates, webinars, courses, education, and curated news, among others.

 

Ending Note

Increasing technology and big data mean that organizations must leverage their data in order to deliver more powerful products and services to the world by analyzing that data and gaining insight, which is what the term “Data Science” means. You can jumpstart your career in Data Science by utilizing any of the resources listed above. Make sure you have the right resources and certifications. Now is the time to work in the data industry.

 

Zusatz-Studium „Data Science and Big Data“ an der TU Dortmund

Anzeige
Jetzt anmelden für das weiterbildendes Studium „Data Science and Big Data“ an der Technischen Universität Dortmund!

Im Februar 2022 startet das berufsbegleitenden weiterbildende Studium „Data Science and Big Data“ an der Technischen Universität Dortmund zum 6. Mal.
Renommierte Wissenschaftlerinnen und Wissenschaftlern vermitteln Ihnen die neuesten datenwissenschaftlichen Erkenntnisse und zeigen, wie dieses Wissen praxisnah im eigenen Big-Data Projekt umgesetzt werden kann. Von der Analyse über das Management bis zur zielgerichteten Darstellung der Ergebnisse lernen Sie dabei Methoden der Disziplinen Statistik, Informatik und Journalistik kennen.

Das weiterbildende Studium richtet sich an alle Personen, die über einen natur-  oder ingenieurwissenschaftlich/ statistische Studienhintergrund verfügen oder aufgrund ihrer mehrjährigen Berufserfahrung mit Fragestellungen zum Thema Datenanalyse vertraut sind.

Mögliche Berufsgruppen sind:

  • Data Analyst
  • Consultant/ Unternehmensberater
  • Business Analyst
  • Software-Entwickler

Das weiterbildende Studium umfasst 10 Veranstaltungstage über eine Dauer von 10 Monaten (Kursabschluss: November 2022). Die Kosten betragen 6.900 € (zahlbar in 3 Raten). Bewerbungsschluss ist der 29. November 2021. Weitere Informationen und Hinweise zur Anmeldung finden Sie unter: https://wb.zhb.tu-dortmund.de/zertifikatskurse/data-science-and-big-data/

Bewerbungsformular für Zusatzstudium an der TU Dortmund

Bewerbungsformular (Download)

 

Bei Fragen können Sie sich gerne an den zuständigen Bildungsreferenten Daniel Neubauer wenden: daniel.neubauer@tu-dortmund.de oder 0231/755-6632

Zertifikatsstudium „Data Science and Big Data“

Jetzt bewerben für das Zertifikatsstudium „Data Science and Big Data“ an der Technischen Universität Dortmund 

Im Februar startet das erfolgreiche berufsbegleitende Zertifikatsstudium „Data Science and Big Data“ an der Technischen Universität Dortmund zum fünften Mal.
Renommierte Wissenschaftlerinnen und Wissenschaftlern vermitteln Ihnen die neuesten datenwissenschaftlichen Erkenntnisse und zeigen, wie dieses Wissen praxisnah im eigenen Big-Data Projekt umgesetzt werden kann.
Von der Analyse über das Management bis zur zielgerichteten Darstellung der Ergebnisse lernen Sie dabei Methoden der Disziplinen Statistik, Informatik und Journalistik kennen.

Das Zertifikatsstudium richtet sich an alle Personen, die über einen natur-  oder ingenieurwissenschaftlich/ statistische Studienhintergrund verfügen oder aufgrund ihrer mehrjährigen Berufserfahrung mit Fragestellungen zum Thema Datenanalyse vertraut sind.

Mögliche Berufsgruppen sind:

  • Data Analyst
  • Consultant/ Unternehmensberater
  • Business Analyst
  • Software-Entwickler

Das weiterbildende Studium umfasst 10 Veranstaltungstage über eine Dauer von 10 Monaten (Kursabschluss: ca. November 2021). Die Kosten betragen 6.900 € (zahlbar in 3 Raten). Bewerbungsschluss ist der 4. Dezember 2020. Weitere Informationen und Hinweise zur Anmeldung finden Sie unter: http://www.zhb.tu-dortmund.de/datascience

Bei Fragen können Sie sich gerne an den zuständigen Bildungsreferenten Daniel Neubauer wenden: daniel.neubauer@tu-dortmund.de oder 0231/755-6632.

Hinweis:

Ergänzend bieten wir einen R-Basis- und R-Vertiefungskurs an. Wenn Sie sich für das Zertifikatsstudium bewerben und für einen Kurs bzw. beide Kurse, erhalten Sie pro R-Kurs einen Rabatt von 250 €. Weitere Informationen finden Sie unter: https://dortmunder-r-kurse.de/kursangebot/

Wir behalten uns vor, das weiterbildende Studium je nach Entwicklungen der Corona-Pandemie als Online-Kurs durchzuführen

Online-Kurse zur Statistiksoftware R

R – ein unverzichtbares Werkzeug für Data Scientists. Lassen Sie sich auf den neusten Stand in der Open Source Statistiksoftware R aus der modernen Datenanalyse bringen.

Zielgruppe unserer Fortbildungen sind nicht nur Statistikerinnen und Statistiker, sondern auch Anwenderinnen und Anwender jeder Fachrichtung aus Industrie und Forschungseinrichtungen, die mit R ihre Daten effektiv analysieren möchten. Sie erwerben durch die Teilnahme Qualifikationen zur selbstständigen Analyse Ihrer eigenen Daten sowie Schlüsselkompetenzen im Umgang mit Big Data. Dafür bieten wir den R-Basiskurs und den R-Vertiefungskurs im November als Online-Veranstaltungen an.

Termine:

R-Basiskurs:  4. – 6. November (jeweils 9:00 – 13:00 Uhr) – Der Kurs richtet sich an Anfänger ohne Erfahrungen mit R sowie an Nutzer mit rudimentären oder eingerosteten R-Wissen. Entsprechend sind keine Vorkenntnisse über R notwendig. Zusätzlich zu den 3 Online-Tagen erhalten die Teilnehmenden Zugang zu 1,5 Stunden Videomaterial.

R-Vertiefungskurs: 17. – 20. November (jeweils 9:00 – 13:00 Uhr) – Der Vertiefungskurs richtet sich an fortgeschrittene R Nutzer sowie Absolventen des Basiskurses. Er ist ideal für Mitarbeiter aus Unternehmen, die ihre Analysen effizient mit R durchführen möchten.

Weitere Informationen zu den Inhalten und zur Anmeldung finden Sie unter: https://dortmunder-r-kurse.de/kursangebot/

Bei Fragen können Sie sich gerne an den zuständigen Bildungsreferenten Daniel Neubauer wenden: daniel.neubauer@tu-dortmund.de oder 0231/755-6632.

Data Science – A Beautiful Data Driven Journey

Data Science is a profession related to processing algorithms and extracting deep insights from raw data. It depicts the importance of data and how it can be used in business and to make IT strategies. For recognizing the new ventures available in the market, identifying the patterns and to make better business decisions, data science is of utmost significance.  It is the duty of data scientists to convert raw data into relevant business information. They hold a center stage in developing the data products by carrying out experiments, analyzing them by using scientific methods and using their skill set. Spotting the growing trends and capitalizing on it before the competition to gain advantage.

TRAITS REQUIRED FOR DATA SCIENCE:

Data Scientists are not born intellectuals; they continuously work to gain all the skills expected by the companies as the demand surpasses the supply of applicants. Here are a few skills of data scientists:

  • Curiosity and Intuition to identify the hidden meaning of data and able to visualize.
  • Need to have leadership skills and have a business savvy mind to identify risks and opportunities.
  • A bachelor’s degree in math, IT, statistics along with a letter of recommendation which will help in knowing your acquired range of knowledge.
  • Specialized skills in machine learning, clustering and segmentation, exploration of data, Statistical research which helps in finances and increasing the profits of companies including modeling.
  • Familiarity and strong hold with programming languages such as hadoop, python, perl, R, etc.

BENEFITS OF DATA SCIENCE:

There are many advantages depending on the aim and interest of the company. Sales and Marketing departments, for example collect information from a particular industry and determine which products interest the customer the most and recommend for their production, be it online shopping goods, some online series or which shipment companies are best. They also help in detection of bank fraud. Data Science currently is a raging industry with well paid professionals. The amount of knowledge acquired through this course makes it a bonus for a better and lucrative career.

APPLICATIONS OF DATA SCIENCE:

Data Science has become a significant field in almost all sectors ranging from healthcare, internet searches, e-commerce sites, cell phones by increasing the features. By making use of statistical measures they predict the future events and try to avoid them by giving optimal solutions. Speech recognition has made it easy to search information or do stuff without typing the best eg being google voice, siri. learn data science training in hyderabad

ROLES OF DATA SCIENTIST IN THE INDUSTRY:

This course is a boon for aspirants who wish to build a career in: Data Science, Machine Learning, Data Visualization, Business Intelligence, Big data, etc. This course is a combination of knowledge and money providing both these aspects in abundant measure. There are many boot camps and courses that provide certifications and provide you with the skills. A data scientist must have enough business domain expertise to analyze the risks, profits and achieve the department goals.

RESOURCE BOX:

Data Science is an amazing course enriching your education bank..If you are thinking how to learn data science then some of the best online data science courses are available to give a start to your incredible journey filled with incredible knowledge learning experience.

Click here for more about the data science course in Bangalore.

Zertifikatsstudium „Data Science and Big Data“ 2021 an der TU Dortmund

Anzeige

Komplexe Daten aufbereiten und analysieren, um daraus zukünftige Entwicklungen abzulesen: das lernen Sie im berufsbegleitenden Zertifikatsstudium „Data Science and Big Data“ an der TU Dortmund.

Jetzt bewerben!

Data Science & Big Data 2021

Die Zielgruppe sind Fachkräfte, die sich in ihrer Berufspraxis mit Fragestellungen zum Thema Datenanalyse und Big Data befassen, jedoch nun tiefergehende Kenntnisse in dem Themenfeld erhalten möchten. Von der Analyse über das Management bis zur zielgerichteten Darstellung der Ergebnisse lernen die Teilnehmenden dabei Methoden der Disziplinen Statistik, Informatik und Journalistik kennen.

Renommierte Wissenschaftlerinnen und Wissenschaftler vermitteln den Teilnehmerinnen und Teilnehmern die neuesten datenwissenschaftlichen Erkenntnisse und zeigen, wie dieses Wissen praxisnah im eigenen Big-Data Projekt umgesetzt werden kann.

Die nächste Studiengruppe startet im Februar 2021, der Bewerbungsschluss ist am 2. November 2020. Die Anzahl der verfügbaren Plätze ist begrenzt, eine rechtzeitige Bewerbung lohnt sich daher.

Nähere Informationen finden Sie unter: http://www.zhb.tu-dortmund.de/datascience

Einführung und Vertiefung in R Statistics mit den Dortmunder R-Kursen!

Im Rahmen der Dortmunder R Kurse bieten wir unsere Expertise in Schulungen für die Programmiersprache R an. Zielgruppe unserer Fortbildungen sind nicht nur Statistiker, sondern auch Anwender jeder Fachrichtung aus Industrie und Forschungseinrichtungen, die mit R ihre Daten analysieren wollen. Die Dortmunder R-Kurse werden ausschließlich von Statistikern mit langjähriger Erfahrung angeboten. Die Referenten gehören zum engsten Kreis der internationalen R-Gemeinschaft. Die angebotenen Kurse haben sich vielfach national und international bewährt.

Unsere Termine für die Online-Durchführung in diesem Jahr:

8., 9. und 10. Juni: R-Basiskurs (jeweils 9:00 – 14:00 Uhr)

22., 23., 24. und 25. Juni: R-Vertiefungskurs (jeweils 9:00 – 13:00 Uhr)

Kosten jeweils 750.00€, bei Buchung beider Kurse im Juni erhalten Sie einen Preisnachlass von 200€.

Zur Anmeldung gelangen Sie über den nachfolgenden Link:
https://www.zhb.tu-dortmund.de/zhb/wb/de/home/Seminare/Andere_Veranst/index.html

R Basiskurs

Das Seminar R Basiskurs für Anfänger findet am 8., 9. und 10. Juni 2020 statt. Den Teilnehmern wird der praxisrelevante Part der Programmiersprache näher gebracht, um so die Grundlagen zur ersten Datenanalyse — von Datensatz zu statistischen Kennzahlen und ersten Visualisierungen — zu schaffen. Anmeldeschluss ist der 25. Mai 2020.

Programm:

  • Installation von R und zugehöriger Entwicklungsumgebung
  • Grundlagen von R: Syntax, Datentypen, Operatoren, Funktionen, Indizierung
  • R-Hilfe effektiv nutzen
  • Ein- und Ausgabe von Daten
  • Behandlung fehlender Werte
  • Statistische Kennzahlen
  • Visualisierung

R Vertiefungskurs

Das Seminar R-Vertiefungskurs für Fortgeschrittene findet am 22., 23., 24. und 25. Juni (jeweils von 9:00 – 13:00 Uhr) statt. Die Veranstaltung ist ideal für Teilnehmende mit ersten Vorkenntnissen, die ihre Analysen effizient mit R durchführen möchten. Anmeldeschluss ist der 11. Juni 2020.

Der Vertiefungskurs baut inhaltlich auf dem Basiskurs auf. Es besteht aber keine Verpflichtung, bei Besuch des Vertiefungskurses zuvor den Basiskurs zu absolvieren, wenn bereits entsprechende Vorkenntnisse in R vorhanden sind.

Programm:

  • Eigene Funktionen, Schleifen vermeiden durch *apply
  • Einführung in ggplot2 und dplyr
  • Statistische Tests und Lineare Regression
  • Dynamische Berichterstellung
  • Angewandte Datenanalyse anhand von Fallbeispielen

Links zur Veranstaltung direkt:

R-Basiskurs: https://dortmunder-r-kurse.de/kurse/r-basiskurs/

R-Vertiefungskurs: https://dortmunder-r-kurse.de/kurse/r-vertiefungskurs/

Optimize AI Talent: Perception from Across the Globe

Despite the AI hype, the AI skill gap is turning into some pariah while businesses are accelerating to become demigods.

Reports from the “Global Talent Competitiveness Index (GTCI) 2020” cover multiple parameters both national and organizational to generate insight for further action. This report compiles 70 variables including 132 national economies across the globe – based on all groups of income and at every developmental level.

The sole purpose of the GTCI report is to narrow down the skill gap by delivering the right data inputs. The figures mentioned in the report could be of value to private and public organizations.

GTCI report covered multiple themes that need to be addressed: –

As the race to embrace AI spurs, it is evident to address the challenges faced due to AI and how best these problems can be solved.

The pace at which AI is developing is transforming the way we work, forcing a technology shift, change in the corporate structure, changing the innovation system for AI professionals in every possible way.

There’s more that is needed to be done as AI and automation continue to affect the way we work.

  • Reskilling in workplaces to eliminate dearth of talent

As the role in AI keeps evolving, organizations need a larger workforce, especially to play technology roles such as AI engineers and AI specialists. Looking closely at the statistics you may not fail to notice that the number of AI job roles is on the rise, but there’s scarce talent.

Employers must take on reskilling as a critical measure. Else how will the technology market keep up with changing trends? Reskilling in the form of training or AI certifications should be emphasized. Having an in-house AI talent is an added advantage to the company.

  • Skill gap between growing countries (low performing and high performing) are widening

Based on the GTCI report, it is seen there is a skill gap happening not only across industries but between nations. The report also highlights which country lacks basic digital skills, and this highly gets contributed toward a digital divide between nations.

  • High-level of cooperation needed to embrace AI benefits

As much as the world shows concern toward embracing AI, not much has been done to achieve these transformations. And AI has huge potential to transform society and make it a better place to live. However, to embrace these benefits, corporations must engage in AI regulation.

From a talent acquisition perspective, this simply means employers will need more training and reskilling opportunities.

  • AI to allow nations to skip generations

On a technological front, AI makes it possible to skip generations in developed nations. Although, not common due to structural obstruction.

  • Cities are now competing to become talent magnets and AI hubs

As AI continues to hit the market, organizations are aggressively coming up with newer policies to attract and retain AI professionals.

No doubt, cities are striving to attract the right kind of talent as competition keeps increasing. As such many cities are competing in becoming core AI engines in transforming energy grids, transportation, and many other multiple segments. Cities are now becoming the main test beds for AI-based tools i.e. self-driven vehicles, tele-surveillance, and facial recognition.

  • Sustainable AI comes when the society is equally up for it

With certain communities not adopting and accepting the advent of AI, it is difficult to say whether these communities will not try to distort AI narratives. As a result, it is crucial for multiple stakeholders to embrace AI and developed the AI workforce in parallel.

Not to forget, regulators and policy-makers have an equal role to play to ensure there’s a smooth transition in jobs. As AI-induced transformation skyrockets, educators and leaders need to move quickly as the new generations’ complete focus is entirely based on doing their bit to the society.

Two decades passed ever since McKinsey declared the war for talent – particularly for high-performing employees. As organizations are extensively looking to hire the right talent, it is imperative to retain and attract talent at large.

Despite the unprecedented growth in AI technologies, it is near to being unanimous regarding having hold of organizations to master in AI, forget about retaining talent. They’re not even getting better at it.

Even top tech companies such as Google and Amazon, the demand for top talent outstrips the supply. Although you may find thousands of candidates applying for the same job role, the competition just gets tougher since such employers are tough nuts and pleasing them is not an easy task.

If these tech giants are finding it difficult to hire the right talent, you could imagine the plight of other companies.

Given the optimistic view regarding the technology future, it is much more challenging to convince that the war for talent truly resembles the war on talent.

The good news is organizations that look forward to adopting new technology and reskill their employees will most likely thrive in the competitive edge.