Posts

Ständig wachsende Datenflut – Muss nun jeder zum Data Scientist werden?

Weltweit rund 163 Zettabyte – so lautet die Schätzung von IDC für die Datenmenge weltweit im Jahr 2025. Angesichts dieser kaum noch vorstellbaren Zahl ist es kein Wunder, wenn Anwender in Unternehmen sich überfordert fühlen. Denn auch hier muss vieles analysiert werden – eigene Daten aus vielen Bereichen laufen zusammen mit Daten Dritter, seien es Dienstleister, Partner oder gekaufter Content. Und all das wird noch ergänzt um Social Content – und soll dann zu sinnvollen Auswertungen zusammengeführt werden. Das ist schon für ausgesprochene Data Scientists keine leichte Aufgabe, von normalen Usern ganz zu schweigen. Doch es gibt eine gute Nachricht dabei: den Umgang mit Daten kann man lernen.

Echtes Datenverständnis – Was ist das?

Unternehmen versuchen heute, möglichst viel Kapital aus den vorhandenen Daten zu ziehen und erlauben ihren Mitarbeitern kontrollierten, aber recht weit gehenden Zugriff. Das hat denn auch etliche Vorteile, denn nur wer Zugang zu Daten hat, kann Prozesse beurteilen und effizienter gestalten. Er kann mehr Informationen zu Einsichten verwandeln, Entwicklungen an den realen Bedarf anpassen und sogar auf neue Ideen kommen. Natürlich muss der Zugriff auf Informationen gesteuert und kontrolliert sein, denn schließlich muss man nicht nur Regelwerken wie Datenschutzgrundverordnung gehorchen, man will auch nicht mit den eigenen Daten dem Wettbewerb weiterhelfen.

Aber davon abgesehen, liegt in der umfassenden Auswertung auch die Gefahr, von scheinbaren Erkenntnissen aufs Glatteis geführt zu werden. Was ist wahr, was ist Fake, was ein Trugschluss? Es braucht einige Routine um den Unsinn in den Daten erkennen zu können – und es braucht zuverlässige Datenquellen. Überlässt man dies den wenigen Spezialisten im Haus, so steigt das Risiko, dass nicht alles geprüft wird oder auf der anderen Seite Wichtiges in der Datenflut untergeht. Also brauchen auch solche Anwender ein gewisses Maß an Datenkompetenz, die nicht unbedingt Power User oder professionelle Analytiker sind. Aber in welchem Umfang? So weit, dass sie fähig sind, Nützliches von Falschem zu unterscheiden und eine zielführende Systematik auf Datenanalyse anzuwenden.

Leider aber weiß das noch nicht jeder, der mit Daten umgeht: Nur 17 Prozent von über 5.000 Berufstätigen in Europa fühlen sich der Aufgabe gewachsen – das sagt die Data-Equality-Studie von Qlik. Und für Deutschland sieht es sogar noch schlechter aus, hier sind es nur 14 Prozent, die glauben, souverän mit Daten umgehen zu können. Das ist auch nicht wirklich ein Wunder, denn gerade einmal 49 Prozent sind (in Europa) der Ansicht, ausreichenden Zugriff auf Daten zu haben – und das, obwohl 85 Prozent glauben, mit höherem Datenzugriff auch einen besseren Job machen zu können.

Mit Wissens-Hubs die ersten Schritte begleiten

Aber wie lernt man denn nun, mit Daten richtig oder wenigstens besser umzugehen? Den Datenwust mit allen Devices zu beherrschen? An der Uni offensichtlich nicht, denn in der Data-Equality-Studie sehen sich nur 10 Prozent der Absolventen kompetent im Umgang mit Daten. Bis der Gedanke der Datenkompetenz Eingang in die Lehrpläne gefunden hat, bleibt Unternehmen nur die Eigenregie  – ein „Learning by Doing“ mit Unterstützung. Wie viel dabei Eigeninitiative ist oder anders herum, wieviel Weiterbildung notwendig ist, scheint von Unternehmen zu Unternehmen unterschiedlich zu sein. Einige Ansätze haben sich jedoch schon bewährt:

  • Informationsveranstaltungen mit darauf aufbauenden internen und externen Schulungen
  • Die Etablierung von internen Wissens-Hubs: Data Scientists und Power-User, die ihr Know-how gezielt weitergeben: ein einzelne Ansprechpartner in Abteilungen, die wiederum ihren Kollegen helfen können. Dieses Schneeball-Prinzip spart viel Zeit.
  • Eine Dokumentation, die gerne auch informell wie ein Wiki oder ein Tutorial aufgebaut sein darf – mit der Möglichkeit zu kommentieren und zu verlinken. Nützlich ist auch ein Ratgeber, wie man Daten hinterfragt oder wie man Datenquellen hinter einer Grafik bewertet.
  • Management-Support und Daten-Incentives, die eine zusätzliche Motivation schaffen können. Dazu gehört auch, Freiräume zu schaffen, in denen sich Mitarbeiter mit Daten befassen können – Zeit, aber auch die Möglichkeit, mit (Test-)Daten zu spielen.

Darüber hinaus aber braucht es eine Grundhaltung, die sich im Unternehmen etablieren muss: Datenkompetenz muss zur Selbstverständlichkeit werden. Wird sie zudem noch spannend gemacht, so werden sich viele Mitarbeiter auch privat mit der Bewertung und Auswertung von Daten beschäftigen. Denn nützliches Know-how hat keine Nutzungsgrenzen – und Begeisterung steckt an.

Stichwort Datenkompetenz: Von Big Data zu Big Insights

Anzeige – Artikel des Data Science Blog Sponsors Qlik.com

Wer in einer Organisation mit Daten arbeiten möchte, sollte dazu befähigt werden – sonst bleiben wertvolle Einblicke unter Umständen verborgen.

Aus der reinen Technologie-Perspektive ist Big Data nahezu grenzenlos: Prozessoren arbeiten immer schneller, die Kosten für Speicherplatz sinken kontinuierlich, Cloud-Dienste stellen ad hoc und flexibel auch riesige Speichervolumen zur Verfügung. Beste Voraussetzungen also für Big-Data-Enthusiasten? Könnte man meinen. Doch Big Data hat nicht von Haus aus Wert, Sinn oder Geschäftsnutzen. Der stellt sich erst ein, wenn die vielen verfügbaren Daten assoziativ und ohne Denk- oder Infrastruktur-Hürden neu kombiniert, analysiert und visualisiert – also wirklich smart – werden. Der Schlüssel dazu liegt in moderner Data Analytics Software, die unterschiedlichste Datenquellen und -formate verarbeiten und in Beziehung setzen kann – und so wertvolle neue Einsichten offenbart, die ohne Data Analytics im (Big-)Data-Lake abtauchen würden.

Reich an Daten – arm an Einsichten?

Entscheidend für den Erfolg von Big-Data-Projekten ist es, aus der Datenfülle die wirklich relevanten Zusammenhänge zu evaluieren – und nicht um des Sammelns willen Daten zu horten, die neue Einsichten eher zu- als aufdecken. Viele Organisationen befinden sich leider nach wie vor an diesem Punkt. Sie sind reich an Daten, aber nicht in der Lage, neue Informationen daraus zu extrahieren, die gute Ideen anstoßen, Innovation fördern und das Unternehmen nachhaltig weiterbringen. Es herrscht weitgehende Überforderung mit dem eigenen Datenschatz.

Wer in Big-Data-Technologien investiert, fragt früher oder später nach dem ROI seiner Investitionen. Dieser wird umso günstiger ausfallen, je leichter und passgenauer der Datennutzen an möglichst vielen Stellen im Unternehmen verfügbar ist. Hier gilt es zu erkennen, dass fast jeder im Unternehmen Daten gut nutzen kann und sich im Umgang mit ihnen sicher fühlen möchte, um seine Arbeit noch erfolgreicher zu machen – eine neue Untersuchung des Business-Intelligence-Experten Qlik beweist das.

88 Prozent sind überzeugt: Mit Daten läuft es besser

Demnach würden 66 Prozent der Befragten gerne mehr Zeit und Energie in ihre Datenkompetenz investieren – wenn es die Gelegenheit dazu gäbe. 88 Prozent der befragten Sachbearbeiter und ausführenden Kräfte sind überzeugt davon, dass sie mit adäquatem Datenzugang sowie mit den nötigen Befugnissen und Kompetenzen bessere Resultate im Job erreichen könnten. Doch nur 55 Prozent fühlen sich tatsächlich demensprechend ausgestattet und befähigt. Ganz anders das Bild unter Führungskräften: Unter diesen sind zwar 83 Prozent überzeugt davon, guten Zugang zu Daten zu haben – allerdings haben nur 26 Prozent der Chefs wirklich einen Ansatz gefunden, wie sie nutzbringend mit den Daten arbeiten können.

Das bedeutet: Zur datengetriebenen Arbeit sowie zur Unternehmenssteuerung und -entwicklung auf der Basis von Daten braucht nicht jeder im Unternehmen die gleichen Daten und Dashboards. Jedoch braucht jeder Mitarbeiter in der Organisation gleichermaßen die Möglichkeiten und Fähigkeiten, unkompliziert in den Daten zu forschen, die ihm persönlich helfen, seine Arbeit zu verbessern. Welche Ideen und Anschlussfragen die assoziative Data Discovery im Selfservice auslöst, ist vorher schwer zu sagen – Assoziation ist spontan. Daher gilt: Die Erkenntnis kommt beim Tun.

Aus diesem Grund verlangt wirkliche Innovation nach schrankenloser und intuitiver Datenarbeit, die Platz lässt für Ideen, für ungewöhnliche Datenkombinationen und für ein erfindungsreiches „Um-die-Ecke-Denken“. Lineare SQL-Abfragen können das nicht leisten – und entsprechen in ihren vordefinierten Pfaden nicht der wertvollen Kombinationskompetenz, die das menschliche Gehirn von Natur aus mitbringt.

Zukunftsweisende Data Analytics und Advanced Analytics versucht nicht, das Denken und Assoziieren zu ersetzen – sondern die kognitiven Prozesse des Anwenders zu unterstützen, sie zu erweitern und in ihren Möglichkeiten zu vervollständigen. So entsteht Augmented Intelligence: die intelligente Verknüpfung von menschlicher Ratio und technologischer Schnelligkeit, bzw. Vollständigkeit.

Zentral gemanagte Governance

Natürlich soll assoziatives und individuelles Daten-Handling nicht zum digitalen Selbstbedienungsladen führen. Um dennoch assoziative Analysen und freies Forschen in relevanten Daten zu gewährleisten, bewährt sich in der Selfservice-Datenanalyse zentral gesteuerte Governance mit rollenbasierter Datenverfügbarkeit und individuellen Zugriffsrechten als ideale Lösung.

Events

Nothing Found

Sorry, no posts matched your criteria