Posts

Interview – Machine Learning in Marketing und CRM

Interview mit Herrn Laurenz Wuttke von der datasolut GmbH über Machine Learning in Marketing und CRM.

Laurenz Wuttke ist Data Scientist und Gründer der datasolut GmbH. Er studierte Wirtschaftsinformatik an der Hochschule Hannover und befasst sich bereits seit 2011 mit Marketing- bzw. CRM-Systemen und der Datenanalyse. Heute ist er Dozent für Big Data im Marketing an der Hochschule Düsseldorf und unterstützt Unternehmen dabei, durch den Einsatz von künstlicher Intelligenz, individuell auf die Kundenbedürfnisse tausender Kunden einzugehen. Damit jeder Marketing Manager jedem Kunden das richtige Angebot zur richtigen Zeit machen kann.

Data Science Blog: Herr Wuttke, Marketing gilt als einer der Pionier-Bereiche der Unternehmen für den Einstieg in Big Data Analytics. Wie etabliert ist Big Data und Data Science heute im Marketing?  

Viele Unternehmen in Deutschland erkennen gerade Chancen und den Wert ihrer Daten. Dadurch investieren die Unternehmen in Big Data Infrastruktur und Data Science Teams.

Gleichzeitig denke ich, wir stehen im Marketing gerade am Anfang einer neuen Daten-Ära. Big Data und Data Science sind im Moment noch ein Thema der großen Konzerne. Viele kleine und mittelständische Unternehmen haben noch viele offene Potentiale in Bezug auf intelligente Kundenanalysen.

Durch stetig steigende Preise für die Kundenakquise, wird die Erhaltung und Steigerung einer guten Kundenbindung immer wichtiger. Und genau hier sehe ich die Vorteile durch Data Science im Marketing. Unternehmen können viel genauer auf Kundenbedürfnisse eingehen, antizipieren welches Produkt als nächstes gekauft wird und so ihr Marketing zielgenau ausrichten. Dieses „personalisierte Marketing“ führt zu einer deutlich stärkeren Kundenbindung und steigert langfristig Umsätze.

Viele amerikanische Unternehmen machen es vor, aber auch deutsche Unternehmen wie Zalando oder AboutYou investieren viel Geld in die Personalisierung ihres Marketings. Ich denke, die Erfolge sprechen für sich.

Data Science Blog: Ein häufiges Anliegen für viele Marketing Manager ist die treffsichere Kundensegmentierung nach vielerlei Kriterien. Welche Verbesserungen sind hier möglich und wie können Unternehmen diese erreichen?

Kundensegmentierungen sind ein wichtiger Bestandteil vieler Marketingstrategien. Allerdings kann man hier deutlich weitergehen und Marketing im Sinne von „Segments of One“ betreiben. Das bedeutet wir haben für jeden einzelnen Kunden eine individuelle „Next Best Action und Next Best Offer“.

Somit wird jeder Kunde aus Sicht des Marketings individuell betrachtet und bekommt individuelle Produktempfehlungen sowie Marketingmaßnahmen, welche auf das jeweilige Kundenbedürfnis zugeschnitten sind.

Dies ist auch ein wichtiger Schritt für die Marketingautomatisierung, denn wir können im Marketing schlichtweg keine tausenden von Kunden persönlich betreuen.

Data Science Blog: Sind die Kundencluster dann erkannt, stellt sich die Frage, wie diese besser angesprochen werden können. Wie funktioniert die dafür notwendige Kundenanalyse?

Ganz unterschiedlich, je nach Geschäftsmodell und Branche fällt die Kundenanalyse anders aus. Wir schauen uns unterschiedliche Merkmale zum historischen Kaufverhalten, Demografie und Produktnutzung an. Daraus ergeben sich in der Regel sehr schnell Kundenprofile oder Personas, die gezielt angesprochen werden können.

Data Science Blog: Oft werden derartige Analyse-Vorhaben auf Grund der Befürchtung, die relevanten Daten seien nicht verfügbar oder die Datenqualität sei einer solchen Analyse nicht würdig, gar nicht erst gestartet. Sind das begründete Bedenken?

Nein, denn oft kommen die Daten, die für eine Kundenanalyse oder die Vorhersage von Ergebnissen braucht, aus Datenquellen wie z.B. den Transaktionsdaten. Diese Daten hat jedes Unternehmen in guter Qualität vorliegen.

Natürlich werden die Analysen besser, wenn weitere Datenquellen wie bspw. Produktmetadaten, Kundeneigenschaften oder das Klickverhalten zur Verfügung stehen, aber es ist kein Muss.

Aus meiner Praxiserfahrung kann ich sagen, dass hier oft ungenutzte Potentiale schlummern.

Data Science Blog: Wie ist da eigentlich Ihre Erfahrung bzgl. der Interaktion zwischen Marketing und Business Intelligence? Sollten Marketing Manager ihre eigenen Datenexperten haben oder ist es besser, diese Ressourcen zentral in einer BI-Abteilung zu konzentrieren?

Aus meiner Sicht funktioniert moderenes Marketing heute nicht mehr ohne valide Datenbasis. Aus diesem Grund ist die Zusammenarbeit von Marketing und Business Intelligence unersetzbar, besonders wenn es um Bestandskundenmarketing geht. Hier laufen idealerweise alle Datenquellen in einer 360 Grad Kundensicht zusammen.

Dies kann dann auch als die Datenquelle für Machine Learning und Data Science verwendet werden. Alle wichtigen Daten können aus einer strukturierten 360 Grad Sicht zu einer Machine Learning Datenbasis (ML-Feature Store) umgewandelt werden. Das spart enorm viel Zeit und viel Geld.

Zu Ihrer zweiten Frage: Ich denke es gibt Argumente für beide Konstrukte, daher habe ich da keine klare Präferenz. Mir ist immer wichtig, dass der fachliche Austausch zwischen Technik und Fachbereich gut funktioniert. Ziele müssen besprochen und gegeben falls angepasst werden, um immer in die richtige Richtung zu gehen. Wenn diese Voraussetzung mit einer guten Data Science Infrastruktur gegeben ist, wird Data Science für wirklich skalierbar.

Data Science Blog: Benötigen Unternehmen dafür eine Customer Data Platform (CDP) oder zumindest ein CRM? Womit sollten Unternehmen beginnen, sollten sie noch ganz am Anfang stehen?

Eine Customer Data Platform (CDP) ist von Vorteil, ist aber kein Muss für den Anfang. Ein guts CRM-System oder gute gepflegte Kundendatenbank reicht zunächst für den Anfang.

Natürlich bietet eine CDP einen entscheidenden Vorteil durch die Zusammenführung von der Online- und der CRM-Welt. Das Klickverhalten hat einen enormen Einfluss auf die analytischen Modelle und hilft dabei, Kunden immer besser zu verstehen. Das ist besonders wichtig in unserer Zeit, da wir immer weniger direkten Kundenkontakt haben und zukünftig wird dieser auch noch weiter abnehmen.

Zusammengefasst: Wer diese Kundendaten intelligent miteinander verknüpft hat einen großen Vorteil.

Data Science Blog: Wie integrieren Sie App- und Webtracking in Ihre Analysen?

Trackingdaten aus Apps und Webseiten sind ein wichtiger Bestandteil unserer Machine Learning Modelle. Sie geben wichtige Informationen über das Kundenverhalten preis. So können die Trackingdaten gute Merkmale für Anwendungsfälle wie Churn Prediction, Customer Lifetime Value und Next Best Offer sein.

Häufig sind die Trackingdaten von unterschiedlichen Anbietern (Google Analytics, Piwik etc.) leicht anders in ihrer Struktur, dafür haben wir uns einen intelligenten Ansatz überlegt, um diese zu vereinheitlichen und in unseren Modellen anzuwenden.

Data Science Blog: Zurück zum Kunden. Seine Bedürfnisse stehen bei erfolgreichen Unternehmen im Fokus stehen. Einige Geschäftsmodelle basieren auf Abonnements oder Mitgliedschaften. Wie können Sie solchen Unternehmen helfen?

Abonnements und Subscriptions sind ein großer Trend: Der Kunde wird zum Nutzer und es fallen viele Kundendaten an, die gesammelt werden können. Viele unserer Kunden haben subscription- oder vertragsbasierte Geschäftsmodelle, was ich persönlich sehr interessante Geschäftsmodelle finde.

Diese haben häufig die Herausforderung ihre Kunden langfristig zu binden und eine gesunde Kundenbindung aufzubauen. Die Akquisition ist meistens sehr teuer und die Kundenabwanderung oder Customer Churn zu reduzieren damit ein strategisches Ziel. Wirklich erfolgreich werden diese dann, wenn die Churn Rate geringgehalten wird.

Die Lösung für eine niedrige Kundenabwanderung, neben einem guten Produkt und gutem Kundenservice, ist eine Churn Prediction und darauf aufbauende Churn Prevention Maßnahmen. Wir nehmen uns dazu das historische Kundenverhalten, schauen uns die Kündiger an und modellieren daraus eine Vorhersage für die Kundenabwanderung. So können Unternehmen abwanderungsgefährdete Kunden schon frühzeitig erkennen und entsprechend handeln. Das hat den entscheidenden Vorteil, dass man nicht einen schon verlorenen Kunden erneut gewinnen muss.

Es gibt aber auch Möglichkeiten schon weit vor der eigentlichen Churn-Gefahr anzusetzen, bei drohender Inaktivität. So haben wir für einen großen Fitness-App-Anbieter ein Alarmsystem entwickelt, das Kunden automatisiert Engagement-Kampagnen versendet, um bei drohender Inaktivität, den Kunden auf die Angebote aufmerksam zu machen. Sie kennen das von der Netflix-App, welche Ihnen jeden Abend einen guten Tipp für das Fernsehprogramm bereitstellt.

Data Science Blog: Gehen wir mal eine Ebene höher. So mancher CMO hat mit dem CFO den Deal, jährlich nur einen bestimmten Betrag ins Marketing zu stecken. Wie hilft Data Science bei der Budget-Verteilung auf die Bestandskunden?

Da gibt es eine einfache Lösung für „Customer Lifetime Value Prognosen“. Durch Machine Learning wird für jeden einzelnen Kunden eine Umsatz-Vorhersage für einen bestimmten Zeitraum getroffen. So kann das Bestandkundenmarketing das Marketingbudget ganz gezielt einsetzen und nach dem Kundenwert steuern. Ich gebe Ihnen ein Beispiel: Kundenreaktivierung im Handel. Sie haben ein bestimmtes Budget und können nicht jedem Kunden eine Reaktivierungsmaßnahme zukommen lassen. Wenn Sie einen gut berechneten Customer Lifetime Value haben, können Sie sich so auf die wertigen Kunden konzentrieren und diese reaktivieren.

Data Science Blog: Mit welchen Technologien arbeiten Sie bevorzugt? Welche Tools sind gerade im Kontext von analytischen Aufgaben im Marketing besonders effizient?

Wir haben uns in den letzten Jahren besonders auf Python und PySpark fokussiert. Mit der Entwicklung von Python für Data Science konnten die anderen Umgebungen kaum mithalten und somit ist Python aus meiner Sicht derzeit die beste Umgebung für unsere Lösungen.

Auch die Cloud spielt eine große Rolle für uns. Als kleines Unternehmen haben wir uns bei datasolut auf die AWS Cloud fokussiert, da wir gar nicht in der Lage wären, riesige Datenbestände unserer Kunden zu hosten.

Vor allem von dem hohen Automatisierungsgrad in Bezug auf Datenverarbeitung und Machine Learning bietet AWS alles, was das Data Science Herz begehrt.

Data Science Blog: Was würden Sie einem Junior Marketing Manager und einem Junior Data Scientist für den Ausbau seiner Karriere raten? Wie werden diese jungen Menschen zukünftig beruflich erfolgreich?

Dem Junior Marketing Manager würde ich immer raten, dass er sich Datenanalyse-Skills erarbeiten soll. Aber vor allem sollte er verstehen, was mit Daten alles möglich ist und wie diese eingesetzt werden können. Auch in meiner Vorlesung zu „Big Data im Marketing“ an der Hochschule Düsseldorf unterrichte ich Studierende, die auf Marketing spezialisiert sind. Hier gebe ich stets diesen Ratschlag.

Bei den Junior Daten Scientist ist es andersherum. Ich sehe in der Praxis immer wieder Data Scientists, die den Transfer zwischen Marketing und Data Science nicht gut hinbekommen. Daher rate ich jedem Data Scientist, der sich auf Marketing und Vertrieb fokussieren will, dass hier fachliches Know-How essentiell ist. Kein Modell oder Score hat einen Wert für ein Unternehmen, wenn es nicht gut im Marketing eingesetzt wird und dabei hilft, Marketingprozesse zu automatisieren.

Ein weiterer wichtiger Aspekt ist, dass sich Data Science und Machine Learning gerade rasant ändern. Die Automatisierung (Stichwort: AutoML) von diesen Prozessen ist auf der Überholspur, dass zeigen die großen Cloudanbieter ganz deutlich. Auch wir nutzen diese Technologie schon in der Praxis. Was der Algorithmus aber nicht übernehmen kann, ist der Transfer und Enablement der Fachbereiche.

Data Science Blog: Zum Schluss noch eine Bitte: Was ist Ihre Prophezeiung für die kommenden Jahre 2021/2022. What is the next big thing in Marketing Analytics?

Es gibt natürlich viele kleinere Trends, welche das Marketing verändern werden. Ich denke jedoch, dass die größte Veränderung für die Unternehmen sein wird, dass es einen viel großflächigeren Einsatz von Machine Learning im Marketing geben wird. Dadurch wird der Wettbewerb härter und für viele Unternehmen wird Marketing Analytics ein essentieller Erfolgsfaktor sein.

Interview: Operationalisierung von Data Science

Interview mit Herrn Dr. Frank Block von Roche Diagnostics über Operationalisierung von Data Science

Herr Dr. Frank Block ist Head of IT Data Science bei Roche Diagnostics mit Sitz in der Schweiz. Zuvor war er Chief Data Scientist bei der Ricardo AG nachdem er für andere Unternehmen die Datenanalytik verantwortet hatte und auch 20 Jahre mit mehreren eigenen Data Science Consulting Startups am Markt war. Heute tragen ca. 50 Mitarbeiter bei Roche Diagnostics zu Data Science Projekten bei, die in sein Aktivitätsportfolio fallen: 

Data Science Blog: Herr Dr. Block, Sie sind Leiter der IT Data Science bei Roche Diagnostics? Warum das „IT“ im Namen dieser Abteilung?

Roche ist ein großes Unternehmen mit einer großen Anzahl von Data Scientists in ganz verschiedenen Bereichen mit jeweils sehr verschiedenen Zielsetzungen und Themen, die sie bearbeiten. Ich selber befinde mich mit meinem Team im Bereich „Diagnostics“, d.h. der Teil von Roche, in dem Produkte auf den Markt gebracht werden, die die korrekte Diagnose von Krankheiten und Krankheitsrisiken ermöglichen. Innerhalb von Roche Diagnostics gibt es wiederum verschiedene Bereiche, die Data Science für ihre Zwecke nutzen. Mit meinem Team sind wir in der globalen IT-Organisation angesiedelt und kümmern uns dort insbesondere um Anwendungen von Data Science für die Optimierung der internen Wertschöpfungskette.

Data Science Blog: Sie sind längst über die ersten Data Science Experimente hinaus. Die Operationalisierung von Analysen bzw. analytischen Applikationen ist für Sie besonders wichtig. Welche Rolle spielt das Datenmanagement dabei? Und wo liegen die Knackpunkte?

Ja, richtig. Die Zeiten, in denen sich Data Science erlauben konnte „auf Vorrat“ an interessanten Themen zu arbeiten, weil sie eben super interessant sind, aber ohne jemals konkrete Wertschöpfung zu liefern, sind definitiv und ganz allgemein vorbei. Wir sind seit einigen Jahren dabei, den Übergang von Data Science Experimenten (wir nennen es auch gerne „proof-of-value“) in die Produktion voranzutreiben und zu optimieren. Ein ganz essentielles Element dabei stellen die Daten dar; diese werden oft auch als der „Treibstoff“ für Data Science basierte Prozesse bezeichnet. Der große Unterschied kommt jedoch daher, dass oft statt „Benzin“ nur „Rohöl“ zur Verfügung steht, das zunächst einmal aufwändig behandelt und vorprozessiert werden muss, bevor es derart veredelt ist, dass es für Data Science Anwendungen geeignet ist. In diesem Veredelungsprozess wird heute noch sehr viel Zeit aufgewendet. Je besser die Datenplattformen des Unternehmens, umso größer die Produktivität von Data Science (und vielen anderen Abnehmern dieser Daten im Unternehmen). Ein anderes zentrales Thema stellt der Übergang von Data Science Experiment zu Operationalisierung dar. Hier muss dafür gesorgt werden, dass eine reibungslose Übergabe von Data Science an das IT-Entwicklungsteam erfolgt. Die Teamzusammensetzung verändert sich an dieser Stelle und bei uns tritt der Data Scientist von einer anfänglich führenden Rolle in eine Beraterrolle ein, wenn das System in die produktive Entwicklung geht. Auch die Unterstützung der Operationalisierung durch eine durchgehende Data Science Plattform kann an dieser Stelle helfen.

Data Science Blog: Es heißt häufig, dass Data Scientists kaum zu finden sind. Ist Recruiting für Sie tatsächlich noch ein Thema?

Generell schon, obwohl mir scheint, dass dies nicht unser größtes Problem ist. Glücklicherweise übt Roche eine große Anziehung auf Talente aus, weil im Zentrum unseres Denkens und Handelns der Patient steht und wir somit durch unsere Arbeit einen sehr erstrebenswerten Zweck verfolgen. Ein zweiter Aspekt beim Aufbau eines Data Science Teams ist übrigens das Halten der Talente im Team oder Unternehmen. Data Scientists suchen vor allem spannenden und abwechselnden Herausforderungen. Und hier sind wir gut bedient, da die Palette an Data Science Anwendungen derart breit ist, dass es den Kollegen im Team niemals langweilig wird.

Data Science Blog: Sie haben bereits einige Analysen erfolgreich produktiv gebracht. Welche Herausforderungen mussten dabei überwunden werden? Und welche haben Sie heute noch vor sich?

Wir konnten bereits eine wachsende Zahl an Data Science Experimenten in die Produktion überführen und sind sehr stolz darauf, da dies der beste Weg ist, nachhaltig Geschäftsmehrwert zu generieren. Die gleichzeitige Einbettung von Data Science in IT und Business ist uns bislang gut gelungen, wir werden aber noch weiter daran arbeiten, denn je näher wir mit unseren Kollegen in den Geschäftsabteilungen arbeiten, umso besser wird sichergestellt, das Data Science sich auf die wirklich relevanten Themen fokussiert. Wir sehen auch guten Fortschritt aus der Datenperspektive, wo zunehmend Daten über „Silos“ hinweg integriert werden und so einfacher nutzbar sind.

Data Science Blog: Data Driven Thinking wird heute sowohl von Mitarbeitern in den Fachbereichen als auch vom Management verlangt. Sind wir schon so weit? Wie könnten wir diese Denkweise im Unternehmen fördern?

Ich glaube wir stecken mitten im Wandel, Data-Driven Decisions sind im Kommen, aber das braucht auch seine Zeit. Indem wir zeigen, welches Potenzial ganz konkrete Daten und Advanced Analytics basierte Entscheidungsprozesse innehaben, helfen wir, diesen Wandel voranzutreiben. Spezifische Weiterbildungsangebote stellen eine andere Komponente dar, die diesen Transformationszrozess unterstützt. Ich bin überzeugt, dass wenn wir in 10-20 Jahren zurückblicken, wir uns fragen, wie wir überhaupt ohne Data-Driven Thinking leben konnten…

Interview – There is no stand-alone strategy for AI, it must be part of the company-wide strategy

Ronny FehlingRonny Fehling is Partner and Associate Director for Artificial Intelligence as the Boston Consulting Group GAMMA. With more than 20 years of continually progressive experience in leading business and technology innovation, spearheading digital transformation, and aligning the corporate strategy with Artificial Intelligence he industry-leading organizations to grow their top-line and kick-start their digital transformation.

Ronny Fehling is furthermore speaker of the Predictive Analytics World for Industry 4.0 in May 2020.

Data Science Blog: Mr. Fehling, you are consulting companies and business leaders about AI and how to get started with it. AI as a definition is often misleading. How do you define AI?

This is a good question. I think there are two ways to answer this:

From a technical definition, I often see expressions about “simulation of human intelligence” and “acting like a human”. I find using these terms more often misleading rather than helpful. I studied AI back when it wasn’t yet “cool” and still middle of the AI winter. And yes, we have much more compute power and access to data, but we also think about data in a very different way. For me, I typically distinguish between machine learning, which uses algorithms and statistical methods to identify patterns in data, and AI, which for me attempts to interpret the data in a given context. So machine learning can help me identify and analyze frequency patterns in text and even predict the next word I will type based on my history. AI will help me identify ‘what’ I’m writing about – even if I don’t explicitly name it. It can tell me that when I’m asking “I’m looking for a place to stay” that I might want to see a list of hotels around me. In other words: machine learning can detect correlations and similar patterns, AI uses machine learning to generate insights.

I always wondered why top executives are so frequently asking about the definition of AI because at first it seemed to me not as relevant to the discussion on how to align AI with their corporate strategy. However, I started to realize that their question is ultimately about “What is AI and what can it do for me?”.

For me, AI can do three things really good, which humans cannot really do and previous approaches couldn’t cope with:

  1. Finding similar patterns in historical data. Imagine 20 years of data like maintenance or repair documents of a manufacturing plant. Although they describe work done on a multitude of products due to a multitude of possible problems, AI can use this to look for a very similar situation based on a current problem description. This can be used to identify a common root cause as well as a common solution approach, saving valuable time for the operation.
  2. Finding correlations across time or processes. This is often used in predictive maintenance use cases. Here, the AI tries to see what similar events happen typically at some time before a failure happen. This way, it can alert the operator much earlier about an impending failure, say due to a change in the vibration pattern of the machine.
  3. Finding an optimal solution path based on many constraints. There are many problems in the business world, where choosing the optimal path based on complex situations is critical. Let’s say that suddenly a severe weather warning at an airport forces an airline to have to change their scheduling because of a reduced airport capacity. Delays for some aircraft can cause disruptions because passengers or personnel not being able to connect anymore. Knowing which aircraft to delay, which to cancel, which to switch while causing the minimal amount of disruption to passengers, crew, maintenance and ground-crew is something AI can help with.

The key now is to link these fundamental capabilities with the business context of the company and how it can ultimately help transform.

Data Science Blog: Companies are still starting with their own company-wide data strategy. And now they are talking about AI strategies. Is that something which should be handled separately?

In my experience – both based on having seen the implementations of several corporate data strategies as well as my upbringing at Oracle – the data strategy and AI strategy are co-dependent and cannot be separated. Very often I hear from clients that they think they first need to bring their data in order before doing AI project. And yes, without good data access, AI cannot really work. In fact, most of the time spent on AI is spent on processing, cleansing, understanding and contextualizing the data. However, you cannot really know what data will be needed in which form without knowing what you want to use it for. This is why strategies that handle data and AI separately mostly fail and generate huge costs.

Data Science Blog: What are the important steps for developing a good data strategy? Is there something like a general approach?

In my eyes, the AI strategy defines the data strategy step by step as more use cases are implemented. Rather than focusing too quickly at how to get all corporate data into a data lake, it will be much more important to start creating a use-case, technology and data governance. This governance has to be established once the AI strategy is starting to mature to enable the scale up and productization. At the beginning is to find the (very few) use-cases that can serve as light house projects to demonstrate (1) value impact, (2) a way to go from MVP to Pilot, and (3) how to address the data challenge. This will then more naturally identify the elements of governance, data access and technology that are required.

Data Science Blog: What are the most common questions from business leaders to you regarding AI? Why do they hesitate to get started?

By far it the most common question I get is: how do I get started? The hesitations often come from multiple sources like: “We don’t have the talent in house to do AI”, “Our data is not good enough”, “We don’t know which use-case to start with”, “It’s not easy for us to embrace agile and failure culture because our products are mission critical”, “We don’t know how much value this can bring us”.

Data Science Blog: Most managers prefer to start small and with lower risk. They seem to postpone bigger ideas to a later stage, at least some milestones should be reached. Is that a good idea or should they think bigger?

AI is often associated (rightfully so) with a new way of working – agile and embracing failures. Similarly, there is also the perception of significant cost to starting with AI (talent, technology, data). These perceptions often lead managers wanting to start with several smaller ambition use-cases where failure isn’t that grave. Once they have proven itself somehow, they would then move on to bigger projects. The problem with this strategy is on the one side that you fragment your few precious AI resources on too many projects and at the same time you cannot really demonstrate an impact since the projects weren’t chosen based on their impact potential.

The AI pioneers typically were successful by “thinking big, starting small and scaling fast”. You start by assessing the value potential of a use-case, for example: my current OEE (Overall Equipment Efficiency) is at 65%. There is an addressable loss of 25% which would grow my top line by $X. With the help of AI experts, you then create a hypothesis of how you think you can reduce that loss. This might be by choosing one specific equipment and 50% of the addressable loss. This is now the measure against which you define your failure or non-failure criteria. Once you have proven an MVP that can solve this loss, you scale up by piloting it in real-life setting and then scaling it to all the equipment. At every step of this process, you have a failure criterion that is measured by the impact value.


Virtual Edition, 11-12 MAY, 2020

The premier machine learning
conference for industry 4.0

This year Predictive Analytics World for Industry 4.0 runs alongside Deep Learning World and Predictive Analytics World for Healthcare.

Interview – Predictive Maintenance and how it can unleash cost savings

Interview with Dr. Kai Goebel, Principal Scientist at PARC, a Xerox Company, about Predictive Maintenance and how it can unleash cost savings.

Dr. Kai Goebel is principal scientist as PARC with more than two decades experience in corporate and government research organizations. He is responsible for leading applied research on state awareness, prognostics and decision-making using data analytics, AI, hybrid methods and physics-base methods. He has also fielded numerous applications for Predictive Maintenance at General Electric, NASA, and PARC for uses as diverse as rocket launchpads, jet engines, and chemical plants.

Data Science Blog: Mr. Goebel, predictive maintenance is not just a hype since industrial companies are already trying to establish this use case of predictive analytics. What benefits do they really expect from it?

Predictive Maintenance is a good example for how value can be realized from analytics. The result of the analytics drives decisions about when to schedule maintenance in advance of an event that might cause unexpected shutdown of the process line. This is in contrast to an uninformed process where the decision is mostly reactive, that is, maintenance is scheduled because equipment has already failed. It is also in contrast to a time-based maintenance schedule. The benefits of Predictive Maintenance are immediately clear: one can avoid unexpected downtime, which can lead to substantial production loss. One can manage inventory better since lead times for equipment replacement can be managed well. One can also manage safety better since equipment health is understood and safety averse situations can potentially be avoided. Finally, maintenance operations will be inherently more efficient as they shift significant time from inspection to mitigation of.

Data Science Blog: What are the most critical success factors for implementing predictive maintenance?

Critical for success is to get the trust of the operator. To that end, it is imperative to understand the limitations of the analytics approach and to not make false performance promises. Often, success factors for implementation hinge on understanding the underlying process and the fault modes reasonably well. It is important to be able to recognize the difference between operational changes and abnormal conditions. It is equally important to recognize rare events reliably while keeping false positives in check.

Data Science Blog: What kind of algorithm does predictive maintenance work with? Do you differentiate between approaches based on classical machine learning and those based on deep learning?

Well, there is no one kind of algorithm that works for Predictive Mantenance everywhere. Instead, one should look at the plurality of all algorithms as tools in a toolbox. Then analyze the problem – how many examples for run-to-failure trajectories are there; what is the desired lead time to report on a problem; what is the acceptable false positive/false negative rate; what are the different fault modes; etc – and use the right kind of tool to do the job. Just because a particular approach (like the one you mentioned in your question) is all the hype right now does not mean it is the right tool for the problem. Sometimes, approaches from what you call “classical machine learning” actually work better. In fact, one should consider approaches even outside the machine learning domain, either as stand-alone approach as in a hybrid configuration. One may also have to invent new methods, for example to perform online learning of the dynamic changes that a system undergoes through its (long) life. In the end, a customer does not care about what approach one is using, only if it solves the problem.

Data Science Blog: There are several providers for predictive analytics software. Is it all about software tools? What makes the difference for having success?

Frequently, industrial partners lament that they have to spend a lot of effort in teaching a new software provider about the underlying industrial processes as well as the equipment and their fault modes. Others are tired of false promises that any kind of data (as long as you have massive amounts of it) can produce any kind of performance. If one does not physically sense a certain modality, no algorithmic magic can take place. In other words, it is not just all about the software. The difference for having success is understanding that there is no cookie cutter approach. And that realization means that one may have to role up the sleeves and to install new instrumentation.

Data Science Blog: What are coming trends? What do you think will be the main topic 2020 and 2021?

Predictive Maintenance is slowly evolving towards Prescriptive Maintenance. Here, one does not only seek to inform about an impending problem, but also what to do about it. Such an approach needs to integrate with the logistics element of an organization to find an optimal decision that trades off several objectives with regards to equipment uptime, process quality, repair shop loading, procurement lead time, maintainer availability, safety constraints, contractual obligations, etc.

Interview: Künstliche Intelligenz in der Pharma-Forschung und -Entwicklung

Interview mit Anna Bauer-Mehren, Head of Data Science in der Pharma-Forschung und -Entwicklung bei Roche in Penzberg

Frau Dr. Bauer-Mehren ist Head of Data Science im Bereich Pharma-Forschung und -Entwicklung bei Roche in Penzberg. Sie studierte Bioinformatik an der LMU München und schloss ihre Promotion im Bereich Biomedizin an der Pompeu Fabra Universität im Jahr 2010 in Spanien ab. Heute befasst sie sich mit dem Einsatz von Data Science zur Verbesserung der medizinischen Produkte und Prozesse bei Roche. Ferner ist sie Speaker der Predictive Analytics World Healthcare (Virtual Conference, Mai 2020).

Data Science Blog: Frau Bauer-Mehren, welcher Weg hat Sie bis an die Analytics-Spitze bei Roche geführt?

Ehrlich gesagt bin ich eher zufällig zum Thema Data Science gekommen. In der Schule fand ich immer die naturwissenschaftlich-mathematischen Fächer besonders interessant. Deshalb wollte ich eigentlich Mathematik studieren. Aber dann wurde in München, wo ich aufgewachsen und zur Schule gegangen bin, ein neuer Studiengang eingeführt: Bioinformatik. Diese Kombination aus Biologie und Informatik hat mich so gereizt, dass ich die Idee des Mathe-Studiums verworfen habe. Im Bioinformatik-Studium ging es unter anderem um Sequenzanalysen, etwa von Gen- oder Protein-Sequenzen, und um Machine Learning. Nach dem Masterabschluss habe ich an der Universitat Pompeu Fabra in Barcelona in biomedizinischer Informatik promoviert. In meiner Doktorarbeit und auch danach als Postdoktorandin an der Stanford School of Medicine habe ich mich mit dem Thema elektronische Patientenakten beschäftigt. An beiden Auslandsstationen kam ich auch immer wieder in Berührung mit Themen aus dem Pharma-Bereich. Bei meiner Rückkehr nach Deutschland hatte ich die Pharmaforschung als Perspektive für meine berufliche Zukunft fest im Blick. Somit kam ich zu Roche und leite seit 2014 die Abteilung Data Science in der Pharma-Forschung und -Entwicklung.

Data Science Blog: Was sind die Kernfunktionen der Data Science in Ihrem Bereich der Pharma-Forschung und -Entwicklung?

Ich bin Abteilungsleiterin für Data Science von pREDi (Pharma Research and Early Development Informatics), also von Roches Pharma-Forschungsinformatik. Dieser Bereich betreut alle Schritte von der Erhebung der Daten bis zur Auswertung und unterstützt alle Forschungsgebiete von Roche, von den Neurowissenschaften und der Onkologie bis hin zu unseren Biologie- und Chemielaboren, die die Medikamente herstellen. Meine Abteilung ist für die Auswertung der Daten zuständig. Wir beschäftigen uns damit, Daten so aufzubereiten und auszuwerten, dass daraus neue Erkenntnisse für die Erforschung und Entwicklung sowie die Optimierung von pharmazeutischen Produkten und Therapien gewonnen werden könnten. Das heißt, wir wollen die Daten verstehen, interpretieren und zum Beispiel einen Biomarker finden, der erklärt, warum manche Patienten auf ein Medikament ansprechen und andere nicht.

Data Science Blog: Die Pharmaindustrie arbeitet schon seit Jahrzehnten mit Daten z. B. über Diagnosen, Medikationen und Komplikationen. Was verbessert sich hier gerade und welche Innovationen geschehen hier?

Für die medizinische Forschung ist die Qualität der Daten sehr wichtig. Wenn ein Medikament entwickelt wird, fallen sehr große Datenmengen an. Früher hat niemand dafür gesorgt, dass diese Daten so strukturiert und aufbereitet werden, dass sie später auch in der Forschung oder bei der Entwicklung anderer Medikamente genutzt werden können. Es gab noch kein Bewusstsein dafür, dass die Daten auch über den eigentlichen Zweck ihrer Erhebung hinaus wertvoll sein könnten. Das hat sich mittlerweile deutlich verbessert, auch dank des Bereichs Data Science. Heute ist es normal, die eigenen Daten „FAIR“ zu machen. Das Akronym FAIR steht für findable, accessible, interoperable und reusable. Das heißt, dass man die Daten so sauber managen muss, dass Forscher oder andere Entwickler sie leicht finden, und dass diese, wenn sie die Berechtigung dafür haben, auch wirklich auf die Daten zugreifen können. Außerdem müssen Daten aus unterschiedlichen Quellen zusammengebracht werden können. Und man muss die Daten auch wiederverwenden können.

Data Science Blog: Was sind die Top-Anwendungsfälle, die Sie gerade umsetzen oder für die Zukunft anstreben?

Ein Beispiel, an dem wir zurzeit viel forschen, ist der Versuch, so genannte Kontrollarme in klinischen Studien zu erstellen. In einer klinischen Studie arbeitet man ja immer mit zwei Patientengruppen: Eine Gruppe der Patienten bekommt das Medikament, das getestet werden soll, während die anderen Gruppe, die Kontrollgruppe, beispielsweise ein Placebo oder eine Standardtherapie erhält. Und dann wird natürlich verglichen, welche der zwei Gruppen besser auf die Therapie anspricht, welche Nebenwirkungen auftreten usw. Wenn wir jetzt in der Lage wären, diesen Vergleich anhand von schon vorhanden Patientendaten durchzuführen, quasi mit virtuellen Patienten, dann würden wir uns die Kontrollgruppe bzw. einen Teil der Kontrollgruppe sparen. Wir sprechen hierbei auch von virtuellen oder externen Kontrollarmen. Außerdem würden wir dadurch auch Zeit und Kosten sparen: Neue Medikamente könnten schneller entwickelt und zugelassen werden, und somit den ganzen anderen Patienten mit dieser speziellen Krankheit viel schneller helfen.

Data Science Blog: Mit welchen analytischen Methoden arbeiten Sie und welche Tools stehen dabei im Fokus?

Auch wir arbeiten mit den gängigen Programmiersprachen und Frameworks. Die meisten Data Scientists bevorzugen R und/oder Python, viele verwenden PyTorch oder auch TensorFlow neben anderen.  Generell nutzen wir durchaus viel open-source, lizenzieren aber natürlich auch Lösungen ein. Je nachdem um welche Fragestellungen es sich handelt, nutzen wir eher statistische Modelle- Wir haben aber auch einige Machine Learning und Deep Learning use cases und befassen uns jetzt auch stark mit der Operationalisierung von diesen Modellen. Auch Visualisierung ist sehr wichtig, da wir die Ergebnisse und Modelle ja mit Forschern teilen, um die richtigen Entscheidungen für die Forschung und Entwicklung zu treffen. Hier nutzen wir z.B. auch RShiny oder Spotfire.

Data Science Blog: Was sind Ihre größten Herausforderungen dabei?

In Deutschland ist die Nutzung von Patientendaten noch besonders schwierig, da die Daten hier, anders als beispielsweise in den USA, dem Patienten gehören. Hier müssen erst noch die notwendigen politischen und rechtlichen Rahmenbedingungen geschaffen werden. Das Konzept der individualisierten Medizin funktioniert aber nur auf Basis von großen Datenmengen. Aktuell müssen wir uns also noch um die Fragen kümmern, wo wir die Datenmengen, die wir benötigen, überhaupt herbekommen. Leider sind die Daten von Patienten, ihren Behandlungsverläufen etc. in Deutschland oft noch nicht einmal digitalisiert. Zudem sind die Daten meist fragmentiert und auch in den kommenden Jahren wird uns sicherlich noch die Frage beschäftigen, wie wir die Daten so sinnvoll erheben und sammeln können, dass wir sie auch integrieren können. Es gibt Patientendaten, die nur der Arzt erhebt. Dann gibt es vielleicht noch Daten von Fitnessarmbändern oder Smartphones, die auch nützlich wären. Das heißt, dass wir aktuell, auch intern, noch vor der Herausforderung stehen, dass wir die Daten, die wir in unseren klinischen Studien erheben, nicht ganz so einfach mit den restlichen Datenmengen zusammenbringen können – Stichwort FAIRification. Zudem reicht es nicht nur, Daten zu besitzen oder Zugriff auf Daten zu haben, auch die Datenqualität und -organisation sind entscheidend. Ich denke, es ist sehr wichtig, genau zu verstehen, um was für Daten es sich handelt, wie diese Erhoben wurden und welche (wissenschaftliche) Frage ich mit den Daten beantworten möchte. Ein gutes Verständnis der Biologie bzw. Medizin und der dazugehörigen Daten sind also für uns genauso wichtig wie das Verständnis von Methoden des Machine Learning oder der Statistik.

Data Science Blog: Wie gehen Sie dieses Problem an? Arbeiten Sie hier mit dedizierten Data Engineers? Binden Sie Ihre Partner ein, die über Daten verfügen? Freuen Sie sich auf die Vorhaben der Digitalisierung wie der digitalen Patientenakte?

Roche hat vor ein paar Jahren die Firma Flatiron aus den USA übernommen. Diese Firma bereitet Patientendaten zum Beispiel aus der Onkologie für Krankenhäuser und andere Einrichtungen digital auf und stellt sie für unsere Forschung – natürlich in anonymisierter Form – zur Verfügung. Das ist möglich, weil in den USA die Daten nicht den Patienten gehören, sondern dem, der sie erhebt und verwaltet. Zudem schaut Roche auch in anderen Ländern, welche patientenbezogenen Daten verfügbar sind und sucht dort nach Partnerschaften. In Deutschland ist der Schritt zur elektronischen Patientenakte (ePA) sicherlich der richtige, wenn auch etwas spät im internationalen Vergleich. Dennoch sind die Bestrebungen richtig und ich erlebe auch in Deutschland immer mehr Offenheit für eine Wiederverwendung der Daten, um die Forschung voranzutreiben und die Patientenversorgung zu verbessern.

Data Science Blog: Sollten wir Deutsche uns beim Datenschutz lockern, um bessere medizinische Diagnosen und Behandlungen zu erhalten? Was wäre Ihr Kompromiss-Vorschlag?

Generell finde ich Datenschutz sehr wichtig und erachte unser Datenschutzgesetz in Deutschland als sehr sinnvoll. Ich versuche aber tatsächlich auf Veranstaltungen und bei anderen Gelegenheiten Vertreter der Politik und der Krankenkassen immer wieder darauf aufmerksam zu machen, wie wichtig und wertvoll für die Gesellschaft eine Nutzung der Versorgungsdaten in der Pharmaforschung wäre. Aber bei der Lösung der Problematik kommen wir in Deutschland nur sehr langsam voran. Ich sehe es kritisch, dass viel um dieses Thema diskutiert wird und nicht einfach mal Modelle ausprobiert werden. Wenn man die Patienten fragen würde, ob sie ihre Daten für die Forschung zur Verfügung stellen möchte, würden ganz viele zustimmen. Diese Bereitschaft vorher abzufragen, wäre technisch auch möglich. Ich würde mir wünschen, dass man in kleinen Pilotprojekten mal schaut, wie wir hier mit unserem Datenschutzgesetz zu einer ähnlichen Lösung wie beispielsweise Flatiron in den USA kommen können. Ich denke auch, dass wir mehr und mehr solcher Pilotprojekte sehen werden.

Data Science Blog: Gehört die Zukunft weiterhin den Data Scientists oder eher den selbstlernenden Tools, die Analysen automatisiert für die Produkt- oder Prozessverbesserung entwickeln und durchführen?

In Bezug auf Künstliche Intelligenz (KI) gibt es ein interessantes Sprichwort: Garbage in, Garbage out. Wenn ich also keine hochqualitativen Daten in ein Machine Learning Modell reinstecke, dann wird höchstwahrscheinlich auch nichts qualitativ Hochwertiges rauskommen. Das ist immer die Illusion, die beim Gedanken an KI entsteht: Ich lass einfach mal die KI über diesen Datenwust laufen und dann wird die gute Muster erkennen und wird mir sagen, was funktioniert. Das ist aber nicht so. Ich brauche schon gute Daten, ich muss die Daten gut organisieren und gut verstehen, damit meine KI wirklich etwas Sinnvolles berechnen kann. Es reichen eben nicht irgendwelche Daten, sondern die Daten müssen auch eine hohe Qualität haben, da sie sich sonst nicht integrieren und damit auch nicht interpretieren lassen. Dennoch arbeiten wir auch mit der Vision “Data Science” daran, immer mehr zu demokratisieren, d.h. es möglichst vielen Forschern zu ermöglichen, die Daten selbst auszuwerten, oder eben gewisse Prozessschritte in der Forschung durch KI zu ersetzen. Auch hierbei ist es wichtig, genau zu verstehen, was in welchem Bereich möglich ist. Und wieder denke ich, dass die richtige Erfassung/Qualität der Daten auch hier das A und O ist und dennoch oft unterschätzt wird.

Data Science Blog: Welches Wissen und welche Erfahrung setzen Sie für Ihre Data Scientists voraus? Und nach welchen Kriterien stellen Sie Data Science Teams für Ihre Projekte zusammen?

Generell sucht Roche als Healthcare-Unternehmen Bewerber mit einem Hintergrund in Informatik und Life Sciences zum Beispiel über ein Nebenfach oder einen Studiengang wie Biotechnologie oder Bioinformatik. Das ist deswegen wichtig, weil man bei Roche in allen Projekten mit Medizinern, Biologen oder Chemikern zusammenarbeitet, deren Sprache und Prozesse man verstehen sollte. Immer wichtiger werden zudem Experten für Big Data, Datenanalyse, Machine Learning, Robotics, Automatisierung und Digitalisierung.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik oder auch der Biologie, abgeschlossen haben, was würden sie diesen jungen Damen und Herren raten, wie sie einen guten Einstieg ins Data Science bewältigen können?

Generell empfehle ich jungen Absolventen herauszufinden für welchen Bereich ihr Herz schlägt: Interessiere ich mich dafür, tief in die Biologie einzusteigen und grundlegende Prozesse zu verstehen? Möchte ich nahe am Patienten sei? Ooder ist mir wichtiger, dass ich auf möglichst große Datenmengen zugreifen kann?  Je nachdem, kann ich als Einstieg durchaus Traineeprogramme empfehlen, die es ermöglichen, in mehrere Abteilungen einer Firma Einblicke zu bekommen, oder würde eher eine Promotion empfehlen. Ich denke, das lässt sich eben nicht pauschalisieren. Für die Arbeit bei Roche ist sicherlich entscheidend, dass ich mich neben der Informatik/Data Science auch für das Thema Medizin und Biologie interessiere. Nur dann kann ich in den interdisziplinären Teams einen wertvollen Beitrag leisten und gleichzeitig auch meiner Leidenschaft folgen. Ich denke, dass das auch in anderen Branchen ähnlich ist.


Frau Bauer-Mehren ist Speaker der Predictive Analytics World Healthcare zum Thema Unlocking the Potential of FAIR Data Using AI at Roche.

The Predictive Analytics World Healthcare is the premier machine learning conference for the Healthcare Industry. Due to the corona virus crisis, this conference will be a virtual edition from 11 to 12 MAY 2020.

Looking for the ‘aha moment’: An expert’s insights on process mining

Henny Selig is a specialist in process mining, with significant expertise in the implementation of process mining solutions and supporting customers with process analysis. As a Solution Owner at Signavio, Henny is also well versed in bringing Signavio Process Intelligence online for businesses of all shapes and sizes. In this interview, Henny shares her thoughts about the challenges and opportunities of process mining. 


Read this interview in German:

Im Interview mit Henny Selig zu Process Mining: “Für den Kunden sind solche Aha-Momente toll“

 


Henny, could you give a simple explanation of the concept of process mining?

Basically, process mining is a combination of data analysis and business process management. IT systems support almost every business process, meaning they leave behind digital traces. We extrapolate all the data from the IT systems connected to a particular process, then visualize and evaluate it with the help of data science technology.

In short, process mining builds a bridge between employees, process experts and management, allowing for a data-driven and fact-based approach to business process optimization. This helps avoid thinking in siloes, as well as enabling transparent design of handovers and process steps that cross departmental boundaries within an organization.

When a business starts to analyze their process data, what are the sorts of questions they ask? Do they have at least have some expectation about what process mining can offer?

That’s a really good question! There isn’t really a single good answer to it, as it is different for different companies. For example, there was one procurement manager, and we were presenting the complete data set to him, and it turned out there was an approval at one point, but it should have been at another. He was really surprised, but we weren’t, because we sat outside the process itself and were able to take a broader view. 

We also had different questions that the company hadn’t considered, things like what was the process flow if an order amount is below 1000 euros, and how often that occurs—just questions that seem clear to an outsider but often do not occur to process owners.

So do people typically just have an idea that something is wrong, or do they generally understand there is a specific problem in one area, and they want to dive deeper? 

There are those people who know that a process is running well, but they know a particular problem pops up repeatedly. Usually, even if people say they don’t have a particular focus or question, most of them actually do because they know their area. They already have some assumptions and ideas, but it is sometimes so deep in their mind they can’t actually articulate it.

Often, if you ask people directly how they do things, it can put pressure on them, even if that’s not the intention. If this happens, people may hide things without meaning to, because they already have a feeling that the process or workflow they are describing is not perfect, and they want to avoid blame. 

The approvals example I mentioned above is my favorite because it is so simple. We had a team who all said, over and over, “We don’t approve this type of request.” However, the data said they did–the team didn’t even know. 

We then talked to the manager, who was interested in totally different ideas, like all these risks, approvals, are they happening, how many times this, how many times that — the process flow in general. Just by having this conversation, we were able to remove the mismatch between management and the team, and that is before we even optimized the actual process itself. 

So are there other common issues or mismatches that people should be aware of when beginning their process mining initiative?

The one I often return to is that not every variation that is out of line with the target model is necessarily negative. Very few processes, apart from those that run entirely automatically, actually conform 100% to the intended process model—even when the environment is ideal. For this reason, there will always be exceptions requiring a different approach. This is the challenge in projects: finding out which variations are desirable, and where to make necessary exceptions.

So would you say that data-based process analysis is a team effort?

Absolutely! In every phase of a process mining project, all sorts of project members are included. IT makes the data available and helps with the interpretation of the data. Analysts then carry out the analysis and discuss the anomalies they find with IT, the process owners, and experts from the respective departments. Sometimes there are good reasons to explain why a process is behaving differently than expected. 

In this discussion, it is incredibly helpful to document the thought process of the team with technical means, such as Signavio Process Intelligence. In this way, it is possible to break down the analysis into individual processes and to bring the right person into the discussion at the right point without losing the thread of the discussion. Then, the next colleague who picks up the topic can then see the thread of the analysis and properly classify the results.

At the very least, we can provide some starting points. Helping people reach an “aha moment” is one of the best parts of my job!

To find out more about how process mining can help you understand and optimize your business processes, visit the Signavio Process Intelligence product page. If you would like to get a group effort started in your organization right now, why not sign up for a free 30-day trial with Signavio, today.

Im Interview mit Henny Selig zu Process Mining: “Für den Kunden sind solche Aha-Momente toll“

Henny Selig ist Spezialistin für Process Mining und verfügt über umfassende Erfahrung bei der Umsetzung von Process-Mining-Lösungen und der Unterstützung von Kunden bei der Prozessanalyse. Als Solution Owner bei Signavio ist Henny auch mit der Implementierung von Signavio Process Intelligence bei Unternehmen jeglicher Größe bestens vertraut. In diesem Interview geht Henny auf die Herausforderungen und Chancen von Process Mining ein. 


Read this interview in English:

Looking for the ‘aha moment’: An expert’s insights on process mining

 


Henny, wie würdest du das Konzept „Process Mining“ erklären?

Process Mining ist eine Kombination aus Datenanalyse und Business Process Management. Nahezu jeder Geschäftsprozess stützt sich auf IT-Systeme und hinterlässt digitale Spuren. Aus diesen IT-Systemen extrahieren wir alle Daten, die einen bestimmten Prozess betreffen, visualisieren sie und werten diese dann mithilfe von Data Science-Technologien aus.

Kurz gesagt: Process Mining bildet eine wichtige Brücke zwischen Fachabteilungen, Prozessverantwortlichen und dem Management. Damit sind datengestützte und faktenbasierte Diskussionen zur Optimierung von Geschäftsprozessen möglich. So lassen sich vor allem Übergaben und abteilungsübergreifende Schritte transparent gestalten und Silo-Denken vermeiden.

Welche Fragen beschäftigen Unternehmen, die mit Process Mining beginnen? Gibt es bestimmte Erwartungen, die durch den Einsatz von Process Mining erfüllt werden sollen?

Jedes Unternehmen ist anders und hat unterschiedliche Fragen und Erwartungen. Ein Beispiel: Ein Beschaffungsmanager, mit dem ich vor Kurzem zusammengearbeitet habe, war von den analysierten Daten überrascht. Denn es stellte sich heraus, dass zu einem bestimmten Zeitpunkt im Prozess eine Genehmigung vorlag, die eigentlich in einem anderen Moment erfolgen sollte. Für den Kunden sind solche Aha-Momente toll. Sie treten ganz automatisch auf, wenn man eine objektive und transparente Sicht auf den jeweiligen Prozess hat. 

Es wurden auch Fragen von uns aufgeworfen, die das Unternehmen bisher nicht berücksichtigt hatte, z. B. wie sich der Prozessablauf bei einem Bestellbetrag unter 1.000 Euro gestaltet und wie oft dies vorkommt. Fragen, die einem Außenstehenden klar erscheinen, die sich Prozessverantwortliche aber oft nicht stellen.

Ahnen Unternehmen häufig nur, dass ein Prozess nicht wie gewünscht läuft? Oder wissen die Meisten um spezifische Probleme in einem Bereich? 

Es gibt Unternehmen, die wissen, dass ein Prozess prinzipiell gut läuft, ein bestimmtes Problem aber immer wieder auftritt. Die involvierten Mitarbeiter sagen in diesen Fällen häufig, dass sie kein bestimmtes Anliegen oder keine konkrete Frage haben. Das stimmt natürlich nicht: Bei genauerem Nachfragen äußern sie dann erste Vermutungen oder Ideen.

Wenn man Mitarbeiter eines Unternehmens direkt fragt, wie sie bestimmte Dinge erledigen, sorgt das oft völlig unbeabsichtigt für Stress. Viele halten zunächst Informationen zurück, weil sie das Gefühl haben, dass der von ihnen beschriebene Prozess oder Workflow nicht perfekt ist. So wollen sie Vorwürfe vermeiden. 

Das oben erwähnte Genehmigungsbeispiel ist mein Favorit, weil es so eindeutig ist. Im betreffenden Unternehmen gab es zum Beispiel ein Team, das immer wieder sagte: „Diese Art von Anträgen genehmigen wir nicht.“ Die Daten sagten jedoch etwas ganz anderes – dem Team war das überhaupt nicht bewusst. 

Wir sprachen dann mit dem Manager. Dieser hatte sich bisher über ganz andere Dinge Gedanken gemacht wie etwa Risiken, den Prozessfluss im Allgemeinen und vieles andere. Nur allein durch dieses Gespräch konnten wir schon die Unstimmigkeiten zwischen dem Management und dem Team beseitigen, noch bevor der eigentliche Prozess selbst optimiert wurde. 

Gibt es noch andere Aspekte, die Unternehmen beachten sollten, wenn sie mit ihrer Process Mining-Initiative beginnen?

Nicht jede Varianz jenseits des Soll-Modells eines Prozesses ist automatisch negativ. Die wenigsten Prozesse, die nicht rein automatisiert ablaufen, sind zu 100% prozesskonform – selbst wenn die Rahmenbedingungen ideal sind. Daher wird es immer Ausnahmen geben, die einen anderen Ansatz erfordern. Und genau das ist die Herausforderung im Projekt: Man muss herausfinden, welche Variationen gewünscht und wo notwendige Ausnahmen zu treffen sind.

Würdest du sagen, dass eine datenbasierte Prozessanalyse eine Teamleistung ist?

Absolut! In jeder Phase eines Process Mining-Projekts sind ganz unterschiedliche Projektmitglieder involviert. Die IT stellt die Daten bereit und hilft bei deren Interpretation. Analysten führen dann die Prozessanalyse durch und diskutieren die gefundenen Auffälligkeiten mit der IT, den Prozessverantwortlichen und den Experten aus den Fachabteilungen. Denn manchmal gibt es gute Gründe für ein bestimmtes Prozessverhalten, das ohne das Wissen der Experten nicht erklärbar ist. 

Bei der Diskussion hilft es natürlich ungemein, den Gedankengang des Teams mit technischen Mitteln wie Signavio Process Intelligence zu dokumentieren. Auf diese Weise ist es möglich, die Analyse auf einzelne Prozesse herunterzubrechen und die richtige Person an der richtigen Stelle in die Diskussion einzubeziehen. So verliert man auch nicht den roten Faden. Und der nächste Kollege, der sich mit dem Thema beschäftigt, kann die Analyse nachvollziehen und das Ergebnis richtig einordnen.

Weitere Informationen dazu, wie Sie mit Process Mining Ihre Geschäftsprozesse besser verstehen und optimieren können, finden Sie auf der Produktseite von Signavio Process Intelligence. Oder melden Sie sich noch heute für eine kostenlose  bei Signavio an und legen Sie direkt los.

Interview: Data Science im Einzelhandel

Interview mit Dr. Andreas Warntjen über den Weg zum daten-getriebenen Unternehmen – Data Science im Einzelhandel

Zur Einführung der Person:

Dr. Andreas Warntjen arbeitet seit Juli 2016 bei der Thalia Bücher GmbH, aktuell als Senior Manager Advanced and Predictive Analytics. Davor hat Herr Dr. Warntjen viele Jahre als Sozialwissenschaftler an ausländischen Universitäten geforscht. Er hat selbst langjährige Erfahrung in der statistischen Datenanalyse mit Stata, SPSS und R und arbeitet im Moment mit der in-memory Datenbank SAP HANA sowie Python und SAP’s Automated Predictive Library (APL).


Data Science Blog: Herr Dr. Warntjen, welche Bedeutung hat die Data Science für Sie und Ihren Bereich bei Thalia? Und wie ordnen Sie die verwandten Begriffe wie Predictive Analytics und Advanced Analytics im Kontext der geschäftlichen Entscheidungsfindung ein?

Data Science spielt bei Thalia in unterschiedlichsten Bereichen eine zunehmend größer werdende Rolle. Neben den klassischen Themen wie Betrugserkennung und Absatzprognosen ist für Thalia als Buchhändler Text Mining von zentraler Bedeutung. Das größte Potential liegt aus meiner Sicht darin, besser auf die Wünsche unserer  Kunden eingehen zu können.

Bei Thalia werden in schneller Taktung Innovationen eingeführt. Sei es die Filialabholung, bei der online bestellte Bücher innerhalb von 2 Stunden in einer Buchhandlung abgeholt werden können. Oder das Beratungs- und Bezahl-Tablet für die Mitarbeiter vor Ort. Oder Innovationen im Webshop. Bei der Beurteilung, ob diese Neuerungen tatsächlich Kundenwünsche effektiv und effizient erfüllen, kann Advanced Analytics helfen. Im Gegensatz zur klassischen Business Intelligence – die weiterhin eine wichtige Rolle bei der Entscheidungsfindung im Unternehmen spielen wird – berücksichtigt Advanced Analytics stärker die Vielfalt des Kundenverhaltens und der unterschiedlichen Situationen in den Filialen. Verfahren wie etwa multivariate Regressionsanalyse, Entscheidungsbäume und statistische Hypothesentest können die in Unternehmen etablierte Analyse von deskriptiven Statistiken – etwa der Vergleich von Umsatzzahlen zwischen Pilot- und Vergleichsfilialen mit Pivot-Tabellen – ergänzen.

Predictive Analytics kann helfen verschiedenste Geschäftsprozesse individuell für Kunden zu gestalten. Generell können auf Grundlage von automatischen, in Echtzeit erstellten Vorhersagen Prozesse im Unternehmen optimiert werden. Außerdem kann Predictive Analytics Mitarbeiter bei wiederkehrenden Tätigkeiten unterstützen, beispielsweise in der Disposition.

Data Science Blog: Welche Fähigkeiten benötigen gute Data Scientists denn wirklich zur Geschäftsoptimierung? Wie wichtig ist das Domänenwissen?

Die wichtigsten Eigenschaften eines Data Scientist sind große Neugierde, eine sehr analytische Denkweise und eine exzellente Kommunikationsfähigkeit. Um mit Data Science erfolgreich Geschäftsprozesse zu optimieren, benötigt man ein breites Wissensspektrum: vom Geschäftsprozess über das IT-Datenmodell und das Know-how zur Entwicklung von Vorhersagemodellen bis hin zur Prozessintegration. Das ist nur im Team machbar. Domänenwissen spielt dabei eine wichtige Rolle, weshalb es für den Data Scientist essentiell ist sich mit den Prozessverantwortlichen und Business Analysten auszutauschen.

Data Science Blog: Sie bearbeiten Anwendungsfälle für den Handel. Können sich Branchen die Anwendungsfälle gegenseitig abschauen oder sollte jede Branche auf sich selbst fokussiert bleiben?

Es gibt sowohl Anwendungsfälle, die für den Einzelhandel und andere Branchen gleichermaßen relevant sind, als auch Themen, die für Thalia als Buchhändler besonders wichtig sind.

Die Individualisierung im eCommerce ist ein branchenübergreifendes Thema. Analytisches CRM, etwa das zielsichere Ausspielen von Kampagnen oder eine passgenaue Kundensegmentierung, ist für eine Versicherung oder Bank genauso wichtig wie für den Baumarkt oder den Buchhändler. Die Warenkorbanalyse mit statistischen Algorithmen ist ein klassisches Data Mining-Thema, das für den Einzelhandel generell interessant ist.

Natürlich muss man sich vorab über die Besonderheiten des jeweiligen Geschäftsumfeldes Gedanken machen, aber prinzipiell kann man von Unternehmen oder Branchen lernen, die Advanced und Predictive Analytics schon seit Jahren oder Jahrzehnten nutzen. Die passende IT-Infrastruktur und das entsprechende Interesse vom Fachbereich vorausgesetzt, eignen sich diese Anwendungsfälle damit besonders für den Einstieg in Advanced und Predictive Analytics – auch für Mittelständler.

Das Kerngeschäft des Buchhändlers  Thalia ist es, Kunden mit für sie interessanten Geschichten zusammen zu bringen. Die Geschichten selber bestehen aus Text. Die Produktbeschreibungen („Klappentexte“) und -besprechungen liegen in Textform vor. Und Kundenfeedback – sei es auf Thalia.de oder in sozialen Medien – erreicht uns als Text. Erkenntnisse aus Texten abzuleiten (Text Mining) ist deshalb für Thalia wichtiger als für andere Einzelhändler.

Data Science Blog: Welche Algorithmen und Tools verwenden Sie für Ihre Anwendungsfälle? Womit machen Sie eher gute, womit eher schlechte Erfahrungen?

Die Palette bei Thalia reicht von A wie Automated Machine Learning bis Z wie Zeitreihenanalyse. Ich selber arbeite aktuell mit verschiedenen Klassifikationsalgorithmen (z.B., regularisierte logistische Regression,  Random Forest, XGB, Naive Bayes, SAP’s Automated Predictive Library). Im Bereich Text Mining beschäftigen wir uns im Moment unter anderem mit Topic Models und Word2Vec.

Sowohl Algorithmus als auch die Software muss zum Verwendungszweck passen. Bei der Auswahl des Algorithmus gibt es häufig einen Trade-off zwischen Interpretierbarkeit und Prognosegüte. Das muss zusammen mit der Fachabteilung je nach Anwendungsfall abgewogen werden.

Mit flexibler Open Source-Software wie etwa R oder Python lassen sich schnell Proof-of-Concept-Projekte verwirklichen. Für die Integration in bestehende Prozesse sind manchmal kommerzielle Software-Lösungen besser.

Data Science Blog: Soviel zum kurz- und mittelfristigen Start in die Datennutzung. Wie sieht es für die langfristige Verankerung von Advanced/Predictive Analytics im Unternehmen aus? Was muss hier im Rahmen der IT-Infrastruktur bedacht und verankert werden?

Ohne Daten keine Datenanalyse. Je flexibler man auf unterschiedliche Daten im Unternehmen zugreifen kann, desto höher die Innovationsgeschwindigkeit durch Advanced/Predictive Analytics. „Datensilos“ abzubauen bzw. zu vermeiden ist also ein sehr wichtiges Thema. Hohe Datenqualität und die umfassende Dokumentation von Daten sind auch essentiell. Das gilt natürlich nicht nur für Advanced und Predictive Analytics sondern auch für Business Intelligence.

Die langfristige Verankerung von Advanced und Predictive Analytics im Unternehmen verlangt den Aufbau und die kontinuierliche Weiterentwicklung von Infrastruktur in Form von Hardware, Software, Kompetenzen und Wissen, sowie Organisationsformen und Prozessen. Wertschöpfung durch Advanced bzw. Predictive Analytics erfordert das konstruktive Zusammenspiel von Domänenexpertise aus der Fachabteilung, Wissen über Datenstrukturen und -modellen  aus der IT-Abteilung bzw. BI/BW-Systemen und tiefem statistischem Know-how. Nur durch die Zusammenarbeit verschiedener Unternehmensbereiche entstehen Erfolge für das gesamte Unternehmen.

Data Science Blog: Auch organisatorisch sollte langfristig sicherlich einiges bedacht werden. Wann sollten Projekte in den jeweiligen Fachbereichen direkt umgesetzt werden? Wann vielleicht besser in einer zentralen Daten-Abteilung?

Das hängt von einer Reihe von Faktoren ab. Bei hochgradig spezialisiertem Know-how, von dem unterschiedliche Fachbereiche profitieren können, kann es Synergie-Effekte geben, wenn dies zentral organisiert ist. Eine zentrale Einheit kann vielleicht auch Innovationen breiter in ein Unternehmen tragen. Wenn bestimmte Anwendungsszenarien von Advanced/Predictive Analytics für eine Fachabteilung hingegen eine zentrale Rolle spielen oder sie sich ein einem sehr schnelllebigen Umfeld bewegt, dann wäre eine fachliche und organisatorische Verankerung im Fachbereich wichtig.

Interview – Customer Data Platform, more than CRM 2.0?

Interview with David M. Raab from the CDP Institute

David M. Raab is as a consultant specialized in marketing software and service vendor selection, marketing analytics and marketing technology assessment. Furthermore he is the founder of the Customer Data Platform Institute which is a vendor-neutral educational project to help marketers build a unified customer view that is available to all of their company systems.

Furthermore he is a Keynote-Speaker for the Predictive Analytics World Event 2019 in Berlin.

Data Science Blog: Mr. Raab, what exactly is a Customer Data Platform (CDP)? And where is the need for it?

The CDP Institute defines a Customer Data Platform as „packaged software that builds a unified, persistent customer database that is accessible by other systems“.  In plainer language, a CDP assembles customer data from all sources, combines it into customer profiles, and makes the profiles available for any use.  It’s important because customer data is collected in so many different systems today and must be unified to give customers the experience they expect.

Data Science Blog: Is it something like a CRM System 2.0? What Use Cases can be realized by a Customer Data Platform?

CRM systems are used to interact directly with customers, usually by telephone or in the field.  They work almost exclusively with data that is entered during those interactions.  This gives a very limited view of the customer since interactions through other channels such as order processing or Web sites are not included.  In fact, one common use case for CDP is to give CRM users a view of all customer interactions, typically by opening a window into the CDP database without needing to import the data into the CRM.  There are many other use cases for unified data, including customer segmentation, journey analysis, and personalization.  Anything that requires sharing data across different systems is a CDP use case.

Data Science Blog: When does a CDP make sense for a company? It is more relevant for retail and financial companies than for industrial companies, isn´t it?

CDP has been adopted most widely in retail and online media, where each customer has many interactions and there are many products to choose from.  This is a combination that can make good use of predictive modeling, which benefits greatly from having more complete data.  Financial services was slower to adopt, probably because they have fewer products but also because they already had pretty good customer data systems.  B2B has also been slow to adopt because so much of their customer relationship is handled by sales people.  We’ve more recently been seeing growth in additional sectors such as travel, healthcare, and education.  Those involve fewer transactions than retail but also rely on building strong customer relationships based on good data.

Data Science Blog: There are several providers for CDPs. Adobe, Tealium, Emarsys or Dynamic Yield, just to name some of them. Do they differ a lot between each other?

Yes they do.  All CDPs build the customer profiles I mentioned.  But some do more things, such as predictive modeling, message selection, and, increasingly, message delivery.  Of course they also vary in the industries they specialize in, regions they support, size of clients they work with, and many technical details.  This makes it hard to buy a CDP but also means buyers are more likely to find a system that fits their needs.

Data Science Blog: How established is the concept of the CDP in Europe in general? And how in comparison with the United States?

CDP is becoming more familiar in Europe but is not as well understood as in the U.S.  The European market spent a lot of money on Data Management Platforms (DMPs) which promised to do much of what a CDP does but were not able to because they do not store the level of detail that a CDP does.  Many DMPs also don’t work with personally identifiable data because the DMPs primarily support Web advertising, where many customers are anonymous.  The failures of DMPs have harmed CDPs because they have made buyers skeptical that any system can meet their needs, having already failed once.  But we are overcoming this as the market becomes better educated and more success stories are available.  What’s the same in Europe and the U.S. is that marketers face the same needs.  This will push European marketers towards CDPs as the best solution in many cases.

Data Science Blog: What are coming trends? What will be the main topic 2020?

We see many CDPs with broader functions for marketing execution: campaign management, personalization, and message delivery in particular.  This is because marketers would like to buy as few systems as possible, so they want broader scope in each systems.  We’re seeing expansion into new industries such as financial services, travel, telecommunications, healthcare, and education.  Perhaps most interesting will be the entry of Adobe, Salesforce, and Oracle, who have all promised CDP products late this year or early next year.  That will encourage many more people to consider buying CDPs.  We expect that market will expand quite rapidly, so current CDP vendors will be able to grow even as Adobe, Salesforce, and Oracle make new CDP sales.


You want to get in touch with Daniel M. Raab and understand more about the concept of a CDP? Meet him at the Predictive Analytics World 18th and 19th November 2019 in Berlin, Germany. As a Keynote-Speaker, he will introduce the concept of a Customer Data Platform in the light of Predictive Analytics. Click here to see the agenda of the event.

 


 

Interview – Künstliche Intelligenz im Unternehmen & der Mangel an IT-Fachkräften

Interview mit Sebastian van der Meer über den Einsatz von künstlicher Intelligenz im Unternehmen und dem Mangel an IT-Fachkräften

Sebastian van der Meer

Sebastian van der Meer ist Managing Partner der lexoro Gruppe, einem Technologie- und Beratungsunternehmen in den Zukunftsmärkten: Data-Science, Machine-Learning, Big-Data, Robotics und DevOps. Das Leistungsspektrum ist vielschichtig. Sie vermitteln Top-Experten an Unternehmen (Perm & IT-Contracting), arbeiten mit eigenen Teams für innovative Unternehmen an spannenden IT-Projekten und entwickeln zugleich eigene Produkte und Start-Ups in Zukunftsmärkten. Dabei immer im Mittelpunkt: Menschen und deren Verbindung mit exzellenter Technologiekompetenz.

Data Science Blog: Herr van der Meer, wenn man Google News mit den richtigen Stichwörtern abruft, scheinen die Themen Künstliche Intelligenz, Data Science und Machine Learning bei vielen Unternehmen bereits angekommen zu sein – Ist das so?

Das ist eine sehr gute Frage! Weltweit, vor allem in der USA und China, sind diese bereits „angekommen“, wenn man es so formulieren kann. Allerdings sind wir in Europa leider weit hinterher. Dazu gibt es ja bereits viele Studien und Umfragen, die dies beweisen. Vereinzelt gibt es große mittelständische- und Konzernunternehmen in Deutschland, die bereits eigene Einheiten und Teams in diesen Bereich und auch neue Geschäftsbereiche dadurch ermöglicht haben. Hier gibt es bereits tolle Beispiele, was mit K.I. erreichbar ist. Vor allem die Branchen Versicherungs- und Finanzdienstleistungen, Pharma/Life Science und Automotive sind den anderen in Deutschland etwas voraus.

Data Science Blog: Wird das Thema Data Science oder Machine Learning früher oder später für jedes Unternehmen relevant sein? Muss jedes Unternehmen sich mit K.I. befassen?

Data Science, Machine Learning, künstliche Intelligenz – das sind mehr als bloße Hype-Begriffe und entfernte Zukunftsmusik! Wir stecken mitten in massiven strukturellen Veränderungen. Die Digitalisierungswelle der vergangenen Jahre war nur der Anfang. Jede Branche ist betroffen. Schnell kann ein Gefühl von Bedrohung und Angst vor dem Unbekannten aufkommen. Tatsächlich liegen aber nie zuvor dagewesene Chancen und Potentiale vor unseren Füßen. Die Herausforderung ist es diese zu erkennen und dann die notwendigen Veränderungen umzusetzen. Daher sind wir der Meinung, dass jedes Unternehmen sich damit befassen muss und soll, wenn es in der Zukunft noch existieren will.

Wir unterstützen Unternehmen dabei ihre individuellen Herausforderungen, Hürden und Möglichkeiten zu identifizieren, die der große Hype „künstliche Intelligenz“ mit sich bringt. Hier geht es darum genau zu definieren, welche KI-Optionen überhaupt für das Unternehmen existieren. Mit Use-Cases zeigen wir, welchen Mehrwert sie dem Unternehmen bieten. Wenn die K.I. Strategie festgelegt ist, unterstützen wir bei der technischen Implementierung und definieren und rekrutieren bei Bedarf die relevanten Mitarbeiter.

Data Science Blog: Die Politik strebt stets nach Vollbeschäftigung. Die K.I. scheint diesem Leitziel entgegen gerichtet zu sein. Glauben Sie hier werden vor allem Ängste geschürt oder sind die Auswirkungen auf den Arbeitsmarkt durch das Vordringen von K.I. wirklich so gravierend?

Zu diesem Thema gibt es bereits viele Meinungen und Studien, die veröffentlicht worden sind. Eine interessante Studie hat vorhergesagt, dass in den nächsten 5 Jahren, weltweit 1.3 Millionen Stellen/Berufe durch K.I. wegfallen werden. Dafür aber in den gleichen Zeitnahmen 1.7 Millionen neue Stellen und Berufe entstehen werden. Hier gehen die Meinungen aber ganz klar auseinander. Die Einen sehen die Chancen, die Möglichkeiten und die Anderen sehen die Angst oder das Ungewisse. Eins steht fest, der Arbeitsmarkt wird sich in den nächsten 5 bis 10 Jahren komplett verändern und anpassen. Viele Berufe werden wegfallen, dafür werden aber viele neue Berufe hinzukommen. Vor einigen Jahren gab es noch keinen „Data Scientist“ Beruf und jetzt ist es einer der best bezahltesten IT Stellen in Unternehmen. Allein das zeigt doch auch, welche Chancen es in der Zukunft geben wird.

Data Science Blog: Wie sieht der Arbeitsmarkt in den Bereichen Data Science, Machine Learning und Künstliche Intelligenz aus?

Der Markt ist sehr intransparent. Jeder definiert einen Data Scientist anders. Zudem wird sich der Beruf und seine Anforderungen aufgrund des technischen Fortschritts stetig verändern. Der heutige Data Scientist wird sicher nicht der gleiche Data Scientist in 5 oder 10 Jahren sein. Die Anforderungen sind enorm hoch und die Konkurrenz, der sogenannte „War of Talents“ ist auch in Deutschland angekommen. Der Anspruch an Veränderungsbereitschaft und technisch stets up to date und versiert zu sein, ist extrem hoch. Das gleiche gilt auch für die anderen K.I. Berufe von heute, wie z.B. den Computer Vision Engineer, der Robotics Spezialist oder den DevOps Engineer.

Data Science Blog: Worauf sollten Unternehmen vor, während und nach der Einstellung von Data Scientists achten?

Das Allerwichtigste ist der Anfang. Es sollte ganz klar definiert sein, warum die Person gesucht wird, was die Aufgaben sind und welche Ergebnisse sich das Unternehmen mit der Einstellung erwartet bzw. erhofft. Oftmals hören wir von Unternehmen, dass sie Spezialisten in dem Bereich Data Science / Machine Learning suchen und große Anforderungen haben, aber diese gar nicht umgesetzt werden können, weil z.B. die Datengrundlage im Unternehmen fehlt. Nur 5% der Data Scientists in unserem Netzwerk sind der Ansicht, dass vorhandene Daten in ihrem Unternehmen bereits optimal verwertet werden. Der Data Scientist sollte schnell ins Unternehmen integriert werde um schnellstmöglich Ergebnisse erzielen zu können. Um die wirklich guten Leute für sich zu gewinnen, muss ein Unternehmen aber auch bereit sein finanziell tiefer in die Tasche zu greifen. Außerdem müssen die Unternehmen den top Experten ein technisch attraktives Umfeld bieten, daher sollte auch die Unternehmen stets up-to-date sein mit der heutigen Technologie.

Data Science Blog: Was macht einen guten Data Scientist eigentlich aus?

Ein guter Data Scientist sollte in folgenden Bereichen sehr gut aufgestellt sein: Präsentations- und Kommunikationsfähigkeiten, Machine Learning Kenntnisse, Programmiersprachen und ein allgemeines Business-Verständnis. Er sollte sich stets weiterentwickeln und von den Trends up to date sein. Auf relevanten Blogs, wie dieser Data Science Blog, aktiv sein und sich auf Messen/Meetups etc bekannt machen.

Außerdem sollte er sich mit uns in Verbindung setzen. Denn ein weiterer, wie wir finden, sehr wichtiger Punkt, ist es sich gut verkaufen zu können. Hierzu haben wir uns in dem letzten Jahr sehr viel Gedanken gemacht und auch Studien durchgeführt. Wir wollen es jedem K.I. -Experten ermöglichen einen eigenen Fingerabdruck zu haben. Bei uns ist dies als der SkillPrint bekannt. Hierfür haben wir eine holistische Darstellung entwickelt, die jeden Kandidaten einen individuellen Fingerabdruck seiner Kompetenzen abbildet. Hierfür durchlaufen die Kandidaten einen Online-Test, der von uns mit top K.I. Experten entwickelt wurde. Dieser bildet folgendes ab: Methoden Expertise, Applied Data Science Erfahrung, Branchen know-how, Technology & Tools und Business knowledge. Und die immer im Detail in 3 Ebenen.

Der darauf entstehende SkillPrint/Fingerprint ist ein Qualitätssigel für den Experten und damit auch für das Unternehmen, das den Experten einstellt.

Interesse an einem Austausch zu verschiedenen Karriereperspektiven im Bereich Data Science/ Machine Learning? Dann registrieren Sie sich direkt auf dem lexoro Talent Check-In und ein lexoro-Berater wird sich bei Ihnen melden.