Posts

R Data Frames meistern mit dplyr – Teil 1

Dieser Artikel ist Teil 1 von 2 aus der Artikelserie R Data Frames meistern mit dplyr.

Data Frames sind das Arbeitspferd von R, wenn Daten in eine Struktur gepackt werden sollen, um sie einzulesen, zu säubern, zu transformieren, zu analysieren und zu visualisieren. Abstrakt gesprochen sind Data Frames nichts anderes als Relationen, also Mengen von Tupels, gebildet aus Elementen von geeigneten Mengen.

Dieses Konzept hat sich auch außerhalb des R-Universums bestens bewährt, umzusammengesetzte Daten, Beobachtungen oder Geschäftsobjekte zu repräsentieren. Der beste Beleg für diese Aussage sind die allgegenwärtigen Relationalen Datenbanksysteme (RDBMS). Dort werden Relationen als Tabellen (Tables) oder Sichten (Views) bezeichnet, und darauf wirkt eine mächtige, imperative Abfrage- und Manipulationssprache namens Structured Query Language, kurz:
SQL.

SQL ist in meiner Wahrnehmung die Lingua Franca der Datenverarbeitung, da sie im Kern über sehr viele Softwareprodukte gleich ist und nach erstaunlich geringem Lernaufwand mächtige Auswerte- und Manipulationsoperationen an den Daten ermöglicht. Hier eine SQL-Anweisung, um eine fiktive Tabelle aller Verkäufe (SALES) nach den Top-10-Kunden in diesem Jahr zu untersuchen:

Dieser selbsterklärliche Code aus sieben Zeilen hat einen enormen Effekt: Er fast alle Verkäufe des Jahres 2016 auf Basis der Kundennummer zusammen, berechnet dabei die Summe aller Verkaufsbeträge, zählt die Anzahl der Transaktionen und der verschiedenen vom Kunden gekauften Produkte. Nach Sortierung gemäß absteigenden Umsatzes schneidet der Code nach dem 10. Kunden ab.

SQL kann aber mit der gleichen Eleganz noch viel mehr: Beispielsweise verbinden Joins die Daten mehrerer Tabellen über Fremschlüsselbeziehungen oder analytische Funktionen bestimmen Rankings und laufende Summen. Wäre es nicht toll, wenn R ähnlich effektiv mit Data Frames analoger Struktur umgehen könnte? Natürlich! Aber schon der Versuch, obige SQL-Query auf einem R Data Frame mit den althergebrachten Bordmitteln umzusetzen (subset, aggregate, merge, …), führt zu einem unleserlichen, uneleganten Stück Code.

Genau in diese Bresche springt der von vielen anderen Bibliotheken bekannte Entwickler Hadley Wickham mit seiner Bibliothek dplyr: Sie standardisiert Operationen auf Data Frames analog zu SQL-Operationen und führt zu einer wirklich selbsterklärlichen Syntax, die noch dazu sehr performant abgearbeitet wird. Ganz analog zu ggplot2, das sich an der Grammar of Graphics orientiert, spricht Wickham bei dplyr von einer Grammar of Data Manipulation. Die Funktionen zur Manipulation nennt er folgerichtig Verben.

Dabei treten naturgemäß eine Reihe von Analogien zwischen den Teilen eines SELECT-Statements und dplyr-Funktionen auf:

SELECT-Operation dplyr-Funktion
Bildung der Spaltenliste select()
Bildung eines Ausdrucks mutate()
WHERE-Klausel filter()
GROUP BY Spaltenliste group_by()
Bildung von Aggregaten wie sum() etc. summarise()
HAVING-Klausel filter()
ORDER BY Spaltenliste arrange()
LIMIT-Klausel slice()

Die ersten Schritte

Ich möchte die Anwendung von dplyr mithilfe des Standard-Datensatzes Cars93
aus dem Paket MASS demonstrieren:

Die erste Aufgabe soll darin bestehen, aus dem Data Frame alle Autos zu selektieren, die vom Hersteller “Audi” stammen und nur Model und Anzahl Passagiere auszugeben. Hier die Lösung in Standard-R und mit dplyr:

Man sieht, dass die neue Funktion filter() der Zeilenselektion, also der Funktion subset() entspricht. Und die Auswahl der Ergebnisspalten, die in Standard-R durch Angabe einer Spaltenliste zwischen [ und ] erfolgt, hat in dplyr das Pendant in der Funktion select().

select() ist sehr mächtig in seinen Möglichkeiten, die Spaltenliste anzugeben. Beispielsweise funktioniert dies über Positionslisten, Namensmuster und ggf. das auch noch negiert:

Die obige Abfrage projiziert aus dem Data Frame sämtliche Spalten, die nicht mit “L” beginnen. Das scheint zunächst ein unscheinbares Feature zu sein, zahlt sich aber aus, wenn analytische Data Frames Dutzende oder Hunderte von Spalten haben, deren Bezeichnung sich nach einem logischen Namensschema richtet.
Soweit ist das noch nicht spektakulär. dplyr hilft uns in obigem Beispiel, als erstes bestimmte Datensätze zu selektieren und als zweites die interessierenden Spalten zu projizieren. dplyr ist aber bezüglich der Verarbeitung von Data Frames sehr intuitiv und funktional, sodass wir früher oder später viele Operationen auf unserem Data Frame verketten werden. So erreichen wir die Mächtigkeit von SQL und mehr. Die funktionale Syntax aus dem letzten Beispiel wird dann ganz schnell unleserlich, da die Verabeitungsreihenfolge (zuerst filter(), dann select()) nur durch Lesen des Codes von innen nach außen und von rechts nach links ersichtlich wird.

Daher geht dplyr einen Schritt weiter, indem es den eleganten Verkettungsoperator %>% aus dem magrittr-Paket importiert und zur Verfügung stellt. Dadurch werden die verschachtelten Ausdrücke in Sequenzen von Operationen gewandelt und somit sehr viel lesbarer und wartbarer:

Diese in meinen Augen geniale Syntax durch den neuen Operator %>% erlaubt einen sequenziellen Aufbau der Operationen auf einem Data Frame. Benutzer der Unix-Kommandozeile werden hier leicht die Analogie zu Pipes erkennen. Ganz abstrakt kann man sagen, dass damit folgende Operationen äquivalent sind:

Traditioneller Funktionsaufruf Verkettung mit %>%
f(a,b) a %>% f(b)
f(a,b,c) a %>% f(b,c)
g(f(a,b),c) a %>% f(b) %>% g(c)

Weiteres erklärt die Dokumentation zum %>%-Operator im Paket magrittr mithilfe
des Befehls ?magrittr::‘%>%‘.

Neue Variablen

Durch die Funtionen select() und filter() können wir aus Data Frames Spalten projizieren und Zeilen selektieren. Ergebnisse neuer Ausdrücke entstehen hingegen mit dem Verb mutate():

Im obigen Beispiel wird zunächst auf den Hersteller Audi selektiert und danach auf einen Streich zwei neue Spalten eingeführt, l_100km und eur. Durch Zuweisen auf eine neue Variable wird das fertige Ergebnis dauerhaft gespeichert. Hierbei handelt es sich wieder um ein natives Data Frame-Objekt. Die Operation transmute() arbeitet analog zu mutate(), verwirft aber nach Bildung der Ausdrücke alle nicht genannten Spalten. Somit können wir obiges Beispiel auch wie folgt schreiben:

Aggregate

Neben der Selektion von Zeilen und Spalten sowie der Bildung abgeleiteter Ausdrücke ist bei Datenbanktabellen die Gruppierung und Aggregation mit GROUP BY eine sehr wichtige Operation. Dies gilt auch für Data Frames in R, wenngleich hier der Funktionsumfang über diverse Funktionen wie table() oder aggregate() verteilt ist und wenig intuitiv ist.

Hier bringt dplyr ebenfalls eine großartige Verbesserung mit. Das entsprechende Verb heißt group_by(). Diese Operation wird zusammen mit einer Spaltenliste auf ein Data Frame angewendet:

Das Ergebnis von group_by() ist ein Objekt, das “mehr” ist als ein Data Frame, sondern auch noch einige spezifische Strukturinformationen von dplyr enthält. In unserem Beispiel sind dies Indizes von Zeilen, die zum gleichen Hersteller gehören. Das ursprüngliche Data Frame wird hierbei nicht kopiert, sondern nur eingebettet.

Nach Anwenden einer group_by()-Operation ist das Data Frame optimal vorbereitet für die eigentliche Aggregation mit summarise():

Das Resultat von summarise() ist wieder ein Data Frame, das neben den ursprünglichen Gruppierungskriterien nur noch die Aggregate enthält.

Daten in Reih’ und Glied

Zwischen Relationalen Datenbanken und R-Data Frames besteht ein wesentlicher konzeptioneller Unterschied: Die Ergebnisse eines SELECT-Befehls haben keine definierte Reihenfolge, so lange die Zeilen nicht mit der Klausel ORDER BY festgelegt wird. Im Gegensatz dazu haben die Zeilen von Data Frames eine konstante Reihenfolge, die sich aus der Anordnung derWerte in den Spaltenvektoren ergibt.

Dennoch ist es manchmal wünschenswert, Data Frames umzusortieren, um eine fachliche Reihenfolge abzubilden. Hierzu dient in dplyr das Verb arrange(), das im Standard-R weitgehend der Indizierung eines Data Frames mit Ergebnissen der order()-Funktion entspricht, aber syntaktisch eleganter ist:

Dieses Beispiel hat zum Ziel, die fünf PS-stärksten Autos zu selektieren. Die arrange()-Funktion sortiert hier zunächst absteigend nach der PS-Stärke, dann aufsteigend nach Herstellername. Die Selektion der 5 ersten Zeilen erfolgt mit der hilfreichen Funktion slice(), die aus einem Data Frame Zeilen anhand ihrer Reihenfolge selektiert.

Fazit und Ausblick

Mit dplyr wird die Arbeit mit Data Frames stark verbessert: Im Vergleich zu “nacktem” R bringt das Paket eine klarere Syntax, abgerundete Funktionalität und bessere Performance. In der Kürze dieses Artikels konnte ich dies nur oberflächlich anreissen. Daher verweise ich auf die vielen Hilfe-Seiten, Vignetten und Internet-Videos zum Paket. Im zweiten Teil dieses Artikels werde ich auf einige fortgeschrittene Features von dplyr eingehen, z.B. die Verknüpfung von Data Frames mit Joins, die Window-Funktionen und die Verwendung von Datenbanken als Backend.

Weiter zu R Data Frames meistern mit dplyr – Teil 2.

Warenkorbanalyse in R

Was ist die Warenkorbanalyse?

Die Warenkorbanalyse ist eine Sammlung von Methoden, die die beim Einkauf gemeinsam gekauften Produkte oder Produktkategorien aus einem Handelssortiment untersucht. Ziel der explorativen Warenkorbanalyse ist es, Strukturen in den Daten zu finden, so genannte Regeln, die beschreiben, welche Produkte oder Produktkategorien gemeinsam oder eben nicht gemeinsam gekauft werden.

Beispiel: Wenn ein Kunde Windeln und Bier kauft, kauft er auch Chips.

Werden solche Regeln gefunden, kann das Ergebnis beispielsweise für Verbundplatzierungen im Verkaufsraum oder in der Werbung verwendet werden.

Datenaufbau

Die Daten, die für diese Analyse untersucht werden, sind Transaktionsdaten des Einzelhandels. Meist sind diese sehr umfangreich und formal folgendermaßen aufgebaut:

data-bsp

Ausschnitt eines Beispieldatensatzes: Jede Transaktion (= Warenkorb = Einkauf) hat mehrere Zeilen, die mit der selben Transaktionsnummer (Spalte Transaction) gekennzeichnet sind. In den einzelnen Zeilen der Transaktion stehen dann alle Produkte, die sich in dem Warenkorb befanden. In dem Beispiel sind zudem noch zwei Ebenen von Produktkategorien als zusätzliche Informationen enthalten.

Es gibt mindestens 2 Spalten: Spalte 1 enthält die Transaktionsnummer (oder die Nummer des Kassenbons, im Beispielbild Spalte Transaction), Spalte 2 enthält den Produktnamen. Zusätzlich kann es weitere Spalten mit Infos wie Produktkategorie, eventuell in verschiedenen Ebenen, Preis usw. geben. Sind Kundeninformationen vorhanden, z.B. über Kundenkarten, so können auch diese Informationen enthalten sein und mit ausgewertet werden.

Beschreibende Datenanalyse

Die Daten werden zunächst deskriptiv, also beschreibend, analysiert. Dazu werden z.B. die Anzahl der Transaktionen und die Anzahl der Produkte im Datensatz berechnet. Zudem wird die Länge der Transaktionen, also die Anzahl der Produkte in den einzelnen Transaktionen untersucht. Dies wird mit deskriptiven Maßzahlen wie Minimum, Maximum, Median und Mittelwert in Zahlen berichtet sowie als Histogramm grafisch dargestellt, siehe folgende Abbildung.

hist-sizes
Histogramm der Längenverteilung der Transaktionen.

Die häufigsten Produkte werden ermittelt und können gesondert betrachtet werden. Als Visualisierung kann hier ein Balkendiagramm mit den relativen Häufigkeiten der häufigsten Produkte verwendet werden, wie im folgenden Beispiel.

relfreq-items
Relative Häufigkeiten der häufigsten Produkte, hier nach relativer Häufigkeit größer 0,1 gefiltert.

Ähnliche Analysen können bei Bedarf auch auf Kategorien-Ebene oder nach weiteren erhobenen Merkmalen selektiert durchgeführt werden, je nachdem, welche Informationen in den Daten stecken und welche Fragestellungen für den Anwender interessant sind.

Verbundanalyse

Im nächsten Schritt wird mit statistischen Methoden nach Strukturen in den Daten gesucht, auch Verbundanalyse genannt. Als Grundlage werden Ähnlichkeitsmatrizen erstellt, die für jedes Produktpaar die Häufigkeit des gemeinsamen Vorkommens in Transaktionen bestimmen. Solch eine Ähnlichkeitsmatrix ist zum Beispiel eine Kreuztabelle in der es für jedes Produkt eine Spalte und eine Zeile gobt. In den Zellen in der Tabelle steht jeweils die Häufigkeit, wie oft dieses Produktpaar gemeinsam in Transaktionen in den Daten vorkommt, siehe auch folgendes Beispiel.

screenshot-crosstable-ausschnitt

Ähnlichkeitsmatrix oder Kreuztabelle der Produkte: Frankfurter und Zitrusfrüchte werden in 64 Transaktionen zusammen gekauft, Frankfurter und Berries in 22 usw.

Auf Basis solch einer Ähnlichkeitsmatrix wird dann z.B. mit Mehrdimensionaler Skalierung oder hierarchischen Clusteranalysen nach Strukturen in den Daten gesucht und Gemeinsamkeiten und Gruppierungen gefunden. Die hierarchische Clusteranalyse liefert dann ein Dendrogram, siehe folgende Abbildung, in der ähnliche Produkte miteinander gruppiert werden.

dendrogram

Dendrogram als Visualisierung des Ergebnisses der hierarchischen Clusterananlyse. Ähnliche Produkte (also Produkte, die zusammen gekauft werden) werden zusammen in Gruppen geclustert. Je länger die vertikale Verbindungslinie ist, die zwei Gruppen oder Produkte zusammen fasst, um so unterschiedlicher sind diese Produkte bzw. Gruppen.

Assoziationsregeln

Schließlich sollen neben den Verbundanalysen am Ende in den Daten Assoziationsregeln gefunden werden. Es werden also Regeln gesucht und an den Daten geprüft, die das Kaufverhalten der Kunden beschreiben. Solch eine Regel ist zum Beispiel „Wenn ein Kunde Windeln und Bier kauft, kauft er auch Chips.“ Formal: {Windeln, Bier} → {Chips}

Für diese Regeln lassen sich statistische Maßzahlen berechnen, die die Güte und Bedeutung der Regeln beschreiben. Die wichtigsten Maßzahlen sind Support, Confidence und Lift:

Support ist das Signifikanzmaß der Regel. Es gibt an, wie oft die gefundene Regel in den Daten anzuwenden ist. Wie oft also die in der Regel enthaltenen Produkte gemeinsam in einer Transaktion vorkommen. In dem Beispiel oben: Wie oft kommen Windeln, Bier und Chips in einer Transaktion gemeinsam vor?

Confidence ist das Qualitätsmaß der Regel. Es beschreibt, wie oft die Regel richtig ist. In dem oben genanten Beispiel: Wie oft ist in einer Transaktion Chips enthalten, wenn auch Windeln und Bier enthalten sind?

Lift ist das Maß der Bedeutung der Regel. Es sagt aus wie oft die Confidence den Erwartungswert übersteigt. Wie ist die Häufigkeit des gemeinsamen Vorkommens von Windeln, Bier und Chips im Verhältlnis zur erwarteten Häufigkeit des Vorkommens, wenn die Ereignisse stochastisch unabhängig sind?

Algorithmen

In den Daten werden zunächst alle möglichen Regeln gesammelt, die einen Mindestwert an Support und Confidence haben. Die Mindestwerte werden dabei vom Nutzer vorgegeben. Da es sich bei Transaktionsdaten um große Datenmengen handelt und häufig große Anzahlen von Produkten enthalten sind, wird die Suche nach Regeln zu einem komplexen Problem. Es wurden verschiedene effiziente Algorithmen als Suchstrategien entwickelt, z.B. der APRIORI-Algorithmus von Agrawal und Srikant (1994), der auch im weiter unten vorgestellten Paket arules von R verwendet wird.

Sind die Assoziationsregeln gefunden, können Sie vom Nutzer genauer untersucht werden und z.B. nach den oben genannten Kennzahlen sortiert betrachtet werden, oder es werden die Regeln für spezielle Warenkategorien genauer betrachtet, siehe folgendes Beispiel.

screenshot-rules

Beispielausgabe von Regeln, hier die drei Regeln mit dem besten Lift. In der ersten Regel sieht man: Wenn Bier und Wein gekauft wird, wird auch Likör gekauft. Diese Regel hat einen Support von 0,002. Diese drei Produkte kommen also in 0,2 % der Transaktionen vor. Die Confidence von 0,396 zeigt, dass in 39,6 % der Transaktionen auch Likör gekauft wird, wenn Bier und Wein gekauft wird.

Umsetzung mit R

Die hier vorgestellten Methoden zur Warenkorbanalyse lassen sich mit dem Paket arules der Software R gut umsetzen. Im Folgenden gebe ich eine Liste von nützlichen Befehlen für diese Analysen mit dieser Software. Dabei wird mit data hier durchgehend der Datensatz der Transaktionsdaten bezeichnet.

Zusammenfassung des Datensatzes:

  • Anzahl der Transaktionen und Anzahl der Warengruppen
  • die häufigsten Produkte werden genannt mit Angabe der Häufigkeiten
  • Längenverteilung der Transaktionen (Anzahl der Produkte pro Transaktion): Häufigkeiten, deskriptive Maße wie Quartile
  • Beispiel für die Datenstruktur (Levels)

Längen der Transaktionen (Anzahl der Produkte pro Transaktion)

Histogramm als grafische Darstellung der Transaktionslängen

rel. Häufigkeiten der einzelnen Produkte, hier nur die mit mindestens 10 % Vorkommen

Äquivalenzmatrix: Häufigkeiten der gemeinsamen Käufe für Produktpaare

Unähnlichkeitsmatrix für die hierarchische Clusteranalyse

Hierarchische Clusteranalyse

Dendrogram der hierarchischen Clusteranalyse

Assoziationsregeln finden mit APRIORI-Algorithmus, hier Regeln mit mindestens 1% Support und 20 % Confidence

Zusammenfassung der oben gefundenen Regeln (Anzahl, Eigenschaften Support, Confidence, Lift)

Einzelne Regeln betrachten, hier die laut Lift besten 5 Regeln

Referenzen:

  • Michael Hahsler, Kurt Hornik, Thomas Reutterer: Warenkorbanalyse mit Hilfe der Statistik-Software R, Innovationen in Marketing, S.144-163, 2006.
  • Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta, Introduciton to arules – A computational environment for mining association rules and frequent item sets. (Link zum PDF)
  • Rakesh Agrawal, Ramakrishnan Srikant, Fast algorithms for mining association rules, Proceedings of the 20th VLDB Conference Santiago, Chile, 1994
  • Software R:  R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Link: R-Project.org.
  • Paket: arules: Mining Association Rules using R.

Beispieldatensatz: Groceries aus dem Paket arules

Data Science mit Neo4j und R

Traurig, aber wahr: Data Scientists verbringen 50-80% ihrer Zeit damit, Daten zu bereinigen, zu ordnen und zu bearbeiten. So bleibt nur noch wenig Zeit, um tatsächlich vorausschauende Vorhersagemodelle zu entwickeln. Vor allem bei klassischen Stacks, besteht die Datenanalyse zum Großteil darin, Zeile für Zeile in SQL zu überführen. Zeit zum Schreiben von Modell-Codes in einer statistischen Sprache wie R bleibt da kaum noch. Die langen, kryptischen SQL-Abfragen verlangsamen aber nicht nur die Entwicklungszeit. Sie stehen auch einer sinnvollen Zusammenarbeit bei Analyse-Projekten im Weg, da alle Beteiligten zunächst damit beschäftigt sind, die SQL-Abfragen der jeweils anderen zu verstehen.

Komplexität der Daten steigt

Der Grund für diese Schwierigkeiten: Die Datenstrukturen werden immer komplexer, die Vernetzung der Daten untereinander nimmt immer stärker zu. Zwängt man diese hochgradig verbundenen Datensätze in eine SQL-Datenbank, in der Beziehungen naturgemäß abstrakt über Fremdschlüssel dargestellt werden, erhält man als Ergebnis übermäßig komplizierte Schematas und Abfragen. Als Alternative gibt es jedoch einige NoSQL-Lösungen – allen voran Graphdatenbanken – die solche hochkomplexen und heterogenen Daten ohne Informationsverlust speichern können – und zwar nicht nur die Entitäten an sich, sondern auch besonders die Beziehungen der Daten untereinander.

Datenanalysen zielen immer stärker darauf ab, das Verhalten und die Wünsche von Kunden besser verstehen zu können. Die Fragen lauten z. B.:

  • Wie hoch ist die Wahrscheinlichkeit, dass ein Besucher auf eine bestimmte Anzeige klickt?
  • Welcher Kunde sollte in welchem Kontext welche Produktempfehlungen erhalten?
  • Wie kann man aus der bisherigen Interaktionshistorie des Kunden sein Ziel vorhersagen, bevor er selbst dort ankommt?
  • In welchen Beziehungen steht Nutzer A zu Nutzer B?

Menschen sind bekanntermaßen von Natur aus sozial. Einige dieser Fragen lassen sich daher beantworten, wenn man weiß, wie Personen miteinander in Verbindung stehen: Unsere Zielperson, Nutzer A ähnelt in seinem Kontext und Verhalten Benutzer B. Und da Benutzer B ein bestimmtes Produkt (z. B. ein Spielfilm) gefällt, empfehlen wir diesen Film auch Nutzer A. In diese Auswertung fließen natürlich auch noch weitere Faktoren mit ein, z. B. die Demographie und der soziale Status des Nutzers, seine Zuordnung zu Peer Groups, vorher gesehene Promotions oder seine bisherigen Interaktionen.

Visualisierung eines Graphen mit RNeo4j

Mit R und Neo4j lassen sich Graphen und Teilgraphen ganz einfach mit RNeo4j, igraph und visNetwork libraries visualisieren.

 

Das folgende Beispiel zeigt wie in einem Graphen Schauspieler und Filme sowie ihre Beziehungen zueinander anschaulich dargestellt werden können, z. B. um Empfehlungen innerhalb eines Filmportals zu generieren. Dabei sind zwei Schauspieler über eine Kante miteinander verbunden, wenn sie beide im gleichen Film mitspielen.

Im ersten Schritt werden dazu in Neo4j die Film-Datensätze importiert (Achtung: Dieser Vorgang löscht die aktuelle Datenbank).

Als nächstes wird mit Cypher eine entsprechende Liste von Beziehungen aus Neo4j gezogen. Wie man sehen kann, ist die Darstellung des gewünschten Graph-Musters innerhalb der Abfrage sehr anschaulich.

Die visNetwork Funktion erwartet sowohl Kanten-Dataframes als auch Knoten-Dataframes. Ein Knoten-Dataframe lässt sich daher über die eindeutigen Werte des Kanten-Dataframes generieren.

Im Anschluss können die Knoten- und Kanten-Dataframes in das visNetwork übertragen werden.
visNetwork(nodes, edges)

Nun kommt igraph mit ins Spiel, eine Bibliothek von Graph-Algorithmen. Durch Einbindung der Kantenliste lässt sich einfach ein igraph Graph-Objekt erstellen, das den Teilgraphen miteinschließt.

Die Größe der Knoten kann als Funktion der Edge-Betweeness-Centrality definiert werden. In visNetwork entspricht dabei jede “value”-Spalte im Knoten-Dataframe der Größe des Knoten.
nodes$value = betweenness(ig)

Mit Einführung der “Value”-Spalte werden die Knoten nun alle unterschiedlich groß dargestellt.
visNetwork(nodes, edges)

Mit Hilfe eines Community-Detection-Algorithmus lassen sich im Graphen nun Cluster finden. In diesem Beispiel wird der „Girvan-Newman”-Algorithmus verwendet, der in igraph als cluster_edge_betweenness bezeichnet wird.

In der Liste oben sind alle Schauspieler der ersten zwei Cluster zu sehen. Insgesamt konnten sechs Cluster identifiziert werden.

Durch Hinzufügen einer “Group”-Spalte im Knoten-Dataframe, werden alle Knoten in visNetwork entsprechend ihrer Gruppenzugehörigkeit farblich markiert. Diese Cluster-Zuordnung erfolgt über clusters$membership. Durch Entfernen der “Value”-Spalte lassen sich die Knoten wieder auf eine einheitliche Größe bringen.

Werden die Knoten- und Kanten-Datenframes erneut in visNetwork übertragen, sind nun alle Knoten eines Clusters in derselben Farbe dargestellt.
visNetwork(nodes, edges)

Mit diesem Workflow lassen sich Teilgraphen in Neo4j einfach abfragen und Cluster-Algorithmen einfach darstellen.

Generell eignen sich Graphdatenbanken wie Neo4j besonders gut, um stark vernetzte und beliebig strukturierte Informationen zu handhaben – egal ob es sich um Schauspieler, Filme, Kunden, Produkte, Kreditkarten oder Bankkonten handelt. Zudem können sowohl den Knoten als auch den Kanten beliebige qualitative und quantitative Eigenschaften zugeordnet werden. Beziehungen zwischen Daten sind also nicht mehr bloße Strukturinformationen, sondern stehen vielmehr im Zentrum des Modells.

Cypher: intuitiv nutzbare Programmiersprache

Die Zeiten, in denen Data Science zum Großteil aus Datenbereinigung und -mapping besteht, sind damit vorbei. Mit dem entsprechenden Ansatz laufen Entwicklungsprozesse deutlich schneller und einfacher ab. Data Scientists kommen mit weniger Code schneller ans Ziel und können mehr Zeit in das tatsächliche Entwickeln von relevanten Modellen investieren. Dabei nutzen sie die Flexibilität einer quelloffenen NoSQL-Graphdatenbank wie Neo4j kombiniert mit der Reife und weiten Verbreitung der Statistiksprache R für statistisches Rechnen und Visualisierung. Programmierer müssen nicht mehr stundenlang komplexe SQL-Anweisungen schreiben oder den ganzen Tag damit verbringen, eine Baumstruktur in SQL zu überführen. Sie benutzen einfach Cypher, eine musterbasierte, für Datenbeziehungen und Lesbarkeit optimierte Abfragesprache und legen los.

R für Process Mining & Projektmanagement – Literaturempfehlungen

Es gibt immer wieder Skriptsprachen, die neu am IT-Horizont geboren um Anwender werben. Der IT-Manager muß also stets entscheiden, ob er auf einen neuen Zug aufspringt oder sein bisheriges Programmierwerkzeug aktuellen Anforderungen standhält. Mein Skriptsprachenkompass wurde über frühere Autoren kalibriert, an die hier erinnert werden soll, da sie grundsätzliche Orientierungshilfen für Projektplanungen gaben.

Im Projektmanagement geht es stets um aufwandsbezogene Terminplanung, im CAFM-Projektmanagement  z. B. konkret um die Analyse und Schätzung geplanter und ungeplanter Maßnahmen, wie geplante Wartungen oder zufällige technische Störungen im Gebäudemanagement, um Wahrscheinlichkeiten.

Warum löst R die Terminplanung strategisch und praktisch besser als Python, Perl, Java oder etc.? Weil sich geschätzte Ereignisse in Zeitfenstern normalverteilt als so genannte Gaußsche Glockenkurve abbilden, einer statistischen Schätzung entsprechen.

Hier zwei Beispielgrafiken zum Thema Terminschätzung aus aktueller Literatur.

1. Standardnormalverteilung

Praxishandbuch Projektmanagement – inkl. Arbeitshilfen online von Günter Drews, Norbert Hillebrand, Martin Kärner, Sabine Peipe, Uwe Rohrschneider

Haufe-Lexware GmbH & Co. KG, Freiburg, 1. Auflage 2014 – Siehe z. B. Seite 241, Abb. 14 Normalverteilung als Basis von PERT (Link zu Google Books)


Praxishandbuch Projektmanagement – inkl. Arbeitshilfen online

2. Betaverteilung

Projektmanagement für Ingenieure: Ein praxisnahes Lehrbuch für den systematischen Projekterfolg von Walter Jakoby, Hochschule Trier

Springer Vieweg, Springer Fachmedien Wiesbaden 2015, 3, Auflage – Siehe z. B. Seite 215, Abb. 7.13 Beta-Verteilung (Link zu Google Books).


Projektmanagement für Ingenieure: Ein praxisnahes Lehrbuch für den systematischen Projekterfolg 

Eine objektorientierte Statistikprogrammiersprache mit über 7.000 Paketen weltweit lädt ein, nicht jede Funktion neu erfinden zu wollen und macht glaubhaft, dass kein Unternehmen der Welt über derart Programmierwissen und Kapazität verfügt, es besser zu können. Für statistische Berechnungen empfiehlt sich seit Jahren R, für mich spätestens seit 2003. Früheren Autoren war das grundlegend klar, daß deterministische Terminplanungen immer am Mangel stochastischer Methoden kranken. In meiner Studienzeit kursierte an der Martin Luther Universität Halle an der Saale der Witz, es gibt zwei Witze an der landwirtschaftlichen Fakultät, den Badewitz und den Howitz.  Doch das Buch vom Badewitz halte ich bis heute. Im Kapitel 5.3 Elemente der Zeitplanung fand ich dort in Abbildung 5.7 auf Seite 140 erstmals die Wahrscheinlichkeitsverteilung einer Vorgangsdauer als normalverteilte Grafik.

Vgl. Zur Anwendung ökonomisch-mathematischer Methoden der Operationsforschung, federführend Dr. sc. agr. Siegfried Badewitz, 1. Auflage 1981, erschienen im VEB Deutscher Landwirtschaftsverlag Berlin. Ein Grafikkünstler zur schnellen Visualisierung von Funktionen und Dichteverteilungen ist seit Jahren R. Zur R-Umsetzung empfehle ich gern meine R-Beispielbibel bei Xing.

Wer zur Statistik der Terminschätzung tiefer greifen will, kommt an Autoren wie Golenko u. a. nicht vorbei. Badewitz verwies z.B. auf Golenko’s Statistische Methoden der Netzplantechnik in seinem o.g. Buch (Link zu Google Books).


Statistische Methoden der NetzplantechnikHier empfehle ich zum Einstieg das Vorwort, das 2015 gelesen, aktuell noch immer gilt, nicht das Jahr seiner Niederschrift 1968 preisgibt:

Gegenwärtig beobachtet man häufig Situationen, in denen bei der Untersuchung von zufallsbeeinflußten Systemen die in ihnen auftretenden Zufallsparameter durch feste Werte (z. B. den Erwartungswert) ersetzt werden, wonach dann ein deterministisches Modell untersucht wird.

Und hier noch ein Beispiel von Seite 203:

Praktisch kann jede komplizierte logische Beziehung auf eine Kombination elementarer stochastischer Teilgraphen zurückgeführt werden.

Meine Empfehlung für Process Mining und Projektmanagement lautet daher – intelligente Stochstik statt altbackenem Determinismus.

 

Aus der Datenflut das Beste machen – Zertifikatskurs „Data Science“ in Brandenburg

Die Aufbereitung von Daten, ihre Analyse und Darstellung sind mittlerweile zu einer Wissenschaft für sich geworden – „Data Science“. Unternehmen sehen sich heute unabhängig von ihrer Größe von einer Vielzahl unterschiedlicher Daten herausgefordert: Neben klassischen Transaktionsdaten stehen heute z.B. Daten aus der Logistik (RFID, GIS), aus sozialen Medien, dem Internet der Dinge oder öffentlichen Quellen (Open Data / Public Data) zur Verfügung. Ein neuer Zertifikatskurs Data Science ermöglicht jetzt eine wissenschaftliche Weiterbildung zur Nutzung von Daten als „Rohstoff des 21. Jahrhunderts“.

Die Agentur für wissenschaftliche Weiterbildung und Wissenstransfer (AWW e.V.) bietet in Kooperation mit der Fachhochschule Brandenburg den berufsbegleitenden Zertifikatskurs mit nur wenigen Präsenzphasen ab Oktober an. Die wissenschaftliche Leitung hat Dr. Peter Lauf übernommen, ein erfahrener Praktiker, der zurzeit noch eine Professur für Quantitative Methoden und Data Mining an der Hochschule für Technik und Wirtschaft Berlin vertritt. Zertifiziert wird der Abschluss Data Scientist (FH).

Die Weiterbildung hat nur wenige Präsenzphasen an Freitagen und Samstagen und ist daher für Teilnehmer/innen aus dem ganzen Bundesgebiet geeignet – So kommen einige Teilnehmer auch aus Frankfurt am Main und München.

Wer sich schnell entscheidet, kann bis 16. Juli 2015 vom Frühbucherrabatt profitieren!

Der Inhalt des Kurses orientiert sich an einer bekannten Einteilung des amerikanischen Wirtschaftswissenschaftlers und Google-Chefökonomen Hal Varian: Ihm zufolge setzt sich die spezifische Wertschöpfungskette von Daten aus Zugriff, Verständnis, Verarbeitung, Analyse und Ergebniskommunikation zusammen. Data Science umfasst deshalb die Module Data Engineering (Zugriff, Verständnis, Verarbeitung), Quantitative Methoden und Data Mining (Analyse) sowie Storytelling: Kommunikation und Visualisierung der Ergebnisse (Ergebniskommunikation).

Die Weiterbildung vereinigt damit Fachwissen aus der Informatik mit quantitativen Methoden und Aspekten des Informations- und Kommunikationsdesigns. Wichtige Werkzeuge im Kurs sind die Statistiksprache R und Power Business Intelligence Tools. Auch auf Azure Machine Learning wird mit konkreten Beispielen Bezug genommen. Im Ergebnis sollen die Teilnehmer verschiedene Techniken zur Nutzung von Daten beherrschen und einen Überblick über die Voraussetzungen und möglichen Lösungsansätze im Bereich datengetriebener Projekte erhalten. Lernziel ist die reibungslose Kommunikation zwischen Management, Engineering und Administration.

Weitere Auskünfte erteilt Katja Kersten (Tel. 03381 – 355 754, E-Mail: katja.kersten@fh-brandenburg.de). Nähere Informationen im Internet sind unter www.aww-brandenburg.de erhältlich.