Posts

How to Ensure Data Quality in an Organization?

Introduction to Data Quality

Today, the world is filled with data. It is everywhere. And, the value of any organization can be measured by the quality of its data. So, what actually is the quality of data or data quality, and why is it important? Well, data quality refers to the capability of a set of data to serve an intended purpose. 

Data quality is important to any organization because it provides timely and accurate information to manage accountability and services. It also helps to ensure and prioritize the best use of resources. Thus, high-quality data will lead to appropriate insights and valuable information for any organization. We can evaluate the quality of data in certain aspects. They include accuracy, relevancy, completeness, and uniqueness. 

Data Quality Problems

As the organizations are collecting vast amounts of data, managing its quality becomes more important every single day. In the year 2016, the costs of problems caused due to poor data quality were estimated by IBM, and it turned out to be $3.1 trillion across the U.S economy. Also, a Forrester report has stated that almost 30 percent of analysts spend 40 percent of their time validating and vetting their data prior to its utilization for strategic decision-making. These statistics indicate that the scale of the problems with data quality is vast.

So, why do these data quality problems occur? The main reasons include manual entry of data, software updates, integration of data sources, skills shortages, and insufficient testing time. Wrong decisions can be taken due to poor data management processes and poor quality of data. Because of this, many organizations lose their clients and customers. So, ensuring data quality must be given utmost importance in an organization. 

How to Ensure Data Quality?

Data quality management helps by combining data, technology, and organizational culture to deliver useful and accurate results. Good management of data quality builds a foundation for all the initiatives of a business. Now, let’s see how we can improve the data quality in an organization.

The first aspect of improving the quality of data is monitoring and cleansing data. This verifies data against standard statistical measures, validates data against matching descriptions, and uncovers relationships. This also checks the uniqueness of data and analyzes the data for its reusability. 

The second one is managing metadata centrally. Multiple people gather and clean data very often and they may work in different countries or offices. Therefore, you require clear policies on how data is gathered and managed as people in different parts of a company may misinterpret certain data terms and concepts. Centralized management of metadata is the solution to this problem as it reduces inconsistent interpretations and helps in establishing corporate standards.  

The next one is to ensure all the requirements are available and offer documentation for data processors and data providers. You have to format the specifications and offer a data dictionary and also provide training for the providers of data and all other new staff. Make sure you offer immediate help for all the data providers.

Very often, data is gathered from different sources and may include distinct spelling options. Hence, segmentation, scoring, smart lists, and many others are impacted by this. So, for entering a data point, a singular approach is essential, and data normalization provides this approach. The goal of this approach is to eliminate redundancy in data. Its advantages include easier object-to-data mapping and increased consistency.

The last aspect is to verify whether the data is consistent with the data rules and business goals, and this has to be done at regular intervals. You have to communicate the current status and data quality metrics to every stakeholder regularly to ensure the maintenance of data quality discipline across the organization.

Conclusion

Data quality is a continuous process but not a one-time project which needs the entire company to be data-focused and data-driven. It is much more than reliability and accuracy. High level of data quality can be achieved when the decision-makers have confidence in data and rely upon it. Follow the above-mentioned steps to ensure a high level of data quality in your organization. 

The Power of Analyzing Processes

Are you thinking BIG enough? Over the past few years, the quality of discussion regarding a ‘process’ and its interfaces between different departments has developed radically. Organizations increasingly reject guesswork, individual assessments, or blame-shifting and instead focus on objective facts: the display of throughput times, process variants, and their optimization.

But while data can hold valuable insights into business, users, customer bases, and markets, companies are sometimes unsure how best to analyze and harness their data. In fact, the problem isn’t usually a lack of data; it’s a breakdown in leveraging useful data. Being unsure how to interpret, explore, and analyze processes can paralyze any go-live, leading to a failure in the efficient interaction of processes and business operations. Without robust data analysis, your business could be losing money, talent, and even clients.

After all, analyzing processes is about letting data tell its true story for improved understanding.

The “as-is” processes

Analyzing the as-is current state helps organizations document, track, and optimize processes for better performance, greater efficiency, and improved outcomes. By contextualizing data, we gain the ability to navigate and organize processes to negate bottlenecks, set business preferences, and plan an optimized route through process mining initiatives. This focus can help across an entire organization, or on one or more specific processes or trends within a department or team.

There are several vital goals/motivations for implementing current state analysis, including:

  • Saving money and improving ROI;
  • Improving existing processes or creating new processes;
  • Increasing customer satisfaction and journeys;
  • Improving business coordination and organizational responsiveness;
  • Complying with new regulatory standards;
  • Adapting methods following a merger or acquisition.

The “to-be” processes

Simply put, if as-is maps where your processes are, to-be maps where you want them to… be. To-be process mapping documents what you want the process to look like, and by using the as-is diagram, you can work with stakeholders to identify developments and improvements of the current process, then outline those changes on your to-be roadmap.

This analysis can help you make optimal decisions for your business and innovative OpEx imperatives. For instance, at leading data companies like Google and Amazon, data is used in such a way that the analysis results make the decisions! Just think of the power Recommendation Engines, PageRank, and Demand Forecasting Systems have over the content we see. To achieve this, advanced techniques of machine learning and statistical modeling are applied, resulting in mechanically improved results from the data. Interestingly, because these techniques reference large-scale data sets and reflect analysis and results in real-time, they are applied to areas that extend beyond human decision-making.

Also, by analyzing and continuously monitoring qualitative and quantitative data, we gain insights across potential risks and ongoing improvement opportunities, too. The powerful combination of process discovery, process analysis, and conformance checking supports a collaborative approach to process improvement, giving you game-changing insights into your business. For example:

  • Which incidents would I like to detect and act upon proactively?
  • Where would task prioritization help improve overall performance?
  • Where do I know that increased transparency would help the company?
  • How can I utilize processes in place of gut feeling/experience?

Further, as the economic environment continues to change rapidly, and modern organizations keep adopting process-based approaches to ensure they are achieving their business goals, process analysis naturally becomes the perfect template for any company.

With this, process mining technology can help modern businesses manage process challenges beyond the boundaries of implementation. We can evaluate the proof of concept (PoC) for any proposed improvements, and extract relevant information from a homogenous data set. Of course, process modeling and business process management (BPM) are available to solve the potentially tricky integration phase.

Process mining and analysis initiatives

Process mining and discovery initiatives can also provide critical insights throughout the automation and any Robotic Process Automation (RPA) journey, from defining the strategy to continuous improvement and innovation. Data-based process mining can even extend process analysis across teams and individuals, decreasing incident resolution times, and subsequently improving working habits via the discovery and validation of automation opportunities.

A further example of where process mining and strategic process analysis/alignment is already paying dividends is IT incident management. Here, “incident” is an unplanned interruption to an IT service, which may be complete unavailability or merely a reduction in quality. The goal of the incident management process is to restore regular service operation as quickly as possible and to minimize the impact on business operations. Incident management is a critical process in Information Technology Library (ITIL).

Process mining can also further drive improvement in as-is incident management processes as well as exceptional and unwanted process steps, by increasing visibility and transparency across IT processes. Process mining will swiftly analyze the different working habits across teams and individuals, decreasing incident resolution times, and subsequently improving customer impact cases.

Positive and practical experiences with process mining across industries have also led to the further dynamic development of tools, use cases, and the end-user community. Even with very experienced process owners, the visualization of processes can skyrocket improvement via new ideas and discussion.

However, the potential performance gains are more extensive, with the benefits of using process mining for incident management, also including:

  • Finding out how escalation rules are working and how the escalation is done;
  • Calculating incident management KPIs, including SLA (%);
  • Discovering root causes for process problems;
  • Understanding the effect of the opening interface (email, web form, phone, etc.);
  • Calculating the cost of the incident process;
  • Aligning the incident management system with your incident management process.

Robotic Process Automation (RPA)

Robotic process automation (RPA) provides a virtual workforce to automatize manual, repetitive, and error-prone tasks. However, successful process automation requires specific knowledge about the intended (and potential) benefits, effective training of the robots, and continuous monitoring of their performance and processes.

With this, process mining supports organizations throughout the lifecycle of RPA initiatives by monitoring and benchmarking robots to ensure sustainable benefits. These insights are especially valuable for process miners and managers with a particular interest in process automation. By unlocking the experiences with process mining, a company better understands what is needed today, for tomorrow’s process initiatives.

To further upgrade the impact of robot-led automation, there is also a need for a solid understanding of legacy systems, and an overview of automation opportunities. Process mining tools provide key insights throughout the entire RPA journey, from defining the strategy to continuous improvement and innovation.

Benefits of process mining and analysis within the RPA lifecycle include:

  1. Overviews of processes within the company, based on specific criteria;
  2. Identification of processes suitable for RPA implementation during the preparation phase;
  3. Mining the optimal process flow/process path;
  4. Understanding the extent to which RPA can be implemented in legacy processes and systems;
  5. Monitoring and analysis of RPA performance during the transition/handover of customization;
  6. Monitoring and continuous improvement of RPA in the post-implementation phase.

The process of better business understanding

Every organization is different and brings with it a variety of process-related questions. Yet some patterns are usually repeated. For example, customers who introduce data supported process analysis as part of business transformation initiatives will typically face challenges in harmonizing processes from fragmented sectors and regional locations. Here it helps enormously to base actions on data and statistics from the respective processes, instead of relying on the instincts and estimations of individuals.

With this, process analysis which is supported by data, enables a fact-based discussion, and builds a bridge between employees, process experts and management. This helps avoid siloed thinking, as well as allowing the transparent design of handovers and process steps which cross departmental boundaries within an organization.

In other words, to unlock future success and transformation, we must be processing… today.

Find out more about process mining with Signavio Process Intelligence, and see how it can help your organization uncover the hidden value of process, generate fresh ideas, and save time and money.

Das Potenzial von Prozessanalysen

Haben Sie das große Ganze im Blick? Die Diskussion rund um einen Prozess und seine Schnittstellen zwischen verschiedenen Abteilungen hat sich in den vergangenen Jahren verändert und eine neue Qualität erhalten. Unternehmen möchten nicht mehr erraten, wie die Abläufe organisiert sind. Stattdessen konzentrieren sie sich auf objektive Fakten wie Durchlaufzeiten, Prozessvarianten und deren Optimierung.

Daten liefern wertvolle Erkenntnisse über das Unternehmen, Benutzer, Kundenstämme und Märkte. Diese Daten müssen jedoch bestmöglich analysiert und genutzt werden, was oftmals eine Herausforderung darstellt. Tatsächlich ist für gewöhnlich nicht die Menge an Daten das Problem, sondern deren Aufschlüsselung und erfolgreiche Nutzung. Unsicherheiten bei der Bewertung und Analyse von Prozessen können den Go-Live behindern und das Zusammenspiel von Prozessen und Geschäftsabläufen ineffizient machen. Ohne eine zuverlässige Datenanalyse könnte Ihr Unternehmen Kapital, Talente und sogar Kunden verlieren.

So geht es bei der Prozessanalyse letztlich darum, aus Daten Erkenntnisse zu gewinnen, die zu einem besseren Verständnis Ihres Unternehmens und der geschäftlichen Abläufe führen.

Die „Ist“-Prozesse

Die Analyse des Ist-Zustands hilft Unternehmen, Prozesse zu dokumentieren, nachzuverfolgen und zu optimieren, mit dem Ziel, die Leistung und Effizienz zu steigern und bessere Geschäftsergebnisse zu erzielen. Die Kontextualisierung von Daten eröffnet Ihnen die Möglichkeit, Prozesse zu steuern und zu organisieren, Engpässe zu beseitigen, geschäftliche Präferenzen festzulegen und mithilfe von Process-Mining-Initiativen eine optimale Strategie zu planen. Dies kann sowohl auf Unternehmensebene als auch nur auf einen bestimmten Prozess innerhalb einer Abteilung oder eines Teams angewandt werden.

Es gibt mehrere wichtige Ziele und Gründe für die Analyse des Ist-Zustands, wie beispielsweise:

  • Kosteneinsparungen und Verbesserung des ROI
  • Optimierung bestehender Prozesse oder Schaffung neuer Prozesse
  • Steigerung der Kundenzufriedenheit und -erlebnisse
  • Verbesserung der Koordination von Geschäften und der Reaktionsfähigkeit des Unternehmens
  • Einhaltung neuer regulatorischer Standards
  • Anpassung von Methoden nach einer Fusion oder Akquisition

 Die „Soll“-Prozesse

Einfach ausgedrückt: Der Ist-Zustand stellt dar, wie Ihre Prozesse aktuell verlaufen, der Soll-Zustand, wie Ihre Prozesse zukünftig verlaufen sollen. Bei der Planung der Soll-Prozesse wird der zukünftige Prozessverlauf dokumentiert. Mithilfe des Ist-Diagramms können Sie gemeinsam mit Stakeholdern Entwicklungs- und Optimierungsmöglichkeiten des aktuellen Prozesses identifizieren und notwendige Änderungen dann in Ihrer Roadmap der Soll-Prozesse skizzieren.

Solch eine Analyse kann Ihnen dabei helfen, optimale geschäftliche und innovative OpEx-Entscheidungen für Ihr Unternehmen zu treffen. Führende Unternehmen wie Google und Amazon nutzen Daten beispielsweise, um auf der Basis von Analyseergebnissen datengesteuerte Entscheidungen zu treffen. Oder denken Sie an die Vorteile, die Ihnen Recommendation Engines, PageRank- und Demand-Forecasting-Systeme bieten. Grundlage hierfür sind fortschrittliche Techniken des maschinellen Lernens und der statistischen Modellierung, die zu verbesserten Datenergebnissen führen. Interessanterweise werden diese Techniken – da sie sich auf umfangreiche Datensätze beziehen und Analysen und Ergebnisse in Echtzeit widerspiegeln – auf Bereiche angewendet, die über die menschliche Entscheidungsfindung hinausgehen.

Die Analyse und kontinuierliche Überwachung von qualitativen und quantitativen Daten ermöglicht es uns zudem, Erkenntnisse über potenzielle Risiken und Verbesserungspotenziale zu erhalten. Mithilfe der leistungsstarken Kombination aus Process Discovery, Prozessanalyse und Conformance-Check können Sie Prozesse verbessern und gewinnbringende Informationen über das eigene Unternehmen erhalten. Zum Beispiel:

  • Über welche Vorfälle möchte ich sofort informiert werden, um entsprechend proaktiv zu handeln?
  • An welchen Stellen kann eine bessere Priorisierung der Aufgaben dabei helfen, die Performance des Unternehmens zu verbessern?
  • Wie kann mehr Transparenz mein Unternehmen voranbringen?
  • Wie lerne ich, in Prozessen zu denken, anstatt nur auf das Bauchgefühl zu vertrauen?

Das geschäftliche Umfeld verändert sich kontinuierlich. Um Schritt zu halten, müssen moderne Unternehmen prozessbasierte Ansätze verfolgen und dabei ist die Prozessanalyse die perfekte Basis.

Mithilfe der Process-Mining-Technologie können moderne Unternehmen ihre Prozessherausforderungen über die Grenzen der Implementierung hinweg bewältigen. Dabei können wir den Proof of Concept für alle vorgeschlagenen Verbesserungen auswerten und relevante Informationen aus einem homogenen Datensatz gewinnen. Zudem kann mithilfe von Prozessmodellierung und Business Process Management (BPM) die möglicherweise schwierige Integrationsphase überwunden werden.

Initiativen für Process-Mining und Prozessanalyse

Process-Mining- und Process-Discovery-Initiativen liefern wichtige Einblicke in den Automatisierungsstatus und in jede Phase der Robotic Process Automation (RPA) – von der Festlegung der Strategie bis zur kontinuierlichen Optimierung und Innovation. Durch datenbasiertes Process Mining kann die Prozessanalyse sogar auf Teams und einzelne Personen ausgedehnt werden. Indem Automatisierungsmöglichkeiten ermittelt und validiert werden, können IT-Störfälle schneller behoben und die Arbeitsgewohnheiten verbessert werden.

Ein weiterer Bereich, in dem sich die Vorteile von Process Mining und der strategischen Prozessanalyse/-ausrichtung bereits auszahlen, ist das IT-Incident-Management. Als „Incident“ wird ein IT-Störfall bezeichnet. Hierbei kann es sich um den vollständigen Ausfall oder um die eingeschränkte Ausführung eines IT-Services handeln. Ziel des Incident-Managements ist es, den IT-Service so schnell wie möglich wiederherzustellen und die Auswirkungen auf den Geschäftsbetrieb zu minimieren. Daher zählt das IT-Incident- Management zu den kritischen Prozessen der Information Technology Library (ITIL).

Process Mining hat das Potenzial, die Incident-Management-Prozesse im Ist-Zustand zu verbessern. Zudem trägt es zu einer höheren Transparenz über die IT-Prozesse bei und bietet so Informationen über außergewöhnliche und unerwünschte Prozessschritte. Durch die Methode ist es ebenfalls möglich, die unterschiedlichen Arbeitsgewohnheiten von verschiedenen Personen und auch Teams zu erfassen. Die Bearbeitungszeiten von Störfällen lassen sich auf diese Weise reduzieren und die Auswirkungen auf Kundenprozesse besser überblicken.

Positive und praktische Erfahrungen mit branchenübergreifendem Process Mining haben zudem zu einer dynamischen Entwicklung von Tools, Anwendungsfällen und auch der Benutzer-Community geführt. Selbst sehr erfahrene Prozessverantwortliche stellen fest, dass durch die Visualisierung von Prozessen neue Ideen und Anregungen für weitere Verbesserungen entstehen.

Der Einsatz von Process Mining für das Incident-Management bietet jedoch noch weitaus mehr potenzielle Vorteile:

  • Ermittlung der Regeln und Abläufe für Eskalationen,
  • Berechnung von Incident-Management-KPIs einschließlich Service Level Agreements (SLA),
  • Ursachenforschung für auftretende Prozessprobleme,
  • Verständnis über die zugrunde liegende Schnittstelle und deren Auswirkung (E-Mail, Webformular, Telefon usw.),
  • Kostenberechnung für störungsanfällige Prozesse,
  • Verknüpfung der Incident-Management-Systeme mit den entsprechenden Prozessen für auftretende Störungen.

Robotic Process Automation (RPA)

RPA (Robotic Process Automation) ermöglicht die Automatisierung manueller, sich wiederholender und fehleranfälliger Aufgaben. Dies setzt jedoch voraus, dass Prozessverantwortliche genau wissen, wie und mit welchem Ziel sie Software-Roboter einsetzen und ihre Leistung messen.

Daher bietet die Kombination aus RPA und Process Mining Unternehmen viele Vorteile: Über den gesamten RPA-Zyklus hinweg können sie die Leistung und die Vorteile ihrer Software-Roboter messen und sie bestmöglich für ihr Szenario einsetzen. Damit eignet sich Process Mining hervorragend als Vorbereitung für Prozessautomatisierung: Durch Process Mining verstehen wir besser, was wir heute für erfolgreiche Prozessinitiativen von morgen benötigen.

Um die Vorteile der robotergesteuerten Automatisierung vollumfänglich auszuschöpfen, müssen Organisationen nicht nur ihre bestehenden Systeme verstehen, sondern auch Möglichkeiten zur Automatisierung ermitteln. Process-Mining-Tools bieten während des gesamten RPA-Zyklus wertvolle Erkenntnisse über die Prozessdaten: von der Festlegung der Strategie bis hin zu kontinuierlichen Verbesserungen und Innovationen.

Zu den Vorteilen von Process Mining und Prozessanalyse im RPA-Zyklus zählen:

  1. Überblick der Prozesslandschaft in einem Unternehmen, basierend auf spezifischen Kriterien,
  2. Identifikation von Prozessen, die während der Vorbereitungsphase für RPA geeignet sind,
  3. Erarbeitung des optimalen Prozessflusses,
  4. Besseres Verständnis darüber, wie RPA auch in veralteten Prozessen und IT-Systemen eingesetzt werden kann,
  5. Überwachung und Analyse der Leistung von RPA-Initiativen während der Implementierungsphase,
  6. Überwachung und kontinuierliche Verbesserung von RPA nach der Implementierung.

Der Weg zu besseren Erkenntnissen

Jedes Unternehmen ist anders und bringt damit ganz unterschiedliche Fragen in Bezug auf seine Prozesse mit. Einige Muster sind trotzdem erkennbar. Beispielsweise stehen Kunden, die datengestützte Prozessanalysen im Rahmen der Geschäftstransformation einführen, in der Regel vor der Herausforderung, Prozesse aus unterschiedlichen Sparten oder Standorten zu harmonisieren. An dieser Stelle sollten Organisationen sich die Daten und Statistiken der jeweiligen Prozesse vor Augen zu führen, anstatt sich auf das Gefühl oder auf die Einschätzung Einzelner zu verlassen.

Auf diese Weise führt eine datengestützte Prozessanalyse zu faktenbasierten Diskussionen und bildet eine wichtige Brücke zwischen der Fachabteilung, Prozessverantwortlichen und dem Management. So lassen sich vor allem Übergaben und abteilungsübergreifende Schritte transparent gestalten und Silo-Denken vermeiden.

Mit anderen Worten: Die richtigen Prozesse von heute sorgen für eine erfolgreiche Transformation von morgen.

Erfahren Sie mehr über Process Mining mit Signavio Process Intelligence und wie Ihr Unternehmen den versteckten Mehrwert von Prozessen für sich nutzen, neue Ideen generieren sowie Zeit und Kosten sparen kann.

Von BI zu PI: Der nächste Schritt auf dem Weg zu datengetriebenen Entscheidungen

„Alles ist stetig und fortlaufend im Wandel.“ „Das Tempo der Veränderungen nimmt zu.“ „Die Welt wird immer komplexer und Unternehmen müssen Schritt halten.“ Unternehmen jeder Art und Größe haben diese Sätze schon oft gehört – vielleicht zu oft! Und dennoch ist es für den Erfolg eines Unternehmens von entscheidender Bedeutung, sich den Veränderungen anzupassen.


Read this article in English: 
“From BI to PI: The Next Step in the Evolution of Data-Driven Decisions”


Sie müssen die zugrunde liegenden organisatorischen Bausteine verstehen, um sicherzustellen, dass die von Ihnen getroffenen Entscheidungen sich auch in die richtige Richtung entwickeln. Es geht sozusagen um die DNA Ihres Unternehmens: die Geschäftsprozesse, auf denen Ihre Arbeitsweise basiert, und die alles zu einer harmonischen Einheit miteinander verbinden. Zu verstehen, wie diese Prozesse verlaufen und an welcher Stelle es Verbesserungsmöglichkeiten gibt, kann den Unterschied zwischen Erfolg und Misserfolg ausmachen.

Unternehmen, die ihren Fokus auf Wachstum gesetzt haben, haben dies bereits erkannt. In der Vergangenheit wurde Business Intelligence als die Lösung für diese Herausforderung betrachtet. In jüngerer Zeit sehen sich zukunftsorientierte Unternehmen damit konfrontiert, Lösungen zu überwachen, die mit dem heutigen Tempo der Veränderungen Schritt halten können. Gleichzeitig erkennen diese Unternehmen, dass die zunehmende Komplexität der Geschäftsprozesse dazu führt, dass herkömmliche Methoden nicht mehr ausreichen.

Anpassung an ein sich änderndes Umfeld? Die Herausforderungen von BI

Business Intelligence ist nicht notwendigerweise überholt oder unnötig. In einer schnelllebigen und sich ständig verändernden Welt stehen die BI-Tools und -Lösungen jedoch vor einer Reihe von Herausforderungen. Hierzu können zählen:

  • Hohe Datenlatenz – Die Datenlatenz gibt an, wie lange ein Benutzer benötigt, um Daten beispielsweise über ein Business-Intelligence-Dashboard abzurufen. In vielen Fällen kann dies mehr als 24 Stunden dauern. Ein geschäftskritischer Zeitraum, da Unternehmen Geschäftschancen für sich nutzen möchten, die möglicherweise ein begrenztes Zeitfenster haben.
  • Unvollständige Datensätze – Business Intelligence verfolgt einen breiten Ansatz, sodass Prüfungen möglicherweise zwar umfassend, aber nicht tief greifend sind. Dies erhöht die Wahrscheinlichkeit, dass Daten übersehen werden; insbesondere in Fällen, in denen die Prüfungsparameter durch die Tools selbst nur schwer geändert werden können.
  • Erkennung statt Analyse – Business-Intelligence-Tools sind in erster Linie darauf ausgelegt, Daten zu finden. Der Fokus hierbei liegt vor allem auf Daten, die für ihre Benutzer nützlich sein können. An dieser Stelle endet jedoch häufig die Leistungsfähigkeit der Tools, da sie Benutzern keine einfachen Optionen bieten, die Daten tatsächlich zu analysieren. Die Möglichkeit, umsetzbare Erkenntnisse zu gewinnen, verringert sich somit.
  • Eingeschränkte Skalierbarkeit – Im Allgemeinen bleibt Business Intelligence ein Bereich für Spezialisten und Experten mit dem entsprechenden Know-how, über das Mitarbeiter im operativen Bereich oftmals nicht verfügen. Ohne umfangreiches Verständnis für die geschäftlichen Prozesse und deren Analyse innerhalb des Unternehmens bleibt die optimierte Anwendung eines bestimmten Business-Intelligence-Tools aber eingeschränkt.
  • Nicht nachvollziehbare Metriken – Werden Metriken verwendet, die nicht mit den Geschäftsprozessen verknüpft sind, kann Business Intelligence kaum positive Veränderungen innerhalb eines Unternehmens unterstützen. Für Benutzer ist es schwierig, Ergebnisse richtig auszuwerten und zu verstehen und diese Ergebnisse zweckdienlich zu nutzen.

Process Intelligence: der nächste wegweisende Schritt

Es bedarf einer effektiveren Methode zur Prozessanalyse, um eine effiziente Arbeitsweise und fundierte Entscheidungsfindung sicherzustellen. An dieser Stelle kommt Process Intelligence (PI) ins Spiel. PI bietet die entscheidenden Hintergrundinformationen für die Beantwortung von Fragen, die mit Business-Intelligence-Tools unbeantwortet bleiben.

Process Intelligence ermöglicht die durchgehende Visualisierung von Prozessabläufen mithilfe von Rohdaten. Mit dem richtigen Process-Intelligence-Tool können diese Rohdaten sofort analysiert werden, sodass Prozesse präzise angezeigt werden. Der Endbenutzer kann diese Informationen nach Bedarf einsehen und bearbeiten, ohne eine Vorauswahl für die Analyse treffen zu müssen.

Zum Vergleich: Da Business Intelligence vordefinierte Analysekriterien benötigt, kann BI nur dann wirklich nützlich sein, wenn diese Kriterien auch definiert sind. Unternehmen können verzögerte Analysen vermeiden, indem sie Process Intelligence zur Ermittlung der Hauptursache von Prozessproblemen nutzen, und dann die richtigen Kriterien zur Bestimmung des Analyserahmens auswählen.

Anschließend können Sie Ihre Systemprozesse analysieren und erkennen die Diskrepanzen und Varianten zwischen dem angestrebten Geschäftsprozess und dem tatsächlichen Verlauf Ihrer Prozesse. Und je schneller Sie Echtzeit-Einblicke in Ihre Prozesse gewinnen, desto schneller können Sie in Ihrem Unternehmen positive Veränderungen auf den Weg bringen.

Kurz gesagt: Business Intelligence eignet sich dafür, ein breites Verständnis über die Abläufe in einem Unternehmen zu gewinnen. Für einige Unternehmen kann dies ausreichend sein. Für andere hingegen ist ein Überblick nicht genug.

Sie suchen nach einer Möglichkeit um festzustellen, wie jeder Prozess in Ihrer Organisation tatsächlich funktioniert? Die Antwort hierauf lautet Software. Software, die Prozesserkennung, Prozessanalyse und Konformitätsprüfung miteinander kombiniert.

Mit den richtigen Process-Intelligence-Tools können Sie nicht nur Daten aus den verschiedenen IT-Systemen in Ihrem Unternehmen gewinnen, sondern auch Ihre End-to-End-Prozesse kontinuierlich überwachen. So erhalten Sie Erkenntnisse über mögliche Risiken und Verbesserungspotenziale. PI steht für einen kollaborativen Ansatz zur Prozessverbesserung, der zu einem bahnbrechenden Verständnis über die Abläufe in Ihrem Unternehmen führt, und wie diese optimiert werden können.

Erhöhtes Potenzial mit Signavio Process Intelligence

Mit Signavio Process Intelligence erhalten Sie wegweisende Erkenntnisse über Ihre Prozesse, auf deren Basis Sie bessere Geschäftsentscheidungen treffen können. Erlangen Sie eine vollständige Sicht auf Ihre Abläufe und ein Verständnis dafür, was in Ihrer Organisation tatsächlich geschieht.

Als Teil der Signavio Business Transformation Suite lässt sich Signavio Process Intelligence perfekt mit der Prozessmodellierung und -automatisierung kombinieren. Als eine vollständig cloudbasierte Process-Mining-Lösung erleichtert es die Software, organisationsweit zusammenzuarbeiten und Wissen zu teilen.

Generieren Sie neue Ideen, sparen Sie Aufwand und Kosten ein und optimieren Sie Ihre Prozesse. Erfahren Sie mehr über Signavio Process Intelligence.

From BI to PI: The Next Step in the Evolution of Data-Driven Decisions

“Change is a constant.” “The pace of change is accelerating.” “The world is increasingly complex, and businesses have to keep up.” Organizations of all shapes and sizes have heard these ideas over and over—perhaps too often! However, the truth remains that adaptation is crucial to a successful business.


Read this article in German: Von der Datenanalyse zur Prozessverbesserung: So gelingt eine erfolgreiche Process-Mining-Initiative

 


Of course, the only way to ensure that the decisions you make are evolving in the right way is to understand the underlying building blocks of your organization. You can think of it as DNA; the business processes that underpin the way you work and combine to create a single unified whole. Knowing how those processes operate, and where the opportunities for improvement lie, can be the difference between success and failure.

Businesses with an eye on their growth understand this already. In the past, Business Intelligence was seen as the solution to this challenge. In more recent times, forward-thinking organizations see the need for monitoring solutions that can keep up with today’s rate of change, at the same time as they recognize that increasing complexity within business processes means traditional methods are no longer sufficient.

Adapting to a changing environment? The challenges of BI

Business Intelligence itself is not necessarily defunct or obsolete. However, the tools and solutions that enable Business Intelligence face a range of challenges in a fast-paced and constantly changing world. Some of these issues may include:

  • High data latency – Data latency refers to how long it takes for a business user to retrieve data from, for example, a business intelligence dashboard. In many cases, this can take more than 24 hours, a critical time period when businesses are attempting to take advantage of opportunities that may have a limited timeframe.
  • Incomplete data sets – The broad approach of Business Intelligence means investigations may run wide but not deep. This increases the chances that data will be missed, especially in instances where the tools themselves make the parameters for investigations difficult to change.
  • Discovery, not analysis – Business intelligence tools are primarily optimized for exploration, with a focus on actually finding data that may be useful to their users. Often, this is where the tools stop, offering no simple way for users to actually analyze the data, and therefore reducing the possibility of finding actionable insights.
  • Limited scalability – In general, Business Intelligence remains an arena for specialists and experts, leaving a gap in understanding for operational staff. Without a wide appreciation for processes and their analysis within an organization, the opportunities to increase the application of a particular Business Intelligence tool will be limited.
  • Unconnected metrics – Business Intelligence can be significantly restricted in its capacity to support positive change within a business through the use of metrics that are not connected to the business context. This makes it difficult for users to interpret and understand the results of an investigation, and apply these results to a useful purpose within their organization.

Process Intelligence: the next evolutionary step

To ensure companies can work efficiently and make the best decisions, a more effective method of process discovery is needed. Process Intelligence (PI) provides the critical background to answer questions that cannot be answered with Business Intelligence tools.

Process Intelligence offers visualization of end-to-end process sequences using raw data, and the right Process Intelligence tool means analysis of that raw data can be conducted straight away, so that processes are displayed accurately. The end-user is free to view and work with this accurate information as they please, without the need to do a preselection for the analysis.

By comparison, because Business Intelligence requires predefined analysis criteria, only once the criteria are defined can BI be truly useful. Organizations can avoid delayed analysis by using Process Intelligence to identify the root causes of process problems, then selecting the right criteria to determine the analysis framework.

Then, you can analyze your system processes and see the gaps and variants between the intended business process and what you actually have. And of course, the faster you discover what you have, the faster you can apply the changes that will make a difference in your business.

In short, Business Intelligence is suitable for gaining a broad understanding of the way a business usually functions. For some businesses, this will be sufficient. For others, an overview is not enough.

They understand that true insights lie in the detail, and are looking for a way of drilling down into exactly how each process within their organization actually works. Software that combines process discovery, process analysis, and conformance checking is the answer.

The right Process Intelligence tools means you will be able to automatically mine process models from the different IT systems operating within your business, as well as continuously monitor your end-to-end processes for insights into potential risks and ongoing improvement opportunities. All of this is in service of a collaborative approach to process improvement, which will lead to a game-changing understanding of how your business works, and how it can work better.

Early humans evolved from more primitive ancestors, and in the process, learned to use more and more sophisticated tools. For the modern human, working in a complex organization, the right tool is Process Intelligence.

Endless Potential with Signavio Process Intelligence

Signavio Process Intelligence allows you to unearth the truth about your processes and make better decisions based on true evidence found in your organization’s IT systems. Get a complete end-to-end perspective and understanding of exactly what is happening in your organization in a matter of weeks.

As part of Signavio Business Transformation Suite, Signavio Process Intelligence integrates perfectly with Signavio Process Manager and is accessible from the Signavio Collaboration Hub. As an entirely cloud-based process mining solution, the tool makes it easy to collaborate with colleagues from all over the world and harness the wisdom of the crowd.

Find out more about Signavio Process Intelligence, and see how it can help your organization generate more ideas, save time and money, and optimize processes.

Von der Datenanalyse zur Prozessverbesserung: So gelingt eine erfolgreiche Process-Mining-Initiative

Den Prozessdaten auf der Spur: Systematische Datenanalyse kombiniert mit Prozessmanagement

Die Digitalisierung verändert Organisationen aller Branchen. In zahlreichen Unternehmen werden alltägliche Betriebsabläufe softwarebasiert modelliert, automatisiert und optimiert. Damit hinterlässt fast jeder Prozess elektronische Spuren in den CRM-, ERP- oder anderen IT-Systemen einer Organisation. Process Mining gilt als effektive Methode, um diese Datenspuren zusammenzuführen und für umfassende Auswertungen zu nutzen. Sie kombiniert die systematische Datenanalyse mit Geschäftsprozessmanagement: Dabei werden Prozessdaten aus den verschiedenen IT-Systemen einer Organisation extrahiert und mit Hilfe von Data-Science-Technologien visualisiert und ausgewertet.


Read this article in English: From BI to PI: The Next Step in the Evolution of Data-Driven Decisions

 


Professionelle Process-Mining-Lösungen erlauben, die Ergebnisse dieser Prozessauswertungen auf Dashboards darzustellen und nach bestimmten Prozessen, Transaktionen, Abteilungen oder Kunden zu filtern. So ist es möglich, die Performance, Durchlaufzeiten und die Kosten einzelner Betriebsabläufe zu erfassen. Prozessverantwortliche werden auf diesem Wege auf Verzögerungen, ineffiziente Abläufe und mögliche Prozessverbesserungen aufmerksam.

Praxisbeispiel: Einkaufsprozess – Prozessabweichungen als Kosten- und Risikofaktor

Ein Beispiel aus dem Unternehmensalltag ist ein einfacher Einkaufsprozess: Ein Mitarbeiter benötigt einen neuen Laptop. Im Normalfall beginnt der Prozess mit der Anfrage des Mitarbeiters, die durch seinen Manager bestätigt wird. Ist kein Laptop vorrätig, löst das für den Einkauf zuständige Team die Bestellung aus. Zu einem späteren Zeitpunkt wird der Laptop dem Mitarbeiter übergeben und das Unternehmen erhält eine Rechnung. Diese Rechnung wird geprüft und fristgemäß gemäß den vorgegebenen Konditionen beglichen. Obwohl dieser alltägliche Prozess nicht sehr komplex ist, weicht er im Unternehmensalltag häufig vom modellierten Idealzustand ab, was unnötige Kosten und möglicherweise auch Risiken verursacht.

Die Gründe sind vielfältig:

  • Freigaben fehlen
  • Während des Bestellprozesses sind Informationen unvollständig
  • Rechnungen werden aufgrund von unvollständigen Informationen mehrfach korrigiert

Process Mining ermöglicht, den gesamten Prozessverlauf alltäglicher Betriebsabläufe unter die Lupe zu nehmen und faktenbasierte Diskussionen zwischen den Fachabteilungen, Prozessverantwortlichen sowie dem Management in einer Organisation anzuregen. So werden unternehmensweite Prozessverbesserungen möglich – vorausgesetzt, die Methode wird richtig angewandt und ist strategisch durchdacht. Doch wie gelingt eine erfolgreiche unternehmensweite Process-Mining-Initiative über Abteilungsgrenzen hinaus?

Wie sich eine erfolgreiche Process-Mining-Initiative auf den Weg bringen lässt

Jedes Unternehmen ist einzigartig und geht mit unterschiedlichen Fragestellungen an eine Process-Mining-Initiative heran: ob einzelne Prozesse gezielt verbessert, Prozesslebenszyklen verkürzt oder abteilungsübergreifende Abläufe an unterschiedlichen Standorten miteinander verglichen werden. Sie alle haben etwas gemeinsam: Eine erfolgreiche Process-Mining-Initiative erfordert ein strategisches Vorgehen.

Schritt 1: Mit Weitsicht planen und richtig kommunizieren

Wie definiere ich die Ziele und den Umfang der Process-Mining-Initiative?

Die Anfangsphase einer Process-Mining-Initiative dient der Planung und entscheidet häufig über den Erfolg eines Projektes. In erster Linie kommt es darauf an, die Ziele des Projektes zu definieren und die Erfolgsfaktoren zu bestimmen. Die Ziele einer erfolgreichen Process-Mining-Initiative sind SMART definiert: spezifisch, messbar, attainable/relevant, reasonable/umsetzbar und zeitgebunden/time-bound. Mögliche Ziele für das Projekt lassen sich zum Beispiel wie folgt formulieren:

  • Prozessdauer auf 25 Tage reduzieren
  • Hauptunterschiede zwischen zwei Ländern hinsichtlich bestimmter Prozesse identifizieren
  • Prozessautomatisierung um 25% steigern

Unter diesen Voraussetzungen lässt sich auch der Rahmen der Process-Mining-Initiative festlegen: Sie halten fest, welche Prozesse, konkret betroffen sind und wie sie mit den IT-Systemen und Mitarbeiterrollen in Ihrer Organisation verknüpft sind.

Welche Rollen und Verantwortlichkeiten gibt es?

Die Ziele Ihrer Process-Mining-Initiative sollten unternehmensweit geteilt werden: Dies erfordert neben einer klaren Strategie eine transparente Kommunikation in der gesamten Organisation: Indem Sie Ihren Mitarbeitern das nötige Wissen an die Hand geben, um die Initiative erfolgreich mitzugestalten, sichern Sie sich auch ihre Unterstützung.

So verstehen sie nicht nur, warum dieses Projekt sinnvoll ist, sondern sind auch in der Lage, das Wissen auf ihre individuelle Rolle und Situation zu übertragen. Im Rahmen einer Process-Mining-Initiative sind verschiedene Projektbeteiligte in unterschiedlichen Rollen aktiv:

Während Projektträger verantwortlich für die Prozessanalyse sind (z. B. Chief Procurement Officer oder Process Owner), wissen Prozessexperten, wie ein bestimmter Prozess verläuft und kennen die verschiedenen Variationen. Sie nutzen Methoden wie Process Mining, um ihr Wissen zu vertiefen und Diskussionen über die gewonnenen Daten anzustoßen. Sie arbeiten eng mit Business-Analysten zusammen, die die Prozessanalyse vorantreiben. Datenexperten wiederum verfolgen die einzelnen Spuren, die ein Prozess in der IT-Landschaft einer Organisation hinterlässt und bereiten sie so auf, dass sie Aufschluss über die Performance eines Prozesses geben.

Wie gestaltet sich die Zusammenarbeit?

Diese unterschiedlichen Rollen gilt es im Rahmen einer erfolgreichen Process-Mining-Initiative an einen Tisch zu bringen: So können die gewonnen Erkenntnisse gemeinsam im Team interpretiert und diskutiert werden, um die richtigen Veränderungen anzustoßen. Die daraus gewonnen Prozessverbesserungen spiegeln das Know-how des gesamten Teams wider und sind das Ergebnis einer erfolgreichen Zusammenarbeit.

Schritt 2: Die technischen Voraussetzungen schaffen

Wie werden Prozessdaten systemübergreifend aggregiert und aufbereitet?

Nun wird es Zeit für die technischen Vorbereitungen: Entscheidend ist es, alle Anforderungen an die beteiligten IT-Systeme zu durchdenken und die IT-Verantwortlichen so früh wie möglich einzubeziehen. Um valide Daten für Prozessverbesserungen zu generieren, sind diese drei Teilschritte nötig:

  1.  Datenextraktion: Relevante Daten aus unterschiedlichen IT-Systemen werden aggregiert (Datenquellen sind datenbasierte Tabellen aus ERP- und CRM-Lösungen, analytische Daten wie Reports, Logdateien, CSV-Dateien usw.)
  2.  Datenumwandlung gemäß den Anforderungen für Process Mining: Die extrahierten Daten werden in Cases (Abfolge verschiedener Prozessschritte) umgewandelt, mit einem Zeitstempel versehen und in Event-Logs gespeichert.
  3.  Datenübertragung: Die Process-Mining-Software greift auf die gespeicherten Event-Logs zu.

Welche Rolle spielen Konnektoren?

Diese Teilschritte werden erfahrungsgemäß mittels eines Software-Konnektors durchgeführt und in regelmäßigen Abständen wiederholt. Ein Software-Konnektor hat die Aufgabe, die Daten aus der IT-Landschaft eines Unternehmens nach den Anforderungen der Process-Mining-Lösung zu übersetzen. Er wird speziell für die Kombination mit bestimmten IT-Systemen wie SAP, Oracle oder Salesforce entwickelt und steuert die gesamte Datenintegration von der Extraktion über die Umwandlung bis zur Datenübertragung.

Process-Mining-Lösungen wie Signavio Process Intelligence verfügen über Standardkonnektoren sowie über eine API für individuell entwickelte Konnektoren. Im Rahmen der technischen Vorbereitungen gilt es, mit Blick auf das jeweilige Szenario über die Möglichkeiten der Umsetzbarkeit zu entscheiden und andere technische Lösungen zu evaluieren.

Schritt 3: Von der Prozessanalyse zur Prozessverbesserung

Wie lassen sich die ermittelten Daten für Verbesserungen nutzen?

Sind die umgewandelten Daten in der Process-Mining-Lösung verfügbar, beginnt die Prozessauswertung. Durch IT-gestütztes Process Mining erhalten Prozessexperten die Möglichkeit, alle vorliegenden Daten zu visualisieren und einzelne Prozesse detailliert auszuwerten. Die vorliegenden Prozesse werden nun hinsichtlich unterschiedlicher Faktoren untersucht, etwa mit Blick auf Durchlaufzeiten, Performance und den Prozessfluss. Im direkten Vergleich lässt sich auf diesem Wege ermitteln, welche Faktoren sich auf die Erfolgskennzahlen auswirken und an welchen Stellen Verzögerungen oder Abweichungen auftreten.

Die so gewonnen Erkenntnisse bilden eine wichtige Grundlage für faktenbasierte Diskussionen zwischen den verschiedenen Stakeholdern der Process-Mining-Initiative. Doch erst die konkreten Schritte, die aus dieser Datenbasis abgeleitet werden, entscheiden über den Erfolg des Projektes: Entscheidend ist, wie diese Erkenntnisse in die Praxis umgesetzt werden.

 

Eine Process-Mining-Lösung, die nicht als reines Analysetool zur Verfügung steht, sondern in eine umfassende Lösung für die Modellierung, Automatisierung und Analyse professioneller Geschäftsprozesse integriert ist, erleichtert den Schritt von der Business Process Discovery zur Prozessverbesserung. Schließlich gilt es, konkrete Prozessverbesserungen und Änderungen zu planen, in den Unternehmensalltag zu integrieren und die Ergebnisse auszuwerten – auch über das Ende der Process-Mining-Initiative hinaus.

Warum ist ein Process-Mining-Projekt nie vollständig abgeschlossen?  

Wer einmal mit der Prozessverbesserung beginnt, wird feststellen: Viele weitere Stellen in den Prozessen warten nur darauf, verbessert zu werden. Daher lohnt es sich, einige Wochen nach der initialen Prozessverbesserung neue Daten zu extrahieren, um herauszufinden, welche Veränderungen nachweislich zu mehr Effizienz geführt haben. Eine kontinuierliche Messung und Auswertung erleichtert einen umfassenden Blick auf die eigene Organisation:

  • Funktionieren die überarbeiteten Prozesse wie geplant?
  • Haben Prozessveränderungen unvorhersehbare Effekte?
  • Treten Schwachstellen in anderen Prozessen auf?
  • Haben sich die Prozesse verändert, seitdem sie überarbeitet wurden?
  • Wie lässt sich ein bestimmter Prozess weiter verbessern?

Somit lässt sich zusammenfassen: Wem es gelingt, die Datenspuren in den IT-Systemen der eigenen Organisation zu verfolgen, ist auf dem richtigen Weg zur kontinuierlichen Verbesserung. Davon profitieren nicht nur die Prozesse und IT-Systeme, sondern auch die Mitarbeiter in den Organisationen.

Interview: Does Business Intelligence benefit from Cloud Data Warehousing?

Interview with Ross Perez, Senior Director, Marketing EMEA at Snowflake

Read this article in German:
“Profitiert Business Intelligence vom Data Warehouse in der Cloud?”

Does Business Intelligence benefit from Cloud Data Warehousing?

Ross Perez is the Senior Director, Marketing EMEA at Snowflake. He leads the Snowflake marketing team in EMEA and is charged with starting the discussion about analytics, data, and cloud data warehousing across EMEA. Before Snowflake, Ross was a product marketer at Tableau Software where he founded the Iron Viz Championship, the world’s largest and longest running data visualization competition.

Data Science Blog: Ross, Business Intelligence (BI) is not really a new trend. In 2019/2020, making data available for the whole company should not be a big thing anymore. Would you agree?

BI is definitely an old trend, reporting has been around for 50 years. People are accustomed to seeing statistics and data for the company at large, and even their business units. However, using BI to deliver analytics to everyone in the organization and encouraging them to make decisions based on data for their specific area is relatively new. In a lot of the companies Snowflake works with, there is a huge new group of people who have recently received access to self-service BI and visualization tools like Tableau, Looker and Sigma, and they are just starting to find answers to their questions.

Data Science Blog: Up until today, BI was just about delivering dashboards for reporting to the business. The data warehouse (DWH) was something like the backend. Today we have increased demand for data transparency. How should companies deal with this demand?

Because more people in more departments are wanting access to data more frequently, the demand on backend systems like the data warehouse is skyrocketing. In many cases, companies have data warehouses that weren’t built to cope with this concurrent demand and that means that the experience is slow. End users have to wait a long time for their reports. That is where Snowflake comes in: since we can use the power of the cloud to spin up resources on demand, we can serve any number of concurrent users. Snowflake can also house unlimited amounts of data, of both structured and semi-structured formats.

Data Science Blog: Would you say the DWH is the key driver for becoming a data-driven organization? What else should be considered here?

Absolutely. Without having all of your data in a single, highly elastic, and flexible data warehouse, it can be a huge challenge to actually deliver insight to people in the organization.

Data Science Blog: So much for the theory, now let’s talk about specific use cases. In general, it matters a lot whether you are storing and analyzing e.g. financial data or machine data. What do we have to consider for both purposes?

Financial data and machine data do look very different, and often come in different formats. For instance, financial data is often in a standard relational format. Data like this needs to be able to be easily queried with standard SQL, something that many Hadoop and noSQL tools were unable to provide. Luckily, Snowflake is an ansi-standard SQL data warehouse so it can be used with this type of data quite seamlessly.

On the other hand, machine data is often semi-structured or even completely unstructured. This type of data is becoming significantly more common with the rise of IoT, but traditional data warehouses were very bad at dealing with it since they were optimized for relational data. Semi-structured data like JSON, Avro, XML, Orc and Parquet can be loaded into Snowflake for analysis quite seamlessly in its native format. This is important, because you don’t want to have to flatten the data to get any use from it.

Both types of data are important, and Snowflake is really the first data warehouse that can work with them both seamlessly.

Data Science Blog: Back to the common business use case: Creating sales or purchase reports for the business managers, based on data from ERP-systems such as Microsoft or SAP. Which architecture for the DWH could be the right one? How many and which database layers do you see as necessary?

The type of report largely does not matter, because in all cases you want a data warehouse that can support all of your data and serve all of your users. Ideally, you also want to be able to turn it off and on depending on demand. That means that you need a cloud-based architecture… and specifically Snowflake’s innovative architecture that separates storage and compute, making it possible to pay for exactly what you use.

Data Science Blog: Where would you implement the main part of the business logic for the report? In the DWH or in the reporting tool? Does it matter which reporting tool we choose?

The great thing is that you can choose either. Snowflake, as an ansi-Standard SQL data warehouse, can support a high degree of data modeling and business logic. But you can also utilize partners like Looker and Sigma who specialize in data modeling for BI. We think it’s best that the customer chooses what is right for them.

Data Science Blog: Snowflake enables organizations to store and manage their data in the cloud. Does it mean companies lose control over their storage and data management?

Customers have complete control over their data, and in fact Snowflake cannot see, alter or change any aspect of their data. The benefit of a cloud solution is that customers don’t have to manage the infrastructure or the tuning – they decide how they want to store and analyze their data and Snowflake takes care of the rest.

Data Science Blog: How big is the effort for smaller and medium sized companies to set up a DWH in the cloud? Does this have to be an expensive long-term project in every case?

The nice thing about Snowflake is that you can get started with a free trial in a few minutes. Now, moving from a traditional data warehouse to Snowflake can take some time, depending on the legacy technology that you are using. But Snowflake itself is quite easy to set up and very much compatible with historical tools making it relatively easy to move over.

OLAP-Würfel

Der OLAP-Würfel

Alles ist relativ! So auch die Anforderungen an Datenbanksysteme. Je nachdem welche Arbeitskollegen/innen dazu gefragt werden, können unterschiedliche Wünschen und Anforderungen an Datenbanksysteme dabei zu Tage kommen.

Die optimale Ausrichtung des Datenbanksystems auf seine spezielle Anwendung hin, setzt den Grundstein für eine performante und effizientes Informationssystem und sollte daher wohl überlegt sein. Eine klassische Unterscheidung für die Anwendung von Datenbanksystemen lässt sich hierbei zwischen OLTP (Online Transaction Processing) und OLAP (Online Analytical Processing) machen.

OLTP-Datenbanksysteme zeichnen sich insbesondere durch die direkte Verarbeitung bei hohem Durchsatz von Transaktionen, sowie den parallelen Zugriff auf Informationen aus und werden daher vor allem für die Erfassung von operativen Geschäftsfällen eingesetzt. Im Gegensatz zu OLTP-Systemen steht bei OLAP-Systemen die analytische Verarbeitung von großen Datenbeständen im Vordergrund. Die folgende Grafik veranschaulicht das Zusammenwirken von OLTP und OLAP.

Da OLAP-Systeme eine mehrdimensionale und subjektbezogen Datenstruktur aufweisen, können statistisch-analytische Verarbeitungen auf diese Datenmengen effizient angewandt werden. Basierend auf dem Sternen-Schema, werden in diesem Zusammenhang häufig sogenannte OLAP-Würfel (engl. „Cube“) verwendet, welcher die Grundlage für multidimensionale Analysen bildet. Im Folgenden werden wir den OLAP-Würfel etwas näher beleuchten.

Aufbau des OLAP-Würfels

Der OLAP-Würfel ist eine Zusammensetzung aus multidimensionale Datenarrays. Die logische Anordnung der Daten über mehrere Dimensionen erlaubt dem Benutzer verschiedene Ansichten auf die Daten in gleicher Weise zu erlangen. Der Begriff „Würfel“ („Cube“) referenziert hierbei auf die Darstellung eines OLAP-Würfels mit drei Dimensionen. OLAP-Würfel mit mehr als drei Dimensionen werden daher auch „Hypercubes“ genannt.

Die Achsen des Würfels entsprechen den Dimensionen, also den Attributen/ Eigenschaften des Würfels, welche den Würfel aufspannen. Typische Dimensionen sind: Produkt, Ort und Zeit.

Die Zellen im Schnittpunkt der Koordinaten entsprechen den Kennzahlen auch Maßzahlen (engl. „measures“) genannt. Die Kennzahlen stehen im Mittelpunkt der Datenanalyse und können sowohl Basisgrößen (atomare Werte) als auch abgeleitete Zahlen (berechnete Werte) sein. Oftmals handelt es sich bei den Kennzahlen um numerische Werte wie z.B.: Umsatz, Kosten und Gewinn.

Hierarchien beschreiben eine logische Struktur einzelner Elemente in den Dimensionen und nehmen dabei meist ein hierarchisches Schema an z.B.:  Tag -> Monat -> Jahr ->TOP. Die Werte der jeweils übergeordneten Elemente ergeben sich meistens aus einer Konsolidierung aller untergeordneten Elemente. Das größte Element „TOP“ steht dabei für „alles“ und fasst somit die gesamten Elemente der Dimension zusammen.

Je nachdem in welcher Detailstufe, auch Granularität genannt, die Kennzahlen der einzelnen Dimensionen vorliegen, können verschiedene Würfel-Operationen für Daten bis auf der kleinsten Ebenen ausgeführt werden wie z.B.: einzelne Transaktionen in einer Geschäftsstellen für einen bestimmten Tag betrachten. Bei der Wahl der Granularität ist jedoch unbedingt der Zweck sowie die Leistungsfähigkeit der Datenbank mit zu Berücksichtigen.

 

 

 

 

 

Operationen des OLAP-Würfels

Für die Auswertung von OLAP-Würfeln haben sich spezielle Operationsbezeichnungen durchgesetzt, welche im Folgenden mit grafischen Beispielen vorgestellt werden.

Die Slice Operation wird durch die Selektion bzw. Einschränkung einer Dimension auf ein Dimensionselement erwirkt. In dem hier aufgezeigten Beispiel wird durch das Selektieren auf die Produktsparte „Anzüge“,die entsprechende Scheibe aus dem Würfel „herausgeschnitten“.

 

 

 

 

 

 

 


Bei der Dice-Operation wird der Würfel auf mehreren Dimensionen, durch eine Menge von Dimensionselementen eingeschränkt. Als Resultat ergibt sich ein neuer verkleinerter, mehrdimensionaler Datenraum. Das Beispiel zeigt, wie der Würfel auf die Zeit-Dimensionselemente: „Q1 „und „Q2“ sowie die Produkt- Dimensionselemente: „Anzüge“ und „Hosen“ beschränkt wird.

 

 

 

 

 


Mit der Pivotiting/Rotation-Operation wird der Würfel um die eigene Achse rotiert. Diese Operation ermöglicht dem Benutzer unterschiedliche Sichten auf die Daten zu erhalten, da neue Kombinationen von Dimensionen sichtbar werden.

Im abgebildeten Beispiel wird der Datenwürfel nach rechts und um die Zeitachse gedreht. Die dadurch sichtbar gewordene Kombination von Ländern und Zeit ermöglicht dem Benutzer eine neue Sicht auf den Datenwürfel.


Die Operationen: Drill-down oder Drill-up werden benutzt, um durch die Hierarchien der Dimensionen zu navigieren. Je nach Anwendung verdichten sich die Daten bei der Drill-up Operation, während die Drill-down Operation einen höheren Detailgrad ermöglicht.

Beispiel werden die Dimensionen auf die jeweils höchste Klassifikationsstufe verdichtet. Das Ergebnis zeigt das TOP-Element der aggregierten Daten, mit einem Wert von 9267 €.


Technische Umsetzung

In den meisten Fällen werden OLAP-Systeme oberhalb des Data Warehouses platziert und nutzen dieses als Datenquelle.  Für die Datenspeicherung wird vor allem zwischen den klassischen Konzepten „MOLAP“ und „ROLAP“ unterschieden. Die folgende Gegenüberstellung, zeigt die wesentlichen Unterschiede der beiden Konzepte auf.

ROLAP

MOLAP

Bedeutung
Relationales-OLAP Multidimensionales-OLAP
Datenspeicherung
Daten liegen in relationalen Datenbanken vor. Daten werden in multidimensionalen Datenbanken als Datenwürfel gespeichert
Daten Form
Relationale Tabellen Multidimensionale Arrays
Datenvolumen
Hohes Datenvolumen und hohe Nutzerzahl Mittleres Datenvolum, da Detaildaten in komprimiertem Format vorliegen
Technologie
Benötigt Komplexe SQL Abfragen, um Daten zu beziehen Vorberechneter Datenwürfel hält Aggregationen vor
Skalierbarkeit
Beliebig Eingeschränkt
Antwortgeschwindigkeit
Langsam Schnell

Fazit

OLAP Würfel können effizient dafür genutzt werden, Informationen in logische Strukturen zu speichern. Die Dimensionierung sowie der Aufbau von logischen Hierarchien, erlauben dem Benutzer ein intuitives Navigieren und Betrachten des Datenbestandes. Durch die Vorberechnung der Aggregationen bei MOLAP-Systemen, können sehr komplexe Analyseabfragen mit hoher Geschwindigkeit und unabhängig von der Datenquelle durchgeführt werden. Für die betriebliche Datenanalyse ist die Nutzung des Datenwürfels insbesondere für fortgeschrittene Datenanalyse, daher eine enorme Bereicherung.

Business Intelligence Organizations

I am often asked how the Business Intelligence department should be set up and how it should interact and collaborate with other departments. First and foremost: There is no magic recipe here, but every company must find the right organization for itself.

Before we can talk about organization of BI, we need to have a clear definition of roles for team members within a BI department.

A Data Engineer (also Database Developer) uses databases to save structured, semi-structured and unstructured data. He or she is responsible for data cleaning, data availability, data models and also for the database performance. Furthermore, a good Data Engineer has at least basic knowledge about data security and data privacy. A Data Engineer uses SQL and NoSQL-Technologies.

A Data Analyst (also BI Analyst or BI Consultant) uses the data delivered by the Data Engineer to create or adjust data models and implementing business logic in those data models and BI dashboards. He or she needs to understand the needs of the business. This job requires good communication and consulting skills as well as good developing skills in SQL and BI Tools such like MS Power BI, Tableau or Qlik.

A Business Analyst (also Business Data Analyst) is a person form any business department who has basic knowledge in data analysis. He or she has good knowledge in MS Excel and at least basic knowledge in data analysis and BI Tools. A Business Analyst will not create data models in databases but uses existing data models to create dashboards or to adjust existing data analysis applications. Good Business Analyst have SQL Skills.

A Data Scientist is a Data Analyst with extended skills in statistics and machine learning. He or she can use very specific tools and analytical methods for finding pattern in unknow or big data (Data Mining) or to predict events based on pattern calculated by using historized data (Predictive Analytics). Data Scientists work mostly with Python or R programming.

Organization Type 1 – Central Approach (Data Lab)

The first type of organization is the data lab approach. This organization form is easy to manage because it’s focused and therefore clear in terms of budgeting. The data delivery is done centrally by experts and their method and technology knowledge. Consequently, the quality expectation of data delivery and data analysis as well as the whole development process is highest here. Also the data governance is simple and the responsibilities clearly adjustable. Not to be underestimated is the aspect of recruiting, because new employees and qualified applicants like to join a central team of experts.

However, this form of organization requires that the company has the right working attitude, especially in the business intelligence department. A centralized business intelligence department acts as a shared service. Accordingly, customer-oriented thinking becomes a prerequisite for the company’s success – and customers here are the other departments that need access to the capacities of those centralized data experts. Communication boundaries must be overcome and ways of simple and effective communication must be found.

Organization Type 2 – Stakeholder Focus Approach

Other companies want to shift more responsibility for data governance, and especially data use and analytics, to those departments where data plays a key role right now. A central business intelligence department manages its own projects, which have a meaning for the entire company. The specialist departments, which have a special need for data analysis, have their own data experts who carry out critical projects for the specialist department. The central Business Intelligence department does not only provide the technical delivery of data, but also through methodical consulting. Although most of the responsibility lies with the Business Intelligence department, some other data-focused departments are at least co-responsible.

The advantage is obvious: There are special data experts who work deeper in the actual departments and feel more connected and responsible to them. The technical-business focus lies on pain points of the company.

However, this form of Ogranization also has decisive disadvantages: The danger of developing isolated solutions that are so special in some specific areas that they will not really work company-wide increases. Typically the company has to deal with asymmetrical growth of data analytics
know-how. Managing data governance is more complex and recruitment is becoming more difficult as the business intelligence department is weakened and smaller, and data professionals for other departments need to have more business focus, which means they are looking for more specialized profiles.

Organization Type 3 – Decentral Approach

Some companies are also taking a more extreme approach in the other direction. The Business Intelligence department now has only Data Engineers building and maintaining the data warehouse or data lake. As a result, the central department only provides data; it is used and analyzed in all other departments, specifically for the respective applications.

The advantage lies in the personal responsibility of the respective departments as „pain points“ of the company are in focus in belief that business departments know their problems and solutions better than any other department does. Highly specialized data experts can understand colleagues of their own department well and there is no no shared service mindset neccessary, except for the data delivery.

Of course, this organizational form has clear disadvantages since many isolated solutions are unavoidable and the development process of each data-driven solution will be inefficient. These insular solutions may work with luck for your own department, but not for the whole company. There is no one single source of truth. The recruiting process is more difficult as it requires more specialized data experts with more business background. We have to expect an asymmetrical growth of data analytics know-how and a difficult data governance.

 

Data Leader Days 2018

Daten bilden das Fundament der digitalen Transformation. Die richtige Nutzung von Daten entwickelt sich daher zu einer Kernkompetenz und macht im Wettbewerb den Unterschied. Dies gilt sowohl für ganz Unternehmen als auch für einzelne Mitarbeiter, die mit Datennutzung ihre Karriere vorantreiben können.

Erfahrungen von Pionieren und führenden Anwenderunternehmen sind dafür unverzichtbar. Mit den Data Leader Days am 14. und 15. November 2018 in der Digital-Hauptstadt Berlin haben Sie die Chance, direkt von Spitzenkräften aus der Wirtschaft zu lernen und wichtige Impulse für Ihre digitale Weiterentwicklung zu erhalten.

Die Data Leader Days sind das Entscheider-Event für die Datenwirtschaft, das den Schwerpunkt auf die tatsächlichen Nutzer und Anwender-Unternehmen legt. Die Fachkonferenz hat sich seit Gründung im Jahr 2016 als eines der exklusivsten Events rund um die Themen Big Data und künstliche Intelligenz etabliert. In diesem Jahr werden die Data Leader Days erstmalig auf zwei Tage mit unterschiedlichen Schwerpunkten erweitert:

14. November 2018: Commercial & Finance Data

15. November 2018: Industrial & Automotive Data

Agenda

Die Agenda ist stets aktuell direkt auf www.dataleaderdays.com zu finden.

Sponsoren

Speaker der Data Leader Days 2018

 

 

Anmeldung

Die Data Leader Days finden dieses Jahr zum dritten Mal statt und haben sich zur Pflichtveranstaltung für Geschäftsführer, Führungskräfte und Professionals aus den Bereichen IT, Business Intelligence und Data Analytics etabliert und empfehlen sich ebenfalls für Leiter der Funktionsbereiche Einkauf, Produktion, Marketing und Finance, die das hier brachliegende Potenzial ausschöpfen wollen.

Zum Event anmelden können sich Teilnehmer direkt auf www.dataleaderdays.com oder via Xing.com (Klick).