Posts

Interview: Does Business Intelligence benefit from Cloud Data Warehousing?

Interview with Ross Perez, Senior Director, Marketing EMEA at Snowflake

Does Business Intelligence benefit from Cloud Data Warehousing?

Ross Perez is the Senior Director, Marketing EMEA at Snowflake. He leads the Snowflake marketing team in EMEA and is charged with starting the discussion about analytics, data, and cloud data warehousing across EMEA. Before Snowflake, Ross was a product marketer at Tableau Software where he founded the Iron Viz Championship, the world’s largest and longest running data visualization competition.

Data Science Blog: Ross, Business Intelligence (BI) is not really a new trend. In 2019/2020, making data available for the whole company should not be a big thing anymore. Would you agree?

BI is definitely an old trend, reporting has been around for 50 years. People are accustomed to seeing statistics and data for the company at large, and even their business units. However, using BI to deliver analytics to everyone in the organization and encouraging them to make decisions based on data for their specific area is relatively new. In a lot of the companies Snowflake works with, there is a huge new group of people who have recently received access to self-service BI and visualization tools like Tableau, Looker and Sigma, and they are just starting to find answers to their questions.

Data Science Blog: Up until today, BI was just about delivering dashboards for reporting to the business. The data warehouse (DWH) was something like the backend. Today we have increased demand for data transparency. How should companies deal with this demand?

Because more people in more departments are wanting access to data more frequently, the demand on backend systems like the data warehouse is skyrocketing. In many cases, companies have data warehouses that weren’t built to cope with this concurrent demand and that means that the experience is slow. End users have to wait a long time for their reports. That is where Snowflake comes in: since we can use the power of the cloud to spin up resources on demand, we can serve any number of concurrent users. Snowflake can also house unlimited amounts of data, of both structured and semi-structured formats.

Data Science Blog: Would you say the DWH is the key driver for becoming a data-driven organization? What else should be considered here?

Absolutely. Without having all of your data in a single, highly elastic, and flexible data warehouse, it can be a huge challenge to actually deliver insight to people in the organization.

Data Science Blog: So much for the theory, now let’s talk about specific use cases. In general, it matters a lot whether you are storing and analyzing e.g. financial data or machine data. What do we have to consider for both purposes?

Financial data and machine data do look very different, and often come in different formats. For instance, financial data is often in a standard relational format. Data like this needs to be able to be easily queried with standard SQL, something that many Hadoop and noSQL tools were unable to provide. Luckily, Snowflake is an ansi-standard SQL data warehouse so it can be used with this type of data quite seamlessly.

On the other hand, machine data is often semi-structured or even completely unstructured. This type of data is becoming significantly more common with the rise of IoT, but traditional data warehouses were very bad at dealing with it since they were optimized for relational data. Semi-structured data like JSON, Avro, XML, Orc and Parquet can be loaded into Snowflake for analysis quite seamlessly in its native format. This is important, because you don’t want to have to flatten the data to get any use from it.

Both types of data are important, and Snowflake is really the first data warehouse that can work with them both seamlessly.

Data Science Blog: Back to the common business use case: Creating sales or purchase reports for the business managers, based on data from ERP-systems such as Microsoft or SAP. Which architecture for the DWH could be the right one? How many and which database layers do you see as necessary?

The type of report largely does not matter, because in all cases you want a data warehouse that can support all of your data and serve all of your users. Ideally, you also want to be able to turn it off and on depending on demand. That means that you need a cloud-based architecture… and specifically Snowflake’s innovative architecture that separates storage and compute, making it possible to pay for exactly what you use.

Data Science Blog: Where would you implement the main part of the business logic for the report? In the DWH or in the reporting tool? Does it matter which reporting tool we choose?

The great thing is that you can choose either. Snowflake, as an ansi-Standard SQL data warehouse, can support a high degree of data modeling and business logic. But you can also utilize partners like Looker and Sigma who specialize in data modeling for BI. We think it’s best that the customer chooses what is right for them.

Data Science Blog: Snowflake enables organizations to store and manage their data in the cloud. Does it mean companies lose control over their storage and data management?

Customers have complete control over their data, and in fact Snowflake cannot see, alter or change any aspect of their data. The benefit of a cloud solution is that customers don’t have to manage the infrastructure or the tuning – they decide how they want to store and analyze their data and Snowflake takes care of the rest.

Data Science Blog: How big is the effort for smaller and medium sized companies to set up a DWH in the cloud? Does this have to be an expensive long-term project in every case?

The nice thing about Snowflake is that you can get started with a free trial in a few minutes. Now, moving from a traditional data warehouse to Snowflake can take some time, depending on the legacy technology that you are using. But Snowflake itself is quite easy to set up and very much compatible with historical tools making it relatively easy to move over.

OLAP-Würfel

Der OLAP-Würfel

Alles ist relativ! So auch die Anforderungen an Datenbanksysteme. Je nachdem welche Arbeitskollegen/innen dazu gefragt werden, können unterschiedliche Wünschen und Anforderungen an Datenbanksysteme dabei zu Tage kommen.

Die optimale Ausrichtung des Datenbanksystems auf seine spezielle Anwendung hin, setzt den Grundstein für eine performante und effizientes Informationssystem und sollte daher wohl überlegt sein. Eine klassische Unterscheidung für die Anwendung von Datenbanksystemen lässt sich hierbei zwischen OLTP (Online Transaction Processing) und OLAP (Online Analytical Processing) machen.

OLTP-Datenbanksysteme zeichnen sich insbesondere durch die direkte Verarbeitung bei hohem Durchsatz von Transaktionen, sowie den parallelen Zugriff auf Informationen aus und werden daher vor allem für die Erfassung von operativen Geschäftsfällen eingesetzt. Im Gegensatz zu OLTP-Systemen steht bei OLAP-Systemen die analytische Verarbeitung von großen Datenbeständen im Vordergrund. Die folgende Grafik veranschaulicht das Zusammenwirken von OLTP und OLAP.

Da OLAP-Systeme eine mehrdimensionale und subjektbezogen Datenstruktur aufweisen, können statistisch-analytische Verarbeitungen auf diese Datenmengen effizient angewandt werden. Basierend auf dem Sternen-Schema, werden in diesem Zusammenhang häufig sogenannte OLAP-Würfel (engl. „Cube“) verwendet, welcher die Grundlage für multidimensionale Analysen bildet. Im Folgenden werden wir den OLAP-Würfel etwas näher beleuchten.

Aufbau des OLAP-Würfels

Der OLAP-Würfel ist eine Zusammensetzung aus multidimensionale Datenarrays. Die logische Anordnung der Daten über mehrere Dimensionen erlaubt dem Benutzer verschiedene Ansichten auf die Daten in gleicher Weise zu erlangen. Der Begriff „Würfel“ („Cube“) referenziert hierbei auf die Darstellung eines OLAP-Würfels mit drei Dimensionen. OLAP-Würfel mit mehr als drei Dimensionen werden daher auch „Hypercubes“ genannt.

Die Achsen des Würfels entsprechen den Dimensionen, also den Attributen/ Eigenschaften des Würfels, welche den Würfel aufspannen. Typische Dimensionen sind: Produkt, Ort und Zeit.

Die Zellen im Schnittpunkt der Koordinaten entsprechen den Kennzahlen auch Maßzahlen (engl. „measures“) genannt. Die Kennzahlen stehen im Mittelpunkt der Datenanalyse und können sowohl Basisgrößen (atomare Werte) als auch abgeleitete Zahlen (berechnete Werte) sein. Oftmals handelt es sich bei den Kennzahlen um numerische Werte wie z.B.: Umsatz, Kosten und Gewinn.

Hierarchien beschreiben eine logische Struktur einzelner Elemente in den Dimensionen und nehmen dabei meist ein hierarchisches Schema an z.B.:  Tag -> Monat -> Jahr ->TOP. Die Werte der jeweils übergeordneten Elemente ergeben sich meistens aus einer Konsolidierung aller untergeordneten Elemente. Das größte Element „TOP“ steht dabei für „alles“ und fasst somit die gesamten Elemente der Dimension zusammen.

Je nachdem in welcher Detailstufe, auch Granularität genannt, die Kennzahlen der einzelnen Dimensionen vorliegen, können verschiedene Würfel-Operationen für Daten bis auf der kleinsten Ebenen ausgeführt werden wie z.B.: einzelne Transaktionen in einer Geschäftsstellen für einen bestimmten Tag betrachten. Bei der Wahl der Granularität ist jedoch unbedingt der Zweck sowie die Leistungsfähigkeit der Datenbank mit zu Berücksichtigen.

 

 

 

 

 

Operationen des OLAP-Würfels

Für die Auswertung von OLAP-Würfeln haben sich spezielle Operationsbezeichnungen durchgesetzt, welche im Folgenden mit grafischen Beispielen vorgestellt werden.

Die Slice Operation wird durch die Selektion bzw. Einschränkung einer Dimension auf ein Dimensionselement erwirkt. In dem hier aufgezeigten Beispiel wird durch das Selektieren auf die Produktsparte „Anzüge“,die entsprechende Scheibe aus dem Würfel „herausgeschnitten“.

 

 

 

 

 

 

 


Bei der Dice-Operation wird der Würfel auf mehreren Dimensionen, durch eine Menge von Dimensionselementen eingeschränkt. Als Resultat ergibt sich ein neuer verkleinerter, mehrdimensionaler Datenraum. Das Beispiel zeigt, wie der Würfel auf die Zeit-Dimensionselemente: „Q1 „und „Q2“ sowie die Produkt- Dimensionselemente: „Anzüge“ und „Hosen“ beschränkt wird.

 

 

 

 

 


Mit der Pivotiting/Rotation-Operation wird der Würfel um die eigene Achse rotiert. Diese Operation ermöglicht dem Benutzer unterschiedliche Sichten auf die Daten zu erhalten, da neue Kombinationen von Dimensionen sichtbar werden.

Im abgebildeten Beispiel wird der Datenwürfel nach rechts und um die Zeitachse gedreht. Die dadurch sichtbar gewordene Kombination von Ländern und Zeit ermöglicht dem Benutzer eine neue Sicht auf den Datenwürfel.


Die Operationen: Drill-down oder Drill-up werden benutzt, um durch die Hierarchien der Dimensionen zu navigieren. Je nach Anwendung verdichten sich die Daten bei der Drill-up Operation, während die Drill-down Operation einen höheren Detailgrad ermöglicht.

Beispiel werden die Dimensionen auf die jeweils höchste Klassifikationsstufe verdichtet. Das Ergebnis zeigt das TOP-Element der aggregierten Daten, mit einem Wert von 9267 €.


Technische Umsetzung

In den meisten Fällen werden OLAP-Systeme oberhalb des Data Warehouses platziert und nutzen dieses als Datenquelle.  Für die Datenspeicherung wird vor allem zwischen den klassischen Konzepten „MOLAP“ und „ROLAP“ unterschieden. Die folgende Gegenüberstellung, zeigt die wesentlichen Unterschiede der beiden Konzepte auf.

ROLAP

MOLAP

Bedeutung
Relationales-OLAP Multidimensionales-OLAP
Datenspeicherung
Daten liegen in relationalen Datenbanken vor. Daten werden in multidimensionalen Datenbanken als Datenwürfel gespeichert
Daten Form
Relationale Tabellen Multidimensionale Arrays
Datenvolumen
Hohes Datenvolumen und hohe Nutzerzahl Mittleres Datenvolum, da Detaildaten in komprimiertem Format vorliegen
Technologie
Benötigt Komplexe SQL Abfragen, um Daten zu beziehen Vorberechneter Datenwürfel hält Aggregationen vor
Skalierbarkeit
Beliebig Eingeschränkt
Antwortgeschwindigkeit
Langsam Schnell

Fazit

OLAP Würfel können effizient dafür genutzt werden, Informationen in logische Strukturen zu speichern. Die Dimensionierung sowie der Aufbau von logischen Hierarchien, erlauben dem Benutzer ein intuitives Navigieren und Betrachten des Datenbestandes. Durch die Vorberechnung der Aggregationen bei MOLAP-Systemen, können sehr komplexe Analyseabfragen mit hoher Geschwindigkeit und unabhängig von der Datenquelle durchgeführt werden. Für die betriebliche Datenanalyse ist die Nutzung des Datenwürfels insbesondere für fortgeschrittene Datenanalyse, daher eine enorme Bereicherung.

Business Intelligence Organizations

I am often asked how the Business Intelligence department should be set up and how it should interact and collaborate with other departments. First and foremost: There is no magic recipe here, but every company must find the right organization for itself.

Before we can talk about organization of BI, we need to have a clear definition of roles for team members within a BI department.

A Data Engineer (also Database Developer) uses databases to save structured, semi-structured and unstructured data. He or she is responsible for data cleaning, data availability, data models and also for the database performance. Furthermore, a good Data Engineer has at least basic knowledge about data security and data privacy. A Data Engineer uses SQL and NoSQL-Technologies.

A Data Analyst (also BI Analyst or BI Consultant) uses the data delivered by the Data Engineer to create or adjust data models and implementing business logic in those data models and BI dashboards. He or she needs to understand the needs of the business. This job requires good communication and consulting skills as well as good developing skills in SQL and BI Tools such like MS Power BI, Tableau or Qlik.

A Business Analyst (also Business Data Analyst) is a person form any business department who has basic knowledge in data analysis. He or she has good knowledge in MS Excel and at least basic knowledge in data analysis and BI Tools. A Business Analyst will not create data models in databases but uses existing data models to create dashboards or to adjust existing data analysis applications. Good Business Analyst have SQL Skills.

A Data Scientist is a Data Analyst with extended skills in statistics and machine learning. He or she can use very specific tools and analytical methods for finding pattern in unknow or big data (Data Mining) or to predict events based on pattern calculated by using historized data (Predictive Analytics). Data Scientists work mostly with Python or R programming.

Organization Type 1 – Central Approach (Data Lab)

The first type of organization is the data lab approach. This organization form is easy to manage because it’s focused and therefore clear in terms of budgeting. The data delivery is done centrally by experts and their method and technology knowledge. Consequently, the quality expectation of data delivery and data analysis as well as the whole development process is highest here. Also the data governance is simple and the responsibilities clearly adjustable. Not to be underestimated is the aspect of recruiting, because new employees and qualified applicants like to join a central team of experts.

However, this form of organization requires that the company has the right working attitude, especially in the business intelligence department. A centralized business intelligence department acts as a shared service. Accordingly, customer-oriented thinking becomes a prerequisite for the company’s success – and customers here are the other departments that need access to the capacities of those centralized data experts. Communication boundaries must be overcome and ways of simple and effective communication must be found.

Organization Type 2 – Stakeholder Focus Approach

Other companies want to shift more responsibility for data governance, and especially data use and analytics, to those departments where data plays a key role right now. A central business intelligence department manages its own projects, which have a meaning for the entire company. The specialist departments, which have a special need for data analysis, have their own data experts who carry out critical projects for the specialist department. The central Business Intelligence department does not only provide the technical delivery of data, but also through methodical consulting. Although most of the responsibility lies with the Business Intelligence department, some other data-focused departments are at least co-responsible.

The advantage is obvious: There are special data experts who work deeper in the actual departments and feel more connected and responsible to them. The technical-business focus lies on pain points of the company.

However, this form of Ogranization also has decisive disadvantages: The danger of developing isolated solutions that are so special in some specific areas that they will not really work company-wide increases. Typically the company has to deal with asymmetrical growth of data analytics
know-how. Managing data governance is more complex and recruitment is becoming more difficult as the business intelligence department is weakened and smaller, and data professionals for other departments need to have more business focus, which means they are looking for more specialized profiles.

Organization Type 3 – Decentral Approach

Some companies are also taking a more extreme approach in the other direction. The Business Intelligence department now has only Data Engineers building and maintaining the data warehouse or data lake. As a result, the central department only provides data; it is used and analyzed in all other departments, specifically for the respective applications.

The advantage lies in the personal responsibility of the respective departments as „pain points“ of the company are in focus in belief that business departments know their problems and solutions better than any other department does. Highly specialized data experts can understand colleagues of their own department well and there is no no shared service mindset neccessary, except for the data delivery.

Of course, this organizational form has clear disadvantages since many isolated solutions are unavoidable and the development process of each data-driven solution will be inefficient. These insular solutions may work with luck for your own department, but not for the whole company. There is no one single source of truth. The recruiting process is more difficult as it requires more specialized data experts with more business background. We have to expect an asymmetrical growth of data analytics know-how and a difficult data governance.

 

Data Leader Days 2018

Daten bilden das Fundament der digitalen Transformation. Die richtige Nutzung von Daten entwickelt sich daher zu einer Kernkompetenz und macht im Wettbewerb den Unterschied. Dies gilt sowohl für ganz Unternehmen als auch für einzelne Mitarbeiter, die mit Datennutzung ihre Karriere vorantreiben können.

Erfahrungen von Pionieren und führenden Anwenderunternehmen sind dafür unverzichtbar. Mit den Data Leader Days am 14. und 15. November 2018 in der Digital-Hauptstadt Berlin haben Sie die Chance, direkt von Spitzenkräften aus der Wirtschaft zu lernen und wichtige Impulse für Ihre digitale Weiterentwicklung zu erhalten.

Die Data Leader Days sind das Entscheider-Event für die Datenwirtschaft, das den Schwerpunkt auf die tatsächlichen Nutzer und Anwender-Unternehmen legt. Die Fachkonferenz hat sich seit Gründung im Jahr 2016 als eines der exklusivsten Events rund um die Themen Big Data und künstliche Intelligenz etabliert. In diesem Jahr werden die Data Leader Days erstmalig auf zwei Tage mit unterschiedlichen Schwerpunkten erweitert:

14. November 2018: Commercial & Finance Data

15. November 2018: Industrial & Automotive Data

Agenda

Die Agenda ist stets aktuell direkt auf www.dataleaderdays.com zu finden.

Sponsoren

Speaker der Data Leader Days 2018

 

 

Anmeldung

Die Data Leader Days finden dieses Jahr zum dritten Mal statt und haben sich zur Pflichtveranstaltung für Geschäftsführer, Führungskräfte und Professionals aus den Bereichen IT, Business Intelligence und Data Analytics etabliert und empfehlen sich ebenfalls für Leiter der Funktionsbereiche Einkauf, Produktion, Marketing und Finance, die das hier brachliegende Potenzial ausschöpfen wollen.

Zum Event anmelden können sich Teilnehmer direkt auf www.dataleaderdays.com oder via Xing.com (Klick).

Bringing intelligence to where data lives: Python & R embedded in T-SQL

Introduction

Did you know that you can write R and Python code within your T-SQL statements? Machine Learning Services in SQL Server eliminates the need for data movement. Instead of transferring large and sensitive data over the network or losing accuracy with sample csv files, you can have your R/Python code execute within your database. Easily deploy your R/Python code with SQL stored procedures making them accessible in your ETL processes or to any application. Train and store machine learning models in your database bringing intelligence to where your data lives.

You can install and run any of the latest open source R/Python packages to build Deep Learning and AI applications on large amounts of data in SQL Server. We also offer leading edge, high-performance algorithms in Microsoft’s RevoScaleR and RevoScalePy APIs. Using these with the latest innovations in the open source world allows you to bring unparalleled selection, performance, and scale to your applications.

If you are excited to try out SQL Server Machine Learning Services, check out the hands on tutorial below. If you do not have Machine Learning Services installed in SQL Server,you will first want to follow the getting started tutorial I published here: 

How-To Tutorial

In this tutorial, I will cover the basics of how to Execute R and Python in T-SQL statements. If you prefer learning through videos, I also published the tutorial on YouTube.

Basics

Open up SQL Server Management Studio and make a connection to your server. Open a new query and paste this basic example: (While I use Python in these samples, you can do everything with R as well)

Sp_execute_external_script is a special system stored procedure that enables R and Python execution in SQL Server. There is a “language” parameter that allows us to choose between Python and R. There is a “script” parameter where we can paste R or Python code. If you do not see an output print 7, go back and review the setup steps in this article.

Parameter Introduction

Now that we discussed a basic example, let’s start adding more pieces:

Machine Learning Services provides more natural communications between SQL and R/Python with an input data parameter that accepts any SQL query. The input parameter name is called “input_data_1”.
You can see in the python code that there are default variables defined to pass data between Python and SQL. The default variable names are “OutputDataSet” and “InputDataSet” You can change these default names like this example:

As you executed these examples, you might have noticed that they each return a result with “(No column name)”? You can specify a name for the columns that are returned by adding the WITH RESULT SETS clause to the end of the statement which is a comma separated list of columns and their datatypes.

Input/Output Data Types

Alright, let’s discuss a little more about the input/output data types used between SQL and Python. Your input SQL SELECT statement passes a “Dataframe” to python relying on the Python Pandas package. Your output from Python back to SQL also needs to be in a Pandas Dataframe object. If you need to convert scalar values into a dataframe here is an example:

Variables c and d are both scalar values, which you can add to a pandas Series if you like, and then convert them to a pandas dataframe. This one shows a little bit more complicated example, go read up on the python pandas package documentation for more details and examples:

You now know the basics to execute Python in T-SQL!

Did you know you can also write your R and Python code in your favorite IDE like RStudio and Jupyter Notebooks and then remotely send the execution of that code to SQL Server? Check out these documentation links to learn more: https://aka.ms/R-RemoteSQLExecution https://aka.ms/PythonRemoteSQLExecution

Check out the SQL Server Machine Learning Services documentation page for more documentation, samples, and solutions. Check out these E2E tutorials on github as well.

Would love to hear from you! Leave a comment below to ask a question, or start a discussion!

Interview mit Prof. Carsten Felden über Artificial Intelligence und Cognitive Computing

Wird Artificial Intelligence oder Cognitive Computing oder beides zusammen der Standard, den alle haben müssen?

Prof. Dr. Carsten Felden ist Vorsitzender des Vorstandes des TDWI e.V., der größten Community für Analytics und Buisness Intelligence.. Er ist selbst Experte und Consultant für Business Intelligence und für diesen Fachbereich Lehrstuhlinhaber an der TU Bergakademie Freiberg.

Data Science Blog: Herr Prof. Felden, welcher Weg hat Sie bis an die Spitze des erfolgreichsten deutschen Verbandes für Analytics und Business Intelligence geführt?

Ich möchte die Beantwortung gerne umdrehen: Der TDWI ist ein Verein, in dem sich jeder als Mitglied engagieren darf und soll. Und da die Themen mir Freude bereiten und immer wieder neue Facetten zeigen, bin ich auch mit Begeisterung dabei und trage dies gerne in den Verein. Zu diesen Themen bin ich über mein Studium der Wirtschaftswissenschaft gelangt, in dem ich Wirtschaftsinformatik und Logistik vertiefte. Bei Professor Chamoni bot sich mir 2002 die Gelegenheit zur Promotion, in der ich mittels Text Mining ein Analysesystem in Python entwickelte, um Energiemarktentwicklungen zu erklären. Schon während dieser Zeit ergaben sich aber immer wieder Fragestellungen, welche die Entscheidungsfindung an sich betrafen. Dies interessierte mich in den vielen Facetten, so dass ich eine Habilitationsschrift anschloss, um den Entscheidungsprozess näher von der theoretischen Seite zu beleuchten. Dabei nahm ich Datenanalyseprozesse als Grundlage, um deren Wirkung auf menschliche Entscheidungsträger zu betrachten. Mit der Übernahme meiner Professur in 2006 baute ich einen kompetenzcenterorientierten Lehrstuhl auf, der sich zum Ziel setzte zu untersuchen, wie man realistisch mit Daten arbeiten kann, was man mit Daten tun kann. Dies in unterschiedlichen Welten: dem internationalen High-Tech-Konzern, dem Mittelständler als Hidden Champion oder dem kleineren Unternehmen. Insbesondere die Verbindung von Theorie und Praxis hat immer wieder die universitäre Lehre befruchtet und diese wollte ich auch in den Verein tragen. Im Rahmen der Veranstaltungen des TDWI habe ich immer viele neue Dinge oder realistische Einschätzungen aktuell diskutierter Dinge erhalten und wollte letztlich diese auch aus meinen Projekterfahrungen in die dortigen Diskussionen in unterschiedlichen Veranstaltungen zurückbringen. Das ich nun Vorsitzender dieses Vereins sein darf ist aber den Mitgliedern zu verdanken, die Vertrauen in mich setzten, den Weg des Vereins weiter voran zu treiben und meinen Vorstandskollegen, ohne deren Arbeit und Unterstützung meine Tätigkeit nichts wert wäre. Es ist der Verein als Ganzes, der den Mehrwert bietet und nicht einzelne Personen.

Data Science Blog: Wie weit ist die Industrie mittlerweile beim Einsatz von AI, also künstlicher Intelligenz?

Eine eindeutige Antwort ist hier gar nicht möglich. Allein schon die Deutung des Begriffs in der Praxis, macht es manchmal schwer, zwischen echten und unechten AI-Projekten zu unterscheiden. Letztlich kann man aber abgrenzend sagen, dass AI die automatisierte Entscheidung ermöglicht und nicht bei der Entscheidungsunterstützung für einen menschlichen Aufgabenträger endet. Egal, ob es nun ein echte oder ein unechtes AI-Projekt ist, es gilt, dass Daten entsprechend zu identifizieren, zu extrahieren und ggf. zu transformieren und final bereitzustellen sind. Nun soll aber nicht der Manager mit seinem fachlichem Know How (=Bauchgefühl) diese Informationen zur Entscheidung nutzen, sondern die Maschine übernimmt auch diesen Part (ohne Bauchgefühl) basierend auf Algorithmen. Man darf den Begriff der Entscheidung nicht immer mit einer besonderen Tragweite verbinden, da schon das einfache Signal einer Maschine: „Ich bin frei, ich habe Zeit, ich kann das jetzt tun!“ ist eine Entscheidung.
Um auch noch kurz auf die Abgrenzung zu den unechten Projekten einzugehen: hier erlebe ich immer wieder, dass AI mit künstlichen neuronalen Netzen gleichgesetzt wird. Natürlich kann man solche Netze hier nutzen, aber letztlich geht es nur darum, den Entscheidungsprozess in unterschiedlichen Situationen zu automatisieren. Zu diesem Zweck muss man prüfen, wo das sinnhaft möglich ist, da es nicht das Ziel sein kann, alles ohne Wenn und Aber zu automatisieren. In technisch-affinen Unternehmen sehen wir schon einige Umsetzungen, die über den Pilot-Status hinaus sind. Beispielhaft zu nennen sind da vollautomatisierte Fertigungen, insofern der Herstellungsprozess reihenfolgeunabhängig ist oder aber Controllingprozesse. Im Kern sind es aktuell noch Tätigkeiten, die keinen ausgeprägten kreativen Kern beinhalten, aber ein hohes Maß an Kommunikation zwischen den Beteiligten Systemelementen erfordern. In Summe gibt es ein breites Interesse und schon viele Orientierungsbeispiele, die dazu führen werden, dass diese Projekte intensiver zunehmen werden.

Data Science Blog: Wie grenzen Sie eigentlich Artificial Intelligence und Cognitive Computing voneinander ab? Wo liegen die Unterschiede?

Letztlich kann ich hier zum vorherigen ergänzen: beim Cognitive Computing handelt es sich um die Fortführung der wissensbasierten Systeme beziehungsweise der Expertensysteme. Der enorme und damit auch beeindruckende Unterschied zu den Vorläufern ist die Fähigkeit des Lernens im Sinne einer inhaltlichen Weiterentwicklung der vorhandenen Wissensbasis, die nun wesentlich ausgeprägter ist und auch automatisiert in entsprechenden Wissensdomänen stattfinden kann. AI kann einerseits zum Lernen des Systems beitragen, andererseits das gelernte für die automatisierte Entscheidung anwenden. Beide Ansätze nutzen und befruchten sich also gegenseitig.

Data Science Blog: Welche Trends im Bereich Machine Learning bzw. Deep Learning werden Ihrer Meinung nach in den Jahren 2018 und 2019 von Bedeutung werden?

Da möchte ich direkt zu unserer diesjährigen Konferenz in München herüber schwenken. Traditionell finden wir dort die Trends der nächsten Jahre schon in Vorträgen und Diskussionen.
Insgesamt beobachten wir eine starke Entwicklung hin zur Analyse unstrukturierter Daten. Machine Learning wird zunehmend intensiv in textuellen Analysen genutzt, um zum Beispiel eine E-Mail-Kategorisierung beziehungsweise Reaktion auf eine E-Mail zu automatisieren. Darüber hinaus ist die Verarbeitung von Bildern mit Ansätzen des Deep Learning ein zunehmender Trend. Dies in Szenarios wie die Fehlererkennung in der Herstellung oder dem Erkennen des Anwenders und dahingehend automatischen Anpassung seiner vorliegenden Systemlösung mit den passenden Inhalten. Sie sehen also, dass alle Facetten der algorithmischen Datenanalyse bedeutend werden. Dabei stellen wir aber auch fest, dass der klassischen Hausaufgaben, wie Datenintegration, Datenqualitätssicherung, Datenbereitstellung etc. nicht vom Tisch sind, sondern auch immer wieder neu diskutiert werden. Hier kommt aktuell hinzu, Verfahren der künstlichen Intelligenz zu nutzen, um eine dynamische Schemaerzeugung in Zeiten von Data Lakes automatisiert auszuführen, um den Anwendern für die jeweilige Entscheidungssituation Daten bedarfs- und verarbeitungsgerecht zur Verfügung zu stellen. Wir sehen also, dass die Übernahme von Tätigkeiten durch maschinellen Aufgabenträger der treibende Faktor ist, was dann mittels Machine Learning bzw. Deep Learning umsetzbar ist.

Data Science Blog: In wie weit wird der Begriff „Business Intelligence“ Ihrer Meinung nach zukünftig erhalten bleiben? Wie nahtlos ließen sich die neuen Möglichkeiten mit künstlicher Intelligenz in BI-Systeme integrieren?

Nun ja, aktuell werden wir mit Schlagworten überflutet, die darüber hinaus noch oftmals mit unterschiedlichen Verständnissen belegt sind, so dass es mehr Verwirrung als Erkenntnis gibt. Wissenschaftlich betrachtet ist Business Intelligence ein allumfassender Begriff, da er lediglich benennt, dass Daten zu sammeln und zu Entscheidungszwecken aufzubereiten sind. Dies subsummiert also auch AI.
In der Praxis ist BI aber eher das alte, starre Berichtswesen und passt dann so gar nicht zu den dynamischen Analyticsansätzen. Hier muss man aber sagen, dass Self Service Ansätze und die zunehmende Flexibilisierung der Architekturen dabei unterstützt, beide Welten zusammenzubringen. Aktuell ist man noch auf dem Niveau, über Schnittstellen bewusst Code auszutauschen. Beispielsweise lässt sich R-Code in vielen BI-Werkzeugen ausführen. Letztlich erleben wir aber alle, dass Geräte immer einfacher zu steuern sind und dadurch Welten auch zusammenfließen und das wird auch hier geschehen, weil es die Anwender einfach so gewohnt sind.

Data Science Blog: Manchmal hört man, dass Data Scientists gerade an ihrer eigenen Arbeitslosigkeit arbeiten, da zukünftige Verfahren des maschinellen Lernens Data Mining selbstständig durchführen können. Werden Tools Data Scientists bald ersetzen?

Die Wirtschaftsinformatik hat das Postulat der sinnhaften Vollautomation. Daher sehe ich es auch hier so, dass man die Punkte beziehungsweise Stellen im Prozess identifizieren muss, wo die Anwendung der Data Science Sinn macht. Darüber hinaus sehe ich den Data Scientist eigentlich nicht als eine Person, sondern als ein Konglomerat an Fähigkeiten, oftmals verteilt über mehrere Abteilungen und damit auch mehrere Personen, die zusammenarbeiten müssen. Die geforderten Fähigkeiten werden sich sicherlich wandeln, jedoch wird Kommunikationsfähigkeit immer der Schlüssel sein und Tools werden dahingehend das Data Science Team nicht ersetzen, sondern immer Mittel zum Zweck im Rahmen der sinnhaften Vollautomation sein.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik oder Wirtschaftswissenschaften, abgeschlossen haben, was würden sie diesen jungen Damen und Herren raten, wie sie gute Data Scientists werden können?

Kommunizieren können und neugierig sein. Sie werden alle viel im Rahmen ihrer Ausbildung an fundamentalen Fähigkeiten gelernt haben, aber lassen sie sich auf die Partner im Projekt ein, interessieren sie sich für all das, was auf der fachlichen Ebene geschieht und wie der technische Fortschritt aussieht. Ich kann immer nur wiederholen, dass offene Kommunikation eine wichtige Fähigkeit in Projekten ist, die nicht hoch genug bewertet werden kann. Die TDWI-Konferenz oder all die anderen Formate des Vereins bieten die Möglichkeit, Wissen aufzunehmen, auszutauschen und sich selber mit anderen zu vernetzen. Ich denke wirklich, dass gute Data Scientist derartiges nutzen, um die eigenen Themen bestmöglich angehen zu können, denn das ist der Schlüssel zum Erfolg!

Prof. Felden wird am 25. Juni die TDWI Konferenz in München eröffnen, die unter dem Slogan „Business Intelligence meets Artificial Intelligence“ die neuen Möglichkeiten unter Einsatz künstlicher Intelligenz in den Fokus stellen wird.

Datenmodell: Sternschema

Ob es unsere Schritte während des Sports sind, Klicks auf Websiten oder auch Geschäftszahlen eines Unternehmens – all diese Informationen werden in Form von Daten gespeichert. Dabei fallen große Mengen an Daten an, die in der Regel in einer relationalen Datenbank gespeichert werden, um sie besonders gut administrieren zu können.
Gerade in einem Unternehmen ist es wichtig, dass mehrere Benutzer parallel und mit wenig Verzögerung Anfragen und Änderungen in den Daten durchführen können. Daher werden viele Datenbanken in Unternehmen als OLTP-Datenbank-Systeme ausgelegt. OLTP steht für Online Transaction Processing, auch Echtzeit-Transaktionsverarbeitung ist dafür optimiert, schnelle und parallele Zugriffe auf Daten in der Datenbank zu gewährleisten.
Möchte man hingegen Daten auswerten und analysieren, sind OLTP-Datenbanken-Systeme weniger geeignet, da sie nicht für diese Art von Anfragen konzipiert worden sind. Um effektiv analytische Befehle an eine Datenbank stellen zu können, werden daher Datenbanken genutzt, die mit einer OLAP-Verarbeitung arbeiten. OLAP ist die Abkürzung für Online Analytical Processing. Im Gegensatz zu OLTP, in welchen die Daten in einem zweidimensionalen Modell gespeichert werden, sind Daten in einem OLAP-System in einer multidimensionalen Struktur untergebracht, welche für die Durchführung komplexer Analysebefehle optimiert ist.
Für Analysen werden oft Daten aus mehreren Datenbanken benötigt, weswegen sie in einem Datenlager – oder auch Data Warehouse genannt – zusammengefasst und gespeichert werden. Ein Data Warehouse, welche auf der OLAP-Verarbeitung basiert, ist somit eine für Analysezwecke optimierte Datenbank.
Es gibt verschiedene Datenmodelle um die Daten in einem Data Warehouse anzulegen. Das verbreiteste Datenmodell für diese Zwecke ist das sogenannte Sternen-Schema (Star Schema). Neben dem Sternen-Schema gibt es auch die sogenannten Galaxy- und Snowflake-Schemen, die wiederum eine Erweiterung des zuerst genannten Datenmodells sind. In diesem Artikel werden wir das Sternschema näher beleuchten.

Aufbau und Funktionsweise

Bei einem Sternschema werden die Daten grundlegend in zwei Gruppen unterteilt:

  • Fakten, manchmal auch Metriken, Messwerte oder Kennzahlen genannt, sind die zu verwaltenden bzw. die zu analysierenden Daten und werden fortlaufend in der Faktentabelle gespeichert. Beispielhaft für Fakten sind Umsätze sowie Verkaufszahlen eines Unternehmens. Sie haben stets eine numerische Form.
  • Dimensionen sind die Attribute bzw. Eigenschaften der Fakten und beschreiben sozusagen die Fakten im Detail. Diese werden in Dimensionstabellen gelistet. Jeder Dimensionsdatensatz bzw. jede Zeile einer Dimensionstabelle wird durch Primärschlüssel eindeutig identifiziert. Diese Schlüssel werden in der Faktentabelle als Fremdschlüssel gespeichert und somit sind Dimensions- und Faktentabelle miteinander verknüpft.

Beispiel: Max Mustermann, 25 Jahre alt, wohnhaft in Musterstadt hat eine Kaffeemaschine mit dem Namen ‘Musterpresso’ am 01.01.2018 um 15:00:00 gekauft.

Wie in der Abbildung dargestellt, werden die Details, als Attribute dargestellt, vom Kunden wie Namen, Alter oder Wohnort in der Dimensionstabelle “Kunde” gespeichert und mit dem Primärschlüssel (in diesem Beispiel “1111”) gekennzeichnet. Dieser wird in der Faktentabelle als Fremdschlüssel gespeichert. Analog zu den Daten vom Kunden werden auch Dimensionstabellen für die Größen

  • Bestellung,
  • Produkt,
  • Produktkategorie und
  • Zeit gebildet.

Die Fakten, welche in diesem Beispiel der Umsatz von Max Mustermann ein Fakt wäre, können nun mithilfe der Fremdschlüssel

  • Kunden ID,
  • Bestellung ID,
  • Produkt ID,
  • Produktkategorie ID und
  • Zeit

aus der Faktentabelle aufgerufen werden.

Bei der Bildung von Tabellen ist es möglich, dass identische Werte mehrfach gespeichert werden. Dabei können Redundanzen und Anomalien in der Datenbank enstehen, welche zusätzlich einen erhöhten Speicherbedarf erfordern. Um dies zu verhindern werden Tabellen normalisiert. Bei einer Normalisierung einer Tabelle bzw. einer Tabellenstruktur wird es angestrebt, Redundanzen bis auf ein Maximum zu reduzieren. Je nach Grad der Normalisierung können diese in verschiedene Normalformen (1NF -2NF-3NF-BCNF-4NF-5NF) unterteilt werden.

Die Normalisierung in eine höhere Normalform hat jedoch zur Folge, dass die Abfrage-Performance abnimmt. Da das Sternschema-Modell darauf ausgelegt ist Leseoperationen effizient durchzuführen, sind Faktentabellen in der dritten Normalform (3NF) abgespeichert, da alle Redundanzen in dieser Form beseitigt worden sind und dennoch eine hohe Performance gewährleistet. Dimensionstabellen sind hingegen nur bis zur zweiten Normalform (2NF) optimiert. Es werden also bewusst Redundanzen und ein erhöhter Speicherbedarf in den Dimensionstabellen für eine schnelle Abfrage der Daten in Kauf genommen.

Vor- und Nachteile

Wie bereits erwähnt, sind Dimensionstabellen im Sternschema nicht vollständig normalisiert. Damit nimmt man zugunsten höherer Performance mögliche Anomalien und auch einen erhöhten Speicherbedarf in Kauf. Durch das einfache Modell ist dafür jedoch eine intuitive Bedienung möglich und auch Veränderungen sowie Erweiterungen des Modell sind leicht realisierbar.

Vorteile Nachteile
Einfaches Modell ermöglicht eine intuitive Bedienung. Durch mehrfaches Speichern identischer Werte steigt die Redundanz in den Dimenionstabellen
Veränderungen und Erweiterungen können leicht umgesetzt werden. Bei häufigen Abfragen sehr großer Dimensionstabellen verschlechtern sich die Antwortzeiten
Durch Verzicht der Normalisierung in den Dimensionstabellen ist die hierarchische Beziehung innerhalb einer Dimension leicht darstellbar Erhöhter Speicherbedarf durch Nicht-Normalisierung der Dimensionstabellen

Zusammenfassung

Das Sternschema ist ein Datenmodell, welches für analytische Zwecke im Data Warehouse und bei OLAP-Anwendungen zum Einsatz kommt. Es ist darauf optimiert, effiziente Leseoperationen zu gewährleisten.
Der Name des Modells beruht auf der sternförmigen Anordnung von Dimensionstabellen um die Faktentabelle, wobei die Dimensionstabellen die Attribute der Fakten beinhalten und in den Faktentabellen die zu analysierenden Größen gespeichert sind. Charakteristisch ist dabei, dass die Dimensionstabellen nicht bis zur dritten Normalform normalisiert sind. Der sich daraus ergebende Vorteil ist die schnelle Verarbeitung von Abfragen. Auch ist die intuitive Bedienung ein positiver Aspekt des einfachen Datenmodells. Jedoch können durch den Verzicht der Normalisierung Redundanzen innerhalb der Dimensionstabellen durch mehrfache Speicherung von identischen Werten entstehen. Ebenfalls ist bei häufigen Anfragen von großen Dimensionstabellen ein verschlechtertes Antwortverhalten feststellbar.
Daher sind sie vor allem dann effektiv, wenn

  • schnelle Anfrageverarbeitungen notwendig sind,
  • sich schnell ändernde Datenstrukturen (der Original-Daten) vorliegen,
  • Dimensionstabellen in ihrer Größe überschaubar bleiben,
  • und ein breites Spektrum an Benutzern Zugriff auf die Daten benötigt.

Ständig wachsende Datenflut – Muss nun jeder zum Data Scientist werden?

Weltweit rund 163 Zettabyte – so lautet die Schätzung von IDC für die Datenmenge weltweit im Jahr 2025. Angesichts dieser kaum noch vorstellbaren Zahl ist es kein Wunder, wenn Anwender in Unternehmen sich überfordert fühlen. Denn auch hier muss vieles analysiert werden – eigene Daten aus vielen Bereichen laufen zusammen mit Daten Dritter, seien es Dienstleister, Partner oder gekaufter Content. Und all das wird noch ergänzt um Social Content – und soll dann zu sinnvollen Auswertungen zusammengeführt werden. Das ist schon für ausgesprochene Data Scientists keine leichte Aufgabe, von normalen Usern ganz zu schweigen. Doch es gibt eine gute Nachricht dabei: den Umgang mit Daten kann man lernen.

Echtes Datenverständnis – Was ist das?

Unternehmen versuchen heute, möglichst viel Kapital aus den vorhandenen Daten zu ziehen und erlauben ihren Mitarbeitern kontrollierten, aber recht weit gehenden Zugriff. Das hat denn auch etliche Vorteile, denn nur wer Zugang zu Daten hat, kann Prozesse beurteilen und effizienter gestalten. Er kann mehr Informationen zu Einsichten verwandeln, Entwicklungen an den realen Bedarf anpassen und sogar auf neue Ideen kommen. Natürlich muss der Zugriff auf Informationen gesteuert und kontrolliert sein, denn schließlich muss man nicht nur Regelwerken wie Datenschutzgrundverordnung gehorchen, man will auch nicht mit den eigenen Daten dem Wettbewerb weiterhelfen.

Aber davon abgesehen, liegt in der umfassenden Auswertung auch die Gefahr, von scheinbaren Erkenntnissen aufs Glatteis geführt zu werden. Was ist wahr, was ist Fake, was ein Trugschluss? Es braucht einige Routine um den Unsinn in den Daten erkennen zu können – und es braucht zuverlässige Datenquellen. Überlässt man dies den wenigen Spezialisten im Haus, so steigt das Risiko, dass nicht alles geprüft wird oder auf der anderen Seite Wichtiges in der Datenflut untergeht. Also brauchen auch solche Anwender ein gewisses Maß an Datenkompetenz, die nicht unbedingt Power User oder professionelle Analytiker sind. Aber in welchem Umfang? So weit, dass sie fähig sind, Nützliches von Falschem zu unterscheiden und eine zielführende Systematik auf Datenanalyse anzuwenden.

Leider aber weiß das noch nicht jeder, der mit Daten umgeht: Nur 17 Prozent von über 5.000 Berufstätigen in Europa fühlen sich der Aufgabe gewachsen – das sagt die Data-Equality-Studie von Qlik. Und für Deutschland sieht es sogar noch schlechter aus, hier sind es nur 14 Prozent, die glauben, souverän mit Daten umgehen zu können. Das ist auch nicht wirklich ein Wunder, denn gerade einmal 49 Prozent sind (in Europa) der Ansicht, ausreichenden Zugriff auf Daten zu haben – und das, obwohl 85 Prozent glauben, mit höherem Datenzugriff auch einen besseren Job machen zu können.

Mit Wissens-Hubs die ersten Schritte begleiten

Aber wie lernt man denn nun, mit Daten richtig oder wenigstens besser umzugehen? Den Datenwust mit allen Devices zu beherrschen? An der Uni offensichtlich nicht, denn in der Data-Equality-Studie sehen sich nur 10 Prozent der Absolventen kompetent im Umgang mit Daten. Bis der Gedanke der Datenkompetenz Eingang in die Lehrpläne gefunden hat, bleibt Unternehmen nur die Eigenregie  – ein „Learning by Doing“ mit Unterstützung. Wie viel dabei Eigeninitiative ist oder anders herum, wieviel Weiterbildung notwendig ist, scheint von Unternehmen zu Unternehmen unterschiedlich zu sein. Einige Ansätze haben sich jedoch schon bewährt:

  • Informationsveranstaltungen mit darauf aufbauenden internen und externen Schulungen
  • Die Etablierung von internen Wissens-Hubs: Data Scientists und Power-User, die ihr Know-how gezielt weitergeben: ein einzelne Ansprechpartner in Abteilungen, die wiederum ihren Kollegen helfen können. Dieses Schneeball-Prinzip spart viel Zeit.
  • Eine Dokumentation, die gerne auch informell wie ein Wiki oder ein Tutorial aufgebaut sein darf – mit der Möglichkeit zu kommentieren und zu verlinken. Nützlich ist auch ein Ratgeber, wie man Daten hinterfragt oder wie man Datenquellen hinter einer Grafik bewertet.
  • Management-Support und Daten-Incentives, die eine zusätzliche Motivation schaffen können. Dazu gehört auch, Freiräume zu schaffen, in denen sich Mitarbeiter mit Daten befassen können – Zeit, aber auch die Möglichkeit, mit (Test-)Daten zu spielen.

Darüber hinaus aber braucht es eine Grundhaltung, die sich im Unternehmen etablieren muss: Datenkompetenz muss zur Selbstverständlichkeit werden. Wird sie zudem noch spannend gemacht, so werden sich viele Mitarbeiter auch privat mit der Bewertung und Auswertung von Daten beschäftigen. Denn nützliches Know-how hat keine Nutzungsgrenzen – und Begeisterung steckt an.

OLAP Technology in Business Intelligence

Data in Business Intelligence
Business processes traditionally comprise three stages of data management: collecting, analyzing, and reporting. First, data should be gathered from all the sources through ETL tools (Extract, Transform, Load). After this, there are often issues occurring connected with data consistency hence the data should be cleaned and structured using the function of metadata. Once the data are provided to the end-user in a readable and transparent way it is ready to be analyzed. There are multiple applications ensuring data analysis including Data Mining, OLAP, BI. In order to carry out in-depth and coherent analysis, the best approach is to initially determine KPI as these are the criteria to assess the progress in relation to the goals set.

OLAP definition
OLAP tool belongs to Business Intelligence concept intended for big data management and is short for Online Analytical Processing. OLAP conducts multidimensional data analysis and enables end-users to perform complicated calculations, trend analysis, ‘what-if’ scenarios and the like. Furthermore, owing to OLAP it’s possible to conduct planning and forecasting, budgeting and financial reporting, analysis, and data modeling which contributes to successful decision making in business.

OLAP Structure
An OLAP cube is composed of dimensions containing aggregated information referred to and measures which include numerical data. Dimensions are arranged in hierarchies which in their turn are indicators to determine the rate of granularity; the rate is called a level. The most common dimensions are location, product, and time. The lowest granularity level of a time dimension may be hours while the highest one can present years. This way when there is a query to be responded the measures contribute to filter out the data and select the right object inside the dimension. In the center of the cube there is a star or a snowflake schema which all the dimensions refer to.

OLAP main characteristics
Here are the main features characterizing the OLAP tool”:

– The data in OLAP is structured as a multidimensional cube.
– The cube structure allows users to see the information from various angles given location, products, demographics, time, etc.
– Rapid data access and analysis due to precalculated aggregations.
– Simple and intuitive interface.
– OLAP doesn’t require IT skills or SQL knowledge (as some other business intelligence software tools). Hence its operation eases the burden of IT department.
– The tool supports complex custom calculations
– The OLAP databases maintain historical data and are updated not constantly but regularly.
– The cube design and building process is the pivotal step on the way to successful data processing.

OLAP requirements
When the OLAP technology was invented there were twelve rules generated to follow so that it complies with the concept of online data processing:

Multidimensional
Not only the OLAP view has to be multidimensional but the data should as well be stored in this way of structure in order to provide the multidimensional analysis.

Transparent
The architecture has to be transparent to let the user see and understand the functionality and the client server of the application.

Accessible
The end user must have an opportunity to access the information in its consistent view without any issues related to the sources where the data come from or the way the data are maintained in OLAP.

Consistent Reporting
The data are regularly upgraded and its volume grows progressively although the user shouldn’t see problems changes in the process of scheduled reporting regarding that.

Client-Server
OLAP application has to manage client-server architecture as it manages vast volumes of data often requiring a core server for storage and maintenance.

Common Dimensionality
The main feature of the dimension structure in OLAP must be the same for all the dimensions to keep the data consistent, accurate, valid, complete, etc. Thus the dimensions have to possess common operation capabilities and be equal in structure.

Dynamic Sparse Matrix Handling
A usual OLAP application must manage to deal with sparse matrices and shouldn’t let the cube expand excessively as a usual OLAP cube is relatively sparse.

Multi-User
OLAP technology is originally supposed to provide an opportunity to access the data for multiple users simultaneously. The process of data management must at the same time be ensured with security and integrity.

Unrestricted Cross-dimensional Operations
A typical OLAP application is meant to handle all calculations and operations (such as slice-and-dice, drill up-down, drill through etc.) without the participation of the user. Commonly the tool delivers a language to exploit while requiring specified information.

Intuitive Data Manipulation
All OLAP operations which handle dimensions, measures, hierarchies, levels etc. have to be user-friendly and easily adopted without requiring additional technical skills. An average employee is considered to cope with the data navigation and management through clear displaying and handy operations.

Flexible Reporting
The main function – reporting must be flexible with a view to organizing all the rows, columns, and page setup containing a requisite number of dimensions and hierarchies from the data. As a result, the user has to gain a report comprising all the needed members and the relations between them.

Unlimited Dimensions and Aggregation Levels
When the technology was designed it was intended to be able to contain up to twenty dimensions in the cube. Each dimension had to provide as many aggregation levels inside a hierarchy as required. The idea was to manage great volumes of data keeping end-users absolutely aware of the performance of the organization.

Advantages of OLAP
Speed
Before OLAP was invented and introduced to the market there hadn’t been a tool to rapidly run the queries and it had taken long to retrieve the required information from the data. Thus the main advantage of the OLAP application is its speed gained due to precomputation of the data aggregations.

MDX designer and ad-hoc reports
MDX Designer is aimed at creating interactive ad-hoc reports. The reports provide a better understanding of the business processes and the organization’s performance in the market.

Visualization
OLAP provides its users with sophisticated data analytics allowing them to see data from different perspectives. There are numerous formats to visualize the requisite data: pie charts, graphs, heat maps, reports, pyramids, etc. Moreover, OLAP includes a number of operations to handle data: rotate, drill up and down, slice and dice, etc. Besides, there’s also an opportunity to apply a ‘what-if’ scenario due to a write-back option. All mentioned above can significantly contribute to decision-making process regarding the ongoing situation.

Flexibility
OLAP table displayed is flexible with column and row labels depending on the requirements of the user. Moreover, the reporting generated is available in multiple dimensions.

Self Service Data Preparation mit Microsoft Excel

Get & Transform (vormals Power Query), eine kurze Einführung

 Unter Data Preparation versteht man sinngemäß einen Prozeß der Vorbereitung / Aufbereitung von Rohdaten aus meistens unterschiedlichen Datenquellen und -formaten, verbunden mit dem Ziel, diese effektiv für verschiedene Geschäftszwecke / Analysen (Business Fragen) weiterverwenden/bereitstellen zu können. Rohdaten müssen oft vor ihrem bestimmungsgemäßen Gebrauch transformiert (Datentypen), integriert (Datenkonsistenz, referentielle Integrität), sowie zugeordnet (mapping; Quell- zu Zieldaten) werden.
An diesem neuralgischen Punkt werden bereits die Weichen für Datenqualität gestellt.

Unter Datenqualität soll hier die Beschaffenheit / Geeignetheit von Daten verstanden werden, um konkrete Fragestestellungen beantworten zu können (fitness for use):

Kriterien Datenqualität

  • Eindeutigkeit
  • Vollständigkeit
  • Widerspruchsfreiheit / Konsistenz
  • Aktualität
  • Genauigkeit
  • Verfügbarkeit

Datenqualität bestimmt im Wesentlichen die weitere zielgerichtete Verwendung der Daten in Analysen (Modelle) und Berichten (Reporting). Daten werden in entscheidungsrelevante Kennzahlen (Informationen) überführt. Eine Kennzahl ist gegenüber der Datenqualität immer blind, ihre Aussagekraft (Validität) hängt -neben der Definition – in sehr starkem Maße davon ab:

Gütekriterien von Kennzahlen

  • Objektivität := ist die Interpretation unabhängig vom Beobachter / Verwender?
  • Reliabilität := kann das Ergebnis unter sonst gleichen Bedingungen reproduziert werden ?
  • Validität := sagt die Kennzahl das aus, was sie vorgibt, auszusagen ?

Business Fragen entstehen naturgemäß in den Fachbereichen.Daher ist es nur folgerichtig, Data Preparation als einen ersten Analyseschritt innerhalb des Fachbereichs anzusiedeln (Self Service Data Preparation). Dadurch erhält der Fachbereich einen Teil seiner Autonomie zurück. Welche Teilmenge der Daten relevant für Fragestellungen ist, kann nur der Fachbereich beurteilen; der Anforderer von entscheidungsrelevanten Informationen sollte idealerweiseTeil der Entstehung wertiger Daten sein, das fördert zum einen die Akzeptanz des Ergebnisses, zum anderen wirkt es einem „not-invented-here“ Syndrom frühzeitig entgegen.

Im Folgenden wird anhand 4 Schritten skizziert, wie Microsoft Excel bei dem Thema (Self Service) Data Preparation vor allem den Fachbereich unterstützen kann. Eine Beispieldatei können Sie hier (google drive) einsehen. Sie finden die hierfür verwendete Funktionalität (Get & Transform) in Excel 2016 unter:

Reiter Daten -> Abrufen und Transformieren.

Dem interessierten Leser werden im Text vertiefende Informationen über links zu einzelnen typischen Aufgabenstellungen und Lösungswegen angeboten. Eine kurze Einführung in das Thema finden Sie in diesem Blog Beitrag.

1 Einlesen

Datenquellen anbinden (externe, interne)

Dank der neuen Funktionsgruppe „Abrufen und Transformieren“ ist es in Microsoft Excel möglich, verschiedene externe Datenquellen /-formate anzubinden. Zusätzlich können natürlich auch Tabellen der aktiven / offenen Excel Arbeitsmappe als Datenquelle dienen (interne Datenquellen). Diese Datenquellen werden anschließend als sogenannte Arbeitsmappenabfragen abgebildet.

Praxisbeispiele:

Anbindung mehrerer Dateien, welche in einem Ordner bereitgestellt werden

Anbindung von Webinhalten

2 Transformieren

Daten transformieren (Datentypen, Struktur)

Datentypen (Text, Zahl) können anschließend je Arbeitsmappenabfrage und Spalte(n) geändert werden.
Dies ist zB immer dann notwendig, wenn Abfragen über Schlüsselspalten in Beziehung gesetzt werden sollen (siehe Punkt 3). Gleicher Datentyp (Primär- und Fremdschlüssel) in beiden Tabellen ist hier notwendige Voraussetzung.

Des Weiteren wird in dieser Phase typischerweise festgelegt, welche Zeile der Abfrage die Spaltenbeschriftungen enthält.

Praxisbeispiele:

Fehlerbehandlung

Leere Zellen auffüllen

Umgang mit wechselnden Spaltenbeschriftungen

3 Zusammenführen / Anreichern

Daten zusammenführen (SVERWEIS mal anders)

Um unterschiedliche Tabellen / Abfragen über gemeinsame Schlüsselspalten zusammenzuführen, stellt der Excel Abfrage Editor eine Reihe von JOIN-Operatoren zur Verfügung, welche ohne SQL-Kenntnisse nur durch Anklicken ausgewählt werden können.

Praxisbeispiele

JOIN als Alternative zu Excel Formel SVERWEIS()

Daten anreichern (benutzerdefinierte Spalte anfügen)

Bei Bedarf können weitere Daten, welche sich nicht in der originären Struktur der Datenquelle befinden, abgeleitet werden. Die Sprache Language M stellt einen umfangreichen Katalog an Funktionen zur Verfügung. Wie Sie eine Übersicht über die verfügbaren Funktionen erhalten können erfahren Sie hier.

Praxisbeispiele

Geschäftsjahr aus Datum ableiten

Extraktion Textteil aus Text (Trunkation)

Mehrfache Fallunterscheidung, Datenbereinigung /-harmonisierung

4 Laden

Daten laden

Die einzelnen Arbeitsmappenabfragen können abschließend in eine Exceltabelle, eine Verbindung und / oder in das Power Pivot Datemodell zur weiteren Bearbeitung (Modellierung, Kennzahlenbildung) geladen werden.

Praxisbeispiele

Datenverbindung erstellen

Events

Nothing Found

Sorry, no posts matched your criteria