Jobprofil des Data Engineers

Warum Data Engineering der Data Science in Bedeutung und Berufschancen längst die Show stiehlt, dabei selbst ebenso einem stetigen Wandel unterliegt.

Was ein Data Engineer wirklich können muss

Der Data Scientist als sexiest Job des 21. Jahrhunderts? Mag sein, denn der Job hat seinen ganz speziellen Reiz, auch auf Grund seiner Schnittstellenfunktion zwischen Technik und Fachexpertise. Doch das Spotlight der kommenden Jahre gehört längst einem anderen Berufsbild aus der Datenwertschöpfungskette – das zeigt sich auch bei den Gehältern.

Viele Unternehmen sind gerade auf dem Weg zum Data-Driven Business, einer Unternehmensführung, die für ihre Entscheidungen auf transparente Datengrundlagen setzt und unter Einsatz von Business Intelligence, Data Science sowie der Automatisierung mit Deep Learning und RPA operative Prozesse so weit wie möglich automatisiert. Die Lösung für diese Aufgabenstellungen werden oft vor allem bei den Experten für Prozessautomatisierung und Data Science gesucht, dabei hängt der Erfolg jedoch gerade viel eher von der Beschaffung valider Datengrundlagen ab, und damit von einer ganz anderen entscheidenden Position im Workflow datengetriebener Entscheidungsprozesse, dem Data Engineer.

Data Engineer, der gefragteste Job des 21sten Jahrhunderts?

Der Job des Data Scientists hingegen ist nach wie vor unter Studenten und Absolventen der MINT-Fächer gerade so gefragt wie nie, das beweist der tägliche Ansturm der vielen Absolventen aus Studiengängen rund um die Data Science auf derartige Stellenausschreibungen. Auch mangelt es gerade gar nicht mehr so sehr an internationalen Bewerben mit Schwerpunkt auf Statistik und Machine Learning. Der solide ausgebildete und bestenfalls noch deutschsprachige Data Scientist findet sich zwar nach wie vor kaum im Angebot, doch insgesamt gute Kandidaten sind nicht mehr allzu schwer zu finden. Seit Jahren sind viele Qualifizierungsangebote für Studenten sowie Arbeitskräfte am Markt auch günstig und ganz flexibel online verfügbar, ohne dabei Abstriche bei beim Ansehen dieser Aus- und Fortbildungsmaßnahmen in Kauf nehmen zu müssen.

Was ein Data Scientist fachlich in Sachen Expertise alles abdecken muss, hatten wir ganz ausführlich über Betrachtung des Data Science Knowledge Stack besprochen.

Doch was bringt ein Data Scientist, wenn dieser gar nicht über die Daten verfügt, die für seine Aufgaben benötigt werden? Sicherlich ist die Aufgabe eines jeden Data Scientists auch die Vorbereitung und Präsentation seiner Vorhaben. Die Heranschaffung und Verwaltung großer Datenmengen in einer Enterprise-fähigen Architektur ist jedoch grundsätzlich nicht sein Schwerpunkt und oft fehlen ihm dafür auch die Berechtigungen in einer Enterprise-IT. Noch konkreter wird der Bedarf an Datenbeschaffung und -aufbereitung in der Business Intelligence, denn diese benötigt für nachhaltiges Reporting feste Strukturen wie etwa ein Data Warehouse.

Das Profil des Data Engineers: Big Data High-Tech

Auch wenn Data Engineering von Hochschulen und Fortbildungsanbietern gerade noch etwas stiefmütterlich behandelt werden, werden der Einsatz und das daraus resultierende Anforderungsprofil eines Data Engineers am Markt recht eindeutig skizziert. Einsatzszenarien für diese Dateningenieure – auch auf Deutsch eine annehmbare Benennung – sind im Kern die Erstellung von Data Warehouse und Data Lake Systeme, mittlerweile vor allem auf Cloud-Plattformen. Sie entwickeln diese für das Anzapfen von unternehmensinternen sowie -externen Datenquellen und bereiten die gewonnenen Datenmengen strukturell und inhaltlich so auf, dass diese von anderen Mitarbeitern des Unternehmens zweckmäßig genutzt werden können.

Enabler für Business Intelligence, Process Mining und Data Science

Kein Data Engineer darf den eigentlichen Verbraucher der Daten aus den Augen verlieren, für den die Daten nach allen Regeln der Kunst zusammengeführt, bereinigt und in das Zielformat gebracht werden sollen. Klassischerweise arbeiten die Engineers am Data Warehousing für Business Intelligence oder Process Mining, wofür immer mehr Event Logs benötigt werden. Ein Data Warehouse ist der unter Wasser liegende, viel größere Teil des Eisbergs der Business Intelligence (BI), der die Reports mit qualifizierten Daten versorgt. Diese Eisberg-Analogie lässt sich auch insgesamt auf das Data Engineering übertragen, der für die Endanwender am oberen Ende der Daten-Nahrungskette meistens kaum sichtbar ist, denn diese sehen nur die fertigen Analysen und nicht die dafür vorbereiteten Datentöpfe.

Abbildung 1 - Data Engineering ist der Mittelpunkt einer jeden Datenplattform. Egal ob für Data Science, BI, Process Mining oder sogar RPA, die Datenanlieferung bedingt gute Dateningenieure, die bis hin zur Cloud Infrastructure abtauchen können.

Abbildung 1 – Data Engineering ist der Mittelpunkt einer jeden Datenplattform. Egal ob für Data Science, BI, Process Mining oder sogar RPA, die Datenanlieferung bedingt gute Dateningenieure, die bis hin zur Cloud Infrastructure abtauchen können.

Datenbanken sind Quelle und Ziel der Data Engineers

Daten liegen selten direkt in einer einzigen CSV-Datei strukturiert vor, sondern entstammen einer oder mehreren Datenbanken, die ihren eigenen Regeln unterliegen. Geschäftsdaten, beispielsweise aus ERP- oder CRM-Systemen, liegen in relationalen Datenbanken vor, oftmals von Microsoft, Oracle, SAP oder als eine Open-Source-Alternative. Besonders im Trend liegen derzeitig die Cloud-nativen Datenbanken BigQuery von Google, Redshift von Amazon und Synapse von Microsoft sowie die cloud-unabhängige Datenbank snowflake. Dazu gesellen sich Datenbanken wie der PostgreSQL, Maria DB oder Microsoft SQL Server sowie CosmosDB oder einfachere Cloud-Speicher wie der Microsoft Blobstorage, Amazon S3 oder Google Cloud Storage. Welche Datenbank auch immer die passende Wahl für das Unternehmen sein mag, ohne SQL und Verständnis für normalisierte Daten läuft im Data Engineering nichts.

Andere Arten von Datenbanken, sogenannte NoSQL-Datenbanken beruhen auf Dateiformaten, einer Spalten- oder einer Graphenorientiertheit. Beispiele für verbreitete NoSQL-Datenbanken sind MongoDB, CouchDB, Cassandra oder Neo4J. Diese Datenbanken exisiteren nicht nur als Unterhaltungswert gelangweilter Nerds, sondern haben ganz konkrete Einsatzgebiete, in denen sie jeweils die beste Performance im Lesen oder Schreiben der Daten bieten.

Ein Data Engineer muss demnach mit unterschiedlichen Datenbanksystemen zurechtkommen, die teilweise auf unterschiedlichen Cloud Plattformen heimisch sind.

Data Engineers brauchen Hacker-Qualitäten

Liegen Daten in einer Datenbank vor, können Analysten mit Zugriff einfache Analysen bereits direkt auf der Datenbank ausführen. Doch wie bekommen wir die Daten in unsere speziellen Analyse-Tools? Hier muss der Engineer seinen Dienst leisten und die Daten aus der Datenbank exportieren können. Bei direkten Datenanbindungen kommen APIs, also Schnittstellen wie REST, ODBC oder JDBC ins Spiel und ein guter Data Engineer benötigt Programmierkenntnisse, bevorzugt in Python, diese APIs ansprechen zu können. Etwas Kenntnis über Socket-Verbindungen und Client-Server-Architekturen zahlt sich dabei manchmal aus. Ferner sollte jeder Data Engineer mit synchronen und asynchronen Verschlüsselungsverfahren vertraut sein, denn in der Regel wird mit vertraulichen Daten gearbeitet. Ein Mindeststandard an Sicherheit gehört zum Data Engineering und darf keinesfalls nur Datensicherheitsexperten überlassen werden, eine Affinität zu Netzwerksicherheit oder gar Penetration-Testing ist positiv zu bewerten, mindestens aber ein sauberes Berechtigungsmanagement gehört zu den Grundfähigkeiten. Viele Daten liegen nicht strukturiert in einer Datenbank vor, sondern sind sogenannte unstrukturierte oder semi-strukturierte Daten aus Dokumenten oder aus Internetquellen. Mit Methoden wie Data Web Scrapping und Data Crawling sowie der Automatisierung von Datenabrufen beweisen herausragende Data Engineers sogar echte Hacker-Qualitäten.

Dirigent der Daten: Orchestrierung von Datenflüssen

Eine der Kernaufgaben des Data Engineers ist die Entwicklung von ETL-Strecken, um Daten aus Quellen zu Extrahieren, zu in das gewünschte Zielformat zu Transformieren und schließlich in die Zieldatenbank zu Laden. Dies mag erstmal einfach klingen, wird jedoch zur echten Herausforderung, wenn viele ETL-Prozesse sich zu ganzen ETL-Ketten und -Netzwerken zusammenfügen, diese dabei trotz hochfrequentierter Datenabfrage performant laufen müssen. Die Orchestrierung der Datenflüsse kann in der Regel in mehrere Etappen unterschieden werden, von der Quelle ins Data Warehouse, zwischen den Ebenen im Data Warehouse sowie vom Data Warehouse in weiterführende Systeme, bis hin zum Zurückfließen verarbeiteter Daten in das Data Warehouse (Reverse ETL).

Hart an der Grenze zu DevOp: Automatisierung in Cloud-Architekturen

In den letzten Jahren sind Anforderungen an Data Engineers deutlich gestiegen, denn neben dem eigentlichen Verwalten von Datenbeständen und -strömen für Analysezwecke wird zunehmend erwartet, dass ein Data Engineer auch Ressourcen in der Cloud managen, mindestens jedoch die Datenbanken und ETL-Ressourcen. Darüber hinaus wird zunehmend jedoch verlangt, IT-Netzwerke zu verstehen und das ganze Zusammenspiel der Ressourcen auch als Infrastructure as Code zu automatisieren. Auch das automatisierte Deployment von Datenarchitekturen über CI/CD-Pipelines macht einen Data Engineer immer mehr zum DevOp.

Zukunfts- und Gehaltsaussichten

Im Vergleich zum Data Scientist, der besonders viel Methodenverständnis für Datenanalyse, Statistik und auch für das zu untersuchende Fachgebiet benötigt, sind Data Engineers mehr an Tools und Plattformen orientiert. Ein Data Scientist, der Deep Learning verstanden hat, kann sein Wissen zügig sowohl mit TensorFlow als auch mit PyTorch anwenden. Ein Data Engineer hingegen arbeitet intensiver mit den Tools, die sich über die Jahre viel zügiger weiterentwickeln. Ein Data Engineer für die Google Cloud wird mehr Einarbeitung benötigen, sollte er plötzlich auf AWS oder Azure arbeiten müssen.

Ein Data Engineer kann in Deutschland als Einsteiger mit guten Vorkenntnissen und erster Erfahrung mit einem Bruttojahresgehalt zwischen 45.000 und 55.000 EUR rechnen. Mehr als zwei Jahre konkrete Erfahrung im Data Engineering wird von Unternehmen gerne mit Gehältern zwischen 50.000 und 80.000 EUR revanchiert. Darüber liegen in der Regel nur die Data Architects / Datenarchitekten, die eher in großen Unternehmen zu finden sind und besonders viel Erfahrung voraussetzen. Weitere Aufstiegschancen für Data Engineers sind Berater-Karrieren oder Führungspositionen.

Wer einen Data Engineer in Festanstellung gebracht hat, darf sich jedoch nicht all zu sicher fühlen, denn Personalvermittler lauern diesen qualifizierten Fachkräften an jeder Ecke des Social Media auf. Gerade in den Metropolen wie Berlin schaffen es längst nicht alle Unternehmen, jeden Data Engineer über Jahre hinweg zu beschäftigen. Bei der großen Auswahl an Jobs und Herausforderungen fällt diesen Datenexperten nicht schwer, seine Gehaltssteigerungen durch Jobwechsel proaktiv voranzutreiben.

Hybrid Cloud

The Cloud or Hybrid Cloud – Pros & Cons

Big data and artificial intelligence (AI) are some of today’s most disruptive technologies, and both rely on data storage. How organizations store and manage their digital information has a considerable impact on these tools’ efficacy. One increasingly popular solution is the hybrid cloud.

Cloud computing has become the norm across many organizations as the on-premise solutions struggle to meet modern demands for uptime and scalability. Within that movement, hybrid cloud setups have gained momentum, with 80% of cloud users taking this approach in 2022. Businesses noticing that trend and considering joining should carefully weigh the hybrid cloud’s pros and cons. Here’s a closer look.

The Cloud

To understand the advantages and disadvantages of hybrid cloud setups, organizations must contrast them against conventional cloud systems. These fall into two categories: public, where multiple clients share servers and resources, and private, where a single party uses dedicated cloud infrastructure. In either case, using a single cloud presents unique opportunities and challenges.

Advantages of the Cloud

The most prominent advantage of traditional cloud setups is their affordability. Because both public and private clouds entirely remove the need for on-premise infrastructure, users pay only for what they need. Considering how 31% of users unsatisfied with their network infrastructure cite insufficient budgets as the leading reason, that can be an important advantage.

The conventional cloud also offers high scalability thanks to its reduced hardware needs. It can also help prevent user errors like misconfiguration because third-party vendors manage much of the management side. Avoiding those mistakes makes it easier to use tools like big data and AI to their full potential.

Disadvantages of the Cloud

While outsourcing management and security workloads can be an advantage in some cases, it comes with risks, too. Most notably, single-cloud or single-type multi-cloud users must give up control and visibility. That poses functionality and regulatory concerns when using these services to train AI models or analyze big data.

Storing an entire organization’s data in just one system also makes it harder to implement a reliable backup system to prevent data loss in a breach. That may be too risky in a world where 96% of IT decision-makers have experienced at least one outage in the last three years.

Hybrid Cloud

The hybrid cloud combines public and private clouds so users can experience some of the benefits of both. In many instances, it also combines on-premise and cloud environments, letting businesses use both in a cohesive data ecosystem. Here’s a closer look at the hybrid cloud’s pros and cons.

Advantages of Hybrid Cloud

One of the biggest advantages of hybrid cloud setups is flexibility. Businesses can distribute workloads across public, private and on-premise infrastructure to maximize performance with different processes. That control and adaptability also let organizations use different systems for different data sets to meet the unique security needs of each.

While hybrid environments may be less affordable than traditional clouds because of their on-premise parts, they offer more cost-efficiency than purely on-prem solutions. Having multiple data storage technologies provides more disaster recovery options. With 75% of small businesses being unable to recover from a ransomware attack, that’s hard to ignore.

Hybrid cloud systems are also ideal for companies transitioning to the cloud from purely on-premise solutions. The mixture of both sides enables an easier, smoother and less costly shift than moving everything simultaneously.

Disadvantages of Hybrid Cloud

By contrast, the most prominent disadvantage of hybrid cloud setups is their complexity. Creating a system that works efficiently between public, private and on-prem setups is challenging, making these systems error-prone and difficult to manage. Misconfigurations are the biggest threat to cloud security, so that complexity can limit big data and AI’s safety.

Finding compatible public and private clouds to work with each other and on-prem infrastructure can also pose a challenge. Vendor lock-in could limit businesses’ options in this regard. Even when they get things working, they may lack transparency, making it difficult to engage in effective big data analytics.

Which Is the Best Option?

Given the advantages and disadvantages of hybrid cloud setups and their conventional counterparts, it’s clear that no single one emerges as the optimal solution for every situation. Instead, which is best depends on an organization’s specific needs.

The hybrid cloud is ideal for companies facing multiple security, regulatory or performance needs. If the business has varying data sets that must meet different regulations, some information that’s far more sensitive than others or has highly diverse workflows, they need the hybrid cloud’s flexibility and control. Companies that want to move slowly into the cloud may prefer these setups, too.

On the other hand, the conventional cloud is best for companies with tighter budgets, limited IT resources or a higher need for scalability. Smaller businesses with an aggressive digitization timeline, for example, may prefer a public multi-cloud setup over a hybrid solution.

Find the Optimal Data Storage Technology

To make the most of AI and big data, organizations must consider where they store the related data. For some companies, the hybrid cloud is the ideal solution, while for others, a more conventional setup is best. Making the right decision begins with understanding what each has to offer.

Data Science im Vertrieb

Data Science im Vertrieb – Praxisbeispiel

Wie Sie mit einer automatisierten Lead-Priorisierung zu erfolgreichen Geschäftsabschlüssen kommen.

Die Fragestellung:

Ein Softwareunternehmen generierte durch Marketing- und Sales-Aktivitäten eine große Anzahl potenzieller Leads, die nicht alle gleichzeitig bearbeitet werden konnten. Die zentrale Frage war nun: Wie kann eine Priorisierung der Leads erfolgen, sodass erfolgsversprechende Leads zuerst bearbeitet werden können?

Definition: Ein Lead bezeichnet einen Kontakt zu einem/einer potenziellen Kund:in, die/der sich für ein Produkt oder eine Dienstleistung eines Unternehmens interessiert und deren/dessen Kontaktdaten dem Unternehmen vorliegen. Solche Leads können durch Online- und Offline-Werbemaßnahmen gewonnen werden.

In der Vergangenheit beruhte die Priorisierung und somit auch die Bearbeitung der Leads in dem Unternehmen häufig auf der persönlichen Erfahrung der zuständigen Vertriebsmitarbeiter:innen. Diese Vorgehensweise ist  jedoch sehr ressourcenintensiv und stark abhängig von der Erfahrung einzelner Vertriebsmitarbeiter:innen.

Aus diesem Grund beschloss das Unternehmen, ein KI-gestütztes System zu entwickeln, welches zum einen erfolgsversprechende Leads datenbasiert priorisiert und zum anderen Handlungsempfehlungen für die Vertriebsmitarbeiter:innen bereitstellt.

Das Vorgehen

Grundlage dieses Projektes waren bereits vorhandene Daten zu früheren Leads sowie CRM-Daten zu bereits geschlossenen Aufträgen und Deals mit diesen früheren Leads. Dazu gehörten beispielsweise:

  • Firma des Leads
  • Firmengröße des Leads
  • Branche des Leads
  • Akquisekanal, über den der Lead generiert wurde
  • Dauer bis Antwort durch Vertriebsmitarbeiter:in
  • Wochentag der Antwort
  • Kanal der Antwort

Diese Daten aus der Vergangenheit konnten zunächst einer explorativen Datenanalyse unterzogen werden, bei der untersucht wurde, inwiefern die Eigenschaften der Leads und das Verhalten der Vertriebsmitarbeiter:innen in der Vergangenheit einen Einfluss darauf hatten, ob es mit einem Lead zu einem Geschäftsabschluss kam oder nicht.

Diese Erkenntnisse aus den vergangenen Leads sollten jedoch nun auch auf aktuelle bzw. zukünftige Leads und die damit verbundenen Vertriebsaktivitäten übertragen werden. Deshalb ergaben sich aus der explorativen Datenanalyse zwei weiterführende Fragen:

  • Durch welche Merkmale zeichnen sich Leads aus, die mit einer hohen Wahrscheinlichkeit zu einem Geschäftsabschluss führen?
  • Welche Aktivitäten der Vertriebsmitarbeiter:innen führen zu einem Geschäftsabschluss?

Leads priorisieren

Durch die explorative Datenanalyse konnte das Unternehmen bereits erste Einblicke in die verschiedenen Eigenschaften der Leads erlangen. Bei einigen dieser Eigenschaften ist anzunehmen, dass sie die Wahrscheinlichkeit erhöhen, dass ein:e potenzielle:r Kund:in Interesse am Produkt des Unternehmens zeigt. Es gibt mehrere Wege, um die Erkenntnisse aus der explorativen Datenanalyse nun für zukünftiges Verhalten der Vertriebsmitarbeiter:innen zu nutzen.

Regelbasiertes Vorgehen

Auf Grundlage der explorativen Datenanalyse und der dort gewonnenen Erkenntnisse könnte das Unternehmen, z. B. dessen Vertriebsleitung, bestimmte Regeln oder Kriterien definieren, wie beispielsweise die Unternehmensgröße des Kunden oder die Branche. So könnte die Vertriebsleitung anordnen, dass Leads aus größeren Unternehmen oder aus Unternehmen aus dem Energiesektor priorisiert behandelt werden sollten, weil diese Leads auch in der Vergangenheit zu erfolgreichen Geschäftsabschlüssen geführt haben.

Der Vorteil eines solchen regelbasierten Vorgehens ist, dass es einfach zu definieren und schnell umzusetzen ist.

Der Nachteil ist jedoch, dass die hier definierten Regeln sehr starr sind und dass Menschen meist nicht in der Lage sind, mehr als zwei oder drei der Eigenschaften gleichzeitig zu betrachten. Obwohl sich die Regeln dann zwar grundsätzlich an den Erkenntnissen aus den Daten orientieren, hängen sie doch immer noch stark vom Bauchgefühl der Vertriebsleitung ab.

Clustering

Ein besserer Ansatz war es, die vergangenen Leads anhand aller verfügbaren Eigenschaften in Gruppen einzuteilen, innerhalb derer die Leads sich einander stark ähneln. Hierfür kommt ein maschinelles Lernverfahren namens Clustering zum Einsatz, welches genau dieses Ziel verfolgt: Beim Clustering werden Datenpunkte, also in diesem Falle die Leads, anhand ihrer Eigenschaften, also beispielsweise die Unternehmensgröße oder die Branche, aber auch ob es zu einem Geschäftsabschluss kam oder nicht, zusammengefasst.

Beispiel: Leads aus Unternehmen zwischen 500 und 999 Mitarbeitern aus der Energiebranche kauften 250 Lizenzen der Software A.

Kommt nun ein neuer Lead hinzu, kann er anhand seiner bereits bekannten Eigenschaften einem Cluster zugeordnet werden. Anschließend können die Vertriebsmitarbeiter:innen jene Leads priorisieren, die einem Cluster zugeordnet worden sind, in dem in der Vergangenheit bereits häufig erfolgreich Geschäfte abgeschlossen worden sind.

Der Vorteil eines solchen datenbasierten Vorgehens ist, dass eine Vielzahl an Kriterien gleichzeitig in die Priorisierung einbezogen werden kann.

Erfolgsführende Aktivitäten identifizieren

Process Mining

Im zweiten Schritt wurde eine weitere Frage gestellt: Welche Aktivitäten der Vertriebsmitarbeiter:innen führen zu einem erfolgreichen Geschäftsabschluss mit einem Lead? Dabei standen nicht nur die Leistungen einzelner Mitarbeiter:innen im Fokus, sondern auch die übergreifenden Muster, die beim Vergleich der verschiedenen Mitarbeiter:innen deutlich wurden. Mithilfe von Process Mining konnte festgestellt werden, welche Maßnahmen und Aktivitäten der Vertriebler:innen im Umgang mit einem Lead zum Erfolg bzw. zu einem Misserfolg geführt hatten. Weniger erfolgsversprechende Maßnahmen konnten somit in der Zukunft vermieden werden.

Vor allem zeitliche Aspekte spielten hierbei eine Rolle: Parameter, die aussagten, wie schnell oder an welchem Wochentag Leads eine Antwort erhielten, waren entscheidend für erfolgreiche Geschäftsabschlüsse. Diese Erkenntnisse konnte das Unternehmen dann in zukünftige Sales Trainings sowie die Sales-Strategie einfließen lassen.

Die Ergebnisse

In diesem Projekt konnte die Sales-Abteilung des Softwareunternehmens durch zwei verschiedene Ansätze die Priorisierung der Leads und damit die Geschäftsabschlüsse deutlich verbessern:

  • Priorisierung der Leads

Mithilfe des Clustering war es möglich, Leads in Gruppen einzuteilen, die sich in ihren Eigenschaften ähneln, u.a. auch in der Eigenschaft, ob es zu einem Geschäftsabschluss kommt oder nicht. Neue Leads wurden den verschiedenen Clustern zuordnen. Leads, die einem Cluster mit hoher Erfolgswahrscheinlichkeit zugeordnet wurden, konnten nun priorisiert bearbeitet werden.

  • Erfolgsversprechende Aktivitäten identifizieren

Mithilfe von Process Mining wurden erfolgsversprechende Aktivitäten der Sales-Mitarbeiter:innen identifiziert und skaliert. Umgekehrt wurden wenig erfolgsversprechende Aktivitäten erkannt und eliminiert, um Ressourcen zu sparen.

Infolgedessen konnte das Softwareunternehmen Leads erfolgreicher bearbeiten und höhere Umsätze erzielen.