6 Faktoren, wie Process Mining Projekte zum Erfolg werden

Zuerst wollte ich diesen Artikel mit “6 Gründe, warum Process Mining Projekt scheitern” betiteln, das würde dann aber doch etwas zu negativ klingen. Kein Process Mining Projekt muss scheitern oder überhaupt in Verzögerungen geraten, denn das lässt sich mit etwas Erfahrung und der richtigen Einstellung zum Projekt immer verhindern.

Process Mining - Process Flow ChartNach dutzenden Process Mining Projekten mit unterschiedlichen Rahmenbedingungen gebe ich hier nun sechs handfeste Hinweise, wie Process Mining Projekte generell zum Erfolg werden:

1. Richtige Erwartungshaltung setzen und kommunizieren

Dieser Punkt mag banal klingen, das ist jedoch nicht der Fall. Ich habe schon einige Process Mining Projekte gesehen, die deswegen gescheitert sind, weil dem Vorstand oder anderen Entscheidern gegenüber falsche Versprechungen abgegeben wurden. Tatsächlich werden Process Mining Projekte oft mit ambitionierten Zielen gestartet, wie dem Herabsenken von Prozesskosten um konkrete 10% oder dem Reduzieren der Durchlaufzeit eines bestimmten Prozesses um 20%. Es sei den Entscheidern nicht zu verübeln, dass Budgets gestrichen und Projekte eingestampft werden, wenn diese konkreten Versprechen nicht realisiert werden können.

Dabei können exakt diese Ziele oftmals doch erreicht werden, nur nicht gleich bei den ersten Projektiterationen, denn oft fehlen Datenpunkte, die wichtige Prozessaktivitäten in operativen Prozessketten dokumentieren. Das Event Log kann anfangs – gerade für exotischere Prozesse in weniger verbreiteten IT-Systemen – oft noch nicht sofort vollständig erstellt werden.

Aber eben genau diese Lücken in der Prozessdatenerfassung sind ein “Finding”, denn sie zeigen erst auf, an welchen Stellen es blinde Flecken in der Daten- und Prozesstransparenz noch gibt. Somit ist im Process Mining auch der Weg der datenbasierten Prozesstransparenz ein oder sogar DAS große Ziel.

Konkretes Beispiel: Eine Krankenversicherung wollte die Prozesse der Reha-Bewilligung für ihre Versicherte analysieren. Unter Einsatz eines umfangreichen Process Mining Tools sollten die Prozesse tiefgehend analysiert und unnötige Prozessschleifen identifizieren, aber auch den Prozess abkürzen, indem Ausschlusspunkte frühzeitig im Prozess entdeckt werden. Das war das Versprechen an den Vorstand, der das Budget einfror, auf Grund nicht erreichter Ziele.

In der Tat gab es bei der Rekonstruktion der Prozesse aus den Legacy-Systemen, die über Jahrzehnte von der IT der Krankenkasse selbst entwickelt wurden, viele Lücken in den Daten und somit blinde Flecken in der Prozessen. Die Aufdeckung aber genau dieser Lücken führt dazu, dass diese geschlossen werden können und die vollständige Transparenz über Daten damit erst hergestellt wird. Erst dann, im zweiten Schritt, können die Prozesse ausführlich genug auf Optimierungspotenziale untersucht werden.

Process Mining nicht zu betreiben, weil die Prozesse nicht lückenlos getrackt werden, ist im Grunde unterlassene Hilfeleistung gegenüber des Unternehmens.

2. Process Mining als Methode, nicht als Tool verstehen

Viele Process Mining Projekte drehen sich vor allem um die Auswahl und die Einführung der richtigen Process Mining Tools. Auf das richtige Tool zu setzen, ist natürlich ein wichtiger Aspekt im Process Mining Projekt. Abhängig davon, ob es sich beim Vorhaben der Prozessanalyse um eine einmalige Angelegenheit oder ein tägliches Monitoring von Prozessen handelt, kommen unterschiedliche Tools in die Vorauswahl. Auch ob beispielsweise bereits ein BI-System etabliert ist und ob ein ausgeklügeltes Berechtigungskonzept für die Prozessanalysen notwendig ist, spielen für die Auswahl eine Rolle, sowie viele weitere Faktoren.

Dennoch sollte nicht vergessen werden, dass Process Mining in erster Linie kein Tool, sondern eine Analysemethodik ist, bei der es im ersten Abschnitt um die Rekonstruktion der Prozesse aus operativen IT-Systemen in ein resultierendes Prozessprotokoell (Event Log) geht, im zweiten Schritt um eine (im Kern) Graphenanalyse zur Visualisierung der Prozessflüsse mit weiteren Analyse-/Reporting-Elementen. Wird diese Perspektive auf Process Mining nicht aus den Augen verloren, können Unternehmen viele Kosten sparen, denn es erlaubt die Konzentration auf lösungsorientierte Konzepte.

Konkretes Beispiel: Ein Unternehmen plante die Einführung von Process Mining über einen marktführenden Tool-Anbieter. Nahezu alle Ressourcen wurden für die Tool-Einführung allokiert, das eigentliche Vorhaben schien rein in der Tool-Einführung aufgehen zu müssen, bis Projektanforderungen sogar zu Gunsten des auserwählten Tools angepasst wurden, um es realisieren zu können.
Zudem kann das Unternehmen noch vor der umfangreichen Tool-Einführung, erste Schritte oder Zumindest erste Machbarkeitstests mit einem günstigeren Tool durchführen, oder sogar gänzlich kostenlos z. B. mit PM4Py (Python Package für Process Mining).

Oftmals sind die Tools der Marktführer auf Grund der Preismodelle schädlich für die Durchdringung von Process Mining im Unternehmen, denn nicht alle Abteilungen verfügen über die notwendigen Budgets und gerade experimentelle Projekte finden keinen Sponsor. Umso wichtiger ist es, diese Analysetechnik als Methodik zu verstehen, die auch mit einem Tool-Mix funktionieren kann. Ich kenne mehrere Unternehmen, die aus verschiedenen Gründen nicht ein, nicht zwei, sondern gleich mehrere Tools im Unternehmen im Einsatz haben.

3. Auf Unabhängigkeit und Wiederverwendbarkeit setzen

Wie zuvor bereits erwähnt, kann für ein Unternehmen ein Mix aus mehreren Tools infrage kommen und eigentlich sollte dieser Punkt sich um die richtige Tool-Auswahl drehen. Der Markt für Process Mining Software Tools in einem turbulenten Umfeld, die Tools, Funktionsumfänge und Konditionen ändern sich häufig und sind noch nicht vollends ausgereift. Viele der höherpreisigen Process Mining Tools wollen die Erstellung des Event Logs übernehmen und setzen dabei meistens auf vorgefertigte SQL-Skripte, die in der Plattform (also dem Tool) laufen und dort an kundenindividuelle Prozesse (z. B. durch ERP-Customizing) angepasst werden können.

Wie bereits erwähnt, besteht das Verfahren für Process Mining aus zwei Abschnitten, der erste ist die Erstellung des Event Logs, der zweite die eigentliche Analyse im Process Mining Tool, in welches das Event Log geladen wird. Soll das Tool auch den ersten Abschnitt übernehmen, steckt viel unternehmensindividuelles Prozess-Know-How im Tool, welches nicht für andere Tools verwendet werden kann. Es entsteht eine Abhängigkeit vom Tool, eine Migration zu einem anderen Tool wird schwieriger.

Konkretes Beispiel: Ein Unternehmen starten einen Proof of Concept für die Einführung eines Process Mining Tools, dabei wird ein Budget i.H.v. hundertausenden bereit gestellt, um drei Tools von unterschiedlichen Software-Herstellern gegeneinander antreten zu lassen. Die Tools sollen jeweils eine Gesamtlösung darstellen und Process Mining komplett liefern können, inklusive Event Logs.

Das Unternehmen könnte sich den Proof of Concept zum überwiegenden Teil sparen, wenn der erste Abschnitt des Process Minings – die Erstellung der Event Logs – vom Unternehmen selbst durchgeführt werden würde. Die Tools der Anbieter würden dann nur noch der eigentlichen Analyse der Event Logs dienen, die Anforderungen verringern sich und die Tools werden austauschbarer.

Unternehmen können Event Logs selbst herstellen und in ein Data Warehouse speisen, die dann alle Process Mining Tools mit Prozessdaten versorgen können. Die investierten Aufwände in Process Mining würden somit nachhaltiger (weil länger nutzbar) werden und die Abhängigkeit von bestimmter Software würde sich auf ein Minimum reduzieren, wir riskieren keinen neuen Aufwand für Migration von einem Anbieter zum nächsten. Übrigens können die Event Logs dann auch in andere Tools z. B. für Business Intelligence (BI) geladen und anderweitig analysiert werden.

4. Den richtigen Fokus setzen

Für Process Mining sollte nicht nur im Generellen eine realistische Erwartungshaltung kommuniziert werden, sondern auch im Speziellen, durch Selektion der besten Prozesse für den Start der Process Mining Vorhaben. Auf den ersten Blick sind das sicherlich die Prozesse, die aus Führungssicht als besonders kritisch betrachtet werden, für manche Unternehmen mögen das besondere Prozesse der Logistik sein, der Wareneinkauf bzw. die Materialbereitstellung, bei anderen Unternehmen vielleicht bestimmte Verwaltungs- oder Genehmigungsprozesse. Es sind meistens Prozesse, die entweder eine besondere Kostenbedeutung für das Unternehmen haben oder für die Kundenbindung wichtig sind. Da ist es verständlich, dass erste Projekte sich exakt diesen Prozessen widmen.

Konkretes Beispiel: Ein Unternehmen der Werkzeugmaschinen-Branche plant einen erstmaligen Einsatz von Process Mining. Der für das Unternehmen besonders kritische Prozess ist die Fertigung und Montage von Maschinen, denn hier liegen die größten Potenziale verborgen. Das Vorhaben gerät jedoch schnell ins Stocken, denn die Erhebung der Daten nicht nur aus ERP- und MES-Systemen, sondern auch von Machinen und Arbeitsplätzen erweist sich als zeitaufwändig.

Das Unternehmen startet eine zweite Kampagne zur Untersuchung eines Einkaufsprozesses, das zwar geringere Potenziale bietet, jedoch schneller und reibungsloser durchführbar ist. Das Projekt wird zum Erfolg und motiviert die Geschäftsführung, mehr Aufwände für Process Mining auch für schwieriger zu untersuchende Prozesse freizugeben.

Sofern Process Mining noch nicht im Unternehmen etabliert ist, sollten Sie die “low hanging Fruits” finden, damit Ihre Initiative zu einem nachhaltigen Erfolg für das ganze Unternehmen werden kann, beginnen Sie möglichst nicht gleich mit der größten “Baustelle”.

5. Datenanforderung und Datenrestriktionen frühzeitig klären

Dass der Erfolg Ihrer Process Mining Initiative auch vom zu analysierenden Prozess abhängt und damit auch die Datenverfügbarkeit vorab untersucht worden sein sollte, hatten wir schon erörtert. Aber selbst für gängigere Prozesse verzögern sich Process Mining Vorhaben auf eigentlich vermeidbarer Weise, weil die Anforderung an die Daten nicht vorab festgelegt worden sind. In der Tat ist die Definition der Datenanforderung, also welche Datentabellen mit Filterung auf Spalten und Zeilen für das Event Log benötigt werden, vorab manchmal gar nicht so einfach, besonders bei exotischeren Quellsystemen. Es sollte zumindest jedoch die grobe Anforderung beschrieben werden, unter Nennung der Datenbanken und einer Metabeschreibung, um welche Daten es geht. Auch deswegen, um den Datenschutzbeauftragten und sonstige Genehmiger frühzeitig einbinden zu können. Bei gängigen Quellsystemen und Standardprozessen (z. B. Procure to Pay oder Order to Cash eines SAP ERPs) kann die Anforderung bereits früh auf hohem Detaillevel vorab geschehen.

Konkretes Beispiel: Ein Unternehmen hat gerade sein Process Mining Projekt gestartet, steckt jedoch seit Tagen in der Datenbeschaffung fest. Die IT-Systemintegratoren weigern sich, Daten ohne genaue Anforderung aus den Quellsystemen zu exportieren oder einen API-Zugang bereit zu stellen und die Freigabe des Datenschutzbeauftragten sowie der IT-Sicherheit fehlen.

Neben der Anforderungsdefinition sollte also auch die Kommunikation mit den Administratoren der Quellsysteme frühzeitig erfolgen.

6. Das Big Picture vor Augen haben

Insbesondere wenn Process Mining nicht nur eine einmalige Ad-Hoc Analyse bleiben, sondern unternehmensweit eingeführt werden soll, sollte eine verlässliche, integrative und nachhaltige Architektur überlegt werden. Process Mining ist – wir wiederholen uns – eine Methodik, die mit Business Intelligence, Data Science (Machine Learning) und RPA in Verbindung gebracht werden kann.

Konkretes Beispiel: Eine Fachabteilung eines Unternehmens führte ein Process Mining Tool als eigenständige Lösung ein, um Prozesse hinsichtlich ihrer Automatisierbarkeit zu untersuchen. Dabei werden NLP-Algorithmen aus dem Machine Learning bei der Datenextraktion aus Texten eine Rolle spielen. Das ausgewählte Process Mining Tool wurde auch auf Grund seiner inhouse-Lösung für Machine Learning ausgesucht. In einer benachbarten Abteilung ist bereits ein RPA-Tool im Einsatz und auf der globalen Unternehmensebene ist ein bestimmtes BI-Tool der Standard für Reporting und Datenanalysen.

Statt vieler Einzellösungen, könnte die Fachabteilung das konzernweite BI-Tool mit Process Mining Erweiterung (Plugin zum BI-Tool, z. B. für Qlik Sense oder Power BI erhältlich) nutzen und dabei auch die RPA-Lösung mit dieser verbinden. Ein Data Warehouse für BI ist ebenfalls vorhanden und könnte ggf. zu einem für Process Mining erweitert werden. Für den Einsatz von Machine Learning können Data Scientists die Daten im Process Mining Data Warehouse zum Training verwenden und Prädiktionsergebnisse direkt in dieses zurückspielen.

Achten Sie auf die Gesamtarchitektur. Process Mining kann für sich alleine stehen, es kann jedoch auch sinnvoll sein, eine Datenstrategie zu entwickeln, die das Projekt im Kontext vorhandener Daten-Initiativen betrachtet und einen integrativen Ansatz erlaubt.

Data Vault 2.0 – Flexible Datenmodellierung

Was ist Data Vault 2.0?

Data Vault 2.0 ist ein im Jahr 2000 von Dan Linstedt veröffentlichtes und seitdem immer weiter entwickeltes Modellierungssystem für Enterprise Data Warehouses.

Im Unterschied zum normalisierten Data Warehouse – Definition von Inmon [1] ist ein Data Vault Modell funktionsorientiert über alle Geschäftsbereiche hinweg und nicht themenorientiert (subject-oriented)[2]. Ein und dasselbe Produkt beispielsweise ist mit demselben Business Key sichtbar für Vertrieb, Marketing, Buchhaltung und Produktion.

Data Vault ist eine Kombination aus Sternschema und dritter Normalform[3] mit dem Ziel, Geschäftsprozesse als Datenmodell abzubilden. Dies erfordert eine enge Zusammenarbeit mit den jeweiligen Fachbereichen und ein gutes Verständnis für die Geschäftsvorgänge.

Die Schichten des Data Warehouses:

Data Warehouse mit Data Vault und Data Marts

Data Warehouse mit Data Vault und Data Marts

Die Daten werden zunächst über eine Staging – Area in den Raw Vault geladen.

Bis hierher werden sie nur strukturell verändert, das heißt, von ihrer ursprünglichen Form in die Data Vault Struktur gebracht. Inhaltliche Veränderungen finden erst im Business Vault statt; wo die Geschäftslogiken auf den Daten angewandt werden.

Die Information Marts bilden die Basis für die Reporting-Schicht. Hier müssen nicht unbedingt Tabellen erstellt werden, Views können hier auch ausreichend sein. Hier werden Hubs zu Dimensionen und Links zu Faktentabellen, jeweils angereichert mit Informationen aus den zugehörigen Satelliten.

Die Grundelemente des Data Vault Modells:

Daten werden aus den Quellsystemen in sogenannte Hubs, Links und Satelliten im Raw Vault geladen:

Data Vault 2.0 Schema

Data Vault 2.0 Schema

Hub:

Hub-Tabellen beschreiben ein Geschäftsobjekt, beispielsweise einen Kunden, ein Produkt oder eine Rechnung. Sie enthalten einen Business Key (eine oder mehrere Spalten, die einen Eintrag eindeutig identifizieren), einen Hashkey – eine Verschlüsselung der Business Keys – sowie Datenquelle und Ladezeitstempel.

Link:

Ein Link beschreibt eine Interaktion oder Transaktion zwischen zwei Hubs. Beispielsweise eine Rechnungszeile als Kombination aus Rechnung, Kunde und Produkt. Auch ein Eintrag einer Linktabelle ist über einen Hashkey eindeutig identifizierbar.

Satellit:

Ein Satellit enthält zusätzliche Informationen über einen Hub oder einen Link. Ein Kundensatellit enthält beispielsweise Name und Anschrift des Kunden sowie Hashdiff (Verschlüsselung der Attribute zur eindeutigen Identifikation eines Eintrags) und Ladezeitstempel.

Herausforderungen bei der Modellierung

Die Erstellung des vollständigen Data Vault Modells erfordert nicht nur eine enge Zusammenarbeit mit den Fachbereichen, sondern auch eine gute Planung im Vorfeld. Es stehen oftmals mehrere zulässige Modellierungsoptionen zur Auswahl, aus denen die für das jeweilige Unternehmen am besten passende Option gewählt werden muss.

Es ist zudem wichtig, sich im Vorfeld Gedanken um die Handhabbarkeit des Modells zu machen, da die Zahl der Tabellen leicht explodieren kann und viele eventuell vermeidbare Joins notwendig werden.

Obwohl Data Vault als Konzept schon viele Jahre besteht, sind online nicht viele Informationen frei verfügbar – gerade für komplexere Modellierungs- und Performanceprobleme.

Zusätzliche Elemente:

Über die Kernelemente hinaus sind weitere Tabellen notwendig, um die volle Funktionalität des Data Vault Konzeptes auszuschöpfen:

PIT Tabelle

Point-in-Time Tabellen zeigen einen Snapshot der Daten zu einem bestimmten Zeitpunkt. Sie enthalten die Hashkeys und Hashdiffs der Hubs bzw. Links und deren zugehörigen Satelliten. So kann man schnell den jeweils aktuellsten Satelliteneintrag zu einem Hashkey herausfinden.

Referenztabellen

Zusätzliche, weitgehend feststehende Tabellen, beispielsweise Kalendertabellen.

Effektivitätssatellit

Diese Satelliten verfolgen die Gültigkeit von Satelliteneinträgen und markieren gelöschte Datensätze mit einem Zeitstempel. Sie können in den PIT Tabellen verarbeitet werden, um ungültige Datensätze herauszufiltern.

Bridge Tabelle

Bridge Tabellen sind Teil des Business Vaults und enthalten nur Hub- und Linkhashkeys. Sie ähneln Faktentabellen und dienen dazu, von Endanwender*innen benötigte Schlüsselkombinationen vorzubereiten.

Vorteile und Nachteile von Data Vault 2.0

Vorteile:

  • Da Hubs, Links und Satelliten jeweils unabhängig voneinander sind, können sie schnell parallel geladen werden.
  • Durch die Modularität des Systems können erste Projekte schnell umgesetzt werden.
  • Vollständige Historisierung aller Daten, denn es werden niemals Daten gelöscht.
  • Nachverfolgbarkeit der Daten
  • Handling personenbezogener Daten in speziellen Satelliten
  • Einfache Erweiterung des Datenmodells möglich
  • Zusammenführung von Daten aus unterschiedlichen Quellen grundsätzlich möglich
  • Eine fast vollständige Automatisierung der Raw Vault Ladeprozesse ist möglich, da das Grundkonzept immer gleich ist.

Nachteile:

  • Es sind verhältnismäßig wenige Informationen, Hilfestellungen und Praxisbeispiele online zu finden und das Handbuch von Dan Linstedt ist unübersichtlich gestaltet.
    • Zusammenführung unterschiedlicher Quellsysteme kaum in der verfügbaren Literatur dokumentiert und in der Praxis aufwendig.
  • Hoher Rechercheaufwand im Vorfeld und eine gewisse Anlauf- und Experimentierphase auch was die Toolauswahl angeht sind empfehlenswert.
  • Es wird mit PIT- und Bridge Tabellen und Effektivitätssatelliten noch viel zusätzlicher Overhead geschaffen, der verwaltet werden muss.
  • Business Logiken können die Komplexität des Datemodells stark erhöhen.
  • Eine Automatisierung des Business Vaults ist nur begrenzt möglich.

Praxisbeispiel Raw Vault Bestellung:

Das Design eines Raw Vault Modells funktioniert in mehreren Schritten:

  1. Business Keys identifizieren und Hubs definieren
  2. Verbindungen (Links) zwischen den Hubs identifizieren
  3. Zusätzliche Informationen zu den Hubs in Satelliten hinzufügen

Angenommen, man möchte eine Bestellung inklusive Rechnung und Versand als Data Vault modellieren.

Hubs sind alle Entitäten, die sich mit einer eindeutigen ID – einem Business Key – identifizieren lassen. So erstellt man beispielsweise einen Hub für den Kunden, das Produkt, den Kanal, über den die Bestellung hereinkommt (online / telefonisch), die Bestellung an sich, die dazugehörige Rechnung, eine zu bebuchende Kostenstelle, Zahlungen und Lieferung. Diese Liste ließe sich beliebig ergänzen.

Jeder Eintrag in einem dieser Hubs ist durch einen Schlüssel eindeutig identifizierbar. Die Rechnung durch die Rechnungsnummer, das Produkt durch eine SKU, der Kunde durch die Kundennummer etc.

Eine Zeile einer Bestellung kann nun modelliert werden als ein Link aus Bestellung (im Sinne von Bestellkopf), Kunde, Rechnung, Kanal, Produkt, Lieferung, Kostenstelle und Bestellzeilennummer.

Analog dazu können Rechnung und Lieferung ebenso als Kombination aus mehreren Hubs modelliert werden.

Allen Hubs werden anschließend ein oder mehrere Satelliten zugeordnet, die zusätzliche Informationen zu ihrem jeweiligen Hub enthalten.

Personenbezogene Daten, beispielsweise Namen und Adressen von Kunden, werden in separaten Satelliten gespeichert. Dies ermöglicht einen einfachen Umgang mit der DSGVO.

Data Vault 2.0 Beispiel Bestelldatenmodell

Data Vault 2.0 Beispiel Bestelldatenmodell

Fazit

Data Vault ist ein Modellierungsansatz, der vor allem für Organisationen mit vielen Quellsystemen und sich häufig ändernden Daten sinnvoll ist. Hier lohnt sich der nötige Aufwand für Design und Einrichtung eines Data Vaults und die Benefits in Form von Flexibilität, Historisierung und Nachverfolgbarkeit der Daten kommen wirklich zum Tragen.

Quellen

[1] W. H. Inmon, What is a Data Warehouse?. Volume 1, Number 1, 1995

[2] Dan Linstedt, Super Charge Your Data Warehouse: Invaluable Data Modeling Rules to Implement Your Data Vault. CreateSpace Independent Publishing Platform 2011

[3] Vgl. Linstedt 2011

Weiterführende Links und

Blogartikel von Analytics Today

Häufig gestellte Fragen

Einführung in Data Vault von Kent Graziano: pdf

Website von Dan Linstedt mit vielen Informationen und Artikeln

„Building a Scalable Data Warehouse with Data Vault 2.0“ von Dan Linstedt (Amazon Link)

process.science presents a new release

Advertisement

Process Mining Tool provider process.science presents a new release

process.science, specialist in the development of process mining plugins for BI systems, presents its upgraded version of their product ps4pbi. Process.science has added the following improvements to their plug-in for Microsoft Power BI. Identcal upgrades will soon also be released for ps4qlk, the corresponding plug-in for Qlik Sense:

  • 3x faster performance: By improvement of the graph library the graph built got approx. 300% more performant. This is particularly noticeable in complex processes
  • Navigator window: For a better overview in complex graphs, an overview window has been added, in which the entire graph and the respective position of the viewed area within the overall process is displayed
  • Activities legend: This allows activities to be assigned to specific categories and highlighted in different colors, for example in which source system an activity was carried out
  • Activity drill-through: This makes it possible to take filters that have been set for selected activities into other dashboards
  • Value Color Scale: Activity values ​​can be color-coded and assigned to freely selectable groupings, which makes the overview easier at first sight
process.science Process Mining on Power BI

process.science Process Mining on Power BI

Process mining is a business data analysis technique. The software used for this extracts the data that is already available in the source systems and visualizes them in a process graph. The aim is to ensure continuous monitoring in real time in order to identify optimization measures for processes, to simulate them and to continuously evaluate them after implementation.

The process mining tools from process.science are integrated directly into Microsoft Power BI and Qlik Sense. A corresponding plug-in for Tableau is already in development. So it is not a complicated isolated solution requires a new set up in addition to existing systems. With process.science the existing know-how on the BI system already implemented and the existing infrastructure framework can be adapted.

The integration of process.science in the BI systems has no influence on day-to-day business and bears absolutely no risk of system failures, as process.science does not intervene in the the source system or any other program but extends the respective business intelligence tool by the process perspective including various functionalities.

Contact person for inquiries:

process.science GmbH & Co. KG
Gordon Arnemann
Tel .: + 49 (231) 5869 2868
Email: ga@process.science
https://de.process.science/

Business Intelligence – 5 Tips for better Reporting & Visualization

Data and BI Analysts often concentrate on learning a BI Tool, but the main thing to do is learn how to create good data visualization!

BI reporting has become an indispensable part of any company. In Business Intelligence, companies sometimes have to choose between tools such as PowerBI, QlikSense, Tableau, MikroStrategy, Looker or DataStudio (and others). Even if each of these tools has its own strengths and weaknesses, good reporting depends less on the respective tool but much more on the analyst and his skills in structured and appropriate visualization and text design.

Based on our experience at DATANOMIQ and the book “Storytelling with data” (see footnote in the pdf), we have created an infographic that conveys five tips for better design of BI reports – with self-reflective clarification.

Direct link to the PDF: https://data-science-blog.com/wp-content/uploads/2021/11/Infographic_Data_Visualization_Infographic_DATANOMIQ.pdf

About DATANOMIQ

DATANOMIQ is a platform-independent consulting- and service-partner for Business Intelligence and Data Science. We are opening up multiple possibilities for the first time in all areas of the value chain through Big Data and Artificial Intelligence. We rely on the best minds and the most comprehensive method and technology portfolio for the use of data for business optimization.

Contact

DATANOMIQ GmbH
Franklinstr. 11
D-10587 Berlin
I: www.datanomiq.de
E: info@datanomiq.de

CAP Theorem

Understanding databases for storing, updating and analyzing data requires the understanding of the CAP Theorem. This is the second article of the article series Data Warehousing Basics.

Understanding NoSQL Databases by the CAP Theorem

CAP theorem – or Brewer’s theorem – was introduced by the computer scientist Eric Brewer at Symposium on Principles of Distributed computing in 2000. The CAP stands for Consistency, Availability and Partition tolerance.

  • Consistency: Every read receives the most recent writes or an error. Once a client writes a value to any server and gets a response, it is expected to get afresh and valid value back from any server or node of the database cluster it reads from.
    Be aware that the definition of consistency for CAP means something different than to ACID (relational consistency).
  • Availability: The database is not allowed to be unavailable because it is busy with requests. Every request received by a non-failing node in the system must result in a response. Whether you want to read or write you will get some response back. If the server has not crashed, it is not allowed to ignore the client’s requests.
  • Partition tolerance: Databases which store big data will use a cluster of nodes that distribute the connections evenly over the whole cluster. If this system has partition tolerance, it will continue to operate despite a number of messages being delayed or even lost by the network between the cluster nodes.

CAP theorem applies the logic that  for a distributed system it is only possible to simultaneously provide  two out of the above three guarantees. Eric Brewer, the father of the CAP theorem, proved that we are limited to two of three characteristics, “by explicitly handling partitions, designers can optimize consistency and availability, thereby achieving some trade-off of all three.” (Brewer, E., 2012).

CAP Theorem Triangle

To recap, with the CAP theorem in relation to Big Data distributed solutions (such as NoSQL databases), it is important to reiterate the fact, that in such distributed systems it is not possible to guarantee all three characteristics (Availability, Consistency, and Partition Tolerance) at the same time.

Database systems designed to fulfill traditional ACID guarantees like relational database (management) systems (RDBMS) choose consistency over availability, whereas NoSQL databases are mostly systems designed referring to the BASE philosophy which prefer availability over consistency.

The CAP Theorem in the real world

Lets look at some examples to understand the CAP Theorem further and provewe cannot create database systems which are being consistent, partition tolerant as well as always available simultaniously.

AP – Availability + Partition Tolerance

If we have achieved Availability (our databases will always respond to our requests) as well as Partition Tolerance (all nodes of the database will work even if they cannot communicate), it will immediately mean that we cannot provide Consistency as all nodes will go out of sync as soon as we write new information to one of the nodes. The nodes will continue to accept the database transactions each separately, but they cannot transfer the transaction between each other keeping them in synchronization. We therefore cannot fully guarantee the system consistency. When the partition is resolved, the AP databases typically resync the nodes to repair all inconsistencies in the system.

A well-known real world example of an AP system is the Domain Name System (DNS). This central network component is responsible for resolving domain names into IP addresses and focuses on the two properties of availability and failure tolerance. Thanks to the large number of servers, the system is available almost without exception. If a single DNS server fails,another one takes over. According to the CAP theorem, DNS is not consistent: If a DNS entry is changed, e.g. when a new domain has been registered or deleted, it can take a few days before this change is passed on to the entire system hierarchy and can be seen by all clients.

CA – Consistency + Availability

Guarantee of full Consistency and Availability is practically impossible to achieve in a system which distributes data over several nodes. We can have databases over more than one node online and available, and we keep the data consistent between these nodes, but the nature of computer networks (LAN, WAN) is that the connection can get interrupted, meaning we cannot guarantee the Partition Tolerance and therefor not the reliability of having the whole database service online at all times.

Database management systems based on the relational database models (RDBMS) are a good example of CA systems. These database systems are primarily characterized by a high level of consistency and strive for the highest possible availability. In case of doubt, however, availability can decrease in favor of consistency. Reliability by distributing data over partitions in order to make data reachable in any case – even if computer or network failure – meanwhile plays a subordinate role.

CP – Consistency + Partition Tolerance

If the Consistency of data is given – which means that the data between two or more nodes always contain the up-to-date information – and Partition Tolerance is given as well – which means that we are avoiding any desynchronization of our data between all nodes, then we will lose Availability as soon as only one a partition occurs between any two nodes In most distributed systems, high availability is one of the most important properties, which is why CP systems tend to be a rarity in practice. These systems prove their worth particularly in the financial sector: banking applications that must reliably debit and transfer amounts of money on the account side are dependent on consistency and reliability by consistent redundancies to always be able to rule out incorrect postings – even in the event of disruptions in the data traffic. If consistency and reliability is not guaranteed, the system might be unavailable for the users.

CAP Theorem Venn Diagram

Conclusion

The CAP Theorem is still an important topic to understand for data engineers and data scientists, but many modern databases enable us to switch between the possibilities within the CAP Theorem. For example, the Cosmos DB von Microsoft Azure offers many granular options to switch between the consistency, availability and partition tolerance . A common misunderstanding of the CAP theorem that it´s none-absoluteness: “All three properties are more continuous than binary. Availability is continuous from 0 to 100 percent, there are many levels of consistency, and even partitions have nuances. Exploring these nuances requires pushing the traditional way of dealing with partitions, which is the fundamental challenge. Because partitions are rare, CAP should allow perfect C and A most of the time, but when partitions are present or perceived, a strategy is in order.” (Brewer, E., 2012).

ACID vs BASE Concepts

Understanding databases for storing, updating and analyzing data requires the understanding of two concepts: ACID and BASE. This is the first article of the article series Data Warehousing Basics.

The properties of ACID are being applied for databases in order to fulfill enterprise requirements of reliability and consistency.

ACID is an acronym, and stands for:

  • Atomicity – Each transaction is either properly executed completely or does not happen at all. If the transaction was not finished the process reverts the database back to the state before the transaction started. This ensures that all data in the database is valid even if we execute big transactions which include multiple statements (e. g. SQL) composed into one transaction updating many data rows in the database. If one statement fails, the entire transaction will be aborted, and hence, no changes will be made.
  • Consistency – Databases are governed by specific rules defined by table formats (data types) and table relations as well as further functions like triggers. The consistency of data will stay reliable if transactions never endanger the structural integrity of the database. Therefor, it is not allowed to save data of different types into the same single column, to use written primary key values again or to delete data from a table which is strictly related to data in another table.
  • Isolation – Databases are multi-user systems where multiple transactions happen at the same time. With Isolation, transactions cannot compromise the integrity of other transactions by interacting with them while they are still in progress. It guarantees data tables will be in the same states with several transactions happening concurrently as they happen sequentially.
  • Durability – The data related to the completed transaction will persist even in cases of network or power outages. Databases that guarante Durability save data inserted or updated permanently, save all executed and planed transactions in a recording and ensure availability of the data committed via transaction even after a power failure or other system failures If a transaction fails to complete successfully because of a technical failure, it will not transform the targeted data.

ACID Databases

The ACID transaction model ensures that all performed transactions will result in reliable and consistent databases. This suits best for businesses which use OLTP (Online Transaction Processing) for IT-Systems such like ERP- or CRM-Systems. Furthermore, it can also be a good choice for OLAP (Online Analytical Processing) which is used in Data Warehouses. These applications need backend database systems which can handle many small- or medium-sized transactions occurring simultaneous by many users. An interrupted transaction with write-access must be removed from the database immediately as it could cause negative side effects impacting the consistency(e.g., vendors could be deleted although they still have open purchase orders or financial payments could be debited from one account and due to technical failure, never credited to another).

The speed of the querying should be as fast as possible, but even more important for those applications is zero tolerance for invalid states which is prevented by using ACID-conform databases.

BASE Concept

ACID databases have their advantages but also one big tradeoff: If all transactions need to be committed and checked for consistency correctly, the databases are slow in reading and writing data. Furthermore, they demand more effort if it comes to storing new data in new formats.

In chemistry, a base is the opposite to acid. The database concepts of BASE and ACID have a similar relationship. The BASE concept provides several benefits over ACID compliant databases asthey focus more intensely on data availability of database systems without guarantee of safety from network failures or inconsistency.

The acronym BASE is even more confusing than ACID as BASE relates to ACID indirectly. The words behind BASE suggest alternatives to ACID.

BASE stands for:

  • Basically Available – Rather than enforcing consistency in any case, BASE databases will guarantee availability of data by spreading and replicating it across the nodes of the database cluster. Basic read and write functionality is provided without liabilityfor consistency. In rare cases it could happen that an insert- or update-statement does not result in persistently stored data. Read queries might not provide the latest data.
  • Soft State – Databases following this concept do not check rules to stay write-consistent or mutually consistent. The user can toss all data into the database, delegating the responsibility of avoiding inconsistency or redundancy to developers or users.
  • Eventually Consistent –No guarantee of enforced immediate consistency does not mean that the database never achieves it. The database can become consistent over time. After a waiting period, updates will ripple through all cluster nodes of the database. However, reading data out of it will stay always be possible, it is just not certain if we always get the last refreshed data.

All the three above mentioned properties of BASE-conforming databases sound like disadvantages. So why would you choose BASE? There is a tradeoff compared to ACID. If databases do not have to follow ACID properties then the database can work much faster in terms of writing and reading from the database. Further, the developers have more freedom to implement data storage solutions or simplify data entry into the database without thinking about formats and structure beforehand.

BASE Databases

While ACID databases are mostly RDBMS, most other database types, known as NoSQL databases, tend more to conform to BASE principles. Redis, CouchDB, MongoDB, Cosmos DB, Cassandra, ElasticSearch, Neo4J, OrientDB or ArangoDB are just some popular examples. But other than ACID, BASE is not a strict approach. Some NoSQL databases apply at least partly to ACID rules or provide optional functions to get almost or even full ACID compatibility. These databases provide different level of freedom which can be useful for the Staging Layer in Data Warehouses or as a Data Lake, but they are not the recommended choice for applications which need data environments guaranteeing strict consistency.

Data Warehousing Basiscs

Data Warehousing is applied Big Data Management and a key success factor in almost every company. Without a data warehouse, no company today can control its processes and make the right decisions on a strategic level as there would be a lack of data transparency for all decision makers. Bigger comanies even have multiple data warehouses for different purposes.

In this series of articles I would like to explain what a data warehouse actually is and how it is set up. However, I would also like to explain basic topics regarding Data Engineering and concepts about databases and data flows.

To do this, we tick off the following points step by step:

 

Process Mining mit Fluxicon Disco – Artikelserie

Dieser Artikel der Artikelserie Process Mining Tools beschäftigt sich mit dem Anbieter Fluxicon. Das im Jahr 2010 gegründete Unternehmen, bis heute geführt von den zwei Gründern Dr. Anne Rozinat und Dr. Christian W. Günther, die beide bei Prof. Wil van der Aalst in Eindhoven promovierten, sowie einem weiteren Mitarbeiter, ist eines der ersten Tool-Anbieter für Process Mining. Das Tool Disco ist das Kernprodukt des Fluxicon-Teams und bietet pures Process Mining.

Die beiden Gründer haben übrigens eine ganze Reihe an Artikeln zu Process Mining (ohne Sponsoring / ohne Entgelt) veröffentlicht.

Lösungspakete: Standard-Lizenz
Zielgruppe:  Lauf Fluxicon für Unternehmen aller Größen.
Datenquellen: Keine Standard-Konnektoren. Benötigt fertiges Event Log.
Datenvolumen: Unlimitierte Datenmengen, Beschränkung nur durch Hardware.
Architektur: On-Premise / Desktop-Anwendung

Diese Software für Process Mining ist für jeden, der in Process Mining reinschnuppern möchte, direkt als Download verfügbar. Die Demo-Lizenz reicht aus, um eigene Event-Logs auszuprobieren oder das mitgelieferte Event-Log (Sandbox) zu benutzen. Es gibt ferner mehrere Evaluierungslizenz-Modelle sowie akademische Lizenzen via Kooperationen mit Hochschulen.

Fluxicon Disco erfreut sich einer breiten Nutzerbasis, die seit 2012 über das jährliche ‘Process Mining Camp’ (https://fluxicon.com/camp/index und http://processminingcamp.com ) und seit 2020 auch über das monatliche ‘Process Mining Café’ (https://fluxicon.com/cafe/) vorangetrieben wird.

Bedienbarkeit und Anpassungsfähigkeit der Analysen

Fluxicon Disco bietet den Vorteil des schnellen Einstiegs in datengetriebene Prozessanalysen und ist überaus nutzerfreundlich für den Analysten. Die Oberflächen sind leicht zu bedienen und die Bedeutung schnell zu erfassen oder zumindest zu erahnen. Die Filter-Möglichkeiten sind überraschend umfangreich und äußerst intuitiv bedien- und kombinierbar.

Fluxicon Disco Process Mining

Fluxicon Disco Process Mining – Das Haupt-Dashboard zeigt den Process Flow aus der Rekonstruktion auf Basis des Event Logs. Hier wird die Frequenz-Ansicht gezeigt, die Häufigkeiten von Cases und Events darstellt.

Disco lässt den Analysten auf Process Mining im Kern fokussieren, es können keine Analyse-Diagramme strukturell hinzugefügt, geändert oder gelöscht werden, es bleibt ein statischer Report ohne weitere BI-Funktionalitäten.

Die Visualisierung des Prozess-Graphen im Bereich “Map” ist übersichtlich, stets gut lesbar und leicht in der Abdeckung zu steuern. Die Hauptmetrik kann zwischen der Frequenz- zur Zeit-Orientierung hin und her geschaltet werden. Neben der Hauptmetrik kann auch eine zweite Metrik (Secondary Metric) zur Ansicht hinzugefügt werden, was sehr sinnvoll ist, wenn z. B. neben der durchschnittlichen Zeit zwischen Prozessaktivitäten auch die Häufigkeit dieser Prozessfolgen in Relation gesetzt werden soll.

Die Ansicht “Statistics” zeigt die wesentlichen Einblicke nach allen Dimensionen aus statistischer Sicht: Welche Prozessaktivitäten, Ressourcen oder sonstigen Features treten gehäuft auf? Diese Fragen werden hier leicht beantwortet, ohne dass der Analyst selbst statistische Berechnungen anstellen muss – jedoch auch ohne es zu dürfen, würde er wollen.

Die weitere Ansicht “Cases” erlaubt einen Einblick in die Prozess-Varianten und alle Einzelfälle innerhalb einer Variante. Diese Ansicht ist wichtig für Prozessoptimierer, die Optimierungspotenziale vor allem in häufigen, sich oft wiederholenden Prozessverläufen suchen möchten. Für Compliance-Analysten sind hingegen eher die oft vielen verschiedenen Einzelfälle spezieller Prozessverläufe der Fokus.

Für Einsteiger in Process Mining als Methodik und Disco als Tool empfiehlt sich übrigens das Process Mining Online Book: https://processminingbook.com

Integrationsfähigkeit

Fluxicon Disco ist eine Desktop-Anwendung, die nicht als Cloud- oder Server-Version verfügbar ist. Es ist möglich, die Software auf einem Windows Application Server on Premise zu installieren und somit als virtuelle Umgebung via Microsoft Virtual Desktop oder via Citrix als virtuelle Anwendung für mehrere Anwender zugleich verfügbar zu machen. Allerdings ist dies keine hochgradige Integration in eine Enterprise-IT-Infrastruktur.

Auch wird von Disco vorausgesetzt, dass Event Logs als einzelne Tabellen bereits vorliegen müssen. Dieses Tool ist also rein für die Analyse vorgesehen und bietet keine Standardschnittstellen mit vorgefertigten Skripten zur automatischen Herstellung von Event Logs beispielsweise aus Salesforce CRM oder SAP ERP.

Grundsätzlich sollte Process Mining methodisch stets als Doppel-Disziplin betrachtet werden: Der erste Teil des Process Minings fällt in die Kategorie Data Engineering und umfasst die Betrachtung der IT-Systeme (ERP, CRM, SRM, PLM, DMS, ITS,….), die für einen bestimmten Prozess relevant sind, und die in diesen System hinterlegten Datentabellen als Datenquellen. Die in diesen enthaltenen Datenspuren über Prozessaktivitäten müssen dann in ein Prozessprotokoll überführt und in ein Format transformiert werden, das der Inputvoraussetzung als Event Log für das jeweilige Process Mining Tool gerecht wird. Minimalanforderung ist hierbei zumindest eine Vorgangsnummer (Case ID), ein Zeitstempel (Event Time) einer Aktivität und einer Beschreibung dieser Aktivität (Event).

Das Event Log kann dann in ein oder mehrere Process Mining Tools geladen werden und die eigentliche Prozessanalyse kann beginnen. Genau dieser Schritt der Kategorie Data Analytics kann in Fluxicon Disco erfolgen.

Zum Einspeisen eines Event Logs kann der klassische CSV-Import verwendet werden oder neuerdings auch die REST-basierte Airlift-Schnittstelle, so dass Event Logs direkt von Servern On-Premise oder aus der Cloud abgerufen werden können.

Prinzip des direkten Zugriffs auf Event Logs von Servern via Airlift.

Import von Event Logs als CSV (“Open file”) oder von Servern auch aus der Cloud.

Sind diese Limitierungen durch die Software für ein Unternehmen, bzw. für dessen Vorhaben, vertretbar und bestehen interne oder externe Ressourcen zum Data Engineering von Event Logs, begeistert die Einfachheit von Process Mining mit Fluxicon Disco, die den schnellsten Start in diese Analyse verspricht, sofern die Daten als Event Log vorbereitet vorliegen.

Skalierbarkeit

Die Skalierbarkeit im Sinne hochskalierender Datenmengen (Big Data Readiness) sowie auch im Sinne eines Ausrollens dieser Analyse-Software auf einer Konzern-Ebene ist nahezu nicht gegeben, da hierzu Benutzer-Berechtigungsmodelle fehlen. Ferner darf hierbei nicht unberücksichtigt bleiben, dass Disco, wie zuvor erläutert, ein reines Analyse-/Visualisierungstool ist und keine Event Logs generieren kann (der Teil der Arbeit, der viele Hardware Ressourcen benötigt).

Für die reine Analyse läuft Disco jedoch auch mit vielen Daten sehr zügig und ist rein auf Ebene der Hardware-Ressourcen limitiert. Vertikales Upscaling ist auf dieser Ebene möglich, dazu empfiehlt sich diese Leselektüre zum System-Benchmark.

Zukunftsfähigkeit

Fluxicon Disco ist eines der Process Mining Tools der ersten Stunde und wird auch heute noch stetig vom Fluxicon Team mit kleinen Updates versorgt, die Weiterentwicklung ist erkennbar, beschränkt sich jedoch auf Process Mining im Kern.

Preisgestaltung

Die Preisgestaltung wird, wie auch bei den meisten anderen Anbietern für Process Mining Tools, nicht transparent kommuniziert. Aus eigener Einsatzerfahrung als Berater können mit Preisen um 1.000 EUR pro Benutzer pro Monat gerechnet werden, für Endbenutzer in Anwenderunternehmen darf von anderen Tarifen ausgegangen werden.

Studierende von mehr als 700 Universitäten weltweit (siehe https://fluxicon.com/academic/) können Fluxicon Disco kostenlos nutzen und das sehr unkompliziert. Sie bekommen bereits automatisch akademische Lizenzen, sobald sie sich mit ihrer Uni-Email-Adresse in dem Tool registrieren. Forscher und Studierende, deren Uni noch kein Partner ist, können sehr leicht auch individuelle akademische Lizenzen anfragen.

Fazit

Fluxicon Disco ist ein Process Mining Tool der ersten Stunde und das bis heute. Das Tool beschränkt sich auf das Wesentliche, bietet keine Big Data Plattform mit Multi-User-Management oder anderen Möglichkeiten integrierter Data Governance, auch sind keine Standard-Schnittstellen zu anderen IT-Systemen vorhanden. Auch handelt es sich hierbei nicht um ein Tool, das mit anderen BI-Tools interagieren oder gar selbst zu einem werden möchte, es sind keine eigenen Report-Strukturen erstellbar. Fluxicon Disco ist dafür der denkbar schnellste Einstieg mit minimaler Rüstzeit in Process Mining für kleine bis mittelständische Unternehmen, für die Hochschullehre und nicht zuletzt auch für Unternehmensberatungen oder Wirtschaftsprüfungen, die ihren Kunden auf schlanke Art und Weise Ist-Prozessanalysen ergebnisorientiert anbieten möchten.

Dass Disco seitens Fluxicon nur für kleine und mittelgroße Unternehmen bestimmt ist, ist nicht ganz zutreffend. Die meisten Kunden sind grosse Unternehmen (Banken, Versicherungen, Telekommunikationsanabieter, Ministerien, Pharma-Konzerne und andere), denn diese haben komplexe Prozesse und somit den größten Optimierungsbedarf. Um Process Mining kommen die Unternehmen nicht herum und so sind oft auch mehrere Tools verschiedener Anbieter im Einsatz, die sich gegenseitig um ihre Stärken ergänzen, für Fluxicon Disco ist dies die flexible Nutzung, nicht jedoch das unternehmensweite Monitoring. Der flexible und schlanke Einsatz von Disco in vielen Unternehmen zeigt sich auch mit Blick auf die Sprecher und Teilnehmer der jährlichen Nutzerkonferenz, dem Process Mining Camp.

Artikelserie: BI Tools im Vergleich – Qlik Sense

Dies ist ein Artikel der Artikel-Serie “BI Tools im Vergleich – Einführung und Motivation“, zu der auch die vorab sehr lesenswerten einführenden Worte und die Ausführungen zur Datenbasis gehören. Auf Grundlage derselben Daten wurde analog zu diesem Artikel hier auch ein Artikel über Microsoft Power BI und einen zu Tableau.

Übrigens gibt es auch Erweiterungen für Qlik Sense, die Process Mining ermöglichen. Eine dieser Erweiterungen ist die von MEHRWERK Process Mining.

Lizenzmodell

Neben Qlik Sense gibt es auch das lang bewährte Qlik View, dass auf der gleichen In-Memory-Kerntechnologie basiert. Qlik Sense wurde im Jahr 2014 vom schwedischen Softwareunternehmen Qlik Tech herausgebracht und bei Qlik Sense liegt auch der Fokus der Weiterentwicklung. Es handelt sich um Self-Service-BI und eine Plattform für Visual Data Analysis. Dabei gibt es die Möglichkeit einer On Premise Server Version (interne Cloud) oder auf die Server von Qlik zu setzen und somit gänzlich auf die Qlik Sense Cloud zu setzen, also die Qlik Sense Cloud als SaaS-Lösung. Dazu gibt es noch Qlik Sense Desktop, das für kleinere Projekte ausreichen kann und ganz ohne die Cloud auskommt, jedoch Ergebnisse bei Bedarf in die Cloud publishen kann. Ähnlich wie bei Tableau und anders als derzeitig bei Power BI, wird für das Editieren von Apps/Dashboards jedoch kein Qlik Sense Desktop benötigt, denn das Erstellen, Bearbeiten und Verwalten von Qlik Sense Reports darf komplett in der Cloud (vom Browser aus) stattfinden.

Der Kunde hat die Wahl zwischen den Lizenzmodellen von Qlik Sense Business (SaaS) und Qlik Sense Enterprise (SaaS oder On Premise). Die Enterprise Variante ist dann noch mal in Enterprise Professional, Enterprise Analyzer und Enterprise Analyzer Capacity eingeteilt, es stehen also insgesamt drei Lizenzen zur Auswahl. Der Preis für Qlik Sense Business beträgt monatlich derzeitig $30 pro Anwender. Das offizielle Preismodell sieht für Enterprise Professionell $70 für einen Benutzer pro Monat vor und für Enterprise Analyzer $40 pro Benutzer pro Monat. Zum Kennenlernen der Business Version gibt eine kostenlose 30-Tage-Testversion.

Die Version Qlik Sense Desktop ist in der Funktionalität an der SaaS Lösung Qlik Sense Enterprise angepasst und steht ihr in nichts Essenziellem nach. Die Desktop Version kann nur auf Windows-Computern ausgeführt werden und die Verwendung mehrerer Bildschirme oder Tablets wird nicht unterstützt. Außerdem werden Sicherheitsfunktionen nicht unterstützt und es gibt keine Funktion zum automatischen Speichern. Mehr zu den Unterschieden hier.

Community & Features von anderen Entwicklern

Wie relevant die Community für Visualisierungstools ist, wurde bereits in den vorherigen Blogartikeln zu Power BI und Tableau beschrieben. Auch Qlik besitzt eine offizielle Community Seite, in der u. a. Diskussionen, Blogs und Support angeboten werden. Auch hier finden sich zu den meisten Problemstellungen eine Menge Lösungsansätze. Zudem bietet Qlik auf den offiziellen Webseiten auch sehr viele Lernvideos an, mit denen sich Neulinge einarbeiten und fortgeschrittene Anwender auch noch einiges erfahren können.

Neben den zahlreichen Visualisierungen können auch weitere Diagramme hinzugefügt werden. Im Qlik Sense Desktop werden bei Arbeitsblatt im Reiter Benutzerdefinierte Objekte zwei Bundles mitgeliefert. Hier können auch Erweiterungen importiert werden. Ein bekanntes Bundle ist die Vizlib, welches hier unterschiedliche Packages zur Verfügung stellt. Diese Erweiterungen können einfach importiert werden, indem die heruntergeladenen Verzeichnisse in den Qlik Sense Extensions Ordner eingefügt werden. Wem auch die Erweiterungen nicht ausreichen, der kann sogenannte Widgets erstellen. Diese werden in HTML und CSS geschrieben, daher ist ein gewisses Grundverständnis vorausgesetzt. Diese Widgets können auf Qlik Sense Funktionalitäten zugreifen und diese per Klick ausführen. So kann bspw. ein Button zum Entfernen aller gesetzten Filter erstellt werden.

Erstellung von Filtern in Qlik Sense

Daten laden & transformieren

Flexibler als die meisten Vergleichstools ist Qlik in der Verknüpfung von Datenquellen. Es werden Hunderte von Datenquellen angeboten, durch die der Anwender Zugriff auf seine Daten erhalten kann. Die von Qlik entwickelte Associate Engine beschleunig die Verarbeitung von verknüpften Daten. Die Anbindung von Cloudanwendungen steht hier im Vordergrund, aber es werden natürlich auch klassische Datenbanken, Textfiles usw. angeboten.

Nachdem die Daten geladen sind, befindet sich im Dateneditor unter dem Reiter auto generated selection eine automatisch generierte Query für den Ladevorgang. Dieses „Datenladeskript“ kann angelegt, bearbeitet und ausgeführt werden. Im Reiter „Main“ befinden sich hier vordefinierte Variableneinstellungen, wie z. B. SET ThousandSep=’.’; wobei auch diese angepasst und erweitert werden können. Zudem gibt es die Möglichkeit, das Datenmodell mit allen Tabellenverbindungen anzeigen zu lassen. Die große Qlik-Community und die Tutorials ermöglicht es jedem Nutzer, die vielen Möglichkeiten mit Qlik Script zügig aus dem Internet zu erlernen.

Daten laden & transformieren: AdventureWorks2017Dataset

Im Reiter Datenmanager werden die empfohlenen Verknüpfungen angezeigt. Diese sind für Einsteiger sehr nützlich. Im Verlauf der Analysen musste jedoch nachjustiert werden. Wenn die ID-Spalten zum Verknüpfen z. B. unterschiedliche Bezeichnungen haben, tut sich der Algorithmus schon mal schwer.

Abbildung eines Datenmodels in Qlik Sense. Zusehen sind die Verbindungen zwischen den Tabellen der Datenbank “AdventureWorks2016”.

Eine vom Tool vordefinierte Detailansicht in Form einer Visualisierung (siehe Screenshot) ermöglicht einen schnellen und einfachen Qualitätscheck der gerade erst geladenen Daten. Hier können die Verbindungen angepasst und neue erstellt werden. Hier können erste Datentransformation durchgeführt werden, z. B. die Ersetzung von Daten oder NULL-Werten.

Datentransformationen mit einfachen Eingabemasken – Hier: Ersetzen von Werten in Tabellen-Spalten.

Zudem können Felder hinzugefügt, also berechnet werden (ähnlich wie in Power BI und Tableau als neues Measure). Z. B. können Textwerte mit dem Operator „&“ verbunden und somit z. B. Vor- und Nachname ganz intuitiv in eine Spalte zusammengefügt werden. Außerdem gibt es mathematische Operatoren für Berechnungen und ein SQL-artiges „like“, um Zeichenfolgen mit Mustern zu vergleichen. Auch an dieser Stelle können Formeln eingegeben werden. Die Formeln umfassen hier: String-, Datums-, numerische, Bedingungs-, mathematische, Verteilungsfunktionen usw. Zu beachten ist hier, dass die Daten neu geladen werden müssen, um die berechneten Spalten zu updaten. Der Umgang mit den Formeln aber erscheint mir einfacher als z. B. mit DAX in Power BI.

Daten visualisieren

Dank einer benutzerfreundlichen Oberfläche sind auch Analysen ohne großes Vorwissen und per Drag and Drop möglich. Individuelle Dashboards sind in wenigen Schritten möglich und erfordern keine besonderen Tricks oder Kniffe um gleich zum Erfolg zu kommen. Die Datenvisualisierung erfolgt in sogenannten Apps, in denen die Dashboards (Seiten in der App) liegen. Diese können von Qlik Sense Desktop nach Qlik Cloud hochgeladen werden und von dort aus mit anderen Usern geteilt werden.

Qlik Sense enthält von Hause aus eine große Anzahl an Visualisierungsmöglichkeiten. „Entdecken Sie neue Einblicke in ihre Daten“ heißt es bei der Funktion namens Einblicke (Insights), denn hier wird der Zugriff auf die Qlik Cognitive Engine gewährt. Dabei kann der Anwender eine Frage an den sogenannten Insight Advisor in natürlicher Sprache formulieren, woraus dann AI-gestützte Dashboard-Vorschläge generiert werden. Auch wenn diese Funktion noch nicht vollkommen ausgereift erscheint, ist dies sicherlich ein Schritt in die Business Intelligence der Zukunft.

Qlik Sense Insights – Einblicke gewinnen mit Stichworten in menschlicher Sprache. Funktioniert mal besser, mal schlechter. Die Titel der Diagramme sind (in Qlik Sense stets per default) die Formeln der Darstellung. Diese lassen sich leicht umbenennen.

Diese Diagrammvorschläge können einen guten ersten Eindruck über verschiedene Dimensionen und Kennzahlen geben und die Diagramme können direkt zu den Arbeitsblättern hinzugefügt werden. Es können auch Fragen gestellt werden, die Berechnungen zur Grundlage haben. So wird im folgenden Beispiel die Korrelation zwischen zwei Kennzahlen ermittelt.

Qlik Sense Insights – Korrelation erstellt mit Anweisung auf Englisch

Den ersten Auftritt hatte die Cognitive Engine im April 2018 und der Insight Advisor im Juni 2018. Über den Insight Adviser werden auch die empfohlenen Verknüpfungen im Datenmanager generiert, diese sollten jedoch vom Anwender (z. B. BI-Developer, Data Analyst oder Data Engineer) jedoch nochmal überblickt werden, da diese nicht unbedingt fehlerfrei abläuft. Gerade in vielen Geschäftsdaten verstecken sich viele “falsche Freunde” unter den ID-Spalten-Benennungen, die einen Zusammenhang herzustellen scheinen – aber es nicht immer tun.

Diagramme können ansonsten auf übliche Weise über eine Paletten ausgewählt werden, um sie dann mit Kennzahlen und Dimensionen zu befüllen. Die Charts können mit vordefinierten Optionen in den Kategorien Daten, Sortieren, Darstellung usw. bearbeitet werden. Unter Darstellung können ggf. verschiedene Designs ausgewählt werden und Beschriftungen, Titel etc. angepasst werden. Die Felder zur Auswahl der Kennzahlen und Dimensionen können nach Tabelle ausgewählt werden, sie sind ansonsten alle in einer Liste und können über eine Suchfunktion schnell gefunden werden, vorausgesetzt die genaue Bezeichnung ist bekannt. Diese Suchfunktion wird auch an anderen Stellen angewandt, immer dann, wenn Felder ausgewählt werden.

Es gibt außerdem die Option „Master-Elemente“, um wieder verwendbare Dimensionen oder Kennzahlen (Measures) zu erstellen.

Hier können Berechnungen für Kennzahlen und Dimensionen hinterlegt und in jedem Arbeitsblatt wiederverwendet werden. Dies gilt auch für Visualisierungen und die damit verbundenen Dateninputs und Einstellungen.

Mit Drag and Drop stößt der Anwender hier schon mal an seine Grenzen, aber dann helfen die Formeln von Qlik Sense Script weiter. Wenn bspw. das Diagramm namens KPI eine Kennzahl mit Filterung nach einer Dimension anzeigen soll, hilft die Formel: Sum({<DimensionName={‘Value’}>} MeasureName. Eine Qlik Sense Formelsammlung ist hier zu finden. Jede Kennzahl und Dimension kann als Formel eingegeben werden. Im Formel bearbeiten – Editor werden auch schon gebräuchliche Berechnungen wie Aggregierungsfunktionen (Sum, Avg, Max usw.) und Distinct, vorgegeben und können auf Knopfdruck und ohne Coding generiert werden, ähnliche wie ein Quick Measure in Power BI.

Fazit

Das Finanzmodell ist auf jede Unternehmensgröße ausgerichtet. Wenn die Datenbereinigung im Vorfeld stattgefunden hat, sind Visualisierungen in wenigen Schritten möglich. Es gibt dabei die Möglichkeit, die Daten in gewissem Rahmen zu transformieren. Für die gewünschte Darstellung der Kennzahlen ist die Verwendung von Qlik Sense Script oftmals erforderlich, jedoch kommen Anfänger auch lange ohne Coding aus. Insgesamt bewerte ich die Nutzerfreundlichkeit auf Grund der intuitiveren Bedienung subjektiv höher als bei Tableau oder Power BI.

Es können Erweiterungen und Widgets zur tiefgründigen Dashboard Erstellung und Analyse genutzt werden. Es gibt viele Drag and Drop Funktionen, um die Dashboards zusammen zu ziehen. Die Erstellung einfacher Berichte erfordert keinen Entwickler oder einen gut ausgebildeten Data Analyst, dennoch werden Unternehmen bei größeren Vorhaben auf Grund der Komplexität von Unternehmensprozessen, die in der Business Intelligence darzustellen versucht werden, nicht um geschultes Personal herum kommen, wofür es viele Angebote an Trainings auch von Qlik-Partnern gibt. Die Schnelligkeit der Datenverarbeitung liegt dank der Associative Engine im Vergleich zu den anderen beiden Tools vorne. AI-gestützte Vorschläge können bei der Dashboard-Erstellung zusätzliche Unterstützung leisten. Die Kombination beider Komponenten, Schnelligkeit und Ai-gestützte Vorschläge des Insight Advisors, grenzt das Qlik Sense Tool zwar nicht so sehr von den anderen Anbietern ab, wie Qlik gerne hätte…. Dennoch ist Qlik Sense auch heute noch ein Tool, dass für Ad-Hoc-Analytics wie Business Intelligence mit Standard Reporting in Erwägung gezogen werden sollte.

Moderne Business Intelligence in der Microsoft Azure Cloud

Google, Amazon und Microsoft sind die drei großen Player im Bereich Cloud Computing. Die Cloud kommt für nahezu alle möglichen Anwendungsszenarien infrage, beispielsweise dem Hosting von Unternehmenssoftware, Web-Anwendungen sowie Applikationen für mobile Endgeräte. Neben diesen Klassikern spielt die Cloud jedoch auch für Internet of Things, Blockchain oder Künstliche Intelligenz eine wichtige Rolle als Enabler. In diesem Artikel beleuchten wir den Cloud-Anbieter Microsoft Azure mit Blick auf die Möglichkeiten des Aufbaues eines modernen Business Intelligence oder Data Platform für Unternehmen.

Eine Frage der Architektur

Bei der Konzeptionierung der Architektur stellen sich viele Fragen:

  • Welche Datenbank wird für das Data Warehouse genutzt?
  • Wie sollten ETL-Pipelines erstellt und orchestriert werden?
  • Welches BI-Reporting-Tool soll zum Einsatz kommen?
  • Müssen Daten in nahezu Echtzeit bereitgestellt werden?
  • Soll Self-Service-BI zum Einsatz kommen?
  • … und viele weitere Fragen.

1 Die Referenzmodelle für Business Intelligence Architekturen von Microsoft Azure

Die vielen Dienste von Microsoft Azure erlauben unzählige Einsatzmöglichkeiten und sind selbst für Cloud-Experten nur schwer in aller Vollständigkeit zu überblicken.  Microsoft schlägt daher verschiedene Referenzmodelle für Datenplattformen oder Business Intelligence Systeme mit unterschiedlichen Ausrichtungen vor. Einige davon wollen wir in diesem Artikel kurz besprechen und diskutieren.

1a Automatisierte Enterprise BI-Instanz

Diese Referenzarchitektur für automatisierte und eher klassische BI veranschaulicht die Vorgehensweise für inkrementelles Laden in einer ELT-Pipeline mit dem Tool Data Factory. Data Factory ist der Cloud-Nachfolger des on-premise ETL-Tools SSIS (SQL Server Integration Services) und dient nicht nur zur Erstellung der Pipelines, sondern auch zur Orchestrierung (Trigger-/Zeitplan der automatisierten Ausführung und Fehler-Behandlung). Über Pipelines in Data Factory werden die jeweils neuesten OLTP-Daten inkrementell aus einer lokalen SQL Server-Datenbank (on-premise) in Azure Synapse geladen, die Transaktionsdaten dann in ein tabellarisches Modell für die Analyse transformiert, dazu wird MS Azure Analysis Services (früher SSAS on-premis) verwendet. Als Tool für die Visualisierung der Daten wird von Microsoft hier und in allen anderen Referenzmodellen MS PowerBI vorgeschlagen. MS Azure Active Directory verbindet die Tools on Azure über einheitliche User im Active Directory Verzeichnis in der Azure-Cloud.

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/data/enterprise-bi-adfQuelle:

Einige Diskussionspunkte zur BI-Referenzarchitektur von MS Azure

Der von Microsoft vorgeschlagenen Referenzarchitektur zu folgen kann eine gute Idee sein, ist jedoch tatsächlich nur als Vorschlag – eher noch als Kaufvorschlag – zu betrachten. Denn Unternehmens-BI ist hochgradig individuell und Bedarf einiger Diskussion vor der Festlegung der Architektur.

Azure Data Factory als ETL-Tool

Azure Data Factory wird in dieser Referenzarchitektur als ETL-Tool vorgeschlagen. In der Tat ist dieses sehr mächtig und rein über Mausklicks bedienbar. Darüber hinaus bietet es die Möglichkeit z. B. über Python oder Powershell orchestriert und pipeline-modelliert zu werden. Der Clue für diese Referenzarchitektur ist der Hinweis auf die On-Premise-Datenquellen. Sollte zuvor SSIS eingesetzt werden sollen, können die SSIS-Packages zu Data Factory migriert werden.

Die Auswahl der Datenbanken

Der Vorteil dieser Referenzarchitektur ist ohne Zweifel die gute Aufstellung der Architektur im Hinblick auf vielseitige Einsatzmöglichkeiten, so werden externe Daten (in der Annahme, dass diese un- oder semi-strukturiert vorliegen) zuerst in den Azure Blob Storage oder in den auf dem Blob Storage beruhenden Azure Data Lake zwischen gespeichert, bevor sie via Data Factory in eine für Azure Synapse taugliche Struktur transformiert werden können. Möglicherweise könnte auf den Blob Storage jedoch auch gut verzichtet werden, solange nur Daten aus bekannten, strukturierten Datenbanken der Vorsysteme verarbeitet werden. Als Staging-Layer und für Datenhistorisierung sind der Azure Blob Storage oder der Azure Data Lake jedoch gute Möglichkeiten, da pro Dateneinheit besonders preisgünstig.

Azure Synapse ist eine mächtige Datenbank mindestens auf Augenhöhe mit zeilen- und spaltenorientierten, verteilten In-Memory-Datenbanken wie Amazon Redshift, Google BigQuery oder SAP Hana. Azure Synapse bietet viele etablierte Funktionen eines modernen Data Warehouses und jährlich neue Funktionen, die zuerst als Preview veröffentlicht werden, beispielsweise der Einsatz von Machine Learning direkt auf der Datenbank.

Zur Diskussion steht jedoch, ob diese Funktionen und die hohe Geschwindigkeit (bei richtiger Nutzung) von Azure Synapse die vergleichsweise hohen Kosten rechtfertigen. Alternativ können MySQL-/MariaDB oder auch PostgreSQL-Datenbanken bei MS Azure eingesetzt werden. Diese sind jedoch mit Vorsicht zu nutzen bzw. erst unter genauer Abwägung einzusetzen, da sie nicht vollständig von Azure Data Factory in der Pipeline-Gestaltung unterstützt werden. Ein guter Kompromiss kann der Einsatz von Azure SQL Database sein, der eigentliche Nachfolger der on-premise Lösung MS SQL Server. MS Azure Snypase bleibt dabei jedoch tatsächlich die Referenz, denn diese Datenbank wurde speziell für den Einsatz als Data Warehouse entwickelt.

Zentrale Cube-Generierung durch Azure Analysis Services

Zur weiteren Diskussion stehen könnte MS Azure Analysis Sevice als Cube-Engine. Diese Cube-Engine, die ursprünglich on-premise als SQL Server Analysis Service (SSAS) bekannt war, nun als Analysis Service in der Azure Cloud verfügbar ist, beruhte früher noch als SSAS auf der Sprache MDX (Multi-Dimensional Expressions), eine stark an SQL angelehnte Sprache zum Anlegen von schnellen Berechnungsformeln für Kennzahlen im Cube-Datenmodellen, die grundlegendes Verständnis für multidimensionale Abfragen mit Tupeln und Sets voraussetzt. Heute wird statt MDX die Sprache DAX (Data Analysis Expression) verwendet, die eher an Excel-Formeln erinnert (diesen aber keinesfalls entspricht), sie ist umfangreicher als MDX, jedoch für den abitionierten Anwender leichter verständlich und daher für Self-Service-BI geeignet.

Punkt der Diskussion ist, dass der Cube über den Analysis-Service selbst keine Möglichkeiten eine Self-Service-BI nicht ermöglicht, da die Bearbeitung des Cubes mit DAX nur über spezielle Entwicklungsumgebungen möglich ist (z. B. Visual Studio). MS Power BI selbst ist ebenfalls eine Instanz des Analysis Service, denn im Kern von Power BI steckt dieselbe Engine auf Basis von DAX. Power BI bietet dazu eine nutzerfreundliche UI und direkt mit mausklickbaren Elementen Daten zu analysieren und Kennzahlen mit DAX anzulegen oder zu bearbeiten. Wird im Unternehmen absehbar mit Power BI als alleiniges Analyse-Werkzeug gearbeitet, ist eine separate vorgeschaltete Instanz des Azure Analysis Services nicht notwendig. Der zur Abwägung stehende Vorteil des Analysis Service ist die Nutzung des Cubes in Microsoft Excel durch die User über Power Pivot. Dies wiederum ist eine eigene Form des sehr flexiblen Self-Service-BIs.

1b Enterprise Data Warehouse-Architektur

Eine weitere Referenz-Architektur von Microsoft auf Azure ist jene für den Einsatz als Data Warehouse, bei der Microsoft Azure Synapse den dominanten Part von der Datenintegration über die Datenspeicherung und Vor-Analyse übernimmt.https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/enterprise-data-warehouseQuelle: 

Diskussionspunkte zum Referenzmodell der Enterprise Data Warehouse Architecture

Auch diese Referenzarchitektur ist nur für bestimmte Einsatzzwecke in dieser Form sinnvoll.

Azure Synapse als ETL-Tool

Im Unterschied zum vorherigen Referenzmodell wird hier statt auf Azure Data Factory auf Azure Synapse als ETL-Tool gesetzt. Azure Synapse hat die Datenintegrationsfunktionalitäten teilweise von Azure Data Factory geerbt, wenn gleich Data Factory heute noch als das mächtigere ETL-Tool gilt. Azure Synapse entfernt sich weiter von der alten SSIS-Logik und bietet auch keine Integration von SSIS-Paketen an, zudem sind einige Anbindungen zwischen Data Factory und Synapse unterschiedlich.

Auswahl der Datenbanken

Auch in dieser Referenzarchitektur kommt der Azure Blob Storage als Zwischenspeicher bzw. Staging-Layer zum Einsatz, jedoch im Mantel des Azure Data Lakes, der den reinen Speicher um eine Benutzerebene erweitert und die Verwaltung des Speichers vereinfacht. Als Staging-Layer oder zur Datenhistorisierung ist der Blob Storage eine kosteneffiziente Methode, darf dennoch über individuelle Betrachtung in der Notwendigkeit diskutiert werden.

Azure Synapse erscheint in dieser Referenzarchitektur als die sinnvolle Lösung, da nicht nur die Pipelines von Synapse, sondern auch die SQL-Engine sowie die Spark-Engine (über Python-Notebooks) für die Anwendung von Machine Learning (z. B. für Recommender-Systeme) eingesetzt werden können. Hier spielt Azure Synpase die Möglichkeiten als Kern einer modernen, intelligentisierbaren Data Warehouse Architektur voll aus.

Azure Analysis Service

Auch hier wird der Azure Analysis Service als Cube-generierende Maschinerie von Microsoft vorgeschlagen. Hier gilt das zuvor gesagte: Für den reinen Einsatz mit Power BI ist der Analysis Service unnötig, sollen Nutzer jedoch in MS Excel komplexe, vorgerechnete Analysen durchführen können, dann zahlt sich der Analysis Service aus.

Azure Cosmos DB

Die Azure Cosmos DB ist am nächsten vergleichbar mit der MongoDB Atlas (die Cloud-Version der eigentlich on-premise zu hostenden MongoDB). Es ist eine NoSQL-Datenbank, die über Datendokumente im JSON-File-Format auch besonders große Datenmengen in sehr hoher Geschwindigkeit abfragen kann. Sie gilt als die zurzeit schnellste Datenbank in Sachen Lesezugriff und spielt dabei alle Vorteile aus, wenn es um die massenweise Bereitstellung von Daten in andere Applikationen geht. Unternehmen, die ihren Kunden mobile Anwendungen bereitstellen, die Millionen parallele Datenzugriffe benötigen, setzen auf Cosmos DB.

1c Referenzarchitektur für Realtime-Analytics

Die Referenzarchitektur von Microsoft Azure für Realtime-Analytics wird die Referenzarchitektur für Enterprise Data Warehousing ergänzt um die Aufnahme von Data Streaming.

Diskussionspunkte zum Referenzmodell für Realtime-Analytics

Diese Referenzarchitektur ist nur für Einsatzszenarios sinnvoll, in denen Data Streaming eine zentrale Rolle spielt. Bei Data Streaming handelt es sich, vereinfacht gesagt, um viele kleine, ereignis-getriggerte inkrementelle Datenlade-Vorgänge bzw. -Bedarfe (Events), die dadurch nahezu in Echtzeit ausgeführt werden können. Dies kann über Webshops und mobile Anwendungen von hoher Bedeutung sein, wenn z. B. Angebote für Kunden hochgrade-individualisiert angezeigt werden sollen oder wenn Marktdaten angezeigt und mit ihnen interagiert werden sollen (z. B. Trading von Wertpapieren). Streaming-Tools bündeln eben solche Events (bzw. deren Datenhäppchen) in Data-Streaming-Kanäle (Partitionen), die dann von vielen Diensten (Consumergruppen / Receiver) aufgegriffen werden können. Data Streaming ist insbesondere auch dann ein notwendiges Setup, wenn ein Unternehmen über eine Microservices-Architektur verfügt, in der viele kleine Dienste (meistens als Docker-Container) als dezentrale Gesamtstruktur dienen. Jeder Dienst kann über Apache Kafka als Sender- und/oder Empfänger in Erscheinung treten. Der Azure Event-Hub dient dazu, die Zwischenspeicherung und Verwaltung der Datenströme von den Event-Sendern in den Azure Blob Storage bzw. Data Lake oder in Azure Synapse zu laden und dort weiter zu reichen oder für tiefere Analysen zu speichern.

Azure Eventhub ArchitectureQuelle: https://docs.microsoft.com/de-de/azure/event-hubs/event-hubs-about

Für die Datenverarbeitung in nahezu Realtime sind der Azure Data Lake und Azure Synapse derzeitig relativ alternativlos. Günstigere Datenbank-Instanzen von MariaDB/MySQL, PostgreSQL oder auch die Azure SQL Database wären hier ein Bottleneck.

2 Fazit zu den Referenzarchitekturen

Die Referenzarchitekturen sind exakt als das zu verstehen: Als Referenz. Keinesfalls sollte diese Architektur unreflektiert für ein Unternehmen übernommen werden, sondern vorher in Einklang mit der Datenstrategie gebracht werden, dabei sollten mindestens diese Fragen geklärt werden:

  • Welche Datenquellen sind vorhanden und werden zukünftig absehbar vorhanden sein?
  • Welche Anwendungsfälle (Use Cases) habe ich für die Business Intelligence bzw. Datenplattform?
  • Über welche finanziellen und fachlichen Ressourcen darf verfügt werden?

Darüber hinaus sollten sich die Architekten bewusst sein, dass, anders als noch in der trägeren On-Premise-Welt, die Could-Dienste schnelllebig sind. So sah die Referenzarchitektur 2019/2020 noch etwas anders aus, in der Databricks on Azure als System für Advanced Analytics inkludiert wurde, heute scheint diese Position im Referenzmodell komplett durch Azure Synapse ersetzt worden zu sein.

Azure Reference Architecture BI Databrikcs 2019

Azure Reference Architecture – with Databricks, old image source: https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/modern-data-warehouse

Hinweis zu den Kosten und der Administration

Die Kosten für Cloud Computing statt für IT-Infrastruktur On-Premise sind ein zweischneidiges Schwert. Der günstige Einstieg in de Azure Cloud ist möglich, jedoch bedingt ein kosteneffizienter Betrieb viel Know-How im Umgang mit den Diensten und Konfigurationsmöglichkeiten der Azure Cloud oder des jeweiligen alternativen Anbieters. Beispielsweise können über Azure Data Factory Datenbanken über Pipelines automatisiert hochskaliert und nach nur Minuten wieder runterskaliert werden. Nur wer diese dynamischen Skaliermöglichkeiten nutzt, arbeitet effizient in der Cloud.

Ferner sind Kosten nur schwer einschätzbar, da diese mehr noch von der Nutzung (Datenmenge, CPU, RAM) als von der zeitlichen Nutzung (Lifetime) abhängig sind. Preisrechner ermöglichen zumindest eine Kosteneinschätzung: https://azure.com/e/96162a623bda4911bb8f631e317affc6