CCNA vs. CCNP vs. CCIE Security Certification

As more companies turn to cloud-based software and other advanced solutions, demand for expert IT professionals in the field increases. One popular vendor, Cisco Systems, Inc., makes underlying software and hardware businesses will use for their networks.

If you’re interested in pursuing a career in the data security industry, you may want to consider earning a Cisco security certification. However, there are many types of certificates available, and each one will deliver unique benefits to you and your job marketability.

Learn more about Cisco certifications and learn the difference between CCNA, CCNP and CCIE certifications to help you choose which path is right for you.

Why Earn Cisco Certifications?

The main reason why Cisco provides these security certifications is so IT professionals can fine-tune their skills and build upon their knowledge. When IT professionals earn a Cisco certification, they can use Cisco products and services more easily, help guide customers and troubleshoot customer problems.

A future employer may perceive candidates with certifications as more qualified, productive and someone with a “go-getter” attitude. According to Cisco’s website, 81% of employers associate certifications holders with higher quality and value of work contribution.

However, it’s important to research the various Cisco certifications to learn which ones are most suitable for you and what job you’re interested in. For example, Cisco offers different levels of certifications, ranging from entry-level to expert.

Below are three certifications from Cisco that may be a good fit for you.

CCNA — Cisco Certified Network Associate

A CCNA certification is highly sought after. This certification demonstrates a professional’s ability to install, configure, operate and troubleshoot networks, both routed and switched. No prerequisites are necessary for the CCNA certification. It’s considered an associate-level certification and is available in a few prominent areas, including:

  • Cloud
  • Collaboration
  • Industrial/IoT
  • Security
  • Routing and Switching
  • Service Provider
  • Wireless

One challenge in the data industry is the increased reliance on cloud environments. Using only one cloud provider is a business risk some companies are concerned about. Uptime Institute cites the concentration risk of cloud computing as a major challenge for data centers in 2022.

Earning a CCNA cloud certification may help you get hired for an entry-level position at a company and allow you to support a senior cloud engineer.

Common jobs that you can earn with a CCNA are an IT network engineer, associate networking engineer, network system administrator and cloud architecture and security professional.

CCNP — Cisco Certified Network Professional

The Cisco CCNP certification is a more advanced professional-level certification than the CCNA certification. With the CCNP, you should be able to implement higher-level networking solutions for a company. It will cover the fundamentals of LAN and WAN infrastructures. Here are some of the different areas you can earn a CCNP in:

  • Enterprise
  • Security
  • Service Provider
  • Collaboration
  • Data Center

You must pass some core exams before earning the CCNP certification. Someone looking for the CCNP certification must also qualify for Cisco’s IP switched network and IP routing technologies. This will help determine the candidate’s readiness for the CCNP certification.

Some jobs you may get with a CCNP certification are senior security/network engineer, network architecture, network manager and troubleshooting assistant.

CCIE — Cisco Certified Internetwork Expert

IT professionals who’ve secured the knowledge and technical skills to design, implement and configure security for Cisco solutions and IT resources would be ready to earn the CCIE certification. According to Cisco, an expert-level certification is accepted worldwide as the most prestigious certification in the tech industry. Here are some of the CCIE certifications:

  • Enterprise Infrastructure
  • Collaboration
  • Enterprise Wireless
  • Data Center
  • Security
  • Service Provider

CCIE certifications can open up a range of job opportunities, but it’s a challenging certification to earn. Earning a CCIE means that your end-to-end IT lifecycle skills are valid. You know exactly what you’re talking about regarding networking, LAN/WAN, IPv4 and IPv6 protocols, switches and routers, general information and installation and configuration of various network types.

Jobs you can earn with a CCIE certificate include network security architect, network security specialist, infrastructure consulting practitioner and cloud engineer/architect.

Where to Earn Cisco Certifications

Because Cisco certifications are in such high demand and can open up job opportunities, you may want to know how you can earn them. You earn certificates directly from Cisco’s website. Under Cisco’s Learn tab, there’s plenty of information about certifications, training, events, webinars, support and other services.

There are many online training programs that you can complete to help you prepare for the Cisco certification exams. Here are some websites that offer programs you may want to explore based on the certification you’d like to earn:

For CCNA

  • Udemy
  • ICOHS College
  • Pluralsight
  • Cybrary

For CCNP

  • Udemy
  • INE
  • Global Knowledge
  • Varsity Tutors

For CCIE

  • Udemy
  • Skillshare
  • PluralSight
  • Network Lessons
  • Koenig solutions

These examples are only a few, as other online training programs and resources can set you up for success.

Additionally, Cisco offers several resources on its website to help individuals prepare for certification exams. These include guided study groups and a free Cisco Networking Academy program.

Earning Cisco Certifications

Because many companies, especially large ones, will use Cisco products for their technology infrastructure. Potential IT candidates who list certifications on their resume or job application will have a competitive advantage in the hiring process.

Depending on your current skill level and knowledge, you should be able to determine which Cisco certification is right for you. Cisco’s website has extensive information on each certificate and what topics you’ll learn about. Consider earning a Cisco certification, whether it’s CCNA vs. CCNP vs. CCIE, to bolster your skills and improve your marketability.

Big Data mit Hadoop und Map Reduce!

Foto von delfi de la Rua auf Unsplash.

Hadoop ist ein Softwareframework, mit dem sich große Datenmengen auf verteilten Systemen schnell verarbeiten lassen. Es verfügt über Mechanismen, welche eine stabile und fehlertolerante Funktionalität sicherstellen, sodass das Tool für die Datenverarbeitung im Big Data Umfeld bestens geeignet ist. In diesen Fällen ist eine normale relationale Datenbank oft nicht ausreichend, um die unstrukturierten Datenmengen kostengünstig und effizient abzuspeichern.

Unterschiede zwischen Hadoop und einer relationalen Datenbank

Hadoop unterscheidet sich in einigen grundlegenden Eigenschaften von einer vergleichbaren relationalen Datenbank.

Eigenschaft Relationale Datenbank Hadoop
Datentypen ausschließlich strukturierte Daten alle Datentypen (strukturiert, semi-strukturiert und unstrukturiert)
Datenmenge wenig bis mittel (im Bereich von einigen GB) große Datenmengen (im Bereich von Terrabyte oder Petabyte)
Abfragesprache SQL HQL (Hive Query Language)
Schema Statisches Schema (Schema on Write) Dynamisches Schema (Schema on Read)
Kosten Lizenzkosten je nach Datenbank Kostenlos
Datenobjekte Relationale Tabellen Key-Value Pair
Skalierungstyp Vertikale Skalierung (Computer muss hardwaretechnisch besser werden) Horizontale Skalierung (mehr Computer können dazugeschaltet werden, um Last abzufangen)

Vergleich Hadoop und Relationale Datenbank

Bestandteile von Hadoop

Das Softwareframework selbst ist eine Zusammenstellung aus insgesamt vier Komponenten.

Hadoop Common ist eine Sammlung aus verschiedenen Modulen und Bibliotheken, welche die anderen Bestandteile unterstützt und deren Zusammenarbeit ermöglicht. Unter anderem sind hier die Java Archive Dateien (JAR Files) abgelegt, die zum Starten von Hadoop benötigt werden. Darüber hinaus ermöglicht die Sammlung die Bereitstellung von grundlegenden Services, wie beispielsweise das File System.

Der Map-Reduce Algorithmus geht in seinen Ursprüngen auf Google zurück und hilft komplexe Rechenaufgaben in überschaubarere Teilprozesse aufzuteilen und diese dann über mehrere Systeme zu verteilen, also horizontal zu skalieren. Dadurch verringert sich die Rechenzeit deutlich. Am Ende müssen die Ergebnisse der Teilaufgaben wieder zu seinem Gesamtresultat zusammengefügt werden.

Der Yet Another Resource Negotiator (YARN) unterstützt den Map-Reduce Algorithmus, indem er die Ressourcen innerhalb eines Computer Clusters im Auge behält und die Teilaufgaben auf die einzelnen Rechner verteilt. Darüber hinaus ordnet er den einzelnen Prozessen die Kapazitäten dafür zu.

Das Hadoop Distributed File System (HDFS) ist ein skalierbares Dateisystem zur Speicherung von Zwischen- oder Endergebnissen. Innerhalb des Clusters ist es über mehrere Rechner verteilt, um große Datenmengen schnell und effizient verarbeiten zu können. Die Idee dahinter war, dass Big Data Projekte und Datenanalysen auf großen Datenmengen beruhen. Somit sollte es ein System geben, welches die Daten auch stapelweise speichert und dadurch schnell verarbeitet. Das HDFS sorgt auch dafür, dass Duplikate von Datensätzen abgelegt werden, um den Ausfall eines Rechners verkraften zu können.

Map Reduce am Beispiel

Angenommen wir haben alle Teile der Harry Potter Romane in Hadoop PDF abgelegt und möchten nun die einzelnen Wörter zählen, die in den Büchern vorkommen. Dies ist eine klassische Aufgabe bei der uns die Aufteilung in eine Map-Funktion und eine Reduce Funktion helfen kann.

Bevor es die Möglichkeit gab, solche aufwendigen Abfragen auf ein ganzes Computer-Cluster aufzuteilen und parallel berechnen zu können, war man gezwungen, den kompletten Datensatz nacheinander zu durchlaufen. Dadurch wurde die Abfragezeit auch umso länger, umso größer der Datensatz wurde. Der einzige Weg, um die Ausführung der Funktion zu beschleunigen ist es, einen Computer mit einem leistungsfähigeren Prozessor (CPU) auszustatten, also dessen Hardware zu verbessern. Wenn man versucht, die Ausführung eines Algorithmus zu beschleunigen, indem man die Hardware des Gerätes verbessert, nennt man das vertikale Skalieren.

Mithilfe von MapReduce ist es möglich eine solche Abfrage deutlich zu beschleunigen, indem man die Aufgabe in kleinere Teilaufgaben aufsplittet. Das hat dann wiederum den Vorteil, dass die Teilaufgaben auf viele verschiedene Computer aufgeteilt und von ihnen ausgeführt werden kann. Dadurch müssen wir nicht die Hardware eines einzigen Gerätes verbessern, sondern können viele, vergleichsweise leistungsschwächere, Computer nutzen und trotzdem die Abfragezeit verringern. Ein solches Vorgehen nennt man horizontales Skalieren.

Kommen wir zurück zu unserem Beispiel: Bisher waren wir bildlich so vorgegangen, dass wir alle Harry Potter Teile gelesen haben und nach jedem gelesenen Wort die Strichliste mit den einzelnen Wörtern einfach um einen Strich erweitert haben. Das Problem daran ist, dass wir diese Vorgehensweise nicht parallelisieren können. Angenommen eine zweite Person will uns unterstützen, dann kann sie das nicht tun, weil sie die Strichliste, mit der wir gerade arbeiten, benötigt, um weiterzumachen. Solange sie diese nicht hat, kann sie nicht unterstützen.

Sie kann uns aber unterstützen, indem sie bereits mit dem zweiten Teil der Harry Potter Reihe beginnt und eine eigene Strichliste nur für das zweite Buch erstellt. Zum Schluss können wir dann alle einzelnen Strichlisten zusammenführen und beispielsweise die Häufigkeit des Wortes “Harry” auf allen Strichlisten zusammenaddieren.

MapReduce am Beispiel von Wortzählungen in Harry Potter Büchern

MapReduce am Beispiel von Wortzählungen in Harry Potter Büchern | Source: Data Basecamp

Dadurch lässt sich die Aufgabe auch relativ einfach horizontal skalieren, indem jeweils eine Person pro Harry Potter Buch arbeitet. Wenn wir noch schneller arbeiten wollen, können wir auch mehrere Personen mit einbeziehen und jede Person ein einziges Kapitel bearbeiten lassen. Am Schluss müssen wir dann nur alle Ergebnisse der einzelnen Personen zusammennehmen, um so zu einem Gesamtergebnis zu gelangen.

Das ausführliche Beispiel und die Umsetzung in Python findest Du hier.

Aufbau eines Hadoop Distributed File Systems

Der Kern des Hadoop Distributed File Systems besteht darin die Daten auf verschiedene Dateien und Computer zu verteilen, sodass Abfragen schnell bearbeitet werden können und der Nutzer keine langen Wartezeiten hat. Damit der Ausfall einer einzelnen Maschine im Cluster nicht zum Verlust der Daten führt, gibt es gezielte Replikationen auf verschiedenen Computern, um eine Ausfallsicherheit zu gewährleisten.

Hadoop arbeitet im Allgemeinen nach dem sogenannten Master-Slave-Prinzip. Innerhalb des Computerclusters haben wir einen Knoten, der die Rolle des sogenannten Masters übernimmt. Dieser führt in unserem Beispiel keine direkte Berechnung durch, sondern verteilt lediglich die Aufgaben auf die sogenannten Slave Knoten und koordiniert den ganzen Prozess. Die Slave Knoten wiederum lesen die Bücher aus und speichern die Worthäufigkeit und die Wortverteilung.

Dieses Prinzip wird auch bei der Datenspeicherung genutzt. Der Master verteilt Informationen aus dem Datensatz auf verschiedenen Slave Nodes und merkt sich, auf welchen Computern er welche Partitionen abgespeichert hat. Dabei legt er die Daten auch redundant ab, um Ausfälle kompensieren zu können. Bei einer Abfrage der Daten durch den Nutzer entscheidet der Masterknoten dann, welche Slaveknoten er anfragen muss, um die gewünschten Informationen zu erhalten.

Automated product quality monitoring using artificial intelligence deep learning

How to maintain product quality with deep learning

Deep Learning helps companies to automate operative processes in many areas. Industrial companies in particular also benefit from product quality assurance by automated failure and defect detection. Computer Vision enables automation to identify scratches and cracks on product item surfaces. You will find more information about how this works in the following infografic from DATANOMIQ and pixolution you can download using the link below.

How to maintain product quality with automatic defect detection - Infographic

How to maintain product quality with automatic defect detection – Infographic

Understanding Linear Regression with all Statistical Terms

Linear Regression Model – This article is about understanding the linear regression with all the statistical terms.

What is Regression Analysis?

regression is an attempt to determine the relationship between one dependent and a series of other independent variables.

Regression analysis is a form of predictive modelling technique which investigates the relationship between a dependent (target) and independent variable (s) (predictor). This technique is used for forecasting, time series modelling and finding the causal effect relationship between the variables. For example, relationship between rash driving and number of road accidents by a driver is best studied through regression.

Why do we use Regression Analysis?

As mentioned above, regression analysis estimates the relationship between two or more variables. Let’s understand this with an easy example:

Let’s say, you want to estimate growth in sales of a company based on current economic conditions. You have the recent company data which indicates that the growth in sales is around two and a half times the growth in the economy. Using this insight, we can predict future sales of the company based on current & past information.

There are multiple benefits of using regression analysis. They are as follows:

It indicates the significant relationships between dependent variable and independent variable. It indicates the strength of impact of multiple independent variables on a dependent variable. Regression analysis also allows us to compare the effects of variables measured on different scales, such as the effect of price changes and the number of promotional activities. These benefits help market researchers / data analysts / data scientists to eliminate and evaluate the best set of variables to be used for building predictive models.

There are various kinds of regression techniques available to make predictions. These techniques are mostly driven by three metrics (number of independent variables, type of dependent variables and shape of regression line).

Number of independent variables, shape of regression line and type of dependent variable.

Number of independent variables, shape of regression line and type of dependent variable.

What is Linear Regression?

Linear Regression is the supervised Machine Learning model in which the model finds the best fit linear line between the independent and dependent variable i.e it finds the linear relationship between the dependent and independent variable.

  • Equation of Simple Linear Regression, where bo is the intercept, b1 is coefficient or slope, x is the independent variable and y is the dependent variable.

Equation of Multiple Linear Regression, where bo is the intercept, b1,b2,b3,b4…,bn are coefficients or slopes of the independent variables x1,x2,x3,x4…,xn and y is the y=b_0+b_1x_1+b_2x_2+…+b_nx_n dependent variable.

Linear regression and its error termin per value

Linear regression and its error termin per value

Mathematical Approach:

Residual/Error = Actual values – Predicted Values
Sum of Residuals/Errors = Sum(Actual- Predicted Values)
Square of Sum of Residuals/Errors = (Sum(Actual- Predicted Values))^2

\sum(e_i^2)=\sum(y_i-\hat{y_i})^2

Application of Linear Regression:

Real-world examples of linear regression models
  1. Businesses often use linear regression to understand the relationship between advertising spending and revenue.
  2. Medical researchers often use linear regression to understand the relationship between drug dosage and blood pressure of patients.
  3. Agricultural scientists often use linear regression to measure the effect of fertilizer and water on crop yields.
  4. Data scientists for professional sports teams often use linear regression to measure the effect that different training regimens have on player performance.
  5. Stock predictions: A lot of businesses use linear regression models to predict how stocks will perform in the future. This is done by analyzing past data on stock prices and trends to identify patterns.
  6. Predicting consumer behavior: Businesses can use linear regression to predict things like how much a customer is likely to spend. Regression models can also be used to predict consumer behavior. This can be helpful for things like targeted marketing and product development. For example, Walmart uses linear regression to predict what products will be popular in different regions of the country.

Assumptions of Linear Regression:

Linearity: It states that the dependent variable Y should be linearly related to independent variables. This assumption can be checked by plotting a scatter plot between both variables.

Normality: The X and Y variables should be normally distributed. Histograms, KDE plots, Q-Q plots can be used to check the Normality assumption.

Homoscedasticity: The variance of the error terms should be constant i.e the spread of residuals should be constant for all values of X. This assumption can be checked by plotting a residual plot. If the assumption is violated then the points will form a funnel shape otherwise they will be constant.

Independence/No Multicollinearity: The variables should be independent of each other i.e no correlation should be there between the independent variables. To check the assumption, we can use a correlation matrix or VIF score. If the VIF score is greater than 5 then the variables are highly correlated.

The error terms should be normally distributed. Q-Q plots and Histograms can be used to check the distribution of error terms.

No Autocorrelation: The error terms should be independent of each other. Autocorrelation can be tested using the Durbin Watson test. The null hypothesis assumes that there is no autocorrelation. The value of the test lies between 0 to 4. If the value of the test is 2 then there is no autocorrelation.