Big Data – Das Versprechen wurde eingelöst

Big Data tauchte als Buzzword meiner Recherche nach erstmals um das Jahr 2011 relevant in den Medien auf. Big Data wurde zum Business-Sprech der darauffolgenden Jahre. In der Parallelwelt der ITler wurde das Tool und Ökosystem Apache Hadoop quasi mit Big Data beinahe synonym gesetzt. Der Guardian verlieh Apache Hadoop mit seinem Konzept des Distributed Computing mit MapReduce im März 2011 bei den MediaGuardian Innovation Awards die Auszeichnung “Innovator of the Year”. Im Jahr 2015 erlebte der Begriff Big Data in der allgemeinen Geschäftswelt seine Euphorie-Phase mit vielen Konferenzen und Vorträgen weltweit, die sich mit dem Thema auseinandersetzten. Dann etwa im Jahr 2018 flachte der Hype um Big Data wieder ab, die Euphorie änderte sich in eine Ernüchterung, zumindest für den deutschen Mittelstand. Die große Verarbeitung von Datenmassen fand nur in ganz bestimmten Bereichen statt, die US-amerikanischen Tech-Riesen wie Google oder Facebook hingegen wurden zu Daten-Monopolisten erklärt, denen niemand das Wasser reichen könne. Big Data wurde für viele Unternehmen der traditionellen Industrie zur Enttäuschung, zum falschen Versprechen.

Von Big Data über Data Science zu AI

Einer der Gründe, warum Big Data insbesondere nach der Euphorie wieder aus der Diskussion verschwand, war der Leitspruch “Shit in, shit out” und die Kernaussage, dass Daten in großen Mengen nicht viel wert seien, wenn die Datenqualität nicht stimme. Datenqualität hingegen, wurde zum wichtigen Faktor jeder Unternehmensbewertung, was Themen wie Reporting, Data Governance und schließlich dann das Data Engineering mehr noch anschob als die Data Science.

Google Trends - Big Data (blue), Data Science (red), Business Intelligence (yellow) und Process Mining (green).

Google Trends – Big Data (blue), Data Science (red), Business Intelligence (yellow) und Process Mining (green). Quelle: https://trends.google.de/trends/explore?date=2011-03-01%202023-01-03&geo=DE&q=big%20data,data%20science,Business%20Intelligence,Process%20Mining&hl=de

Small Data wurde zum Fokus für die deutsche Industrie, denn “Big Data is messy!”1 und galt als nur schwer und teuer zu verarbeiten. Cloud Computing, erst mit den Infrastructure as a Service (IaaS) Angeboten von Amazon, Microsoft und Google, wurde zum Enabler für schnelle, flexible Big Data Architekturen. Zwischenzeitlich wurde die Business Intelligence mit Tools wie Qlik Sense, Tableau, Power BI und Looker (und vielen anderen) weiter im Markt ausgebaut, die recht neue Disziplin Process Mining (vor allem durch das deutsche Unicorn Celonis) etabliert und Data Science schloss als Hype nahtlos an Big Data etwa ab 2017 an, wurde dann ungefähr im Jahr 2021 von AI als Hype ersetzt. Von Data Science spricht auf Konferenzen heute kaum noch jemand und wurde hype-technisch komplett durch Machine Learning bzw. Artificial Intelligence (AI) ersetzt. AI wiederum scheint spätestens mit ChatGPT 2022/2023 eine neue Euphorie-Phase erreicht zu haben, mit noch ungewissem Ausgang.

Big Data Analytics erreicht die nötige Reife

Der Begriff Big Data war schon immer etwas schwammig und wurde von vielen Unternehmen und Experten schnell auch im Kontext kleinerer Datenmengen verwendet.2 Denn heute spielt die Definition darüber, was Big Data eigentlich genau ist, wirklich keine Rolle mehr. Alle zuvor genannten Hypes sind selbst Erben des Hypes um Big Data.

Während vor Jahren noch kleine Datenanalysen reichen mussten, können heute dank Data Lakes oder gar Data Lakehouse Architekturen, auf Apache Spark (dem quasi-Nachfolger von Hadoop) basierende Datenbank- und Analysesysteme, strukturierte Datentabellen über semi-strukturierte bis komplett unstrukturierte Daten umfassend und versioniert gespeichert, fusioniert, verknüpft und ausgewertet werden. Das funktioniert heute problemlos in der Cloud, notfalls jedoch auch in einem eigenen Rechenzentrum On-Premise. Während in der Anfangszeit Apache Spark noch selbst auf einem Hardware-Cluster aufgesetzt werden musste, kommen heute eher die managed Cloud-Varianten wie Microsoft Azure Synapse oder die agnostische Alternative Databricks zum Einsatz, die auf Spark aufbauen.

Die vollautomatisierte Analyse von textlicher Sprache, von Fotos oder Videomaterial war 2015 noch Nische, gehört heute jedoch zum Alltag hinzu. Während 2015 noch von neuen Geschäftsmodellen mit Big Data geträumt wurde, sind Data as a Service und AI as a Service heute längst Realität!

ChatGPT und GPT 4 sind King of Big Data

ChatGPT erschien Ende 2022 und war prinzipiell nichts Neues, keine neue Invention (Erfindung), jedoch eine große Innovation (Marktdurchdringung), die großes öffentliches Interesse vor allem auch deswegen erhielt, weil es als kostenloses Angebot für einen eigentlich sehr kostenintensiven Service veröffentlicht und für jeden erreichbar wurde. ChatGPT basiert auf GPT-3, die dritte Version des Generative Pre-Trained Transformer Modells. Transformer sind neuronale Netze, sie ihre Input-Parameter nicht nur zu Klasseneinschätzungen verdichten (z. B. ein Bild zeigt einen Hund, eine Katze oder eine andere Klasse), sondern wieder selbst Daten in ähnliche Gestalt und Größe erstellen. So wird aus einem gegeben Bild ein neues Bild, aus einem gegeben Text, ein neuer Text oder eine sinnvolle Ergänzung (Antwort) des Textes. GPT-3 ist jedoch noch komplizierter, basiert nicht nur auf Supervised Deep Learning, sondern auch auf Reinforcement Learning.
GPT-3 wurde mit mehr als 100 Milliarden Wörter trainiert, das parametrisierte Machine Learning Modell selbst wiegt 800 GB (quasi nur die Neuronen!)3.

ChatGPT basiert auf GPT3.5 und wurde in 3 Schritten trainiert. Neben Supervised Learning kam auch Reinforcement Learning zum Einsatz.

ChatGPT basiert auf GPT-3.5 und wurde in 3 Schritten trainiert. Neben Supervised Learning kam auch Reinforcement Learning zum Einsatz. Quelle: openai.com

GPT-3 von openai.com war 2021 mit 175 Milliarden Parametern das weltweit größte Neuronale Netz der Welt.4 

Größenvergleich: Parameteranzahl GPT-3 vs GPT-4

Größenvergleich: Parameteranzahl GPT-3 vs GPT-4 Quelle: openai.com

Der davor existierende Platzhirsch unter den Modellen kam von Microsoft mit “nur” 10 Milliarden Parametern und damit um den Faktor 17 kleiner. Das nun neue Modell GPT-4 ist mit 100 Billionen Parametern nochmal 570 mal so “groß” wie GPT-3. Dies bedeutet keinesfalls, dass GPT-4 entsprechend 570 mal so fähig sein wird wie GPT-3, jedoch wird der Faktor immer noch deutlich und spürbar sein und sicher eine Erweiterung der Fähigkeiten bedeuten.

Was Big Data & Analytics heute für Unternehmen erreicht

Auf Big Data basierende Systeme wie ChatGPT sollte es – der zuvor genannten Logik folgend – jedoch eigentlich gar nicht geben dürfen, denn die rohen Datenmassen, die für das Training verwendet wurden, konnten nicht im Detail auf ihre Qualität überprüft werden. Zum Einen mittelt die Masse an Daten die in ihnen zu findenden Fehler weitgehend raus, zum Anderen filtert Deep Learning selbst relevante Muster und unliebsame Ausreißer aus den Datenmassen heraus. Neuronale Netze, der Kern des Deep Learning, können durchaus als große Filter verstanden und erklärt werden.

Davon abgesehen, dass die neuen ChatBot-APIs von den Cloud-Providern Microsoft, Google und auch Amazon genutzt werden können, um Arbeitsprozesse und Kommunikation zu automatisieren, wird Big Data heute in vielen Unternehmen dazu eingesetzt, um Unternehmens-/Finanzkennzahlen auszuwerten und vorherzusagen, um Produktionsqualität zu überwachen, um Maschinen-Sensordaten mit den Geschäftsdaten aus ERP-, MES- und CRM-Systemen zu verheiraten, um operative Prozesse über mehrere IT-Systeme hinweg zu rekonstruieren und auf Schwachstellen hin zu untersuchen und um Schlussendlich auch den weiteren Datenhunger zu stillen, z. B. über Text-Extraktion aus Webseiten (Intelligence Gathering), die mit NLP und Computer Vision mächtiger wird als je zuvor.

Big Data hält sein Versprechen dank AI

Die frühere Enttäuschung aus Big Data resultierte aus dem fehlenden Vermittler zwischen Big Data (passive Daten) und den Applikationen (z. B. Industrie 4.0). Dieser Vermittler ist der aktive Part, die AI und weiterführende Datenverarbeitung (z. B. Lakehousing) und Analysemethodik (z. B. Process Mining). Davon abgesehen, dass mit AI über Big Data bereits in Medizin und im Verkehrswesen Menschenleben gerettet wurden, ist Big Data & AI längst auch in gewöhnlichen Unternehmen angekommen. Big Data hält sein Versprechen für Unternehmen doch noch ein und revolutioniert Geschäftsmodelle und Geschäftsprozesse, sichert so Wettbewerbsfähigkeit. Zumindest, wenn Unternehmen sich auf diesen Weg tatsächlich einlassen.

Quellen:

  1. Edd Dumbill: What is big data? An introduction to the big data landscape. (Memento vom 23. April 2014 im Internet Archive) auf: strata.oreilly.com.
  2. Fergus Gloster: Von Big Data reden aber Small Data meinen. Computerwoche, 1. Oktober 2014
  3. Bussler, Frederik (July 21, 2020). “Will GPT-3 Kill Coding?”. Towards Data Science. Retrieved August 1, 2020.2022
  4. developer.nvidia.com, 1. Oktober 2014
Interview Benjamin Aunkofer - Datenstrategien und Data Teams entwickeln!

Interview – Datenstrategie und Data Teams entwickeln!

Das Format Business Talk am Kudamm in Berlin führte ein drittes Interview mit Benjamin Aunkofer zum Thema “Datenstrategie und Data Team Organisation”.

In dem Interview erklärt Benjamin Aunkofer, was Unternehmen Datenstrategien entwickeln, um Ihren Herausforderungen gerecht zu werden. Außerdem gibt er Tipps, wie Unternehmen ein fähiges Data Team aufbauen, qualifizieren und halten.

Nachfolgend das Interview auf Youtube sowie die schriftliche Form zum Nachlesen:


Interview – Datenstrategien und Aufbau von Data Teams

  1. Herr Aunkofer, Sie unterstützen Unternehmen u.a. bei der Entwicklung von Datenstrategien und dem Aufbau von Data Teams. Was genau ist denn eine Datenstrategie?Eine Datenstrategie ist eine Strategie über die Nutzung von Daten zur Geschäftsoptimierung. Man kann auch sagen: Eine Datenstrategie ist ein Business Plan darüber, wie Daten richtig im Unternehmen genutzt werden sollen.Abgesehen vom Aufbau neuer eigener Geschäftsmodelle mit Daten, können grundsätzlich drei Faktoren im Unternehmen mit der Nutzung von Daten optimiert werden.1. Umsätze, also die Erhöhung der Umsätze durch bessere Produkte oder durch besseres Verständnis der Kunden
    2. Die Reduktion von Kosten und
    3. die verbesserte Risikoerkennung und -bewertung, z. B. in der Wirtschaftsprüfung.Eine Datenstrategie ist abgerichtet auf die Unternehmensziele und ist der Masterplan dafür, diese auch zu erreichen.
  2. Und was sind die typischen Ziele mit denen Kunden an Sie herantreten?Das hängt stark von der Branche ab, also Handelsunternehmen wollen vor allem die Kunden besser verstehen, Marketing besser ausrichten oder auch Produkte verbessern. Immobilienunternehmen wollen stets DIE Markttransparenz für sich und industrielle Unternehmen, also Maschinenbau, Zulieferer, Pharma usw. wollen meistens intelligente Produkte, oder mehr noch, schlanke Prozesse zur Kosteneinsparung, aber auch, um mehr Umsatz zu machen, denn Schnelligkeit heißt Wettbewerbsfähigkeit.Am Ende ist das aber auch alles sehr individuell von Unternehmen zu Unternehmen.
  3. Die Entwicklung einer Datenstrategie erfordert sicherlich ein systematisches Vorgehen. Was sind die wichtigsten Schritte?Ja genau, wir haben da eine generelle Vorgehensweise. Verkürzt erläutert, in fünf Schritten, wollen wir zu Anfang erstmal die Unternehmensvision für die nächste Zeit wissen und diese, wenn nicht schon gegeben, in klare Unternehmensziele herunter gebrochen haben. Das ist der erste und wichtigste Schritt.Weil, wenn wir das haben, dann können wir die dafür relevanten Daten und Datenquellen identifizieren. Das sind vielleicht unternehmensinterne Daten aus den IT-Systemen, ERP, CRM usw. und manchmal auch noch Daten aus unternehmensexternen Quellen, z. B. aus dem Social Media, Marktplattformen, Open Data usw. In manchen Fällen dreht sich auch alles nur um interne oder nur um externe Daten. Auch prüfen wir natürlich, ob Daten erst noch generiert oder gesammelt werden müssen und wie es um den rechtlichen Rahmen bzgl. der Nutzung steht. Das war der zweite Schritt.Wenn die relevanten Datenquellen identifiziert sind, sind im dritten Schritt die richtigen Methoden der Datennutzung auszumachen, z. B. der Aufbau einer Datenplattform, vielleicht ein Data Warehouse zur Datenkonsolidierung, Process Mining zur Prozessanalyse oder Predictive Analytics für den Aufbau eines bestimmten Vorhersagesystems, KI zur Anomalieerkennung oder je nach Ziel etwas ganz anderes.Der vierte Schritt ist die Überlegung, wie das ganze organisatorisch gelöst werden soll, also z. B. über eine zentrale verantwortliche Stelle im Unternehmen oder dezentral in bestimmten Fachabteilungen? Stehen die dafür richtigen Mitarbeiter zur Verfügung? Müssen Qualifizierungsmaßnahmen getroffen werden? Im Grunde kennt das wohl jeder, dass Unternehmen einfach z. B. ein Tool eingeführt haben, dass dann aber nicht genutzt wird. Dies müssen wir zu verwenden wissen.Tja und wenn das auch erledigt ist, muss das alles nur nochmal aufgeschrieben und in eine Planung mit Meilensteinen gebracht werden. Budgets, Staffing, Make or Buy usw. kommt da alles rein. Und voila, dann haben wir unsere Datenstrategie.
  4. Unterstützen Sie auch bei der Umsetzung der Datenstrategien?Ja klar, schon viel gemacht, sogar in verschiedensten Branchen. Diese Arbeit macht sogar großen Spaß für alle Beteiligten und es gibt nichts Spannenderes, als diesen Plan in die Zukunft zu gestalten.
  5. Sie arbeiten nicht nur als externer Dienstleister, sondern bietet auch Hilfestellung beim Aufbau und der Ausbildung eigener Data Teams. Welche Weiterbildungsformate bieten Sie an?Also wenn es hier einen Fachkräftemangel gibt, dann definitiv bei den Datenexperten. Übrigens nicht mehr so stark bei den Data Scientists, auch wenn richtig gute Mitarbeiter ebenfalls rar gesät sind, den größten Bedarf haben Unternehmen eher bei den Data Engineers. Das sind die Kollegen, die die Data Warehouses oder Data Lakes aufbauen und pflegen.Es gibt aber viele junge Leute, die da gerne einsteigen wollen. Das Problem auf der anderen Seite ist jedoch, dass Unternehmen natürlich eher erfahrene Leute suchen, die schneller und besser mit den großen Praxisproblemen klarkommen, die in den Datenarchitekturen sich nun mal so einschleichen. Diese erfahrenen Experten sind aber schwer zu finden und Stellen daher meistens sehr lange unbesetzt, oder dann mit Mitarbeitern, die kein Deutsch sprechen können.Wo wir von DATANOMIQ helfen können: Durch uns als Coach können Unternehmen auf ihrer Suche dem DEM Superexperten auch einfach günstigere, unerfahrene, aber motivierte Leute einstellen. Motivation der Mitarbeiter ist nicht zu unterschätzen! Als externer Dienstleister können wir dann unterstützen und schulen zu gleich. Und das machen wir über drei verschiedene Stufen:Trainings, Workshops und Coachings.Beim Training arbeiten wir mit Didaktik. Die Daten sind einfach gehalten und beispielhaft, denn wir möchten nicht zu lange über sie reden, sondern über die richtige Methodik der Datenaufbereitung oder Datenanalyse.Beim Workshop behandeln wir das reale Problem mit den echten Daten, mit denen der Mitarbeiter im Unternehmen konfrontiert ist. Hier schauen wir erstmal gemeinsam blöd aus der Wäsche, aber erarbeiten uns dann gemeinsam zügig die Lösung.

    Und beim Coaching schauen wir dann eigentlich nur zu und geben Ratschläge, wie man besser an die Aufgabenstellung herangehen könnte. Der Mitarbeiter hat also selbst das Zepter in der Hand und das Doing.Wir sind dann nur der Support.

    So können wir Stellen schnell besetzen und niemand muss Sorge haben, dass die Kompetenz nicht ausreicht. Auf diese Weise habe ich schon mehrere Data Teams für Kunden aufgebaut und parallel natürlich auch mein eigenes.

 

Sehen Sie die zwei anderen Video-Interviews von Benjamin Aunkofer:

 

 

 

 

 

 


 

Praxisbeispiel: Data Science im Marketing

Wie Sie mit Data Science die Conversion-Rate in Ihrem Online-Shop erhöhen

Die Fragestellung: Ein Hersteller von Elektrogeräten lancierte einen neuen Online-Shop, um einen neuen Vertriebskanal zu schaffen, der unabhängig von stationären Einzelhändlern und Amazon ist. Obwohl der Online-Shop von Interessent:innen häufig besucht wurde, war die Conversion-Rate zu niedrig und der Umsatz somit zu gering.

Die zentrale Frage war nun: Wie kann die Conversion-Rate erhöht werden, um den Umsatz über den neuen Vertriebskanal zu erhöhen?

Was ist eine Conversion-Rate? Die Conversion-Rate ist eine Marketing-Kennzahl, die in diesem Beispiel das Verhältnis der Besucher:innen des Online-Shops zu den getätigten Käufen meint. Halten sich viele Besucher:innen im Online-Shop auf und sind die Warenkorb-Abschlüsse dennoch gering, so ist die Conversion-Rate niedrig. Das Ziel ist es, die Conversion-Rate zu steigern, also dafür zu sorgen, dass Besucher:innen, die sich im Online-Shop befinden und dort etwas in den Warenkorb legen, auch einen Kauf tätigen.

VorgehenUm zu verstehen, warum eine Bestellung abgeschlossen bzw. nicht abgeschlossen wurde, wurden verschiedene Daten aus dem Web-Analytics-System des Online-Shops untersucht. Dazu gehörten im Wesentlichen Daten zu Besucherhandlungen auf der Website, die automatisch getrackt, also aufgezeichnet werden, wie z. B. Button & Link-Klicks, Bildergalerie öffnen, Produktvideo ansehen, Produktbeschreibung ausklappen, Time on page usw.

Mit diesen Daten wurden drei Analyseverfahren durchgeführt.

1) Website-Besucher verstehen

Zunächst wurden mit einer explorativen Datenanalyse die Website-Besucher:innen und deren Bedürfnisse untersucht. Über die meisten der Besucher:innen lagen bereits Daten vor, da sie in der Vergangenheit bereits Käufe auf der Website getätigt hatten und dafür ein Konto angelegt hatten. Darüber hinaus wurde untersucht, über welche Kanäle die Besucher:innen in den Online-Shop gelangten, beispielsweise über Google oder Facebook. Informationen zu Gerät, Standort, Browser und Betriebssystem waren ebenfalls verfügbar.

Anhand dieser unterschiedlichen Parameter wurden die Benutzerdaten einem Analyseverfahren, dem sog. Clustering, unterzogen, bei dem die Website-Besucher:innen aufgrund ihrer Ähnlichkeiten in verschiedenen Eigenschaften in Gruppen („Cluster“) eingeteilt wurden.

Beispiel: Besucher über Android-Smartphones und Chrome-Browser, die zwischen 17 und 19 Uhr am Samstag auf der Website sind, kaufen eher familienbezogene Produkte.

Daraufhin konnte man neue Website-Besucher:innen aufgrund der verschiedenen Eigenschaften meist recht eindeutig einem Cluster zuordnen, da ähnliche Besucher:innen tendenziell ein ähnliches Verhalten auf einer Website zeigen. Dieses Clustering lieferte dem Unternehmen bereits wertvolle Informationen. So konnten auf dieser Informationsgrundlage individuelle Marketingstrategien für verschiedene Zielgruppen entwickelt, das Werbe-Targeting angepasst und spezifische Sonderangebote erstellt werden.

Beispiel: Besucher über Android-Smartphones und Chrome-Browsern, die zwischen 17 und 19 Uhr am Samstag auf der Website sind, bekommen ein Sonderangebot für ein familienbezogenes Produkt, wie beispielsweise ein Babyfon ausgespielt.

In vielen Fällen reicht eine solche Analyse bereits aus, um die Conversion-Rate eines Online-Shops spürbar zu steigern. In diesem Projekt wurden jedoch noch zwei weitere Analyseschritte durchgeführt.

2) Conversion Path verstehen und Engpässe nachvollziehen

Der nächste Schritt bestand darin, den Conversion Path der Kund:innen zu untersuchen. Der Conversion Path umfasst alle Handlungen von Kund:innen vom Ankommen auf der Website über den Besuch verschiedener Seiten bis hin zum finalen Kauf bzw. Kaufabbruch. Bei der Analyse wurden alle Conversion Paths auf Gemeinsamkeiten und Unterschiede untersucht, um bestimmte Muster abzuleiten. Von besonderem Interesse waren mögliche Gründe, aus denen Besucher:innen ihre Sitzung vor Kaufabschluss abbrachen. Es stellte sich heraus, dass Besucher:innen ihre Sitzung vor allem dann abbrachen, wenn es für ein Produkt kein Produktvideo gab bzw. das Produktvideo nicht gefunden wurde. Diese mangelnde Produktinformation konnte anschließend gezielt bearbeitet werden, woraufhin sich die Conversion-Rate deutlich verbesserte.

3) Next-best-Action vorhersagen

Im dritten Schritt des Projektes zur Steigerung der Conversion-Rate wurde der Ansatz der Next-best-Action (NBA) gewählt. Damit wurde hier ein weiterer Schritt von der reinen Analyse von bereits vorhandenen Daten hin zur Vorhersage zukünftigen Verhaltens gewählt.

Was bedeutet Next-best-action? Next-best-action (NBA) ist eine Marketingstrategie, die darauf abzielt, Informationen über einzelne Kund:innen zu sammeln und zu nutzen, um einen Kauf anzuregen. Wie der Name schon sagt, wird versucht zu ermitteln, welcher der nächste beste Schritt im Verkaufsprozess für jede:n einzelne:n Kunde:in ist.

Mithilfe der allgemeinen Informationen über die Website-Besucher:innen und der Conversion Paths konnten unterschiedliche Aktionen identifiziert werden, die einen Kauf wahrscheinlicher machen würden. Dazu gehörte z. B., den Besucher:innen das Produktvideo anzuzeigen, einen Rabatt-Code oder ein Sonderangebot für eine spezielle Produktkategorie anzubieten oder ein Chat-Fenster für den Kundensupport zu öffnen.

Somit half die NBA-Vorhersage dabei, die Conversion erneut deutlich zu steigern, indem für jede:n Website-Besucher:in eine individuelle Aktion vorgeschlagen werden konnte.

Ergebnisse:

In diesem Projekt konnte die Marketingabteilung des Elektrogeräte-Herstellers durch drei verschiedene Analyseansätze die Conversion-Rate im Online-Shop deutlich verbessern:

  • Mithilfe des Clustering war das Unternehmen in der Lage, individuelle Marketingstrategien für verschiedene Zielgruppen zu entwickeln, das Werbe-Targeting anzupassen und spezifische Sonderangebote zu erstellen.
  • Durch die Analyse der Conversion Paths konnten produkt- und produktbeschreibungsspezifische Engpässe identifiziert und anschließend gezielt behoben werden.
  • Mit der NBA-Analyse konnten nächste beste Schritte für jede:n einzelne:n Kunde:in bestimmt und automatisch ausgelöst werden.

7 Gründe, warum es sich jetzt lohnt, Python zu lernen

Hot Skill: Python

7 Gründe, warum es sich jetzt lohnt, Python zu lernen

Die digitale Transformation nimmt Fahrt auf und stellt sowohl Arbeitgeber:innen als auch Arbeitnehmer:innen vor neue Herausforderungen. Um mit dieser Entwicklung Schritt zu halten, lohnt es sich, auf den Zug aufzuspringen und das eigene Portfolio um wichtige Schlüsselkompetenzen zu erweitern. Doch in der heutigen Zeit, wo täglich mehr Lernoptionen und -angebote auf den Markt drängen, ist es besonders wichtig, die eigene, knappe Zeit in die richtigen, zukunftsträchtigen Fähigkeiten zu investieren.

Infolge des rasanten, digitalen Wandels haben sich neue, wichtige Qualifikationen herauskristallisiert, die sich langfristig für Lernwillige auszahlen. Insbesondere technische Fähigkeiten werden von Unternehmen dringend benötigt, um den eigenen Marktanteil zu verteidigen. Unter allen möglichen Qualifikationen hat sich eine bestimmte Fähigkeit in den letzten Jahren von vielversprechend zu unverzichtbar gemausert: Die Programmiersprache Python. Denn Python ist insbesondere in den vergangenen fünf Jahren dem Image des Underdogs entwachsen und hat sich zum Champion unter den Tech-Skills entwickelt.

Wer jetzt denkt, dass Python als Programmiersprache nur für ITler und Tech Nerds lohnenswert ist: Weit gefehlt! Viele Unternehmen beginnen gerade erst die wahren Möglichkeiten von Big Data und künstlicher Intelligenz zu erschließen und Führungskräfte suchen aktiv nach Mitarbeiter:innen, die in der Lage sind, diese Transformation durch technische Fähigkeiten zu unterstützen. Wenn Sie sich in diesem Jahr weiterentwickeln möchten und nach einer Fähigkeit Ausschau halten, die Ihre Karriere weiter voranbringt und langfristig sichert, dann ist dies der ideale Zeitpunkt für Sie, sich mit Python weiterzuqualifizieren.

Nicht nur für Schlangenbeschwörer: Warum es sich jetzt lohnt, Python zu lernen

Falls Sie bei dem Wort Python eher an glänzende Schuppen denken als an Programmcode, dann lassen Sie uns Ihnen etwas Kontext geben: Python ist eine Programmiersprache, die für die Entwicklung von Software genutzt wird. Als serverseitige Sprache ist sie die Logik und das Fundament hinter Benutzereingaben und der Interaktion von Datenbanken mit dem Server. Python ist Open-Source, kostenlos und kann von jedem benutzt und verändert werden, weshalb ihre Verwendung besonders in der Datenwissenschaft sehr beliebt ist. Nicht zuletzt lebt Python von seiner Community, einer engagierten Gemeinschaft rund um die Themen künstliche Intelligenz, maschinelles Lernen, Datenanalyse und -modellierung, mit umfangreichen Ressourcen und über 137.000 Bibliotheken wie TensorFlow, Scikit-learn und Keras.

In der Data Science wird Python verwendet, um große Mengen komplexer Daten zu analysieren und aus ihnen relevante Informationen abzuleiten. Lohnt es sich also, Python zu lernen? Absolut! Laut der Stack Overflow Developer Survey wurde Python 2020 als die drittbeliebteste Technologie des Jahres eingestuft. Sie gilt als eine der angesagtesten Fähigkeiten und als beliebteste Programmiersprache in der Welt nach Angaben des PYPL Popularität der Programmiersprache Index. Wir haben 7 Gründe zusammengefasst, warum es sich jetzt lohnt, Python zu lernen:.

1. An Vielseitigkeit kaum zu übertreffen

Python ist ein wahrer Allrounder unter den Hard Skills! Ein wesentlicher Vorteil von Python ist, dass es in einer Vielzahl von Fachbereichen eingesetzt werden kann. Die häufigsten Bereiche, in denen Python Verwendung findet, sind u. a.:

  • Data Analytics & Data Science
  • Mathematik
  • Web-Entwicklung
  • Finanzen und Handel
  • Automatisierung und künstliche Intelligenz
  • Spieleentwicklung

2. Zahlt sich mehrfach aus

Diejenigen, für die sich eine neue Fähigkeit doppelt lohnen soll, liegen mit Python goldrichtig. Python-Entwickler:innen zählen seit Jahren zu den Bestbezahltesten der Branche. Und auch Data Scientists, für deren Job Python unerlässlich ist, liegen im weltweiten Gehaltsrennen ganz weit vorn. Die Nachfrage nach Python-Entwickler:innen ist hoch – und wächst. Und auch für andere Abteilungen wird die Fähigkeit immer wertvoller. Wer Python beherrscht, wird nicht lange nach einem guten Job Ausschau halten müssen. Unter den Top 10 der gefragtesten Programmier-Skills nach denen Arbeitgeber:innen suchen, liegt Python auf Platz 7. Die Arbeitsmarktaussichten sind also hervorragend.

3. Schnelle Erfolge auch für Neulinge

2016 war das schillernde Jahr, in dem Python Java als beliebteste Sprache an US-Universitäten ablöste und seitdem ist die Programmiersprache besonders unter Anfänger:innen sehr beliebt. In den letzten Jahren konnte Python seine Pole Position immer weiter ausbauen. Und das mit gutem Grund: Python ist leicht zu erlernen und befähigt seine Nutzer:innen dazu, eigene Webanwendungen zu erstellen oder simple Arbeitsabläufe zu automatisieren. Dazu bringt Python eine aufgeräumte und gut lesbare Syntax mit, was sie besonders einsteigerfreundlich macht. Wer mit dem Programmieren anfängt, will nicht mit einer komplizierten Sprache mit allerhand seltsamen Ausnahmen starten. Mit Python machen Sie es sich einfach und sind dennoch effektiv. Ein Doppelsieg!

4. Ideal für Zeitsparfüchse

Mit der Python-Programmierung erwarten Sie nicht nur schnelle Lernerfolge, auch Ihre Arbeit wird effektiver und damit schneller. Im Gegensatz zu anderen Programmiersprachen, braucht die Entwicklung mit Python weniger Code und damit weniger Zeit. Für alle Fans von Effizienz ist Python wie gemacht. Und sie bietet einen weiteren großen Zeitbonus. Unliebsame, sich wiederholende Aufgaben können mithilfe von Python automatisiert werden. Wer schon einmal Stunden damit verbracht hat, Dateien umzubenennen oder Hunderte von Tabellenzeilen zu aktualisieren, der weiß, wie mühsam solche Aufgaben sein können. Umso schöner, dass diese Aufgaben von jetzt an von Ihrem Computer erledigt werden könnten.

5. Über den IT-Tellerrand hinaus

Ob im Marketing, Sales oder im Business Development, Python hat sich längst aus seiner reinen IT-Ecke heraus und in andere Unternehmensbereiche vorgewagt. Denn auch diese Abteilungen stehen vor einer Reihe an Herausforderungen, bei denen Python helfen kann: Reporting, Content-Optimierung, A/B-Tests, Kundensegmentierung, automatisierte Kampagnen, Feedback-Analyse und vieles mehr. Mit Python können Erkenntnisse aus vorliegenden Daten gewonnen werden, besser informierte, datengetriebene Entscheidungen getroffen werden, viele Routineaktivitäten automatisiert und der ROI von Kampagnen erhöht werden.

6. Programmieren für Big Player

Wollten Sie schon immer für einen Tech-Giganten wie Google oder Facebook arbeiten? Dann könnte Python Ihre goldene Eintrittskarte sein, denn viele große und vor allem technologieaffine Unternehmen wie YouTube, IBM, Dropbox oder Instagram nutzen Python für eine Vielzahl von Zwecken und sind immer auf der Suche nach Nachwuchstalenten. Dropbox verwendet Python fast für ihr gesamtes Code-Fundament, einschließlich der Analysen, der Server- und API-Backends und des Desktop-Clients. Wenn Sie Ihrem Lebenslauf einen großen Namen hinzufügen wollen, sollte Python auf demselben Blatt zu finden sein.

7. Ein Must-Have für Datenprofis

Besonders Pythons Anwendung in der Datenwissenschaft und im Data Engineering treibt seine Popularität in ungeahnte Höhen. Aber was macht Python so wichtig für Data Science und Machine Learning? Lange Zeit wurde R als die beste Sprache in diesem Spezialgebiet angesehen, doch Python bietet für die Data Science zahlreiche Vorteile. Bibliotheken und Frameworks wie PyBrain, NumPy und PyMySQL für KI sind wichtige Argumente. Außerdem können Skripte erstellt werden, um einfache Prozesse zu automatisieren. Das macht den Arbeitsalltag von Datenprofis besonders effizient.

Investieren Sie in Ihre berufliche Zukunft und starten Sie jetzt Ihre Python-Weiterbildung! Egal, ob Programmier-Neuling oder Data Nerd: Die Haufe Akademie bietet die passende Weiterbildung für Sie: spannende Online-Kurse für Vollberufstätige und Schnelldurchläufer:innen im Bereich Python, Daten und künstliche Intelligenz.

In Kooperation mit stackfuel.

Quellen:

Get in IT: “WELCHE PROGRAMMIERSPRACHE SOLLTEST DU LERNEN?” [11.06.2021]

Coding Nomads: “Why Learn Python? 6 Reasons Why it’s So Hot Right Now.” [11.06.2021]

Control the visibility of the PowerBI visuals based on condition

In PowerBI, there is no direct or functional mechanism to adjust the visibility (Show/Hide) of visualizations based on filter choices. There is, however, a workaround that enables us to show/hide visuals based on filter condition.

The fundamental concept behind this technique is to apply a mask to a visual and change its opacity based on a condition or filter selection.

Use Case:

I have detail table of orders. These orders are divided into Consumer, Home Office, and Corporation categories. I use segment as a filter. One of the requirements is to present a table of detail if the overall profit for the selected segment is less than $100,000. To do this, this task will be divided into two major parts. First, we will display the table if the filter is selected. Next, we will add a condition to the table.

Step 1: Show table only filter is selected

  • Place filter (Slicer) and visual on the Report Pane.

  • Create a measure that will determine if the filter is selected or not.

Filter_Selected = IF(ISFILTERED(Orders[Segment]),1,0)

  • Add this measure to the filter pane of the table visualization and select the show item when the value is 1 option. This will ensure that when no options are selected, only the header is displayed.

  • Set the mask down on the table. Make sure you only mask the table header with a border color that matches your background, or remove it entirely.

  • Create a measure to change the mask’s transparency. If two zeros are appended to the end of any HAX code, this represents complete transparency.

mask_transparency =IF([Filter_Selected],”#FFFFFF00″,”#FFFFFF”)

  • Keep this measure on the Fill of the mask and add conditional formatting to it.

If the mask transparency(measure) field is grayed out during the previous steps, you may need to modify the data type of mask transparency to text.

Step 2 : Add a condition to the solution

  • Create a new measure to determine if our condition is met.

condition_check = IF(CALCULATE(SUM(Orders[Profit]),filter(all(Orders), Orders[Segment] = SELECTEDVALUE(Orders[Segment]))) < 100000,1,0)

  • Now add this new measure to a table visual’s filter pane and pick the show item when the value is 1 option. This ensures that only if the condition meets the table will appear.

You can now display or hide visuals based on slicer selection and condition. If you know a better way to do this, please comment and let me know. For this article, I referred to this page.

 

Better Customer Service Using Big Data

Big data is frequently discussed across many industries by more than just business owners, CEOs or IT managers. Big data and big data analytics are two critical elements of modern business that company leaders and their employees should understand if they want to make more informed decisions.

In addition to the highly data-driven business landscape, people’s needs and expectations are changing. Companies with superb customer service gain a competitive advantage over competitors with poor operations.

The power of big data analytics helps organizations take steps to improve their customer service offerings, ultimately meeting or exceeding the needs and expectations of existing and potential clients.

An Overview of Big Data

What exactly is big data and how is it different from traditional data?

Big data describes large, diverse datasets growing at increasing rates and proving highly useful in business. Datasets are so voluminous that traditional data processing software solutions cannot manage them properly.

Here are the “five Vs,” or essential qualities, that accurately describe big data:

  • Volume
  • Velocity
  • Variety
  • Veracity
  • Value

Businesses that leverage big data can address or even prevent a range of problems that would otherwise be more challenging to solve.

Organizations collect, combine and mine three types of data — structured, semi-structured and unstructured — for advanced analytics applications.

Benefits of Big Data Analytics

After analyzing big data, gathering new insights on company operations and other critical business issues helps companies overcome existing problems. Some of these might be costly and cause potential obstacles.

Here are two main benefits of big data analytics:

Customer Attraction and Retention

Big data analytics gives companies detailed insights into customers’ wants and needs.

For example, organizations can review customer data and adjust their current sales or marketing strategies to increase loyalty and satisfaction. Big data can also highlight changes in client sentiment and predict future trends.

Increased Employee Productivity

Monitoring employee performance is essential for most companies. Thankfully, big data analysis can show leaders how individual workers perform and measure their productivity.

Big data can analyze important factors such as absenteeism rates, number of sick days taken, workload and output. Once this information is collected, supervisors can relay findings to employees and make improvements to bolster productivity.

Other benefits exist, but these two examples provide a glimpse into the world of big data and how transformative it is in the modern business world.

How to Use Big Data to Improve Customer Service

There are a few ways businesses can harness big data analytics to gain insights and take actionable steps to improve their customer service offerings. Here’s how.

Solves Customer Inquiries More Effectively

Contacting a customer service center is often time-consuming and headache-inducing for a consumer, especially when the representative cannot answer a question or solve a problem.

Lack of effectiveness and speed are two of the most common causes of customer service frustration. Qualitative and quantitative big data analytics let customer service employees identify their weaknesses, such as their familiarity with a product or service, and take action accordingly.

For example, a representative can spend more time learning about customers’ most common issues while using a specific product, allowing them to solve problems faster and more effectively.

Increases Personalized Offers

A business can achieve significant revenue growth by aligning customer behaviors and marketing messages. Personalized offerings are becoming increasingly popular among consumers. In other words, people want companies to see them as individuals rather than a source of profit.

Big data analytics helps organizations increase the number and quality of personalized offerings. For example, analytics can reveal critical customer information, like how much money they spend, what products they buy and which services they use.

These details help employees create and automate personalized marketing offers. Customer service representatives can also use this data to make recommendations based on buyer preferences, improving the experience and building loyalty.

Empowers Customer Service Representatives

Big data analytics are a major boon to customer service representatives. These employees are considered the face of the company, meaning they must have access to all the resources they need. Insights from big data are no exception.

Representatives working with results from big data analysis are in a better position to respond to inquiries more quickly and provide effective customer solutions. They will likely perform well if they have insights at their disposal.

Provide Superior Customer Support With Big Data Analytics

No matter the industry, virtually every organization relies on data, whether it’s sales, web traffic, customer, supply chain management or inventory data.

Data is becoming increasingly important for companies in today’s competitive business environment. The role of big data will continue to grow as more organizations recognize its positive impact on customer service and satisfaction.

Haufe Akademie Data Science Buzzword Bingo

Buzzword Bingo: Data Science – Teil III

Im ersten Teil unserer Serie „Buzzword Bingo: Data Science“ widmeten wir uns den Begriffen Künstliche Intelligenz, Algorithmen und Maschinelles Lernen, im zweiten Teil den Begriffen Big Data, Predictive Analytics und Internet of Things. Nun geht es hier im dritten und letzten Teil weiter mit der Begriffsklärung dreier weiterer Begriffe aus dem Data Science-Umfeld.

Buzzword Bingo: Data Science – Teil III: Künstliche neuronale Netze & Deep Learning

Im dritten Teil unserer dreiteiligen Reihe „Buzzword Bingo Data Science“ beschäftigen wir uns mit den Begriffen „künstliche neuronale Netze“ und „Deep Learning“.

Künstliche neuronale Netze

Künstliche neuronale Netze beschreiben eine besondere Form des überwachten maschinellen Lernens. Das Besondere hier ist, dass mit künstlichen neuronalen Netzen versucht wird, die Funktionsweise des menschlichen Gehirns nachzuahmen. Dort können biologische Nervenzellen durch elektrische Impulse von benachbarten Neuronen erregt werden. Nach bestimmten Regeln leiten Neuronen diese elektrischen Impulse dann wiederum an benachbarte Neuronen weiter. Häufig benutzte Signalwege werden dabei verstärkt, wenig benutzte Verbindungen werden gleichzeitig im Laufe der Zeit abgeschwächt. Dies wird beim Menschen üblicherweise dann als Lernen bezeichnet.

Dasselbe geschieht auch bei künstlichen neuronalen Netzen: Künstliche Neuronen werden hier hinter- und nebeneinander geschaltet. Diese Neuronen nehmen dann Informationen auf, modifizieren und verarbeiten diese nach bestimmten Regeln und geben dann Informationen wiederum an andere Neuronen ab. Üblicherweise werden bei künstlichen neuronalen Netzen mindestens drei Schichten von Neuronen unterschieden.

  • Die Eingabeschicht nimmt Informationen aus der Umwelt auf und speist diese in das neuronale Netz ein.
  • Die verborgene(n) Schichte(n) liegen zwischen der Eingabe- und der Ausgabeschicht. Hier werden wie beschrieben die eingegebenen Informationen von den einzelnen Neuronen verarbeitet und anschließend weitergegeben. Der Name „verborgene“ Schicht betont dabei, dass für Anwender meist nicht erkennbar ist, in welcher Form ein neuronales Netz die Eingabeinformationen in den verborgenen Schichten verarbeitet.
  • Die letzte Schicht eines neuronalen Netzes ist die Ausgabeschicht. Diese beinhaltet die Ausgabeneuronen, welche die eigentliche Entscheidung, auf die das neuronale Netz trainiert wurde, als Information ausgeben.

Das besondere an neuronalen Netzen: Wie die Neuronen die Informationen zwischen den verborgenen Schichten verarbeiten und an die nächste Schicht weitergeben, erlernt ein künstliches neuronales Netz selbstständig. Hierfür werden – einfach ausgedrückt – die verschiedenen Pfade durch ein neuronales Netz, die verschiedene Entscheidungen beinhalten, häufig hintereinander ausprobiert. Führt ein bestimmter Pfad während des Trainings des neuronalen Netzes nicht zu dem vordefinierten korrekten Ergebnis, wird dieser Pfad verändert und in dieser Form zukünftig eher nicht mehr verwendet. Führt ein Pfad stattdessen erfolgreich zu dem vordefinierten Ergebnis, dann wird dieser Pfad bestärkt. Schlussendlich kann, wie bei jedem überwachten Lernprozess, ein erfolgreich trainiertes künstliches neuronales Netz auf unbekannte Eingangsdaten angewandt werden.

Auch wenn diese Funktionsweise auf den ersten Blick nicht sehr leicht verständlich ist: Am Ende handelt es sich auch hier bloß um einen Algorithmus, dessen Ziel es ist, Muster in Daten zu erkennen. Zwei Eigenschaften teilen sich künstliche neuronale Netze aber tatsächlich mit den natürlichen Vorbildern: Sie können sich besonders gut an viele verschiedene Aufgaben anpassen, benötigen dafür aber auch meistens mehr Beispiele (Daten) und Zeit als die klassischen maschinellen Lernverfahren.

Sonderform: Deep Learning

Deep Learning ist eine besondere Form von künstlichen neuronalen Netzen. Hierbei werden viele verdeckte Schichten hintereinander verwendet, wodurch ein tiefes (also „deep“) neuronales Netz entsteht.

Je tiefer ein neuronales Netz ist, umso komplexere Zusammenhänge kann es abbilden. Aber es benötigt auch deutlich mehr Rechenleistung als ein flaches neuronales Netz. Seit einigen Jahren steht diese Leistung günstig zur Verfügung, weshalb diese Form des maschinellen Lernens an Bedeutung gewonnen hat.

Die 6 Schritte des Process Mining – Infografik

Viele Process Mining Projekte drehen sich vor allem um die Auswahl und die Einführung der richtigen Process Mining Tools. Egal ob mit Celonis, Signavio, UiPath oder einem anderem Software-Anbieten, Process Mining ist nicht irgendein Tool, sondern eine Methodik der Aufbereitung und Analyse der Daten. Im Kern von Process Mining steckt eigentlich eine Graphenanalyse, die Prozessschritte als Knoten (Event) und Kanten (Zeiten) darstellt. Hinzu kommen weitere Darstellungen mit einem fließenden Übergang in die Business Intelligence, so bieten andere Tool-Anbieter auch Plugins für Power BI, Tableau, Qlik Sense und andere BI-Tools, um Process Mining zu visualisieren.

Unternehmen können Event Logs selbst herstellen und in ein Data Warehouse speisen, die dann alle Process Mining Tools mit Prozessdaten versorgen können. Die investierten Aufwände in Process Mining würden somit nachhaltiger (weil länger nutzbar) werden und die Abhängigkeit von bestimmter Software würde sich auf ein Minimum reduzieren, wir riskieren keinen neuen Aufwand für Migration von einem Anbieter zum nächsten. Übrigens können die Event Logs dann auch in andere Tools z. B. für Business Intelligence (BI) geladen und anderweitig analysiert werden.

Jedoch ganz unabhängig von den Tools, gibt es eine ganz generelle Vorgehensweise in dieser datengetriebenen Prozessanalyse, die wir mit der folgenden Infografik beschreiben möchten.

DATANOMIQ Process Mining - 6 Steps of Doing Process Mining Analysis

6 Steps of Process Mining – Infographic PDF Download.

DATANOMIQ ist der herstellerunabhängige Beratungs- und Service-Partner für Business Intelligence, Process Mining und Data Science. Wir erschließen die vielfältigen Möglichkeiten durch Big Data und künstliche Intelligenz erstmalig in allen Bereichen der Wertschöpfungskette. Dabei setzen wir auf die besten Köpfe und das umfassendste Methoden- und Technologieportfolio für die Nutzung von Daten zur Geschäftsoptimierung.

Data Science & Big Data

Buzzword Bingo: Data Science – Teil II

Im ersten Teil unserer Serie „Buzzword Bingo: Data Science“ widmeten wir uns den Begriffen Künstliche Intelligenz, Algorithmen und Maschinelles Lernen. Nun geht es hier im zweiten Teil weiter mit der Begriffsklärung dreier weiterer Begriffe aus dem Data Science-Umfeld.

Buzzword Bingo: Data Science – Teil II: Big Data, Predictive Analytics & Internet of Things

Im zweiten Teil unserer dreiteiligen Reihe „Buzzword Bingo Data Science“ beschäftigen wir uns mit den Begriffen „Big Data“, „Predictive Analytics“ und „Internet of Things“.

Big Data

Interaktionen auf Internetseiten und in Webshops, Likes, Shares und Kommentare in Social Media, Nutzungsdaten aus Streamingdiensten wie Netflix und Spotify, von mobilen Endgeräten wie Smartphones oder Fitnesstrackern aufgezeichnete Bewegungsdate oder Zahlungsaktivitäten mit der Kreditkarte: Wir alle produzieren in unserem Leben alltäglich immense Datenmengen.

Im Zusammenhang mit künstlicher Intelligenz wird dabei häufig von „Big Data“ gesprochen. Und weil es in der öffentlichen Diskussion um Daten häufig um personenbezogene Daten geht, ist der Begriff Big Data oft eher negativ konnotiert. Dabei ist Big Data eigentlich ein völlig wertfreier Begriff. Im Wesentlichen müssen drei Faktoren erfüllt werden, damit Daten als „big“ gelten. Da die drei Fachbegriffe im Englischen alle mit einem „V“ beginnen, wird häufig auch von den drei V der Big Data gesprochen.

Doch welche Eigenschaften sind dies?

  • Volume (Datenmenge): Unter Big Data werden Daten(-mengen) verstanden, die zu groß sind, um sie mit klassischen Methoden zu bearbeiten, weil beispielsweise ein einzelner Computer nicht in der Läge wäre, diese Datenmenge zu verarbeiten.
  • Velocity (Geschwindigkeit der Datenerfassung und -verarbeitung): Unter Big Data werden Daten(-mengen) verstanden, die in einer sehr hohen Geschwindigkeit generiert werden und dementsprechend auch in einer hohen Geschwindigkeit ausgewertet und weiterverarbeitet werden müssen, um Aktualität zu gewährleisten.
  • Variety (Datenkomplexität oder Datenvielfalt): Unter Big Data werden Daten(-mengen) verstanden, die so komplex sind, dass auf den ersten Blick keine Zusammenhänge erkennbar sind. Diese Zusammenhänge können erst mit speziellen maschinellen Lernverfahren aufgedeckt werden. Dazu gehört auch, dass ein Großteil aller Daten in unstrukturierten Formaten wie Texten, Bildern oder Videos abgespeichert ist.

Häufig werden neben diesen drei V auch weitere Faktoren aufgezählt, welche Big Data definieren. Dazu gehören Variability (Schwankungen, d.h. die Bedeutung von Daten kann sich verändern), Veracity (Wahrhaftigkeit, d.h. Big Data muss gründlich auf die Korrektheit der Daten geprüft werden), Visualization (Visualisierungen helfen, um komplexe Zusammenhänge in großen Datensets aufzudecken) und Value (Wert, d.h. die Auswertung von Big Data sollte immer mit einem unternehmerischen Vorteil einhergehen).

Predictive Analytics

  • Heute schon die Verkaufszahlen von morgen kennen, sodass eine rechtzeitige Nachbestellung knapper Produkte möglich ist?
  • Bereits am Donnerstagabend die Regenwahrscheinlichkeit für das kommende Wochenende kennen, sodass passende Kleidung für den Kurztrip gepackt werden kann?
  • Frühzeitig vor bevorstehenden Maschinenausfällen gewarnt werden, sodass die passenden Ersatzteile bestellt und das benötigte technische Personal angefragt werden kann?

Als Königsdisziplin der Data Science gilt für viele die genaue Vorhersage zukünftiger Zustände oder Ereignisse. Im Englischen wird dann von „Predictive Analytics“ gesprochen. Diese Methoden werden in vielen verschiedenen Branchen und Anwendungsfeldern genutzt. Die Prognose von Absatzzahlen, die Wettervorhersage oder Predictive Maintenance (engl. für vorausschauende Wartung) von Maschinen und Anlagen sind nur drei mögliche Beispiele.

Zu beachten ist allerdings, dass Predictive-Analytics-Modelle keine Wahrsagerei sind. Die Vorhersage zukünftiger Ereignisse beruht immer auf historischen Daten. Das bedeutet, dass maschinelle Modelle mit Methoden des überwachten maschinellen Lernens darauf trainiert werden, Zusammenhänge zwischen vielen verschiedenen Eingangseigenschaften und einer vorherzusagenden Ausgangseigenschaft zu erkennen. Im Falle der Predicitve Maintenance könnten solche Eingangseigenschaften beispielsweise das Alter einer Produktionsmaschine, der Zeitraum seit der letzten Wartung, die Umgebungstemperatur, die Produktionsgeschwindigkeit und viele weitere sein. In den historischen Daten könnte ein Algorithmus nun untersuchen, ob diese Eingangseigenschaften einen Zusammenhang damit aufweisen, ob die Maschine innerhalb der kommenden 7 Tage ausfallen wird. Hierfür muss zunächst eine ausreichend große Menge an Daten zur Verfügung stehen. Wenn ein vorherzusagendes Ereignis in der Vergangenheit nur sehr selten aufgetreten ist, dann stehen auch nur wenige Daten zur Verfügung, um dasselbe Ereignis für die Zukunft vorherzusagen. Sobald der Algorithmus einen entsprechenden Zusammenhang identifiziert hat, kann dieses trainierte maschinelle Modell nun verwendet werden, um zukünftige Maschinenausfälle rechtzeitig vorherzusagen.

Natürlich müssen solche Modelle dauerhaft darauf geprüft werden, ob sie die Realität immer noch so gut abbilden, wie zu dem Zeitpunkt, zu dem sie trainiert worden sind. Wenn sich nämlich die Umweltparameter ändern, das heißt, wenn Faktoren auftreten, die zum Trainingszeitpunkt noch nicht bekannt waren, dann muss auch das maschinelle Modell neu trainiert werden. Für unser Beispiel könnte dies bedeuten, dass wenn die Maschine für die Produktion eines neuen Produktes eingesetzt wird, auch für dieses neue Produkt zunächst geprüft werden müsste, ob die in der Vergangenheit gefundenen Zusammenhänge immer noch Bestand haben.

Internet of Things

Selbstfahrende Autos, smarte Kühlschränke, Heizungssysteme und Glühbirnen, Fitnesstracker und vieles mehr: das Buzzword „Internet of Things“ (häufig als IoT abgekürzt) beschreibt den Trend, nicht nur Computer über Netzwerke miteinander zu verbinden, sondern auch verschiedene alltägliche Objekte mit in diese Netzwerke aufzunehmen. Seinen Anfang genommen hat dieser Trend in erster Linie im Bereich der Unterhaltungselektronik. In vielen Haushalten sind schon seit Jahren Fernseher, Computer, Spielekonsole und Drucker über das Heimnetzwerk miteinander verbunden und lassen sich per Smartphone bedienen.

Damit ist das IoT natürlich eng verbunden mit Big Data, denn all diese Geräte produzieren nicht nur ständig Daten, sondern sie sind auch auf Informationen sowie auf Daten von anderen Geräten angewiesen, um zu funktionieren.

6 Faktoren, wie Process Mining Projekte zum Erfolg werden

Zuerst wollte ich diesen Artikel mit “6 Gründe, warum Process Mining Projekt scheitern” betiteln, das würde dann aber doch etwas zu negativ klingen. Kein Process Mining Projekt muss scheitern oder überhaupt in Verzögerungen geraten, denn das lässt sich mit etwas Erfahrung und der richtigen Einstellung zum Projekt immer verhindern.

Process Mining - Process Flow ChartNach dutzenden Process Mining Projekten mit unterschiedlichen Rahmenbedingungen gebe ich hier nun sechs handfeste Hinweise, wie Process Mining Projekte generell zum Erfolg werden:

1. Richtige Erwartungshaltung setzen und kommunizieren

Dieser Punkt mag banal klingen, das ist jedoch nicht der Fall. Ich habe schon einige Process Mining Projekte gesehen, die deswegen gescheitert sind, weil dem Vorstand oder anderen Entscheidern gegenüber falsche Versprechungen abgegeben wurden. Tatsächlich werden Process Mining Projekte oft mit ambitionierten Zielen gestartet, wie dem Herabsenken von Prozesskosten um konkrete 10% oder dem Reduzieren der Durchlaufzeit eines bestimmten Prozesses um 20%. Es sei den Entscheidern nicht zu verübeln, dass Budgets gestrichen und Projekte eingestampft werden, wenn diese konkreten Versprechen nicht realisiert werden können.

Dabei können exakt diese Ziele oftmals doch erreicht werden, nur nicht gleich bei den ersten Projektiterationen, denn oft fehlen Datenpunkte, die wichtige Prozessaktivitäten in operativen Prozessketten dokumentieren. Das Event Log kann anfangs – gerade für exotischere Prozesse in weniger verbreiteten IT-Systemen – oft noch nicht sofort vollständig erstellt werden.

Aber eben genau diese Lücken in der Prozessdatenerfassung sind ein “Finding”, denn sie zeigen erst auf, an welchen Stellen es blinde Flecken in der Daten- und Prozesstransparenz noch gibt. Somit ist im Process Mining auch der Weg der datenbasierten Prozesstransparenz ein oder sogar DAS große Ziel.

Konkretes Beispiel: Eine Krankenversicherung wollte die Prozesse der Reha-Bewilligung für ihre Versicherte analysieren. Unter Einsatz eines umfangreichen Process Mining Tools sollten die Prozesse tiefgehend analysiert und unnötige Prozessschleifen identifizieren, aber auch den Prozess abkürzen, indem Ausschlusspunkte frühzeitig im Prozess entdeckt werden. Das war das Versprechen an den Vorstand, der das Budget einfror, auf Grund nicht erreichter Ziele.

In der Tat gab es bei der Rekonstruktion der Prozesse aus den Legacy-Systemen, die über Jahrzehnte von der IT der Krankenkasse selbst entwickelt wurden, viele Lücken in den Daten und somit blinde Flecken in der Prozessen. Die Aufdeckung aber genau dieser Lücken führt dazu, dass diese geschlossen werden können und die vollständige Transparenz über Daten damit erst hergestellt wird. Erst dann, im zweiten Schritt, können die Prozesse ausführlich genug auf Optimierungspotenziale untersucht werden.

Process Mining nicht zu betreiben, weil die Prozesse nicht lückenlos getrackt werden, ist im Grunde unterlassene Hilfeleistung gegenüber des Unternehmens.

2. Process Mining als Methode, nicht als Tool verstehen

Viele Process Mining Projekte drehen sich vor allem um die Auswahl und die Einführung der richtigen Process Mining Tools. Auf das richtige Tool zu setzen, ist natürlich ein wichtiger Aspekt im Process Mining Projekt. Abhängig davon, ob es sich beim Vorhaben der Prozessanalyse um eine einmalige Angelegenheit oder ein tägliches Monitoring von Prozessen handelt, kommen unterschiedliche Tools in die Vorauswahl. Auch ob beispielsweise bereits ein BI-System etabliert ist und ob ein ausgeklügeltes Berechtigungskonzept für die Prozessanalysen notwendig ist, spielen für die Auswahl eine Rolle, sowie viele weitere Faktoren.

Dennoch sollte nicht vergessen werden, dass Process Mining in erster Linie kein Tool, sondern eine Analysemethodik ist, bei der es im ersten Abschnitt um die Rekonstruktion der Prozesse aus operativen IT-Systemen in ein resultierendes Prozessprotokoell (Event Log) geht, im zweiten Schritt um eine (im Kern) Graphenanalyse zur Visualisierung der Prozessflüsse mit weiteren Analyse-/Reporting-Elementen. Wird diese Perspektive auf Process Mining nicht aus den Augen verloren, können Unternehmen viele Kosten sparen, denn es erlaubt die Konzentration auf lösungsorientierte Konzepte.

Konkretes Beispiel: Ein Unternehmen plante die Einführung von Process Mining über einen marktführenden Tool-Anbieter. Nahezu alle Ressourcen wurden für die Tool-Einführung allokiert, das eigentliche Vorhaben schien rein in der Tool-Einführung aufgehen zu müssen, bis Projektanforderungen sogar zu Gunsten des auserwählten Tools angepasst wurden, um es realisieren zu können.
Zudem kann das Unternehmen noch vor der umfangreichen Tool-Einführung, erste Schritte oder Zumindest erste Machbarkeitstests mit einem günstigeren Tool durchführen, oder sogar gänzlich kostenlos z. B. mit PM4Py (Python Package für Process Mining).

Oftmals sind die Tools der Marktführer auf Grund der Preismodelle schädlich für die Durchdringung von Process Mining im Unternehmen, denn nicht alle Abteilungen verfügen über die notwendigen Budgets und gerade experimentelle Projekte finden keinen Sponsor. Umso wichtiger ist es, diese Analysetechnik als Methodik zu verstehen, die auch mit einem Tool-Mix funktionieren kann. Ich kenne mehrere Unternehmen, die aus verschiedenen Gründen nicht ein, nicht zwei, sondern gleich mehrere Tools im Unternehmen im Einsatz haben.

3. Auf Unabhängigkeit und Wiederverwendbarkeit setzen

Wie zuvor bereits erwähnt, kann für ein Unternehmen ein Mix aus mehreren Tools infrage kommen und eigentlich sollte dieser Punkt sich um die richtige Tool-Auswahl drehen. Der Markt für Process Mining Software Tools in einem turbulenten Umfeld, die Tools, Funktionsumfänge und Konditionen ändern sich häufig und sind noch nicht vollends ausgereift. Viele der höherpreisigen Process Mining Tools wollen die Erstellung des Event Logs übernehmen und setzen dabei meistens auf vorgefertigte SQL-Skripte, die in der Plattform (also dem Tool) laufen und dort an kundenindividuelle Prozesse (z. B. durch ERP-Customizing) angepasst werden können.

Wie bereits erwähnt, besteht das Verfahren für Process Mining aus zwei Abschnitten, der erste ist die Erstellung des Event Logs, der zweite die eigentliche Analyse im Process Mining Tool, in welches das Event Log geladen wird. Soll das Tool auch den ersten Abschnitt übernehmen, steckt viel unternehmensindividuelles Prozess-Know-How im Tool, welches nicht für andere Tools verwendet werden kann. Es entsteht eine Abhängigkeit vom Tool, eine Migration zu einem anderen Tool wird schwieriger.

Konkretes Beispiel: Ein Unternehmen starten einen Proof of Concept für die Einführung eines Process Mining Tools, dabei wird ein Budget i.H.v. hundertausenden bereit gestellt, um drei Tools von unterschiedlichen Software-Herstellern gegeneinander antreten zu lassen. Die Tools sollen jeweils eine Gesamtlösung darstellen und Process Mining komplett liefern können, inklusive Event Logs.

Das Unternehmen könnte sich den Proof of Concept zum überwiegenden Teil sparen, wenn der erste Abschnitt des Process Minings – die Erstellung der Event Logs – vom Unternehmen selbst durchgeführt werden würde. Die Tools der Anbieter würden dann nur noch der eigentlichen Analyse der Event Logs dienen, die Anforderungen verringern sich und die Tools werden austauschbarer.

Unternehmen können Event Logs selbst herstellen und in ein Data Warehouse speisen, die dann alle Process Mining Tools mit Prozessdaten versorgen können. Die investierten Aufwände in Process Mining würden somit nachhaltiger (weil länger nutzbar) werden und die Abhängigkeit von bestimmter Software würde sich auf ein Minimum reduzieren, wir riskieren keinen neuen Aufwand für Migration von einem Anbieter zum nächsten. Übrigens können die Event Logs dann auch in andere Tools z. B. für Business Intelligence (BI) geladen und anderweitig analysiert werden.

4. Den richtigen Fokus setzen

Für Process Mining sollte nicht nur im Generellen eine realistische Erwartungshaltung kommuniziert werden, sondern auch im Speziellen, durch Selektion der besten Prozesse für den Start der Process Mining Vorhaben. Auf den ersten Blick sind das sicherlich die Prozesse, die aus Führungssicht als besonders kritisch betrachtet werden, für manche Unternehmen mögen das besondere Prozesse der Logistik sein, der Wareneinkauf bzw. die Materialbereitstellung, bei anderen Unternehmen vielleicht bestimmte Verwaltungs- oder Genehmigungsprozesse. Es sind meistens Prozesse, die entweder eine besondere Kostenbedeutung für das Unternehmen haben oder für die Kundenbindung wichtig sind. Da ist es verständlich, dass erste Projekte sich exakt diesen Prozessen widmen.

Konkretes Beispiel: Ein Unternehmen der Werkzeugmaschinen-Branche plant einen erstmaligen Einsatz von Process Mining. Der für das Unternehmen besonders kritische Prozess ist die Fertigung und Montage von Maschinen, denn hier liegen die größten Potenziale verborgen. Das Vorhaben gerät jedoch schnell ins Stocken, denn die Erhebung der Daten nicht nur aus ERP- und MES-Systemen, sondern auch von Machinen und Arbeitsplätzen erweist sich als zeitaufwändig.

Das Unternehmen startet eine zweite Kampagne zur Untersuchung eines Einkaufsprozesses, das zwar geringere Potenziale bietet, jedoch schneller und reibungsloser durchführbar ist. Das Projekt wird zum Erfolg und motiviert die Geschäftsführung, mehr Aufwände für Process Mining auch für schwieriger zu untersuchende Prozesse freizugeben.

Sofern Process Mining noch nicht im Unternehmen etabliert ist, sollten Sie die “low hanging Fruits” finden, damit Ihre Initiative zu einem nachhaltigen Erfolg für das ganze Unternehmen werden kann, beginnen Sie möglichst nicht gleich mit der größten “Baustelle”.

5. Datenanforderung und Datenrestriktionen frühzeitig klären

Dass der Erfolg Ihrer Process Mining Initiative auch vom zu analysierenden Prozess abhängt und damit auch die Datenverfügbarkeit vorab untersucht worden sein sollte, hatten wir schon erörtert. Aber selbst für gängigere Prozesse verzögern sich Process Mining Vorhaben auf eigentlich vermeidbarer Weise, weil die Anforderung an die Daten nicht vorab festgelegt worden sind. In der Tat ist die Definition der Datenanforderung, also welche Datentabellen mit Filterung auf Spalten und Zeilen für das Event Log benötigt werden, vorab manchmal gar nicht so einfach, besonders bei exotischeren Quellsystemen. Es sollte zumindest jedoch die grobe Anforderung beschrieben werden, unter Nennung der Datenbanken und einer Metabeschreibung, um welche Daten es geht. Auch deswegen, um den Datenschutzbeauftragten und sonstige Genehmiger frühzeitig einbinden zu können. Bei gängigen Quellsystemen und Standardprozessen (z. B. Procure to Pay oder Order to Cash eines SAP ERPs) kann die Anforderung bereits früh auf hohem Detaillevel vorab geschehen.

Konkretes Beispiel: Ein Unternehmen hat gerade sein Process Mining Projekt gestartet, steckt jedoch seit Tagen in der Datenbeschaffung fest. Die IT-Systemintegratoren weigern sich, Daten ohne genaue Anforderung aus den Quellsystemen zu exportieren oder einen API-Zugang bereit zu stellen und die Freigabe des Datenschutzbeauftragten sowie der IT-Sicherheit fehlen.

Neben der Anforderungsdefinition sollte also auch die Kommunikation mit den Administratoren der Quellsysteme frühzeitig erfolgen.

6. Das Big Picture vor Augen haben

Insbesondere wenn Process Mining nicht nur eine einmalige Ad-Hoc Analyse bleiben, sondern unternehmensweit eingeführt werden soll, sollte eine verlässliche, integrative und nachhaltige Architektur überlegt werden. Process Mining ist – wir wiederholen uns – eine Methodik, die mit Business Intelligence, Data Science (Machine Learning) und RPA in Verbindung gebracht werden kann.

Konkretes Beispiel: Eine Fachabteilung eines Unternehmens führte ein Process Mining Tool als eigenständige Lösung ein, um Prozesse hinsichtlich ihrer Automatisierbarkeit zu untersuchen. Dabei werden NLP-Algorithmen aus dem Machine Learning bei der Datenextraktion aus Texten eine Rolle spielen. Das ausgewählte Process Mining Tool wurde auch auf Grund seiner inhouse-Lösung für Machine Learning ausgesucht. In einer benachbarten Abteilung ist bereits ein RPA-Tool im Einsatz und auf der globalen Unternehmensebene ist ein bestimmtes BI-Tool der Standard für Reporting und Datenanalysen.

Statt vieler Einzellösungen, könnte die Fachabteilung das konzernweite BI-Tool mit Process Mining Erweiterung (Plugin zum BI-Tool, z. B. für Qlik Sense oder Power BI erhältlich) nutzen und dabei auch die RPA-Lösung mit dieser verbinden. Ein Data Warehouse für BI ist ebenfalls vorhanden und könnte ggf. zu einem für Process Mining erweitert werden. Für den Einsatz von Machine Learning können Data Scientists die Daten im Process Mining Data Warehouse zum Training verwenden und Prädiktionsergebnisse direkt in dieses zurückspielen.

Achten Sie auf die Gesamtarchitektur. Process Mining kann für sich alleine stehen, es kann jedoch auch sinnvoll sein, eine Datenstrategie zu entwickeln, die das Projekt im Kontext vorhandener Daten-Initiativen betrachtet und einen integrativen Ansatz erlaubt.