How Important is Customer Lifetime Value?

This is the third article of article series Getting started with the top eCommerce use cases.

Customer Lifetime Value

Many researches have shown that cost for acquiring a new customer is higher than the cost of retention of an existing customer which makes Customer Lifetime Value (CLV or LTV) one of the most important KPI’s. Marketing is about building a relationship with your customer and quality service matters a lot when it comes to customer retention. CLV is a metric which determines the total amount of money a customer is expected to spend in your business.

CLV allows marketing department of the company to understand how much money a customer is going  to spend over their  life cycle which helps them to determine on how much the company should spend to acquire each customer. Using CLV a company can better understand their customer and come up with different strategies either to retain their existing customers by sending them personalized email, discount voucher, provide them with better customer service etc. This will help a company to narrow their focus on acquiring similar customers by applying customer segmentation or look alike modeling.

One of the main focus of every company is Growth in this competitive eCommerce market today and price is not the only factor when a customer makes a decision. CLV is a metric which revolves around a customer and helps to retain valuable customers, increase revenue from less valuable customers and improve overall customer experience. Don’t look at CLV as just one metric but the journey to calculate this metric involves answering some really important questions which can be crucial for the business. Metrics and questions like:

  1. Number of sales
  2. Average number of times a customer buys
  3. Full Customer journey
  4. How many marketing channels were involved in one purchase?
  5. When the purchase was made?
  6. Customer retention rate
  7. Marketing cost
  8. Cost of acquiring a new customer

and so on are somehow associated with the calculation of CLV and exploring these questions can be quite insightful. Lately, a lot of companies have started to use this metric and shift their focuses in order to make more profit. Amazon is the perfect example for this, in 2013, a study by Consumers Intelligence Research Partners found out that prime members spends more than a non-prime member. So Amazon started focusing on Prime members to increase their profit over the past few years. The whole article can be found here.

How to calculate CLV?

There are several methods to calculate CLV and few of them are listed below.

Method 1: By calculating average revenue per customer

 

Figure 1: Using average revenue per customer

 

Let’s suppose three customers brought 745€ as profit to a company over a period of 2 months then:

CLV (2 months) = Total Profit over a period of time / Number of Customers over a period of time

CLV (2 months) = 745 / 3 = 248 €

Now the company can use this to calculate CLV for an year however, this is a naive approach and works only if the preferences of the customer are same for the same period of time. So let’s explore other approaches.

Method 2

This method requires to first calculate KPI’s like retention rate and discount rate.

 

CLV = Gross margin per lifespan ( Retention rate per month / 1 + Discount rate – Retention rate per month)

Where

Retention rate = Customer at the end of the month – Customer during the month / Customer at the beginning of the month ) * 100

Method 3

This method will allow us to look at other metrics also and can be calculated in following steps:

  1. Calculate average number of transactions per month (T)
  2. Calculate average order value (OV)
  3. Calculate average gross margin (GM)
  4. Calculate customer lifespan in months (ALS)

After calculating these metrics CLV can be calculated as:

 

CLV = T*OV*GM*ALS / No. of Clients for the period

where

Transactions (T) = Total transactions / Period

Average order value (OV) = Total revenue / Total orders

Gross margin (GM) = (Total revenue – Cost of sales/ Total revenue) * 100 [but how you calculate cost of sales is debatable]

Customer lifespan in months (ALS) = 1 / Churn Rate %

 

CLV can be calculated using any of the above mentioned methods depending upon how robust your company wants the analysis to be. Some companies are also using Machine learning models to predict CLV, maybe not directly but they use ML models to predict customer churn rate, retention rate and other marketing KPI’s. Some companies take advantage of all the methods by taking an average at the end.

Multi-touch attribution: A data-driven approach

This is the first article of article series Getting started with the top eCommerce use cases.

What is Multi-touch attribution?

Customers shopping behavior has changed drastically when it comes to online shopping, as nowadays, customer likes to do a thorough market research about a product before making a purchase. This makes it really hard for marketers to correctly determine the contribution for each marketing channel to which a customer was exposed to. The path a customer takes from his first search to the purchase is known as a Customer Journey and this path consists of multiple marketing channels or touchpoints. Therefore, it is highly important to distribute the budget between these channels to maximize return. This problem is known as multi-touch attribution problem and the right attribution model helps to steer the marketing budget efficiently. Multi-touch attribution problem is well known among marketers. You might be thinking that if this is a well known problem then there must be an algorithm out there to deal with this. Well, there are some traditional models  but every model has its own limitation which will be discussed in the next section.

Traditional attribution models

Most of the eCommerce companies have a performance marketing department to make sure that the marketing budget is spent in an agile way. There are multiple heuristics attribution models pre-existing in google analytics however there are several issues with each one of them. These models are:

First touch attribution model

100% credit is given to the first channel as it is considered that the first marketing channel was responsible for the purchase.

Figure 1: First touch attribution model

Last touch attribution model

100% credit is given to the last channel as it is considered that the first marketing channel was responsible for the purchase.

Figure 2: Last touch attribution model

Linear-touch attribution model

In this attribution model, equal credit is given to all the marketing channels present in customer journey as it is considered that each channel is equally responsible for the purchase.

Figure 3: Linear attribution model

U-shaped or Bath tub attribution model

This is most common in eCommerce companies, this model assigns 40% to first and last touch and 20% is equally distributed among the rest.

Figure 4: Bathtub or U-shape attribution model

Data driven attribution models

Traditional attribution models follows somewhat a naive approach to assign credit to one or all the marketing channels involved. As it is not so easy for all the companies to take one of these models and implement it. There are a lot of challenges that comes with multi-touch attribution problem like customer journey duration, overestimation of branded channels, vouchers and cross-platform issue, etc.

Switching from traditional models to data-driven models gives us more flexibility and more insights as the major part here is defining some rules to prepare the data that fits your business. These rules can be defined by performing an ad hoc analysis of customer journeys. In the next section, I will discuss about Markov chain concept as an attribution model.

Markov chains

Markov chains concepts revolves around probability. For attribution problem, every customer journey can be seen as a chain(set of marketing channels) which will compute a markov graph as illustrated in figure 5. Every channel here is represented as a vertex and the edges represent the probability of hopping from one channel to another. There will be an another detailed article, explaining the concept behind different data-driven attribution models and how to apply them.

Figure 5: Markov chain example

Challenges during the Implementation

Transitioning from a traditional attribution models to a data-driven one, may sound exciting but the implementation is rather challenging as there are several issues which can not be resolved just by changing the type of model. Before its implementation, the marketers should perform a customer journey analysis to gain some insights about their customers and try to find out/perform:

  1. Length of customer journey.
  2. On an average how many branded and non branded channels (distinct and non-distinct) in a typical customer journey?
  3. Identify most upper funnel and lower funnel channels.
  4. Voucher analysis: within branded and non-branded channels.

When you are done with the analysis and able to answer all of the above questions, the next step would be to define some rules in order to handle the user data according to your business needs. Some of the issues during the implementation are discussed below along with their solution.

Customer journey duration

Assuming that you are a retailer, let’s try to understand this issue with an example. In May 2016, your company started a Fb advertising campaign for a particular product category which “attracted” a lot of customers including Chris. He saw your Fb ad while working in the office and clicked on it, which took him to your website. As soon as he registered on your website, his boss called him (probably because he was on Fb while working), he closed everything and went for the meeting. After coming back, he started working and completely forgot about your ad or products. After a few days, he received an email with some offers of your products which also he ignored until he saw an ad again on TV in Jan 2019 (after 3 years). At this moment, he started doing his research about your products and finally bought one of your products from some Instagram campaign. It took Chris almost 3 years to make his first purchase.

Figure 6: Chris journey

Now, take a minute and think, if you analyse the entire journey of customers like Chris, you would realize that you are still assigning some of the credit to the touchpoints that happened 3 years ago. This can be solved by using an attribution window. Figure 6 illustrates that 83% of the customers are making a purchase within 30 days which means the attribution window here could be 30 days. In simple words, it is safe to remove the touchpoints that happens after 30 days of purchase. This parameter can also be changed to 45 days or 60 days, depending on the use case.

Figure 7: Length of customer journey

Removal of direct marketing channel

A well known issue that every marketing analyst is aware of is, customers who are already aware of the brand usually comes to the website directly. This leads to overestimation of direct channel and branded channels start getting more credit. In this case, you can set a threshold (say 7 days) and remove these branded channels from customer journey.

Figure 8: Removal of branded channels

Cross platform problem

If some of your customers are using different devices to explore your products and you are not able to track them then it will make retargeting really difficult. In a perfect world these customers belong to same journey and if these can’t be combined then, except one, other paths would be considered as “non-converting path”. For attribution problem device could be thought of as a touchpoint to include in the path but to be able to track these customers across all devices would still be challenging. A brief introduction to deterministic and probabilistic ways of cross device tracking can be found here.

Figure 9: Cross platform clash

How to account for Vouchers?

To better account for vouchers, it can be added as a ‘dummy’ touchpoint of the type of voucher (CRM,Social media, Affiliate or Pricing etc.) used. In our case, we tried to add these vouchers as first touchpoint and also as a last touchpoint but no significant difference was found. Also, if the marketing channel of which the voucher was used was already in the path, the dummy touchpoint was not added.

Figure 10: Addition of Voucher as a touchpoint

Let me know in comments if you would like to add something or if you have a different perspective about this use case.

4 Industries Likely to Be Further Impacted by Data and Analytics in 2020

The possibilities for collecting and analyzing data have skyrocketed in recent years. Company leaders no longer must rely primarily on guesswork when making decisions. They can look at the hard statistics to get verification before making a choice.

Here are four industries likely to notice continuing positive benefits while using data and analytics in 2020.

  1. Transportation

If the transportation sector suffers from problems like late arrivals or buses and trains never showing up, people complain. Many use transportation options to reach work or school, and use long-term solutions like planes to visit relatives or enjoy vacations.

Data analysis helps transportation authorities learn about things such as ridership numbers, the most efficient routes and more. Digging into data can also help professionals in the sector verify when recent changes pay off.

For example, New York City recently enacted a plan called the 14th Street Busway. It stops cars from traveling on 14th Street for more than a couple of blocks from 6 a.m. to 10 p.m. every day. One of the reasons for making the change was to facilitate the buses that carry passengers along 14th Street. Data confirms the Busway did indeed encourage people to use the bus. Ridership jumped 24% overall, and by 20% during the morning rush hour.

Data analysis could also streamline air travel. A new solution built with artificial intelligence can reportedly make flights more on time and reduce fuel consumption by improving traffic flow in the terminals. The system also crunches numbers to warn people about long lines in an airport. Then, some passengers might make schedule adjustments to avoid those backups.

These examples prove why it’s smart for transportation professionals to continually see what the data shows. Becoming more aware of what’s happening, where problems exist and how people respond to different transit options could lead to better decision-making.

  1. Agriculture

People in the agriculture industry face numerous challenges, such as climate change and the need to produce food for a growing global population. There’s no single, magic fix for these challenges, but data analytics could help.

For example, MIT researchers are using data to track the effects of interventions on underperforming African farms. The outcome could make it easier for farmers to prove that new, high-tech equipment will help them succeed, which could be useful when applying for loans.

Elsewhere, scientists developed a robot called the TerraSentia that can collect information about a variety of crop traits, such as the height and biomass. The machine then transfers that data to a farmer’s laptop or computer. The robot’s developers say their creation could help farmers figure out which kinds of crops would give the best yields in specific locations, and that the TerraSentia will do it much faster than humans.

Applying data analysis to agriculture helps farmers remove much of the guesswork from what they do. Data can help them predict the outcome of a growing season, target a pest or crop disease problem and more. For these reasons and others, data analysis should remain prominent in agriculture for the foreseeable future.

  1. Energy 

Statistics indicate global energy demand will increase by at least 30% over the next two decades. Many energy industry companies have turned to advanced data analysis technologies to prepare for that need. Some solutions examine rocks to improve the detection of oil wells, while others seek to maximize production over the lifetime of an oilfield.

Data collection in the energy sector is not new, but there’s been a long-established habit of only using a small amount of the overall data collected. That’s now changing as professionals are more frequently collecting new data, plus converting information from years ago into usable data.

Strategic data analysis could also be a good fit for renewable energy efforts. A better understanding of weather forecasts could help energy professionals pinpoint how much a solar panel or farm could contribute to the electrical grid on a given day.

Data analysis helps achieve that goal. For example, some solutions can predict the weather up to a month in advance. Then, it’s possible to increase renewable power generation by up to 10%.

  1. Construction

Construction projects can be costly and time-consuming, although the results are often impressive. Construction professionals must work with a vast amount of data as they meet customers’ needs. Site plans, scheduling specifics, weather information and regulatory documents all help define how the work progresses and whether everything stays under budget.

Construction firms increasingly use big data analysis software to pull all the information into one place and make it easier to use. That data often streamlines customer communications and helps with meeting expectations. In one instance, a construction company depended on a real-time predictive modeling solution and combined it with in-house estimation software.

The outcome enabled instantly showing a client how much a new addition would cost. Other companies that are starting to use big data in construction note that having the option substantially reduces their costs — especially during the planning phase before construction begins. Another company is working on a solution that can analyze job site photos and use them to spot injury risks.

Data Analysis Increases Success

The four industries mentioned here have already enjoyed success by investigating the potential data analysis offers. People should expect them to continue making gains through 2020.

The Importance of Equipment Calibration in Maintaining Data Integrity

Image by Unsplash.

New data-collection technologies, like internet of things (IoT) sensors, enable businesses across industries to collect accurate, minute-to-minute data that they can use to improve business processes and drive decision-making.

However, as data becomes more central to business processes and as more and more data is collected, collection errors become both more possible and more costly.

Here is why equipment calibration is key in maintaining data integrity — in every industry.

Bad Calibration, Bad Data

If a sensor or piece of equipment is improperly calibrated, the data it records could be incomplete, inaccurate or totally incorrect. This misinformation could be detrimental for businesses that integrate data-driven policies and strategies, as they rely on complete, up-to-date and accurate data.

In fact, poor calibration cost manufacturers an average of $1.7 million every year, according to a 2008 survey.

Poorly calibrated sensors and testing equipment can also present risks for consumers — which is why some industries control calibration. In medicine, for example, the FDA regulates equipment calibration. Medical manufacturers must regularly inspect and test monitoring equipment. Effective measuring and test equipment are vital for producing batches of drugs that are useful and safe for patient health.

Bad calibration can even lead to machine failure in businesses that rely on predictive maintenance, which is the use of IoT sensors to collect machine data that can help analysts predict machine failure before it happens. If a business’ data scientists are working with bad information, they are less likely to realize a particular machine or robot is failing. As a result, they won’t intervene with a repair until failure has occurred — a costly error that can effectively shut down some workflows.

Worse, if a business has come to depend on predictive maintenance, it may be caught off-guard by that machine’s failure — even more than if the same company relied on traditional maintenance strategies, rather than predictive analytics.

How to Ensure Equipment Calibration

Fortunately, businesses can ensure the continued quality of their data-collecting processes by committing to regular equipment calibration.

While not all industries are subject to equipment calibration regulations, standards from other industries — like those established by the FDA — could provide useful best practice frameworks.

Businesses that don’t have a dedicated equipment maintenance team can choose an external calibration solution or hire or train a team to handle equipment calibration. Some businesses — such as manufacturers who work with numerous advanced or highly sensitive machines — might need multiple calibration teams or companies with specialized experience.

In general, businesses and manufacturers should establish a regular calibration and inspection schedule. Each time someone calibrates a piece of equipment, they should document that process. Documentation should include the date of the last calibration, the results of any tests conducted and the due date for the next calibration. This process can help establish a pattern of sensor error that equipment maintenance teams can use to better predict and respond to glitches.

Even if a business only uses a certain kind of data from one sensor on a piece of testing equipment, workers should test every sensor on that machine. Errors from other sensors can influence properly calibrated sensors, even if no one is actively using the data they collect. This will become even truer as smart analysis technologies and IoT platforms become more common and algorithms handle larger portions of the data analysis process.

Calibrating Equipment for Accurate Data

Data is one of the most valuable resources available to modern businesses. However, a cost comes with relying too heavily on data and not properly calibrating the equipment that collects that data.

Equipment calibration is key to maintaining data integrity. If testing equipment and sensors aren’t properly calibrated, they can record incorrect data, which may lead to delays or lower product quality. Regular equipment calibration can help businesses ensure the data they receive is accurate and of the highest caliber.

Why Retailers Are Making the Push for Stronger Data Science and AI

Retail relies on what the customer wants and needs at that moment, no matter the size of the company. Making judgments without consumer input would probably work for a little while but will fall flat as soon as the business model becomes outdated. In today’s technology-run world, things can become obsolete in a matter of days or even hours.

Retailers are the businesses most in need of capitalizing on what the customer wants in real-time. They have started to use data science and information from the Internet of Things (IoT) to not only stay in business, but also get ahead of other brands.

Artificial intelligence (AI) adds a new layer by using modern technology. The details of why retailers want to use these new practices are a bit more specific, though.

Data Targets Audiences

By using current customer data compared to information from the IoT, retailers can learn more about their audience and find better means of targeting them. Demographics like age, location and many other factors could affect advertising and even shopping, not to mention holidays throughout the year an audience celebrates.

Websites also need to be customized to suit the target audience. Those that are mobile-friendly and focused on what shoppers want can increase revenue, but the wrong approach can drive away new and existing customers. AI can help companies understand that data and present it back to the customer seamlessly, providing different options for various audiences.

Customer Base Expansion

Customer success should mean business success, as well. Growing a client base is something data science can assist with. However, helping customers grow is another type of service few companies provide but all people appreciate. A business can expand by offering new products and services that are relevant to their audience through the use of data.

Once a company learns what current customers want and begin to fit their needs, it can expand to more audiences. With data science, a business can ensure it does so slowly to give more of what current customers want while also finding new ones. The data can tell what sort of interests they all share so companies can capitalize on the venture.

AI Helps Customer Service

AI helps out customer service on both ends. Employees don’t have to focus on common problems that could easily be resolved, and clients often walk away happier than if they were to speak to a real person. This doesn’t work for every problem, especially ones that are specific in nature, but they can assist with more common issues. This is where chatbots enter the stage.

An AI-supported chatbot can give immediate support, provide suggestions, answer direct questions and offer almost any other form of help needed. Customers get personalized attention, and businesses can work faster toward customer loyalty.

Again, speaking to a real person when they have problems is a big plus for customers, but not for issues they know could be resolved in the time it takes to wait on the line for a representative.

Supply and Demand

Price optimization has taken on a bigger role than it has in the past. Mostly, data science is looking at supply and demand in real-time rather than having price fluctuations occur months after the business loses money. Having the right price can also help create more promotions for products and services, rewarding loyal customers for their shopping.

The data has to be gained from multiple channels by using price optimization tools, which focus on using data correctly in a company’s favor. The information doesn’t just look at supply and demand, but also examines locations, times, customer attitudes, competitor pricing and many other factors. All these pieces of information can be delivered in real-time so prices can be changed accordingly.

Taking the Competition

The thing about data science is that businesses are already utilizing it to their full potential and getting more customers than ever. The only way to get ahead of the competition is to at least start using the tools they’ve had at their disposal for years.

Target was one such company that took up the data helm. During 2012 and 2013, it saw a pretty sizeable dip in sales, but its online sales went up by almost 30% during the same time.

Data and Retail

When running a retail business, especially one that’s branching off into a franchise, using data is imperative. Data science and AI have become extremely important to companies both big and small.

Applying it correctly can help enterprises of any size and in every industry take things to the next level.

Even if a company is just starting out, sticking the first landing with a target audience is a fantastic way to begin the adventure and find success.

Interview: Data Science im Einzelhandel

Interview mit Dr. Andreas Warntjen über den Weg zum daten-getriebenen Unternehmen – Data Science im Einzelhandel

Zur Einführung der Person:

Dr. Andreas Warntjen arbeitet seit Juli 2016 bei der Thalia Bücher GmbH, aktuell als Senior Manager Advanced and Predictive Analytics. Davor hat Herr Dr. Warntjen viele Jahre als Sozialwissenschaftler an ausländischen Universitäten geforscht. Er hat selbst langjährige Erfahrung in der statistischen Datenanalyse mit Stata, SPSS und R und arbeitet im Moment mit der in-memory Datenbank SAP HANA sowie Python und SAP’s Automated Predictive Library (APL).


Data Science Blog: Herr Dr. Warntjen, welche Bedeutung hat die Data Science für Sie und Ihren Bereich bei Thalia? Und wie ordnen Sie die verwandten Begriffe wie Predictive Analytics und Advanced Analytics im Kontext der geschäftlichen Entscheidungsfindung ein?

Data Science spielt bei Thalia in unterschiedlichsten Bereichen eine zunehmend größer werdende Rolle. Neben den klassischen Themen wie Betrugserkennung und Absatzprognosen ist für Thalia als Buchhändler Text Mining von zentraler Bedeutung. Das größte Potential liegt aus meiner Sicht darin, besser auf die Wünsche unserer  Kunden eingehen zu können.

Bei Thalia werden in schneller Taktung Innovationen eingeführt. Sei es die Filialabholung, bei der online bestellte Bücher innerhalb von 2 Stunden in einer Buchhandlung abgeholt werden können. Oder das Beratungs- und Bezahl-Tablet für die Mitarbeiter vor Ort. Oder Innovationen im Webshop. Bei der Beurteilung, ob diese Neuerungen tatsächlich Kundenwünsche effektiv und effizient erfüllen, kann Advanced Analytics helfen. Im Gegensatz zur klassischen Business Intelligence – die weiterhin eine wichtige Rolle bei der Entscheidungsfindung im Unternehmen spielen wird – berücksichtigt Advanced Analytics stärker die Vielfalt des Kundenverhaltens und der unterschiedlichen Situationen in den Filialen. Verfahren wie etwa multivariate Regressionsanalyse, Entscheidungsbäume und statistische Hypothesentest können die in Unternehmen etablierte Analyse von deskriptiven Statistiken – etwa der Vergleich von Umsatzzahlen zwischen Pilot- und Vergleichsfilialen mit Pivot-Tabellen – ergänzen.

Predictive Analytics kann helfen verschiedenste Geschäftsprozesse individuell für Kunden zu gestalten. Generell können auf Grundlage von automatischen, in Echtzeit erstellten Vorhersagen Prozesse im Unternehmen optimiert werden. Außerdem kann Predictive Analytics Mitarbeiter bei wiederkehrenden Tätigkeiten unterstützen, beispielsweise in der Disposition.

Data Science Blog: Welche Fähigkeiten benötigen gute Data Scientists denn wirklich zur Geschäftsoptimierung? Wie wichtig ist das Domänenwissen?

Die wichtigsten Eigenschaften eines Data Scientist sind große Neugierde, eine sehr analytische Denkweise und eine exzellente Kommunikationsfähigkeit. Um mit Data Science erfolgreich Geschäftsprozesse zu optimieren, benötigt man ein breites Wissensspektrum: vom Geschäftsprozess über das IT-Datenmodell und das Know-how zur Entwicklung von Vorhersagemodellen bis hin zur Prozessintegration. Das ist nur im Team machbar. Domänenwissen spielt dabei eine wichtige Rolle, weshalb es für den Data Scientist essentiell ist sich mit den Prozessverantwortlichen und Business Analysten auszutauschen.

Data Science Blog: Sie bearbeiten Anwendungsfälle für den Handel. Können sich Branchen die Anwendungsfälle gegenseitig abschauen oder sollte jede Branche auf sich selbst fokussiert bleiben?

Es gibt sowohl Anwendungsfälle, die für den Einzelhandel und andere Branchen gleichermaßen relevant sind, als auch Themen, die für Thalia als Buchhändler besonders wichtig sind.

Die Individualisierung im eCommerce ist ein branchenübergreifendes Thema. Analytisches CRM, etwa das zielsichere Ausspielen von Kampagnen oder eine passgenaue Kundensegmentierung, ist für eine Versicherung oder Bank genauso wichtig wie für den Baumarkt oder den Buchhändler. Die Warenkorbanalyse mit statistischen Algorithmen ist ein klassisches Data Mining-Thema, das für den Einzelhandel generell interessant ist.

Natürlich muss man sich vorab über die Besonderheiten des jeweiligen Geschäftsumfeldes Gedanken machen, aber prinzipiell kann man von Unternehmen oder Branchen lernen, die Advanced und Predictive Analytics schon seit Jahren oder Jahrzehnten nutzen. Die passende IT-Infrastruktur und das entsprechende Interesse vom Fachbereich vorausgesetzt, eignen sich diese Anwendungsfälle damit besonders für den Einstieg in Advanced und Predictive Analytics – auch für Mittelständler.

Das Kerngeschäft des Buchhändlers  Thalia ist es, Kunden mit für sie interessanten Geschichten zusammen zu bringen. Die Geschichten selber bestehen aus Text. Die Produktbeschreibungen („Klappentexte“) und -besprechungen liegen in Textform vor. Und Kundenfeedback – sei es auf Thalia.de oder in sozialen Medien – erreicht uns als Text. Erkenntnisse aus Texten abzuleiten (Text Mining) ist deshalb für Thalia wichtiger als für andere Einzelhändler.

Data Science Blog: Welche Algorithmen und Tools verwenden Sie für Ihre Anwendungsfälle? Womit machen Sie eher gute, womit eher schlechte Erfahrungen?

Die Palette bei Thalia reicht von A wie Automated Machine Learning bis Z wie Zeitreihenanalyse. Ich selber arbeite aktuell mit verschiedenen Klassifikationsalgorithmen (z.B., regularisierte logistische Regression,  Random Forest, XGB, Naive Bayes, SAP’s Automated Predictive Library). Im Bereich Text Mining beschäftigen wir uns im Moment unter anderem mit Topic Models und Word2Vec.

Sowohl Algorithmus als auch die Software muss zum Verwendungszweck passen. Bei der Auswahl des Algorithmus gibt es häufig einen Trade-off zwischen Interpretierbarkeit und Prognosegüte. Das muss zusammen mit der Fachabteilung je nach Anwendungsfall abgewogen werden.

Mit flexibler Open Source-Software wie etwa R oder Python lassen sich schnell Proof-of-Concept-Projekte verwirklichen. Für die Integration in bestehende Prozesse sind manchmal kommerzielle Software-Lösungen besser.

Data Science Blog: Soviel zum kurz- und mittelfristigen Start in die Datennutzung. Wie sieht es für die langfristige Verankerung von Advanced/Predictive Analytics im Unternehmen aus? Was muss hier im Rahmen der IT-Infrastruktur bedacht und verankert werden?

Ohne Daten keine Datenanalyse. Je flexibler man auf unterschiedliche Daten im Unternehmen zugreifen kann, desto höher die Innovationsgeschwindigkeit durch Advanced/Predictive Analytics. „Datensilos“ abzubauen bzw. zu vermeiden ist also ein sehr wichtiges Thema. Hohe Datenqualität und die umfassende Dokumentation von Daten sind auch essentiell. Das gilt natürlich nicht nur für Advanced und Predictive Analytics sondern auch für Business Intelligence.

Die langfristige Verankerung von Advanced und Predictive Analytics im Unternehmen verlangt den Aufbau und die kontinuierliche Weiterentwicklung von Infrastruktur in Form von Hardware, Software, Kompetenzen und Wissen, sowie Organisationsformen und Prozessen. Wertschöpfung durch Advanced bzw. Predictive Analytics erfordert das konstruktive Zusammenspiel von Domänenexpertise aus der Fachabteilung, Wissen über Datenstrukturen und -modellen  aus der IT-Abteilung bzw. BI/BW-Systemen und tiefem statistischem Know-how. Nur durch die Zusammenarbeit verschiedener Unternehmensbereiche entstehen Erfolge für das gesamte Unternehmen.

Data Science Blog: Auch organisatorisch sollte langfristig sicherlich einiges bedacht werden. Wann sollten Projekte in den jeweiligen Fachbereichen direkt umgesetzt werden? Wann vielleicht besser in einer zentralen Daten-Abteilung?

Das hängt von einer Reihe von Faktoren ab. Bei hochgradig spezialisiertem Know-how, von dem unterschiedliche Fachbereiche profitieren können, kann es Synergie-Effekte geben, wenn dies zentral organisiert ist. Eine zentrale Einheit kann vielleicht auch Innovationen breiter in ein Unternehmen tragen. Wenn bestimmte Anwendungsszenarien von Advanced/Predictive Analytics für eine Fachabteilung hingegen eine zentrale Rolle spielen oder sie sich ein einem sehr schnelllebigen Umfeld bewegt, dann wäre eine fachliche und organisatorische Verankerung im Fachbereich wichtig.

Interview – Customer Data Platform, more than CRM 2.0?

Interview with David M. Raab from the CDP Institute

David M. Raab is as a consultant specialized in marketing software and service vendor selection, marketing analytics and marketing technology assessment. Furthermore he is the founder of the Customer Data Platform Institute which is a vendor-neutral educational project to help marketers build a unified customer view that is available to all of their company systems.

Furthermore he is a Keynote-Speaker for the Predictive Analytics World Event 2019 in Berlin.

Data Science Blog: Mr. Raab, what exactly is a Customer Data Platform (CDP)? And where is the need for it?

The CDP Institute defines a Customer Data Platform as „packaged software that builds a unified, persistent customer database that is accessible by other systems“.  In plainer language, a CDP assembles customer data from all sources, combines it into customer profiles, and makes the profiles available for any use.  It’s important because customer data is collected in so many different systems today and must be unified to give customers the experience they expect.

Data Science Blog: Is it something like a CRM System 2.0? What Use Cases can be realized by a Customer Data Platform?

CRM systems are used to interact directly with customers, usually by telephone or in the field.  They work almost exclusively with data that is entered during those interactions.  This gives a very limited view of the customer since interactions through other channels such as order processing or Web sites are not included.  In fact, one common use case for CDP is to give CRM users a view of all customer interactions, typically by opening a window into the CDP database without needing to import the data into the CRM.  There are many other use cases for unified data, including customer segmentation, journey analysis, and personalization.  Anything that requires sharing data across different systems is a CDP use case.

Data Science Blog: When does a CDP make sense for a company? It is more relevant for retail and financial companies than for industrial companies, isn´t it?

CDP has been adopted most widely in retail and online media, where each customer has many interactions and there are many products to choose from.  This is a combination that can make good use of predictive modeling, which benefits greatly from having more complete data.  Financial services was slower to adopt, probably because they have fewer products but also because they already had pretty good customer data systems.  B2B has also been slow to adopt because so much of their customer relationship is handled by sales people.  We’ve more recently been seeing growth in additional sectors such as travel, healthcare, and education.  Those involve fewer transactions than retail but also rely on building strong customer relationships based on good data.

Data Science Blog: There are several providers for CDPs. Adobe, Tealium, Emarsys or Dynamic Yield, just to name some of them. Do they differ a lot between each other?

Yes they do.  All CDPs build the customer profiles I mentioned.  But some do more things, such as predictive modeling, message selection, and, increasingly, message delivery.  Of course they also vary in the industries they specialize in, regions they support, size of clients they work with, and many technical details.  This makes it hard to buy a CDP but also means buyers are more likely to find a system that fits their needs.

Data Science Blog: How established is the concept of the CDP in Europe in general? And how in comparison with the United States?

CDP is becoming more familiar in Europe but is not as well understood as in the U.S.  The European market spent a lot of money on Data Management Platforms (DMPs) which promised to do much of what a CDP does but were not able to because they do not store the level of detail that a CDP does.  Many DMPs also don’t work with personally identifiable data because the DMPs primarily support Web advertising, where many customers are anonymous.  The failures of DMPs have harmed CDPs because they have made buyers skeptical that any system can meet their needs, having already failed once.  But we are overcoming this as the market becomes better educated and more success stories are available.  What’s the same in Europe and the U.S. is that marketers face the same needs.  This will push European marketers towards CDPs as the best solution in many cases.

Data Science Blog: What are coming trends? What will be the main topic 2020?

We see many CDPs with broader functions for marketing execution: campaign management, personalization, and message delivery in particular.  This is because marketers would like to buy as few systems as possible, so they want broader scope in each systems.  We’re seeing expansion into new industries such as financial services, travel, telecommunications, healthcare, and education.  Perhaps most interesting will be the entry of Adobe, Salesforce, and Oracle, who have all promised CDP products late this year or early next year.  That will encourage many more people to consider buying CDPs.  We expect that market will expand quite rapidly, so current CDP vendors will be able to grow even as Adobe, Salesforce, and Oracle make new CDP sales.


You want to get in touch with Daniel M. Raab and understand more about the concept of a CDP? Meet him at the Predictive Analytics World 18th and 19th November 2019 in Berlin, Germany. As a Keynote-Speaker, he will introduce the concept of a Customer Data Platform in the light of Predictive Analytics. Click here to see the agenda of the event.

 


 

Von BI zu PI: Der nächste Schritt auf dem Weg zu datengetriebenen Entscheidungen

„Alles ist stetig und fortlaufend im Wandel.“ „Das Tempo der Veränderungen nimmt zu.“ „Die Welt wird immer komplexer und Unternehmen müssen Schritt halten.“ Unternehmen jeder Art und Größe haben diese Sätze schon oft gehört – vielleicht zu oft! Und dennoch ist es für den Erfolg eines Unternehmens von entscheidender Bedeutung, sich den Veränderungen anzupassen.


Read this article in English: 
“From BI to PI: The Next Step in the Evolution of Data-Driven Decisions”


Sie müssen die zugrunde liegenden organisatorischen Bausteine verstehen, um sicherzustellen, dass die von Ihnen getroffenen Entscheidungen sich auch in die richtige Richtung entwickeln. Es geht sozusagen um die DNA Ihres Unternehmens: die Geschäftsprozesse, auf denen Ihre Arbeitsweise basiert, und die alles zu einer harmonischen Einheit miteinander verbinden. Zu verstehen, wie diese Prozesse verlaufen und an welcher Stelle es Verbesserungsmöglichkeiten gibt, kann den Unterschied zwischen Erfolg und Misserfolg ausmachen.

Unternehmen, die ihren Fokus auf Wachstum gesetzt haben, haben dies bereits erkannt. In der Vergangenheit wurde Business Intelligence als die Lösung für diese Herausforderung betrachtet. In jüngerer Zeit sehen sich zukunftsorientierte Unternehmen damit konfrontiert, Lösungen zu überwachen, die mit dem heutigen Tempo der Veränderungen Schritt halten können. Gleichzeitig erkennen diese Unternehmen, dass die zunehmende Komplexität der Geschäftsprozesse dazu führt, dass herkömmliche Methoden nicht mehr ausreichen.

Anpassung an ein sich änderndes Umfeld? Die Herausforderungen von BI

Business Intelligence ist nicht notwendigerweise überholt oder unnötig. In einer schnelllebigen und sich ständig verändernden Welt stehen die BI-Tools und -Lösungen jedoch vor einer Reihe von Herausforderungen. Hierzu können zählen:

  • Hohe Datenlatenz – Die Datenlatenz gibt an, wie lange ein Benutzer benötigt, um Daten beispielsweise über ein Business-Intelligence-Dashboard abzurufen. In vielen Fällen kann dies mehr als 24 Stunden dauern. Ein geschäftskritischer Zeitraum, da Unternehmen Geschäftschancen für sich nutzen möchten, die möglicherweise ein begrenztes Zeitfenster haben.
  • Unvollständige Datensätze – Business Intelligence verfolgt einen breiten Ansatz, sodass Prüfungen möglicherweise zwar umfassend, aber nicht tief greifend sind. Dies erhöht die Wahrscheinlichkeit, dass Daten übersehen werden; insbesondere in Fällen, in denen die Prüfungsparameter durch die Tools selbst nur schwer geändert werden können.
  • Erkennung statt Analyse – Business-Intelligence-Tools sind in erster Linie darauf ausgelegt, Daten zu finden. Der Fokus hierbei liegt vor allem auf Daten, die für ihre Benutzer nützlich sein können. An dieser Stelle endet jedoch häufig die Leistungsfähigkeit der Tools, da sie Benutzern keine einfachen Optionen bieten, die Daten tatsächlich zu analysieren. Die Möglichkeit, umsetzbare Erkenntnisse zu gewinnen, verringert sich somit.
  • Eingeschränkte Skalierbarkeit – Im Allgemeinen bleibt Business Intelligence ein Bereich für Spezialisten und Experten mit dem entsprechenden Know-how, über das Mitarbeiter im operativen Bereich oftmals nicht verfügen. Ohne umfangreiches Verständnis für die geschäftlichen Prozesse und deren Analyse innerhalb des Unternehmens bleibt die optimierte Anwendung eines bestimmten Business-Intelligence-Tools aber eingeschränkt.
  • Nicht nachvollziehbare Metriken – Werden Metriken verwendet, die nicht mit den Geschäftsprozessen verknüpft sind, kann Business Intelligence kaum positive Veränderungen innerhalb eines Unternehmens unterstützen. Für Benutzer ist es schwierig, Ergebnisse richtig auszuwerten und zu verstehen und diese Ergebnisse zweckdienlich zu nutzen.

Process Intelligence: der nächste wegweisende Schritt

Es bedarf einer effektiveren Methode zur Prozessanalyse, um eine effiziente Arbeitsweise und fundierte Entscheidungsfindung sicherzustellen. An dieser Stelle kommt Process Intelligence (PI) ins Spiel. PI bietet die entscheidenden Hintergrundinformationen für die Beantwortung von Fragen, die mit Business-Intelligence-Tools unbeantwortet bleiben.

Process Intelligence ermöglicht die durchgehende Visualisierung von Prozessabläufen mithilfe von Rohdaten. Mit dem richtigen Process-Intelligence-Tool können diese Rohdaten sofort analysiert werden, sodass Prozesse präzise angezeigt werden. Der Endbenutzer kann diese Informationen nach Bedarf einsehen und bearbeiten, ohne eine Vorauswahl für die Analyse treffen zu müssen.

Zum Vergleich: Da Business Intelligence vordefinierte Analysekriterien benötigt, kann BI nur dann wirklich nützlich sein, wenn diese Kriterien auch definiert sind. Unternehmen können verzögerte Analysen vermeiden, indem sie Process Intelligence zur Ermittlung der Hauptursache von Prozessproblemen nutzen, und dann die richtigen Kriterien zur Bestimmung des Analyserahmens auswählen.

Anschließend können Sie Ihre Systemprozesse analysieren und erkennen die Diskrepanzen und Varianten zwischen dem angestrebten Geschäftsprozess und dem tatsächlichen Verlauf Ihrer Prozesse. Und je schneller Sie Echtzeit-Einblicke in Ihre Prozesse gewinnen, desto schneller können Sie in Ihrem Unternehmen positive Veränderungen auf den Weg bringen.

Kurz gesagt: Business Intelligence eignet sich dafür, ein breites Verständnis über die Abläufe in einem Unternehmen zu gewinnen. Für einige Unternehmen kann dies ausreichend sein. Für andere hingegen ist ein Überblick nicht genug.

Sie suchen nach einer Möglichkeit um festzustellen, wie jeder Prozess in Ihrer Organisation tatsächlich funktioniert? Die Antwort hierauf lautet Software. Software, die Prozesserkennung, Prozessanalyse und Konformitätsprüfung miteinander kombiniert.

Mit den richtigen Process-Intelligence-Tools können Sie nicht nur Daten aus den verschiedenen IT-Systemen in Ihrem Unternehmen gewinnen, sondern auch Ihre End-to-End-Prozesse kontinuierlich überwachen. So erhalten Sie Erkenntnisse über mögliche Risiken und Verbesserungspotenziale. PI steht für einen kollaborativen Ansatz zur Prozessverbesserung, der zu einem bahnbrechenden Verständnis über die Abläufe in Ihrem Unternehmen führt, und wie diese optimiert werden können.

Erhöhtes Potenzial mit Signavio Process Intelligence

Mit Signavio Process Intelligence erhalten Sie wegweisende Erkenntnisse über Ihre Prozesse, auf deren Basis Sie bessere Geschäftsentscheidungen treffen können. Erlangen Sie eine vollständige Sicht auf Ihre Abläufe und ein Verständnis dafür, was in Ihrer Organisation tatsächlich geschieht.

Als Teil der Signavio Business Transformation Suite lässt sich Signavio Process Intelligence perfekt mit der Prozessmodellierung und -automatisierung kombinieren. Als eine vollständig cloudbasierte Process-Mining-Lösung erleichtert es die Software, organisationsweit zusammenzuarbeiten und Wissen zu teilen.

Generieren Sie neue Ideen, sparen Sie Aufwand und Kosten ein und optimieren Sie Ihre Prozesse. Erfahren Sie mehr über Signavio Process Intelligence.

From BI to PI: The Next Step in the Evolution of Data-Driven Decisions

“Change is a constant.” “The pace of change is accelerating.” “The world is increasingly complex, and businesses have to keep up.” Organizations of all shapes and sizes have heard these ideas over and over—perhaps too often! However, the truth remains that adaptation is crucial to a successful business.


Read this article in German: Von der Datenanalyse zur Prozessverbesserung: So gelingt eine erfolgreiche Process-Mining-Initiative

 


Of course, the only way to ensure that the decisions you make are evolving in the right way is to understand the underlying building blocks of your organization. You can think of it as DNA; the business processes that underpin the way you work and combine to create a single unified whole. Knowing how those processes operate, and where the opportunities for improvement lie, can be the difference between success and failure.

Businesses with an eye on their growth understand this already. In the past, Business Intelligence was seen as the solution to this challenge. In more recent times, forward-thinking organizations see the need for monitoring solutions that can keep up with today’s rate of change, at the same time as they recognize that increasing complexity within business processes means traditional methods are no longer sufficient.

Adapting to a changing environment? The challenges of BI

Business Intelligence itself is not necessarily defunct or obsolete. However, the tools and solutions that enable Business Intelligence face a range of challenges in a fast-paced and constantly changing world. Some of these issues may include:

  • High data latency – Data latency refers to how long it takes for a business user to retrieve data from, for example, a business intelligence dashboard. In many cases, this can take more than 24 hours, a critical time period when businesses are attempting to take advantage of opportunities that may have a limited timeframe.
  • Incomplete data sets – The broad approach of Business Intelligence means investigations may run wide but not deep. This increases the chances that data will be missed, especially in instances where the tools themselves make the parameters for investigations difficult to change.
  • Discovery, not analysis – Business intelligence tools are primarily optimized for exploration, with a focus on actually finding data that may be useful to their users. Often, this is where the tools stop, offering no simple way for users to actually analyze the data, and therefore reducing the possibility of finding actionable insights.
  • Limited scalability – In general, Business Intelligence remains an arena for specialists and experts, leaving a gap in understanding for operational staff. Without a wide appreciation for processes and their analysis within an organization, the opportunities to increase the application of a particular Business Intelligence tool will be limited.
  • Unconnected metrics – Business Intelligence can be significantly restricted in its capacity to support positive change within a business through the use of metrics that are not connected to the business context. This makes it difficult for users to interpret and understand the results of an investigation, and apply these results to a useful purpose within their organization.

Process Intelligence: the next evolutionary step

To ensure companies can work efficiently and make the best decisions, a more effective method of process discovery is needed. Process Intelligence (PI) provides the critical background to answer questions that cannot be answered with Business Intelligence tools.

Process Intelligence offers visualization of end-to-end process sequences using raw data, and the right Process Intelligence tool means analysis of that raw data can be conducted straight away, so that processes are displayed accurately. The end-user is free to view and work with this accurate information as they please, without the need to do a preselection for the analysis.

By comparison, because Business Intelligence requires predefined analysis criteria, only once the criteria are defined can BI be truly useful. Organizations can avoid delayed analysis by using Process Intelligence to identify the root causes of process problems, then selecting the right criteria to determine the analysis framework.

Then, you can analyze your system processes and see the gaps and variants between the intended business process and what you actually have. And of course, the faster you discover what you have, the faster you can apply the changes that will make a difference in your business.

In short, Business Intelligence is suitable for gaining a broad understanding of the way a business usually functions. For some businesses, this will be sufficient. For others, an overview is not enough.

They understand that true insights lie in the detail, and are looking for a way of drilling down into exactly how each process within their organization actually works. Software that combines process discovery, process analysis, and conformance checking is the answer.

The right Process Intelligence tools means you will be able to automatically mine process models from the different IT systems operating within your business, as well as continuously monitor your end-to-end processes for insights into potential risks and ongoing improvement opportunities. All of this is in service of a collaborative approach to process improvement, which will lead to a game-changing understanding of how your business works, and how it can work better.

Early humans evolved from more primitive ancestors, and in the process, learned to use more and more sophisticated tools. For the modern human, working in a complex organization, the right tool is Process Intelligence.

Endless Potential with Signavio Process Intelligence

Signavio Process Intelligence allows you to unearth the truth about your processes and make better decisions based on true evidence found in your organization’s IT systems. Get a complete end-to-end perspective and understanding of exactly what is happening in your organization in a matter of weeks.

As part of Signavio Business Transformation Suite, Signavio Process Intelligence integrates perfectly with Signavio Process Manager and is accessible from the Signavio Collaboration Hub. As an entirely cloud-based process mining solution, the tool makes it easy to collaborate with colleagues from all over the world and harness the wisdom of the crowd.

Find out more about Signavio Process Intelligence, and see how it can help your organization generate more ideas, save time and money, and optimize processes.

Erstellen und benutzen einer Geodatenbank

In diesem Artikel soll es im Gegensatz zum vorherigen Artikel Alles über Geodaten weniger darum gehen, was man denn alles mit Geodaten machen kann, dafür aber mehr darum wie man dies anstellt. Es wird gezeigt, wie man aus dem öffentlich verfügbaren Datensatz des OpenStreetMap-Projekts eine Geodatenbank erstellt und einige Beispiele dafür gegeben, wie man diese abfragen und benutzen kann.

Wahl der Datenbank

Prinzipiell gibt es zwei große “geo-kompatible” OpenSource-Datenbanken bzw. “Datenbank-AddOn’s”: Spatialite, welches auf SQLite aufbaut, und PostGIS, das PostgreSQL verwendet.

PostGIS bietet zum Teil eine einfachere Syntax, welche manchmal weniger Tipparbeit verursacht. So kann man zum Beispiel um die Entfernung zwischen zwei Orten zu ermitteln einfach schreiben:

während dies in Spatialite “nur” mit einer normalen Funktion möglich ist:

Trotztdem wird in diesem Artikel Spatialite (also SQLite) verwendet, da dessen Einrichtung deutlich einfacher ist (schließlich sollen interessierte sich alle Ergebnisse des Artikels problemlos nachbauen können, ohne hierfür einen eigenen Datenbankserver aufsetzen zu müssen).

Der Hauptunterschied zwischen PostgreSQL und SQLite (eigentlich der Unterschied zwischen SQLite und den meissten anderen Datenbanken) ist, dass für PostgreSQL im Hintergrund ein Server laufen muss, an welchen die entsprechenden Queries gesendet werden, während SQLite ein “normales” Programm (also kein Client-Server-System) ist welches die Queries selber auswertet.

Hierdurch fällt beim Aufsetzen der Datenbank eine ganze Menge an Konfigurationsarbeit weg: Welche Benutzer gibt es bzw. akzeptiert der Server? Welcher Benutzer bekommt welche Rechte? Über welche Verbindung wird auf den Server zugegriffen? Wie wird die Sicherheit dieser Verbindung sichergestellt? …

Während all dies bei SQLite (und damit auch Spatialite) wegfällt und die Einrichtung der Datenbank eigentlich nur “installieren und fertig” ist, muss auf der anderen Seite aber auch gesagt werden dass SQLite nicht gut für Szenarien geeignet ist, in welchen viele Benutzer gleichzeitig (insbesondere schreibenden) Zugriff auf die Datenbank benötigen.

Benötigte Software und ein Beispieldatensatz

Was wird für diesen Artikel an Software benötigt?

SQLite3 als Datenbank

libspatialite als “Geoplugin” für SQLite

spatialite-tools zum erstellen der Datenbank aus dem OpenStreetMaps (*.osm.pbf) Format

python3, die beiden GeoModule spatialite, folium und cartopy, sowie die Module pandas und matplotlib (letztere gehören im Bereich der Datenauswertung mit Python sowieso zum Standart). Für pandas gibt es noch die Erweiterung geopandas sowie eine praktisch unüberschaubare Anzahl weiterer geographischer Module aber bereits mit den genannten lassen sich eine Menge interessanter Dinge herausfinden.

– und natürlich einen Geodatensatz: Zum Beispiel sind aus dem OpenStreetMap-Projekt extrahierte Datensätze hier zu finden.

Es ist ratsam, sich hier erst einmal einen kleinen Datensatz herunterzuladen (wie zum Beispiel einen der Stadtstaaten Bremen, Hamburg oder Berlin). Zum einen dauert die Konvertierung des .osm.pbf-Formats in eine Spatialite-Datenbank bei größeren Datensätzen unter Umständen sehr lange, zum anderen ist die fertige Datenbank um ein vielfaches größer als die stark gepackte Originaldatei (für “nur” Deutschland ist die fertige Datenbank bereits ca. 30 GB groß und man lässt die Konvertierung (zumindest am eigenen Laptop) am besten über Nacht laufen – willkommen im Bereich “BigData”).

Erstellen eine Geodatenbank aus OpenStreetMap-Daten

Nach dem Herunterladen eines Datensatzes der Wahl im *.osm.pbf-Format kann hieraus recht einfach mit folgendem Befehl aus dem Paket spatialite-tools die Datenbank erstellt werden:

Erkunden der erstellten Geodatenbank

Nach Ausführen des obigen Befehls sollte nun eine Datei mit dem gewählten Namen (im Beispiel bremen-latest.sqlite) im aktuellen Ordner vorhanden sein – dies ist bereits die fertige Datenbank. Zunächst sollte man mit dieser Datenbank erst einmal dasselbe machen, wie mit jeder anderen Datenbank auch: Sich erst einmal eine Weile hinsetzen und schauen was alles an Daten in der Datenbank vorhanden und vor allem wo diese Daten in der erstellten Tabellenstruktur zu finden sind. Auch wenn dieses Umschauen prinzipiell auch vollständig über die Shell oder in Python möglich ist, sind hier Programme mit graphischer Benutzeroberfläche (z. B. spatialite-gui oder QGIS) sehr hilfreich und sparen nicht nur eine Menge Zeit sondern vor allem auch Tipparbeit. Wer dies tut, wird feststellen, dass sich in der generierten Datenbank einige dutzend Tabellen mit Namen wie pt_addresses, ln_highway und pg_boundary befinden.

Die Benennung der Tabellen folgt dem Prinzip, dass pt_*-Tabellen Punkte im Geokoordinatensystem wie z. B. Adressen, Shops, Bäckereien und ähnliches enthalten. ln_*-Tabellen enthalten hingegen geographische Entitäten, welche sich als Linien darstellen lassen, wie beispielsweise Straßen, Hochspannungsleitungen, Schienen, ect. Zuletzt gibt es die pg_*-Tabellen welche Polygone – also Flächen einer bestimmten Form enthalten. Dazu zählen Landesgrenzen, Bundesländer, Inseln, Postleitzahlengebiete, Landnutzung, aber auch Gebäude, da auch diese jeweils eine Grundfläche besitzen. In dem genannten Datensatz sind die Grundflächen von Gebäuden – zumindest in Europa – nahezu vollständig. Aber auch der Rest der Welt ist für ein “Wikipedia der Kartographie” insbesondere in halbwegs besiedelten Gebieten bemerkenswert gut erfasst, auch wenn nicht unbedingt davon ausgegangen werden kann, dass abgelegenere Gegenden (z. B. irgendwo auf dem Land in Südamerika) jedes Gebäude eingezeichnet ist.

Verwenden der Erstellten Datenbank

Auf diese Datenbank kann nun entweder direkt aus der Shell über den Befehl

zugegriffen werden oder man nutzt das gleichnamige Python-Paket:

Nach Eingabe der obigen Befehle in eine Python-Konsole, ein Jupyter-Notebook oder ein anderes Programm, welches die Anbindung an den Python-Interpreter ermöglicht, können die von der Datenbank ausgegebenen Ergebnisse nun direkt in ein Pandas Data Frame hineingeladen und verwendet/ausgewertet/analysiert werden.

Im Grunde wird hierfür “normales SQL” verwendet, wie in anderen Datenbanken auch. Der folgende Beispiel gibt einfach die fünf ersten von der Datenbank gefundenen Adressen aus der Tabelle pt_addresses aus:

Link zur Ausgabe

Es wird dem Leser sicherlich aufgefallen sein, dass die Spalte “Geometry” (zumindest für das menschliche Auge) nicht besonders ansprechend sowie auch nicht informativ aussieht: Der Grund hierfür ist, dass diese Spalte die entsprechende Position im geographischen Koordinatensystem aus Gründen wie dem deutlich kleineren Speicherplatzbedarf sowie der damit einhergehenden Optimierung der Geschwindigkeit der Datenbank selber, in binärer Form gespeichert und ohne weitere Verarbeitung auch als solche ausgegeben wird.

Glücklicherweise stellt spatialite eine ganze Reihe von Funktionen zur Verarbeitung dieser geographischen Informationen bereit, von denen im folgenden einige beispielsweise vorgestellt werden:

Für einzelne Punkte im Koordinatensystem gibt es beispielsweise die Funktionen X(geometry) und Y(geometry), welche aus diesem “binären Wirrwarr” den Längen- bzw. Breitengrad des jeweiligen Punktes als lesbare Zahlen ausgibt.

Ändert man also das obige Query nun entsprechend ab, erhält man als Ausgabe folgendes Ergebnis in welchem die Geometry-Spalte der ausgegebenen Adressen in den zwei neuen Spalten Longitude und Latitude in lesbarer Form zu finden ist:

Link zur Tabelle

Eine weitere häufig verwendete Funktion von Spatialite ist die Distance-Funktion, welche die Distanz zwischen zwei Orten berechnet.

Das folgende Beispiel sucht in der Datenbank die 10 nächstgelegenen Bäckereien zu einer frei wählbaren Position aus der Datenbank und listet diese nach zunehmender Entfernung auf (Achtung – die frei wählbare Position im Beispiel liegt in München, wer die selbe Position z. B. mit dem Bremen-Datensatz verwendet, wird vermutlich etwas weiter laufen müssen…):

Link zur Ausgabe

Ein Anwendungsfall für eine solche Liste können zum Beispiel Programme/Apps wie maps.me oder Google-Maps sein, in denen User nach Bäckereien, Geldautomaten, Supermärkten oder Apotheken “in der Nähe” suchen können sollen.

Diese Liste enthält nun alle Informationen die grundsätzlich gebraucht werden, ist soweit auch informativ und wird in den meißten Fällen der Datenauswertung auch genau so gebraucht, jedoch ist diese für das Auge nicht besonders ansprechend.

Viel besser wäre es doch, die gefundenen Positionen auf einer interaktiven Karte einzuzeichnen:

Was kann man sonst interessantes mit der erstellten Datenbank und etwas Python machen? Wer in Deutschland ein wenig herumgekommen ist, dem ist eventuell aufgefallen, dass sich die Endungen von Ortsnamen stark unterscheiden: Um München gibt es Stadteile und Dörfer namens Garching, Freising, Aubing, ect., rund um Stuttgart enden alle möglichen Namen auf “ingen” (Plieningen, Vaihningen, Echterdingen …) und in Berlin gibt es Orte wie Pankow, Virchow sowie eine bunte Auswahl weiterer *ow’s.

Das folgende Query spuckt gibt alle “village’s”, “town’s” und “city’s” aus der Tabelle pt_place, also Dörfer und Städte, aus:

Link zur Ausgabe

Graphisch mit matplotlib und cartopy in ein Koordinatensystem eingetragen sieht diese Verteilung folgendermassen aus:

Die Grafik zeigt, dass stark unterschiedliche Vorkommen der verschiedenen Ortsendungen in Deutschland (Clustering). Über das genaue Zustandekommen dieser Verteilung kann ich hier nur spekulieren, jedoch wird diese vermutlich ähnlichen Prozessen unterliegen wie beispielsweise die Entwicklung von Dialekten.

Wer sich die Karte etwas genauer anschaut wird merken, dass die eingezeichneten Landesgrenzen und Küstenlinien nicht besonders genau sind. Hieran wird ein interessanter Effekt von häufig verwendeten geographischen Entitäten, nämlich Linien und Polygonen deutlich. Im Beispiel werden durch die beiden Zeilen

die bereits im Modul cartopy hinterlegten Daten verwendet. Genaue Verläufe von Küstenlinien und Landesgrenzen benötigen mit wachsender Genauigkeit hingegen sehr viel Speicherplatz, da mehr und mehr zu speichernde Punkte benötigt werden (genaueres siehe hier).

Schlussfolgerung

Man kann also bereits mit einigen Grundmodulen und öffentlich verfügbaren Datensätzen eine ganze Menge im Bereich der Geodaten erkunden und entdecken. Gleichzeitig steht, insbesondere für spezielle Probleme, eine große Bandbreite weiterer Software zur Verfügung, für welche dieser Artikel zwar einen Grundsätzlichen Einstieg geben kann, die jedoch den Rahmen dieses Artikels sprengen würden.