Maschinelles Lernen: Parametrisierte und nicht-parametrisierte Verfahren

Das ist Artikel 3 von 4 aus der Artikelserie – Was ist eigentlich Machine Learning?

Maschinelle Lernverfahren können voneinander unterschiedlich abgegrenzt werden, die den meisten Einsteigern bekannte Abgrenzung ist die zwischen überwachten und unüberwachten Verfahren. Eine weitere Abgrenzung zwischen den Lernverfahren, die weit weniger bekannt und verständlich ist, und um die es in diesem Artikel der Reihe gehen soll, ist die Unterscheidung in parametrisierte und nicht parametrisierte Lernverfahren. Gleich vorweg: Parametrisiert und nicht-parametrisierte bezieht sich auf das Modell (Trainingsergebnis), nicht auf die Algorithmen selbst (also nicht Parameter wie k-Werte, Iterations-, Gewichtungs- oder Regularisierungs-Parameter).

Parametrisierte Lernverfahren (parametric learning)

Parametrisierte Lernverfahren sind solche, die über ein Training mit sogenannten Trainingsdaten eine Funktion mit festen Parametern entwickeln, beispielsweise y = f(x) = x³ * a + x² * b + x *c + d. Diese Funktion hat dank einer festgesetzten Anzahl an Parametern eine feste Struktur, und genau dieser Fakt der Parameter-Struktur-Bestimmung a-priori macht das Lernverfahren zu einem parametrischen Lernverfahren. Nach dem Training stehen die Sturkur und die Parameter-Werte fest, beispielsweise y = x³ * 32 + x² * -4 + x * 2 + 102. Diese Funktion beschreibt den Zusammenhang zwischen dem Input x und dem Output y. Am einfachsten kann man sich das Prinzip des parametrischen Lernens demnach mit der Regression vorstellen: Eine Gerade oder eine Kurve wird über ein Trainingslauf durch eine Punktwolke gezogen und daraus die Funktion abgeleitet. Bei der Prädiktion wird diese Funktion dann dazu verwendet, mit den neuen Input-Werten den Output zu berechnen.

Mit dem Festsetzen der Struktur der Funktion bereits vor dem Training sind einige Vor- und Nachteile verbunden:

Parametrische Lernverfahren sind manchmal etwas einfacher zu verstehen, da sich das Modell durchweg als “feste” Formel betrachten lässt. Dieser Vorteil ist jedoch gleichermaßen eine Einschränkung, denn parametrische Verfahren sind eher dazu geeignet, einfachere Zusammenhänge (mit nicht all zu vielen Dimensionen) zu berechnen. Dafür läuft das Training und vor allem die Prädiktion bei parametrischen Verfahren sehr viel schneller ab, als es bei nicht-parametrischen Verfahren der Fall ist, immerhin müssen die Eingabewerte bei der Prädiktion nur in die Funktion mit bekannter Struktur eingefügt und ausgerechnet werden. Man kann sich also merken: Beim parametrischen Lernen stehen die Parameter vorher fest, beim Training werden nur die “richtigen” Werte für die Parameter gefunden.

Schlussendlich kann generell gesagt werden, dass parametrische Funktionen weniger Datenpunkte als nicht-parametrische Lernverfahren benötigen und bei weniger Daten bessere Ergebnisse liefern. Bei sehr großen Datenmengen werden parametrische Funktionen eher schlechter gegenüber nicht-parametrischen Verfahren und neigen etwas zur Unteranpassung.

Zu den parametrischen Lernverfahren gehören:

  • Lineare und nicht-lineare Regression
  • Lineare Diskriminazanalyse
  • Logistische Regression
  • Naive Bayes Klassifikation
  • einfache künstliche neuronale Netze (z. B. MLP)
  • lineare Support Vector Machines (SVM)

Nicht-parametrisierte Lernverfahren (nonparametric learning)

Spricht man vom nicht-parametrisierten Lernen, ist die Verwirrung eigentlich vorprogrammiert, denn es bedeutet keinesfalls, dass es keine Parameter gibt, ganz im Gegenteil! Nicht-parametrische Verfahren arbeiten in aller Regel mit sehr viel mehr Parametern als die parametrischen Verfahren. Und nicht-parametrische Verfahren sind häufig dann im Einsatz, wenn die Anzahl an Daten und Dimensionen sehr groß ist und wenn nicht klar ist, welche Dimensionen voneinander unabhängig sind, aber in Abhängigkeit mit dem Klassifikations-/Regressionsergebnis stehen.

Auch nicht-parametrische Lernverfahren entwickeln eine Funktion, die den Zusammenhang zwischen dem Input und dem Output beschreibt. Jedoch wird die Struktur der Funktion vor dem Training nicht konkret über eine bestimmte Anzahl an Parametern festgelegt. Die Anzahl an Parametern wird erst zur Laufzeit des Trainings bestimmt und hier könnte jede neue Zeile in der Tabelle der Trainingsdaten einen neuen Parameter bedeuten (also beispielsweise dazu führen, dass ein neuer Ast eines Entscheidungsbaumes entsteht – oder auch nicht!).

Die Modellstruktur wird nicht über eine Funktion mit festen Parametern festgelegt, sondern bei jeder Prädiktion aus den Daten ermittelt. Tendenziell neigen nicht-parametrisierte Verfahren etwas mehr zur Überanpassung als parametrisierte Verfahren.

Zu den nicht-parametrisierten Lernverfahren gehören:

  • k-nächste Nachbarn Klassifikation/Regression
  • Entscheidungsbaum Klassifikation/Regression
  • Nicht-lineare Support Vector Machines (RBF Kernel SVM)

Kleiner Abgleich des Verständnisses

Der Unterschied zwischen parametrisierten und nicht-parametrisierten Verfahren wird so häufig falsch verstanden, dass es sich lohnt, etwas Zeit in eine kleine Wiederholung zu investieren, jedoch aus der FAQ-Perspektive:

Warum ist die Regressionsanalyse ein parametrisiertes Lernverfahren?

Bei der klassischen Regressionsrechnung müssen wir noch vor dem Training festlegen, über welche Funktion wir trainieren wollen. Eine lineare Funktion wie y = x * a + b? Oder doch lieber eine nicht-lineare Funktion wie y = x² * a + x * b + c? Die Struktur der Funktion, mit der wir die Punktwolke beschreiben möchten und mit der wir dann im Nachgang Prädiktionen für unbekannte x-Werte berechnen möchten, muss vor dem Training bestimmt werden.

Warum ist die k-nächste-Nachbarn-Bestimmung ein nicht-parametrisiertes Lernverfahren?

Hierbei handelt es sich um ein Lernen durch Ähnlichkeitsanalyse. Es werden gelabelte Datenpunkte gesammelt und erst bei der Prädiktion wird die multidimensionale Ähnlichkeit des neuen Datenpunktes mit den bekannten Datenpunkten bestimmt (Matrizen-Bildung über Distanzen zwischen den Datenpunkten im multidimensionalen Vektorraum). Das Modell lässt sich vorher nicht mal adäquat bestimmen.

Das Modell liegt sozusagen in den Daten. Der k-nächste-Nachbarn-Algorithmus (k-nN) zählt deshalb übrigens nicht nur zum nicht-parametrisierten Lernen, sondern ist darüber hinaus auch noch ein instanzbasiertes Lernen (Lazy Learning).

Warum sind Entscheidungsbäume nicht-parametrisierte Lernverfahren?

Entscheidungsbäume entwerfen Funktionen, die eine auf das Ergebnis bezogene Datenverteilung beschreiben. Jedoch wird vor der Entstehung dieses Modells (also vor dem Training) nicht die Anzahl der Parameter vorgegeben. Zwar ist es üblich, eine maximale Tiefe des Baumes vorzugeben (auch um Überanpassung zu vermeiden),  das Modell (die Struktur des Baumes) hängt jedoch von den Daten ab.

Warum ist Naive Bayes Klassifikation ein parametrisiertes Lernverfahren?

Naive Bayes Klassifikation gilt grundsätzlich als ein parametrisches Lernverfahren. Der Klassifikator errechnet eine Wahrscheinlichkeit, einer bestimmten Klasse zugehörig zu sein, über ein Produkt aus Wahrscheinlichkeiten des Auftretens voneinander (naive) unabhängiger Eingaben (x1, x2,… xn), in der Regel als multinominales Vokabular. Jede Eingabe (eindeutiges Element aus dem Vokabular) ist im Grunde eine Dimension und stellt einen Parameter dar, der im Vorfeld bekannt sein muss.

Es gibt allerdings auch Abwandlungen des Naive Bayes Klassifikators, bei denen mit Dichteschätzungen (1D Kernel Dichteschätzung) gerechnet wird, dann haben wir es wiederum mit Parametern zutun, die erst während der Trainingsphase entstehen.

Warum können Support Vector Machines sowohl parametrisierte als auch nicht-parametrisierte Lernverfahren darstellen?

Bei der linearen SVM werden die Werte der Parameter einer linearen Funktion (= feste Anzahl an Parametern) berechnet, die zwei Klassen linear trennt. Bei der nicht-linearen Klassentrennung funktioniert das leider nicht so einfach und es müssen kompliziertere Verfahren verwendet werden. Die bekannteste ist die Radial Basis Function Kernel-basierte SVM. Bei dieser RBF Kernel SVM wird eine Matrix über berechnete Distanzen zwischen den Datenpunkten erstellt und als Parameter verwendet. Da diese Parameter-Anzahl von den Daten abhängt, haben wir es mit einer nicht-parametrisierten Methode zutun (ähnlich wie beim k-nN).

Data Science Modeling and Featurization

Overview

Data modeling is an essential part of the data science pipeline. This, combined with the fact that it is a very rewarding process, makes it the one that often receives the most attention among data science learners. However, things are not as simple as they may seem, since there is much more to it than applying a function from a particular class of a package and applying it on the data available.

A big part of data science modeling involves evaluating a model, for example, making sure that it is robust and therefore reliable. Also, data science modeling is closely linked to creating an information rich feature set. Moreover, it entails a variety of other processes that ensure that the data at hand is harnessed as much as possible.

What Is a Robust Data Model?

When it comes to robust models, worthy of making it to production, these need to tick several boxes. First of all, they need to have a good performance, based on various metrics. Oftentimes a single metric can be misleading, as how well a model performs has many aspects, especially for classification problems.

In addition, a robust model has good generalization. This means that the model performs well for various datasets, not just the one it has been trained on.

Sensitivity analysis is another aspect of a data science modeling, something essential for thoroughly testing a model to ensure it is robust enough. Sensitivity is a condition whereby a model’s output is bound to change significantly if the inputs change even slightly. This is quite undesirable and needs to be checked since a robust model ought to be stable.

Finally, interpretability is an important aspect too, though it’s not always possible. This has to do with how easy it is to interpret a model’s results. Many modern models, however, are more like black boxes, making it particularly difficult to interpret them. Nevertheless, it is often preferable to opt for an interpretable model, especially if we need to defend its outputs to others.

How Is Featurization Accomplished?

In order for a model to maximize its potential, it needs an information rich set of features. The latter can be created in various ways. Whatever the case, cleaning up the data is a prerequisite. This involves removing or correcting problematic data points, filling in missing values wherever possible, and in some cases removing noisy variables.

Before you can use variables in a model, you need to perform normalization on them. This is usually accomplished through a linear transformation ensuring that the variable’s values are around a certain range. Oftentimes, normalization is sufficient for turning your variables into features, once they are cleaned.

Binning is another process that can aid in featurization. This entails creating nominal (discreet) variables, which can in turn be broken down into binary features, to be used in a data model.

Finally, some dimensionality reduction method (e.g. PCA) can be instrumental in shaping up your feature-set. This has to do with creating linear combinations of features, aka meta-features, which express the same information in fewer dimensions.

Some Useful Considerations

Beyond these basic attributes of data science modeling there several more that every data scientist has in mind in order to create something of value from the available data. Things like in-depth testing using sensitivity analysis, specialized sampling, and various aspects of model performance (as well as tweaking the model to optimize for a particular performance metric) are parts of data science modeling that require meticulous study and ample practice. After all, even though this part of data science is fairly easy to pick up, it takes a while to master, while performing well in it is something that every organization can benefit from.

Resources

To delve more into all this, there are various relevant resources you can leverage, helping you in not just the methodologies involved but also in the mindset behind them. Here are two of the most useful ones.

  1. Data Science Modeling Tutorial on the Safari platform
  2. Data Science Mindset, Methodologies and Misconceptions book (Technics Publications)

Maschinelles Lernen: Klassifikation vs Regression

Das ist Artikel 2 von 4 aus der Artikelserie – Was ist eigentlich Machine Learning? Die Unterscheidung zwischen Klassifikation und Regression ist ein wichtiger Schritt für das Verständnis von Predictive Analytics. Nun möchte ich eine Erklärung liefern, die den Unterschied (hoffentlich) deutlich macht.

Regression – Die Vorhersage von stetigen Werten

Wir suchen bei der Regression demnach eine Funktion y = \alpha \cdot x + \beta, die unsere Punktwolke – mit der wir uns zutrauen, Vorhersagen über die abhängige Variable vornehmen zu können – möglichst gut beschreibt. Dabei ist y der Zielwert (abhängige Variable) und x der Eingabewert. Wir arbeiten also in einer zwei-dimensionalen Welt. Variablen, die die Funktion mathematisch definieren, werden oft als griechische Buchstaben darsgestellt. Die Variable \alpha (Alpha) ist der y-Achsenschnitt bei x = 0. Dieser wird als Bias, selten auch als Default-Wert, bezeichnet. Der Bias ist also der Wert, wenn die x-Eingabe gleich Null ist. Eine weitere Variable \beta (Beta) beschreibt die Steigung.

Ferner ist zu beachten, dass sich eine Punktwolke durch eine Gerade nie perfekt beschreiben lässt, und daher für jedes x_{i} ein Fehler \varepsilon_{i} existiert. Diesen Fehler wollen wir in diesem Artikel ignorieren.

In einem zwei-dimensionalen System (eine Eingabe und eine Ausgabe) sprechen wir von einer einfachen Regression. Generalisieren wir die Regressionsmethode auf ein multivariates System (mehr als eine Eingabe-Variable), werden die Variablen in der Regel nicht mehr als griechische Buchstaben (denn auch das griechische Alphabet ist endlich) dargestellt, sondern wir nehmen eines abstrahierende Darstellung über Gewichtungen (weights). Dies ist eine sehr treffende Symbolisierungen, denn sowohl der Bias (w_{0} statt \alpha) als auch die Steigungen (w_{1\ldots n}) sind nichts anderes als Gewichtungen zwischen den Eingaben.

    \[y = w_{0} \cdot x_{0} + w_{1} \cdot x_{1} + \ldots + w_{n} \cdot x_{n}\]

y ist eine Summe aus den jeweiligen Produkten aus x_{i} und w_{i}. Verkürzt ausgedrückt:

    \[y = \sum_{i=0}^n w_{i} \cdot x_{i}\]

Noch kürzer ausgedrückt:

    \[y = w^T \cdot x\]

Anmerkung: Das hochgestellte T steht für Transponieren, eine Notation aus der linearen Algebra, die im Ergebnis nichts anderes bewirkt als y = \sum_{i=0}^n w_{i} \cdot x_{i}.

Diese mathematische lineare Funktion kann wie folgt abgebildet werden:

Der Output ist gleich y bzw. die Ausgabe der Nettoeingabe (Net Sum) w^T \cdot x. Auf der linken Seite finden wir alle Eingabewerte, wobei der erste Wert statisch mit 1.0 belegt ist, nur für den Zweck, den Bias (w_{0}) in der Nettoeingabe aufrecht zu erhalten. Im Falle einer einfachen linearen Regression hätten wir also eine Funktion mit zwei Gewichten: y = 1 \cdot w_{0} + x \cdot w_{1}

Das Modell beschreibt, wie aus einer Reihe von Eingabewerten (n = Anzahl an x-Dimensionen) und einer Reihe von Gewichtungen (n + 1) eine Funktion entsteht, die einen y-Wert berechnet. Diese Berechnung wird auch als Forward-Propagation bezeichnet.
Doch welche Werte brauchen wir für die Gewichtungen, damit bei gegebenen x-Werten ein (mehr oder weniger) korrekter y-Wert berechnet wird? Anders gefragt, wie schaffen wir es, dass die Forward-Propagation die richtigen Werte ausspuckt?

Mit einem Training via Backpropagation!


Einfache Erklärung der Backpropagation

Die Backpropagation ist ein Optimierungsverfahren, unter Einsatz der Gradientenmethode, den Fehler einer Forward-Propagation zu berechnen und die Gewichtungen in Gegenrichtung des Fehlers anzupassen. Optimiert wird in der Form, dass der Fehler minimiert wird. Es ist ein iteratives Verfahren, bei dem mit jedem Iterationsschritt wieder eine Forward-Propagation auf Basis von Trainingsdaten durchgeführt wird und die Prädiktionsergebnisse mit den vorgegebenen Ergebnissen (der gekennzeichneten Trainingsdaten) verglichen und damit die Fehler berechnet werden. Die resultierende Fehlerfunktion ist konvex, ableitbar und hat ein zentrales globales Minimum. Dieses Minimum finden wir durch diese iterative Vorgehensweise.


Die Backpropagation zu erklären, erfordert einen separaten Artikel. Merken wir uns einfach: Die Backpropagation nutzt eine Fehlerfunktion, um die Werte der Gewichtungen schrittweise entgegen des Fehlers (bei jeder Forward-Propagation) bis zu einem Punkt anzupassen, bis keine wesentliche Verbesserung (Reduzierung des Fehlers) mehr eintritt. Nach dem Vollzug der Backpropagation erhalten wir die “richtigen” Gewichtungen und haben eine Funktion zur Vorhersage von y-Werten bei Eingabe neuer x-Werte.

Klassifikation – Die Vorhersage von Gruppenzugehörigkeiten

Bei der Klassifikation möchten wir jedoch keine Gerade oder Kurve vorhersagen, die sich durch eine Punktwolke legt, sondern wie möchten Punktwolken voneinander als Klassen unterscheiden, um später hinzukommende Punkte ihren richtigen Klassen zuweisen zu können (Klassifikation). Wir können jedoch auf dem vorherigen Modell der Prädiktion von stetigen Werten aufbauen und auch die Backpropagation zum Training einsetzen, möchten das Training dann jedoch auf die Trennung der Punktwolken ausrichten.

Hinweis: Regressions- und Klassifikationsherausforderungen werden in den Dimensionen unterschiedlich dargestellt. Zur Veranschaulichung: Während wir bei der einfachen Regression eine x-Eingabe als unabhängige Variable und eine y-Ausgabe als abhängige Variable haben, haben wir bei einer zwei-dimensionalen Klassifikation zwei x-Dimensionen als Eingabe. Die Klassen sind die y-Ausgabe (hier als Farben visualisiert).

Ergänzen wir das Modell nun um eine Aktivierungsfunktion, dass die stetigen Werte der Nettosumme über eine Funktion in Klassen unterteilt, erhalten wir einen Klassifikator: Den Perceptron-Klassifikator. Das Perzeptron gilt als der einfachste Klassifikator und ist bereits die kleinste Form eines künstlichen neuronalen Netzes. Es funktioniert nur bei linearer Trennbarkeit der Klassen.

Was soll die Aktivierungsfunktion bewirken? Wir berechnen wieder eine Nettoeingabe w^T \cdot x, die uns stetige Werte ausgiebt. Wir haben also immer noch unsere Gewichtungen, die wir trainieren können. Nun trainieren wir nur nicht auf eine “korrekte” stetige Ausgabe der Nettoeingabe hin, sondern auf eine korrekte Ausgabe der Aktivierungsfunktion \phi (Phi), die uns die stetigen Werte der Nettoeingabe in einen binären Wert (z. B. 0 oder 1) umwandelt. Das Perzeptron ist die kleinste Form des künstlichen neuronalen Netzes und funktioniert wie der lineare Regressor, jedoch ergänzt um eine Aktivierungsfunktion die bewirken soll, dass ein Neuron (hier: der einzelne Output) “feuert” oder nicht “feuert”.  Es ist ein binärer Klassifikator, der beispielsweise die Wertebereiche -1 oder +1 annehmen kann.

Das Perceptron verwendet die einfachste Form der Aktivierungsfunktion: Eine Sprungfunktion, die einer einfachen if… else… Anweisung gleich kommt.

    \[ y = \phi(w^T \cdot x) = \left\{ \begin{array}{12} 1  &  w^T \cdot x > 0\\ -1 & \text{otherwise} \end{array} \]

Fazit – Unterschied zwischen Klassifikation und Regression

Mathematisch müssen sich Regression und Klassifikation gar nicht all zu sehr voneinander unterscheiden. Viele Verfahren der Klassifikation lassen sich mit nur wenig Anpassung auch zur Regression anwenden, oder umgekehrt. Künstliche neuronale Netze, k-nächste-Nachbarn und Entscheidungsbäume sind gute Beispiele, die in der Praxis sowohl für Klassifkation als auch für Regression eingesetzt werden, natürlich mit unterschiedlichen Stärken und Schwächen.

Unterschiedlich ist jedoch der Zweck der Anwendung: Bei der Regression möchten wir stetige Werte vorhersagen (z. B. Temperatur der Maschine), bei der Klassifikation hingegen Klassen unterscheiden (z. B. Maschine überhitzt oder überhitzt nicht).

Unterschiede zwischen linearer und nicht-linearer Klassifikation und linearer und nicht-linearer Regression. Für Einsteiger in diese Thematik ist beachten, dass jede maschinell erlernte Klassifikation und Regression einen gewissen Fehler hat, der unter Betrachtung der Trainings- und Testdaten zu minimieren ist, jedoch nie ganz verschwindet.

Und Clustering?

Clustering ist eine Disziplin des unüberwachten Lernens, um Gruppen von Klassen bzw. Grenzen dieser Klassen innerhalb von unbekannten Daten zu finden. Es ist im Prinzip eine untrainierte Klassifikation zum Zwecke des Data Minings. Clustering gehört auch zum maschinellen Lernen, ist aber kein Predictive Analytics. Da keine – mit dem gewünschten Ergebnis vorliegende – Trainingsdaten vorliegen, kann auch kein Training über eine Backpropagation erfolgen. Clustering ist folglich eine schwache Klassifikation, die mit den trainingsbasierten Klassifikationsverfahren nicht funktioniert.

ID3-Algorithmus: Ein Rechenbeispiel

Dieser Artikel ist Teil 3 von 4 der Artikelserie Maschinelles Lernen mit Entscheidungsbaumverfahren und nun wollen wir einen Entscheidungsbaum aus Daten herleiten, jedoch ohne Programmierung, sondern direkt auf Papier (bzw. HTML :-).

Folgender Datensatz sei gegeben:

Zeile Kundenart Zahlungsgeschwindigkeit Kauffrequenz Herkunft Zahlungsmittel: Rechnung?
 1  Neukunde  niedrig  niedrig  Inland  false
 2  Neukunde  niedrig  niedrig  Ausland  false
 3  Stammkunde  niedrig  niedrig  Inland  true
 4  Normalkunde  mittel  niedrig  Inland  true
 5  Normalkunde  hoch  hoch  Inland  true
 6  Normalkunde  hoch  hoch  Ausland  false
 7  Stammkunde  hoch  hoch  Ausland  true
 8  Neukunde  mittel  niedrig  Inland  false
 9  Neukunde  hoch  hoch  Inland  true
 10  Normalkunde  mittel  hoch  Inland  true
 11  Neukunde  mittel  hoch  Ausland  true
 12  Stammkunde  mittel  niedrig  Ausland  true
 13  Stammkunde  niedrig  hoch  Inland  true
 14  Normalkunde  mittel  niedrig  Ausland  false

Gleich vorweg ein Disclaimer: Der Datensatz ist natürlich überaus klein, ja gerade zu winzig. Dafür würden wir in der Praxis niemals einen Machine Learning Algorithmus einsetzen. Dennoch bleiben wir besser übersichtlich und nachvollziehbar mit diesen 14 Zeilen. Das Lernziel dieser Übung ist es, ein Gefühl für die Erstellung von Entscheidungsbäumen zu erhalten.
Zu beachten ist ferner, dass dieser Datensatz bereits aggregiert ist, denn eigentlich nummerisch abbildbare Daten wurden in Klassen zusammengefasst.

Das Ziel:

Der Datensatz spielt wieder, welchem Kunden (ID) bisher die Zahlung per Rechnung erlaubt und nicht widerrufen wurde. Das Ziel soll sein, eine Vorhersage darüber zu machen zu können, wann ein Kunde per Rechnung zahlen darf und wann nicht (dann per Vorkasse).

Der Algorithmus:

Wir verwenden den ID3-Algorithmus in seiner Reinform. Der ID3-Algorithmus ist der gängigste Algorithmus zum Aufbau datengetriebener Entscheidungsbäume und es gibt mehrere Abwandlungen. Die Vorgehensweise des Algorithmus wird in dem Teil 2 der Artikelserie Entscheidungsbaum-Algorithmus ID3 erläutert.

1. Schritt: Auswählen des Attributes mit dem höchsten Informationsgewinn

Der Informationsgewinn eines Attributes (A) im Sinne des ID3-Algorithmus ist die Differenz aus der Entropie (E(S)) (siehe Teil 1 der Artikelserie Entropie, ein Maß für die Unreinheit in Daten) des gesamten Datensatzes (S) und der Summe aus den gewichteten Entropien des Attributes für jeden einzelnen Wert (Value i), der im Attribut vorkommt:
IG(S, A) = H(S) - \sum_{i=1}^n \frac{\bigl|S_i\bigl|}{\bigl|S\bigl|} \cdot H(S_i)

1.1 Gesamt-Entropie des Datensatzes berechnen

Erstmal schauen wir uns die Entropie des gesamten Datensatzes an. Die Entropie bezieht sich dabei auf das gewünschte Klassifikationsergebnis, also ist die Zahlung via Rechnung erlaubt oder nicht? Diese Frage wird entweder mit true oder false beantwortet.

H(S) = - \frac{9}{14} \cdot \log_2(\frac{9}{14}) - \frac{5}{14} \cdot \log_2(\frac{5}{14})  = 0.94

1.2 Berechnung der Informationsgewinne aller Attribute

Berechnen wir nun also die Informationsgewinne über alle Spalten.

Attribut Subset Count(true) Count(false)
Kundenart “Neukunde” 2 3
“Stammkunde” 4 0
“Normalkunde” 3 2

Wir zerlegen den gesamten Datensatz gedanklich in drei Kategorien der Kundenart und berechnen die Entropie bezogen auf das Klassifikationsziel:

H(S_{Neukunde}) = - \frac{2}{5} \cdot \log_2(\frac{2}{5}) - \frac{3}{5} \cdot \log_2(\frac{3}{5})  = 0.97

H(S_{Stammkunde}) = - \frac{4}{4} \cdot \log_2(\frac{4}{4}) - \frac{0}{4} \cdot \log_2(\frac{0}{4})  = 0.00

H(S_{Normalkunde}) = - \frac{3}{5} \cdot \log_2(\frac{3}{5}) - \frac{2}{5} \cdot \log_2(\frac{2}{5})  = 0.97

Zur Erinnerung, der Informationsgewinn (Information Gain) wird wie folgt berechnet:

    \[ IG(S, A_{Kundenart}) =  - \sum_{i=1}^n \frac{\bigl|S_i\bigl|}{\bigl|S\bigl|} \cdot H(S_i) \]

Angewendet auf das Attribut “Kundenart”…

    \[ IG(S, A_{Kundenart}) =  H(S) - \frac{\bigl|S_{Neukunde}\bigl|}{\bigl|S\bigl|} \cdot H(S_{Neukunde}) - \frac{\bigl|S_{Stammkunde}\bigl|}{\bigl|S\bigl|} \cdot H(S_{Stammkunde}) - \frac{\bigl|S_{Normalkunde}\bigl|}{\bigl|S\bigl|} \cdot H(S_{Normalkunde}) \]

… erhalten wir der Formal nach folgenden Informationsgewinn:

    \[ IG(S, A_{Kundenart}) =  0.94 - \frac{5}{14} \cdot 0.97 - \frac{4}{14} \cdot 0.00 - \frac{5}{14} \cdot 0.97 = 0.247 \]

Nun für die weiteren Spalten:

Attribut Subset Count(true) Count(false)
Zahlungsgeschwindigkeit “niedrig” 2 2
“mittel” 4 2
“schnell” 3 1

Entropien für die “Zahlungsgeschwindigkeit”:

H(S_{niedrig}) = - \frac{2}{4} \cdot \log_2(\frac{2}{4}) - \frac{2}{4} \cdot \log_2(\frac{2}{4})  = 1.00

H(S_{mittel}) = - \frac{4}{6} \cdot \log_2(\frac{4}{6}) - \frac{2}{6} \cdot \log_2(\frac{2}{6})  = 0.92

H(S_{schnell}) = - \frac{3}{4} \cdot \log_2(\frac{3}{4}) - \frac{1}{4} \cdot \log_2(\frac{1}{4})  = 0.81

So berechnen wir wieder den Informationsgewinn:

    \[ IG(S, A_{Zahlungsgeschwindigkeit}) =  H(S) - \frac{\bigl|S_{niedrig}\bigl|}{\bigl|S\bigl|} \cdot H(S_{niedrig}) - \frac{\bigl|S_{mittel}\bigl|}{\bigl|S\bigl|} \cdot H(S_{mittel}) - \frac{\bigl|S_{schnell}\bigl|}{\bigl|S\bigl|} \cdot H(S_{schnell}) \]

Einsatzen und ausrechnen:

    \[ IG(S, A_{Zahlungsgeschwindigkeit}) =  0.94 - \frac{4}{14} \cdot 1.00 - \frac{6}{14} \cdot 0.92 - \frac{4}{14} \cdot 0.81 = 0.029 \]

Und nun für die Spalte “Kauffrequenz”:

Attribut Subset Count(true) Count(false)
Kauffrequenz “niedrig” 3 4
“hoch” 6 1

Entropien:

H(S_{niedrig}) = - \frac{3}{7} \cdot \log_2(\frac{3}{7}) - \frac{4}{7} \cdot \log_2(\frac{4}{7})  = 0.99

H(S_{hoch}) = - \frac{6}{7} \cdot \log_2(\frac{6}{7}) - \frac{1}{7} \cdot \log_2(\frac{1}{7})  = 0.59

Informationsgewinn:

    \[ IG(S, A_{Kauffrequenz}) =  H(S) - \frac{\bigl|S_{niedrig}\bigl|}{\bigl|S\bigl|} \cdot H(S_{niedrig}) - \frac{\bigl|S_{hoch}\bigl|}{\bigl|S\bigl|} \cdot H(S_{hoch}) \]

Einsetzen und Ausrechnen:

    \[ IG(S, A_{Kauffrequenz}) =  0.94 - \frac{7}{14} \cdot 1.00 - \frac{7}{14} \cdot 0.59 = 0.150 \]

Und last but not least die Spalte “Herkunft”:

Attribut Subset Count(true) Count(false)
Herkunft “Inland” 6 2
“Ausland” 3 3

Entropien:

H(S_{Inland}) = - \frac{6}{8} \cdot \log_2(\frac{6}{8}) - \frac{2}{8} \cdot \log_2(\frac{2}{8})  = 0.81

H(S_{Ausland}) = - \frac{3}{6} \cdot \log_2(\frac{3}{6}) - \frac{3}{6} \cdot \log_2(\frac{3}{6})  = 1.00

Informationsgewinn:

    \[ IG(S, A_{Herkunft}) =  H(S) - \frac{\bigl|S_{Inland}\bigl|}{\bigl|S\bigl|} \cdot H(S_{Inland}) - \frac{\bigl|S_{Ausland}\bigl|}{\bigl|S\bigl|} \cdot H(S_{Ausland}) \]

Einsetzen und Ausrechnen:

    \[ IG(S, A_{Herkunft}) =  0.94 - \frac{8}{14} \cdot 0.81 - \frac{6}{14} \cdot 1.00 = 0.05 \]

2. Schritt: Anlegen des Wurzel-Knotens

Der Informationsgewinn ist für das Attribut “Kundenart” am größten, daher entscheiden wir uns im Sinne des ID3-Algorithmus für dieses Attribut als Wurzel-Knoten.

3. Schritt: Rekursive Wiederholung (!!!)

Nun stellt sich natürlich die Frage: Wie geht es weiter?

Der Algorithmus kann eigentlich nur eines: Einen Wurzelknoten finden. Diesen Vorgang müssen wir nun nur noch rekursiv wiederholen, und das tun wir wie folgt.

Der Datensatz wurde bereits aufgeteilt in die drei Kundenarten. Für jede Kundenart ergibt sich jeweils ein Subset mit den verbleibenden Attributen. Für alle drei Subsets erstellen wir dann wieder einen Wurzelknoten, so dass ein neuer Ast entsteht.

3.1 Erster Rekursionsschritt

Machen wir also weiter und bestimmen wir das nächste Attribut nach der Kundenart, für die Fälle Kundenart = “Neukunde”:

Zeile Kundenart Zahlungsgeschwindigkeit Kauffrequenz Herkunft Zahlungsmittel: Rechnung?
 1  Neukunde  niedrig  niedrig  Inland  false
 2  Neukunde  niedrig  niedrig  Ausland  false
 8  Neukunde  mittel  niedrig  Inland  false
 9  Neukunde  hoch  hoch  Inland  true
 11  Neukunde  mittel  hoch  Ausland  true

Die Entropie des Gesamtdatensatzes (ja, es ist für diesen Schritt betrachtet der gesamte Datensatz!) ist wie folgt:

H(S_{Neukunde}) = - \frac{2}{5} \cdot \log_2(\frac{2}{5}) - \frac{3}{5} \cdot \log_2(\frac{3}{5})  = 0.97

Die Entropie ist weit weg von einer bestimmten Wahrscheinlichkeit (nahe der Gleichverteilung). Daher müssen wir hier nochmal ansetzen und losrechnen:

Entropien für “Zahlungsgeschwindigkeit” bei Neukunden:

H(S_{niedrig}) = 0.00

H(S_{mittel}) = 1.00

H(S_{hoch}) = 0.00

Informationsgewinn des Attributes “Zahlungsgeschwindigkeit” bei Neukunden:

    \[ IG(S_{Neukunde},A_{Zahlungsgeschwindigkeit}) = 0.97 - \frac{3}{5} \cdot 0.00 - \frac{2}{5} \cdot 1.00 -  \frac{1}{5} \cdot 0.00 = 0.57 \]

Betrachtung der Spalte “Kauffrequenz” bei Neukunden:

Entropien für “Kauffrequenz” bei Neukunden:

H(S_{niedrig}) = 0.00

H(S_{hoch}) = 0.00

Informationsgewinn des Attributes “Kauffrequenz” bei Neukunden:

    \[ IG(S_{Neukunde},A_{Kauffrequenz}) = 0.97 - \frac{3}{5} \cdot 0.00 - \frac{2}{5} \cdot 0.00 = 0.97 \]

Betrachtung der Spalte “Herkunft” bei Neukunden:

Entropien für “Herkunft” bei Neukunden:

H(S_{Inland}) = 0.92

H(S_{hoch}) = 1.00

Informationsgewinn des Attributes “Herkunft” bei Neukunden:

    \[ IG(S_{Neukunde},A_{Herkunft}) = 0.97 - \frac{3}{5} \cdot 0.92 - \frac{2}{5} \cdot 1.00 = 0.018 \]

Wir entscheiden uns also für das Attribut “Kauffrequenz” als Ast nach der Entscheidung “Neukunde”, denn dieses Attribut bring uns den größten Informationsgewinn und trennt uns die Unterscheidung für oder gegen das Zahlungsmittel “Rechnung” eindeutig auf.

3.1 Zweiter Rekursionsschritt

Was passiert mit der Kundenart “Stammkunde”?

Zeile Kundenart Zahlungsgeschwindigkeit Kauffrequenz Herkunft Zahlungsmittel: Rechnung?
 3  Stammkunde  niedrig  niedrig  Inland  true
 7  Stammkunde  hoch  hoch  Ausland  true
 12  Stammkunde  mittel  niedrig  Ausland  true
 13  Stammkunde  niedrig  hoch  Inland  true

Die Antwort ist einfach: Nichts!
Wer ein Stammkunde ist, dem wurde stets die Zahlung per Rechnung erlaubt.

H(S_{Stammkunde}) = 0.0

3.1 Dritter Rekursionsschritt

Fehlt nun nur noch die Frage nach der Unterscheidung von Normalkunden.

Zeile Kundenart Zahlungsgeschwindigkeit Kauffrequenz Herkunft Zahlungsmittel: Rechnung?
 4  Normalkunde  mittel  niedrig  Inland  true
 5  Normalkunde  hoch  hoch  Inland  true
 6  Normalkunde  hoch  hoch  Ausland  false
 14  Normalkunde  mittel  niedrig  Ausland  false

Zwar ist die Entropie des Subsets der Normalkunden…

H(S_{Normalkunde}) = 1.0

… denkbar schlecht, da maximal. Aber wir können genauso vorgehen, wie wir es bei dem Subset der Neukunden getan haben. Ich nehme es nun aber vorweg: Wenn wir uns den Datensatz näher ansehen, erkennen wir, dass wir diese Gesamtentropie von 1.0 für das Subset “Normalkunde” nicht mit den Attributen “Kauffrequenz” oder “Herkunft” reduzieren können, da dieses auch für sich betrachtet in Entropien der Größe 1.0 erhalten werden. Das Attribut “Herkunft” hingegen teilt den Datensatz sauber in true und false auf:

Somit ist der Informationsgewinn für das Attribut “Herkunft” am größten und wir haben unseren Baum komplett und – glücklicherweise – eindeutig bestimmen können!

Ergebnis: Der Entscheidungsbaum

Somit haben wir den Entscheidungsbaum über den ID3-Algorithmus erstellt, der eine Auskunft darüber macht, ob einem Kunden die Zahlung über Rechnung (statt Vorkasse) erlaubt wird:

true = Rechnung als Zahlungsmittel erlaubt
false = Rechnung als Zahlungsmittel nicht erlaubt

Aika: Ein semantisches neuronales Netzwerk

Wenn es darum geht Informationen aus natürlichsprachigen Texten zu extrahieren, stehen einem verschiedene Möglichkeiten zur Verfügung. Eine der ältesten und wohl auch am häufigsten genutzten Möglichkeiten ist die der regulären Ausdrücke. Hier werden exakte Muster definiert und in einem Textstring gematcht. Probleme bereiten diese allerdings, wenn kompliziertere semantische Muster gefunden werden sollen oder wenn verschiedene Muster aufeinander aufbauen oder miteinander interagieren sollen. Gerade das ist aber der Normalfall bei der Verarbeitung von natürlichem Text. Muster hängen voneinander ab, verstärken oder unterdrücken sich gegenseitig.
Prädestiniert um solche Beziehungen abzubilden wären eigentlich künstliche neuronale Netze. Diese haben nur das große Manko, dass sie keine strukturierten Informationen verarbeiten können. Neuronale Netze bringen von sich aus keine Möglichkeit mit, die relationalen Beziehungen zwischen Worten oder Phrasen zu verarbeiten. Ein weiteres Problem neuronaler Netze ist die Verarbeitung von Feedback-Schleifen, bei denen einzelne Neuronen von sich selbst abhängig sind. Genau diese Probleme versucht der Aika Algorithmus (www.aika-software.org) zu lösen.

Der Aika Algorithmus ist als Open Source Java-Bibliothek implementiert und dient dazu semantische Informationen in Texten zu erkennen und zu verarbeiten. Da semantische Informationen sehr häufig mehrdeutig sind, erzeugt die Bibliothek für jede dieser Bedeutungen eine eigene Interpretation und wählt zum Schluss die am höchsten gewichtete aus. Aika kombiniert dazu aktuelle Ideen und Konzepte aus den Bereichen des maschinellen Lernens und der künstlichen Intelligenz, wie etwa künstliche neuronale Netze, Frequent Pattern Mining und die auf formaler Logik basierenden Expertensysteme. Aika basiert auf der heute gängigen Architektur eines künstlichen neuronalen Netzwerks (KNN) und nutzt diese, um sprachliche Regeln und semantische Beziehungen abzubilden.

Die Knackpunkte: relationale Struktur und zyklische Abhängigkeiten

Das erste Problem: Texte haben eine von Grund auf relationale Struktur. Die einzelnen Worte stehen über ihre Reihenfolge in einer ganz bestimmten Beziehung zueinander. Gängige Methoden, um Texte für die Eingabe in ein KNN auszuflachen, sind beispielsweise Bag-of-Words oder Sliding-Window. Mittlerweile haben sich auch rekurrente neuronale Netze etabliert, die das gesamte Netz in einer Schleife für jedes Wort des Textes mehrfach hintereinander schalten. Aika geht hier allerdings einen anderen Weg. Aika propagiert die relationalen Informationen, also den Textbereich und die Wortposition, gemeinsam mit den Aktivierungen durch das Netzwerk. Die gesamte relationale Struktur des Textes bleibt also erhalten und lässt sich jederzeit zur weiteren Verarbeitung nutzen.

Das zweite Problem ist, dass bei der Verarbeitung von Text häufig nicht klar ist, in welcher Reihenfolge einzelne Informationen verarbeitet werden müssen. Wenn wir beispielsweise den Namen „August Schneider“ betrachten, können sowohl der Vor- als auch der Nachname in einem anderen Zusammenhang eine völlig andere Bedeutung annehmen. August könnte sich auch auf den Monat beziehen. Und genauso könnte Schneider eben auch den Beruf des Schneiders meinen. Einfache Regeln, um hier dennoch den Vor- und den Nachnamen zu erkennen, wären: „Wenn das nachfolgende Wort ein Nachname ist, handelt es sich bei August um einen Vornamen“ und „Wenn das vorherige Wort ein Vorname ist, dann handelt es sich bei Schneider um einen Nachnamen“. Das Problem dabei ist nur, dass unsere Regeln nun eine zyklische Abhängigkeit beinhalten. Aber ist das wirklich so schlimm? Aika erlaubt es, genau solche Feedback-Schleifen abzubilden. Wobei die Schleifen sowohl positive, als auch negative Gewichte haben können. Negative rekurrente Synapsen führen dazu, dass zwei sich gegenseitig ausschließende Interpretationen entstehen. Der Trick ist nun zunächst nur Annahmen zu treffen, also etwa dass es sich bei dem Wort „Schneider“ um den Beruf handelt und zu schauen wie das Netzwerk auf diese Annahme reagiert. Es bedarf also einer Evaluationsfunktion und einer Suche, die die Annahmen immer weiter variiert, bis schließlich eine optimale Interpretation des Textes gefunden ist. Genau wie schon der Textbereich und die Wortposition werden nun auch die Annahmen gemeinsam mit den Aktivierungen durch das Netzwerk propagiert.

Die zwei Ebenen des Aika Algorithmus

Aber wie lassen sich diese Informationen mit den Aktivierungen durch das Netzwerk propagieren, wo doch der Aktivierungswert eines Neurons für gewöhnlich nur eine Fließkommazahl ist? Genau hier liegt der Grund, weshalb Aika unter der neuronalen Ebene mit ihren Neuronen und kontinuierlich gewichteten Synapsen noch eine diskrete Ebene besitzt, in der es eine Darstellung aller Neuronen in boolscher Logik gibt. Aika verwendet als Aktivierungsfunktion die obere Hälfte der Tanh-Funktion. Alle negativen Werte werden auf 0 gesetzt und führen zu keiner Aktivierung des Neurons. Es gibt also einen klaren Schwellenwert, der zwischen aktiven und inaktiven Neuronen unterscheidet. Anhand dieses Schwellenwertes lassen sich die Gewichte der einzelnen Synapsen in boolsche Logik übersetzen und entlang der Gatter dieser Logik kann nun ein Aktivierungsobjekt mit den Informationen durch das Netzwerk propagiert werden. So verbindet Aika seine diskrete bzw. symbolische Ebene mit seiner subsymbolischen Ebene aus kontinuierlichen Synapsen-Gewichten.

Die Logik Ebene in Aika erlaubt außerdem einen enormen Effizienzgewinn im Vergleich zu einem herkömmlichen KNN, da die gewichtete Summe von Neuronen nur noch für solche Neuronen berechnet werden muss, die vorher durch die Logikebene aktiviert wurden. Im Falle eines UND-verknüpfenden Neurons bedeutet das, dass das Aktivierungsobjekt zunächst mehrere Ebenen einer Lattice-Datenstruktur aus UND-Knoten durchlaufen muss, bevor das eigentliche Neuron berechnet und aktiviert werden kann. Diese Lattice-Datenstruktur stammt aus dem Bereich des Frequent Pattern Mining und enthält in einem gerichteten azyklischen Graphen alle Teilmuster eines beliebigen größeren Musters. Ein solches Frequent Pattern Lattice kann in zwei Richtungen betrieben werden. Zum Einen können damit bereits bekannte Muster gematcht werden, und zum Anderen können auch völlig neue Muster damit erzeugt werden.

Da es schwierig ist Netze mit Millionen von Neuronen im Speicher zu halten, nutzt Aika das Provider Architekturpattern um selten verwendete Neuronen oder Logikknoten in einen externen Datenspeicher (z.B. eine Mongo DB) auszulagern, und bei Bedarf nachzuladen.

Ein Beispielneuron

Hier soll nun noch beispielhaft gezeigt werden wie ein Neuron innerhalb des semantischen Netzes angelegt werden kann. Zu beachten ist, dass Neuronen sowohl UND- als auch ODER-Verknüpfungen abbilden können. Das Verhalten hängt dabei alleine vom gewählten Bias ab. Liegt der Bias bei 0.0 oder einem nur schwach negativen Wert reicht schon die Aktivierung eines positiven Inputs aus um auch das aktuelle Neuron zu aktivieren. Es handelt sich dann um eine ODER-Verknüpfung. Liegt der Bias hingegen tiefer im negativen Bereich dann müssen mitunter mehrere positive Inputs gleichzeitig aktiviert werden damit das aktuelle Neuron dann auch aktiv wird. Jetzt handelt es sich dann um eine UND-Verknüpfung. Der Bias Wert kann der initNeuron einfach als Parameter übergeben werden. Um jedoch die Berechnung des Bias zu erleichtern bietet Aika bei den Inputs noch den Parameter BiasDelta an. Der Parameter BiasDelta nimmt einen Wert zwischen 0.0 und 1.0 entgegen. Bei 0.0 wirkt sich der Parameter gar nicht aus. Bei einem höheren Wert hingegen wird er mit dem Betrag des Synapsengewichts multipliziert und von dem Bias abgezogen. Der Gesamtbias lautet in diesem Beispiel also -55.0. Die beiden positiven Eingabesynapsen müssen also aktiviert werden und die negative Eingabesynapse darf nicht aktiviert werden, damit dieses Neuron selber aktiv werden kann. Das Zusammenspiel von Bias und Synpasengewichten ist aber nicht nur für die Aktivierung eines Neurons wichtig, sondern auch für die spätere Auswahl der finalen Interpretation. Je stärker die Aktivierungen innerhalb einer Interpretation aktiv sind, desto höher wird diese Interpretation gewichtet.
Um eine beliebige Graphstruktur abbilden zu können, trennt Aika das Anlegen der Neuronen von der Verknüpfung mit anderen Neuronen. Mit createNeuron(“E-Schneider (Nachname)”) wird also zunächst einmal ein unverknüpftes Neuron erzeugt, das dann über die initNeuron Funktion mit den Eingabeneuronen wortSchneiderNeuron, kategorieVornameNeuron und unterdrueckendesNeuron verknüpft wird. Über den Parameter RelativeRid wird hier angegeben auf welche relative Wortposition sich die Eingabesynapse bezieht. Die Eingabesynpase zu der Kategorie Vorname bezieht sich also mit -1 auf die vorherige Wortposition. Der Parameter Recurrent gibt an ob es sich bei dieser Synpase um eine Feedback-Schleife handelt. Über den Parameter RangeMatch wird angegeben wie sich der Textbereich, also die Start- und die Endposition zwischen der Eingabe- und der Ausgabeaktivierung verhält. Bei EQUALS sollen die Bereiche also genau übereinstimmen, bei CONTAINED_IN reicht es hingegen wenn der Bereich der Eingabeaktivierung innerhalb des Bereichs der Ausgabeaktivierung liegt. Dann kann noch über den Parameter RangeOutput angegeben werden, dass der Bereich der Eingabeaktivierung an die Ausgabeaktivierung weiterpropagiert werden soll.

Fazit

Mit Aika können sehr flexibel umfangreiche semantische Modelle erzeugt und verarbeitet werden. Aus Begriffslisten verschiedener Kategorien, wie etwa: Vor- und Nachnamen, Orten, Berufen, Strassen, grammatikalischen Worttypen usw. können automatisch Neuronen generiert werden. Diese können dann dazu genutzt werden, Worte und Phrasen zu erkennen, einzelnen Begriffen eine Bedeutung zuzuordnen oder die Kategorie eines Begriffs zu bestimmen. Falls in dem zu verarbeitenden Text mehrdeutige Begriffe oder Phrasen auftauchen, kann Aika für diese jeweils eigene Interpretationen erzeugen und gewichten. Die sinnvollste Interpretation wird dann als Ergebnis zurück geliefert.

Entscheidungsbaum-Algorithmus ID3

Dieser Artikel ist Teil 2 von 4 der Artikelserie Maschinelles Lernen mit Entscheidungsbaumverfahren.

Entscheidungsbäume sind den Ingenieuren bestens bekannt, um Produkte hierarchisch zu zerlegen und um Verfahrensanweisungen zu erstellen. Die Data Scientists möchten ebenfalls Verfahrensanweisungen erstellen, jedoch automatisiert aus den Daten heraus. Auf diese Weise angewendet, sind Entscheidungsbäume eine Form des maschinellen Lernens: Die Maschine soll selbst einen Weg finden, um ein Objekt einer Klasse zuzuordnen.

Der ID3-Algorithmus

Den ID3-Algorithmus zu verstehen lohnt sich, denn er ist die Grundlage für viele weitere, auf ihn aufbauende Algorithmen. Er ist mit seiner iterativen und rekursiven Vorgehensweise auch recht leicht zu verstehen, er darf nur wiederum nicht in seiner Wirkung unterschätzt werden. Die Vorgehensweise kann in drei wesentlichen Schritten zerlegt werden, wobei der erste Schritt die eigentliche Wirkung (mit allen Vor- und Nachteilen) entfaltet:

  1. Schritt: Auswählen des Attributes mit dem höchsten Informationsgewinn
    Betrachte alle Attribute (Merkmale) des Datensatzes und bestimme, welches Attribut die Daten am besten klassifiziert.
  2. Schritt: Anlegen eines Knotenpunktes mit dem Attribut
    Sollten die Ergebnisse unter diesem Knoten eindeutig sein (1 unique value), speichere es in diesem Knotenpunkt und springe zurück.
  3. Schritt: Rekursive Fortführung dieses Prozesses
    Andernfalls zerlege die Daten jedem Attribut entsprechend in n Untermengens (subsets), und wiederhole diese Schritte für jede der Teilmengen.

Der Informationsgewinn (Information Gain) – und wie man ihn berechnet


Der Informationsgewinn eines Attributes (A) im Sinne des ID3-Algorithmus ist die Differenz aus der Entropie (E(S)) (siehe Teil 1 der Artikelserie: Entropie, ein Maß für die Unreinheit in Daten) des gesamten Datensatzes (S) und der Summe aus den gewichteten Entropien des Attributes für jeden einzelnen Wert (Value i), der im Attribut vorkommt:
IG(S, A) = E(S) - \sum_{i=1}^n \frac{\bigl|S_i\bigl|}{\bigl|S\bigl|} \cdot E(S_i)

Wie die Berechnung des Informationsgewinnes funktioniert, wird Teil 3 dieser Artikel-Reihe (erscheint in Kürze) zeigen.

Die Vorzüge des ID3-Algorithmus – und die Nachteile

Der Algorithmus ist die Grundlage für viele weitere Algorithmen. In seiner Einfachheit bringt er gewisse Vorteile – die ihn vermutlich zum verbreitesten Entscheidungsbaum-Algorithmus machen – mit sich, aber hat auch eine Reihe von Nachteilen, die bedacht werden sollten.

Vorteile Nachteile
  • leicht verständlich und somit schnell implementiert
  • stellt eine gute Basis für Random Forests dar
  • alle Attribute spielen eine Rolle, der Baum wird aber tendenziell klein, da der Informationsgewinn die Reihenfolge vorgibt
  • funktioniert (mit Anpassungen) auch für Mehrfachklassifikation
  • aus der Reihenfolge durch den Informationsgewinn entsteht nicht unbedingt der beste bzw. kleinste Baum unter allen Möglichkeiten. Es ist ein Greedy-Algorithmus und somit “kurzsichtig”
  • die Suche nach Entscheidungsregeln ist daher auch nicht vollständig/umfassend
  • da der Baum via ID3 solange weiterwachsen soll, bis die Daten so eindeutig wie möglich erklärt sind, wird Overfitting geradezu provoziert

Overfitting (Überanpassung) beachten und vermeiden

Aus Daten heraus generierte Entscheidungsbäume neigen zur Überanpassung. Das bedeutet, dass sich die Bäume den Trainingsdaten soweit anpassen können, dass sie auf diese perfekt passen, jedoch keine oder nur noch einen unzureichende generalisierende Beschreibung mehr haben. Neue Daten, die eine höhere Vielfältigkeit als die Trainingsdaten haben können, werden dann nicht mehr unter einer angemessenen Fehlerquote korrekt klassifiziert.

Vorsicht vor Key-Spalten!

Einige Attribute erzwingen eine Überanpassung regelrecht: Wenn beispielsweise ein Attribut wie „Kunden-ID“ (eindeutige Nummer pro Kunde) einbezogen wird, haben wir – bezogen auf das Klassifikationsergebnis – für jeden einzelnen Wert in dem Attribut eine Entropie von 0 zu erwarten, denn jeder ID beschreibt einen eindeutigen Fall (Kunde, Kundengruppe etc.). Daraus folgt, dass der Informationsgewinn für dieses Attribut maximal wird. Hier würde der Baum eine enorme Breite erhalten, die nicht hilfreich wäre, denn jeder Wert (IDs) bekäme einen einzelnen Ast im Baum, der zu einem eindeutigen Ergebnis führt. Auf neue Daten (neue Kundennummern) ist der Baum nicht anwendbar, denn er stellt keine generalisierende Beschreibung mehr dar, sondern ist nur noch ein Abbild der Trainingsdaten.

Prunning – Den Baum nachträglich kürzen

Besonders große Bäume sind keine guten Bäume und ein Zeichen für Überanpassung. Eine Möglichkeit zur Verkleinerung ist das erneute Durchrechnen der Informationsgewinne und das kürzen von Verzweigungen (Verallgemeinerung), sollte der Informationsgewinn zu gering sein. Oftmals wird hierfür nicht die Entropie oder der Gini-Koeffizient, sondern der Klassifikationsfehler als Maß für die Unreinheit verwendet.

Random Forests als Overfitting-Allheilmittel

Bei Random Forests (eine Form des Ensemble Learning) handelt es sich um eine Gemeinschaftsentscheidung der Klassenzugehörigkeit über mehrere Entscheidungsbäume. Diese Art des “demokratischen” Machine Learnings wird auch Ensemble Learning genannt. Werden mehrere Entscheidungsbäume unterschiedlicher Strukturierung zur gemeinsamen Klassifikation verwendet, wird die Wirkung des Overfittings einzelner Bäume in der Regel reduziert.

Ways AI & ML Are Changing How We Live

From Amazon’s Alexa, a personal assistant that can do anything from making your to-do list to giving a wide range of real-time information about the world around you, to Google’s DeepMind that has very recently made headlines for possibly being able to predict the future, AI and ML are the biggest development in human history.

Machine Learning Used by Hospitals

We hear a lot about Artificial Intelligence (AI) in the realm of insurance Big Data, but there isn’t much buzz around how AI and ML are revolutionising hospitals. The national health expenditures were around $3.4 trillion and estimated to increase from 17.8 percent of GDP to 19.9 percent between 2015 and 2025. By 2021, industry analysts have predicted that the AI health market will reach $6.6 billion. By 2026, such increases in AI technology in the healthcare sector will save the economy around $150 billion annually.

Some of the most popular Artificial Intelligence applications used in hospitals now are:

  • Predictive Health Trackers – Technology that has the ability to monitor patients’ health status using real-time data collection. One such technology is the Health and Environmental Tracker (HET) which can predict if someone is about to have an asthma attack.
  • Chatbots – It isn’t only retail customer service that uses chatbots to deal with consumers. Now hospitals have automated physicians that inquire and route clinicians to the right specialists.
  • Predictive AnalyticsCleveland Clinics have partnered with Microsoft (Cortana) while John Hopkins has partnered up with GE in order to create Machine Learning technology that has the ability to monitor patients and prevent patient emergencies before they happen. It does this by analysing data for primary indicators of potential risks.

Cognitive Marketing – Content Marketing on Steroids

Customer experience and content marketing are terms often tossed around in the world of business and advertising these days. Why do we bring them up now, you ask? Well, things are about to be kicked into sixth gear, thanks to Cognitive Marketing. To explain what that is, let’s go back a bit: remember when Google’s DeepMind AlphaGo bested the top human player at the game? This wasn’t some computer beating a bored office clerk at the game of Solitaire. In order to achieve that victory, Google’s AI had to “actually show its cognitive capability to ‘think’ like humans, because to win the game, ‘intuition’ was needed rather than just ‘logical reasoning’.” Similar algorithm-powered AI’s are enabling machines to learn and grow on their own. Soon, they’ll reach the potential to create content for marketeers at a massive scale. Not only that, but they’ll always deliver the right content, to the right kind of audience, at just the right time.

More Ways Than One: How Retail Is Harnessing AI & ML

  1. Developing Store That Don’t Need Checkout Lines

Tech companies and online retail giants such as Amazon want to create cashier-free stores, at least they are trying to. Last year Amazon launched its Amazon Go which uses sensors and hundreds of cameras to track what customers pick up and then charge the amount to an application on their smart phone, put simply. But only months into the experiment Amazon has said they need to work out some kinks in the system. As of now, Amazon Go’s system can only handle 20 or so customers at a time.

Among other issues, The Guardian, citing an unnamed source, wrote in an article, stated “…if an item has been moved from its specific spot on the shelf.”  Located in Seattle, Washington, Amazon Go is now running in “beta mode” only for Amazon employees as it tests its systems. And these tests are showing that Amazon’s attempt at a cashier-free brick-and-mortar convenience store is far from ready for the real world. A Journal report stated, “For now, the technology functions flawlessly only if there are a small number of customers present, or when their movements are slow.”

  1. Could Drones Be Delivering Goods to Your Home One Day?

Imagine ordering something online from, let’s say, Amazon, and it arrives at your door in 30 minutes or so via drone. Does that sound like something out of the movie The Fifth Element? Maybe, but this technology is already is already here.

Amazon Prime Air made its first delivery to a customer via a GPS-guided flying drone on December 7th, 2016. It only took 13 minutes for the drone to deliver the merchandise to the customer. This sort of technology will be a huge game changer for retail. The supply chain industry is headed for a revolution – drone delivery is coming, and retailers who want to keep up really should adopt such technologies.

Even in 2016, consumers were totally ready to accept drone delivery. The Walk Sands Future of Retail 2016 Study showed that 79 percent of US consumers said they would be “very likely” or “somewhat likely” to choose drone delivery if their product could be delivered within an hour. For me, I’d choose it just to see how cool it was. I think it would be pretty rad to have a drone land in my yard with my package, don’t you? Furthermore, other consumers stated they would pay up to $10 for a drone delivery. Lastly, 26 percent of consumers are already expecting to have their packages delivered to them in the next two years or so.

Driverless Delivery Vehicles Already Here as Well

There was a movie I watched some months ago – you most likely heard of it or even watched it. It was the latest movie about Wolverine titled Logan. There was a certain scene that never left my memory (basically because I found it awesome) where Logan and his companions were driving along a freeway full of driverless tractor trailers that had no tractor.

In an article written for pastemagazine.com, Carlos Alvarez of Getty wrote: “… Logan’s writer and director James Mangold’s inclusion of the self-driving trucking machines make it clear that the filmmaker understands the writing on the wall about the future of shipping. It’s a future without truck drivers.” He continues to explain that the movie takes place a little over 10 years from now in 2029.

“The change may well be here long before 2029. It’s only 2017, and already we’re seeing the beginnings of automated trucking taking over the industry. At the 2017 Consumer Electronics Show this January, Peloton Technology demonstrated “platooning,” where trucks are kept in a row on the highway to reduce wind resistance and save fuel. The trucks are controlled by computers on a “Level One” of autonomous driving,” Alvarez continued in his article.

Now in Germany, Mercedes-Benz is has been developing and testing their Actros truck which is fitted with a ‘highway pilot’ system, which acts like an auto-pilot and includes a radar and stereo camera system. So far, German carmaker Daimler has restricted testing on a German autobahn. The autobahn is generally safer than testing in city conditions since the curves are not as steep. Since the tests have started, this autonomous truck has already driven over 20,000 kilometres.

Did I Say Flying Taxis? Huh, Yeah I Did!

But, if you are still not amazed, then I am about to blow your socks off. Dubai has promised to build a fully autonomous public transportation system by 2030, including autonomous flying drone taxis! Now that is really something. And it isn’t a matter of when they’ll be produced and in use because they already are.

Manufactured in China by the drone-making firm EHang, these really freaking cool quad drones on steroids can carry one person weighing up to 100 kilogrammes (I weigh over that, guess I’m walking) plus maybe a backpack or suitcase. They can fly about 30 kilometres (or 19 miles), at a speed of 60 miles per hour, give or take. And, if that isn’t the cool part, you won’t need any lessons on how to fly it. Simply push a button and it flies you from point A to point B. Whether or not you have to give it directions, don’t know. Either way, this is mostly likely the coolest piece of tech out there right now.

Copyright @ CBS Interactive Inc.

Geht mit Künstlicher Intelligenz nur „Malen nach Zahlen“?

Mit diesem Beitrag möchte ich darlegen, welche Grenzen uns in komplexen Umfeldern im Kontext Steuerung und Regelung auferlegt sind. Auf dieser Basis strebe ich dann nachgelagert eine Differenzierung in Bezug des Einsatzes von Data Science und Big Data, ab sofort mit Big Data Analytics bezeichnet, an. Aus meiner Sicht wird oft zu unreflektiert über Data Science und Künstliche Intelligenz diskutiert, was nicht zuletzt die Angst vor Maschinen schürt.

Basis meiner Ausführungen im ersten Part meines Beitrages ist der Kategorienfehler, der von uns Menschen immer wieder in Bezug auf Kompliziertheit und Komplexität vollführt wird. Deshalb werde ich am Anfang einige Worte über Kompliziertheit und Komplexität verlieren und dabei vor allem auf die markanten Unterschiede eingehen.

Kompliziertheit und Komplexität – der Versuch einer Versöhnung

Ich benutze oft die Begriffe „tot“ und „lebendig“ im Kontext von Kompliziertheit und Komplexität. Themenstellungen in „lebendigen“ Kontexten können niemals kompliziert sein. Sie sind immer komplex. Themenstellungen in „toten“ Kontexten sind stets kompliziert. Das möchte ich am Beispiel eines Uhrmachers erläutern, um zu verdeutlichen, dass auch Menschen in „toten“ Kontexten involviert sein können, obwohl sie selber lebendig sind. Deshalb die Begriffe „tot“ und „lebendig“ auch in Anführungszeichen.

Ein Uhrmacher baut eine Uhr zusammen. Dafür gibt es ein ganz klar vorgegebenes Rezept, welches vielleicht 300 Schritte beinhaltet, die in einer ganz bestimmten Reihenfolge abgearbeitet werden müssen. Werden diese Schritte befolgt, wird definitiv eine funktionierende Uhr heraus kommen. Ist der Uhrmacher geübt, hat er also genügend praktisches Wissen, ist diese Aufgabe für ihn einfach. Für mich als Ungelernten wird diese Übung schwierig sein, niemals komplex, denn ich kann ja einen Plan befolgen. Mit Übung bin ich vielleicht irgendwann so weit, dass ich diese Uhr zusammen gesetzt bekomme. Der Bauplan ist fix und ändert sich nicht. Man spricht hier von Monokontexturalität. Solche Tätigkeiten könnte man auch von Maschinen ausführen lassen, da klar definierte Abfolgen von Schritten programmierbar sind.

Nun stellen wir uns aber mal vor, dass eine Schraube fehlt. Ein Zahnrad kann nicht befestigt werden. Hier würde die Maschine einen Fehler melden, weil jetzt der Kontext verlassen wird. Das Fehlen der Schraube ist nicht Bestandteil des Kontextes, da es nicht Bestandteil des Planes und damit auch nicht Bestandteil des Programmcodes ist. Die Maschine weiß deshalb nicht, was zu tun ist. Der Uhrmacher ist in der Lage den Kontext zu wechseln. Er könnte nach anderen Möglichkeiten der Befestigung suchen oder theoretisch probieren, ob die Uhr auch ohne Zahnrad funktioniert oder er könnte ganz einfach eine Schraube bestellen und später den Vorgang fortsetzen. Der Uhrmacher kann polykontextural denken und handeln. In diesem Fall wird dann der komplizierte Kontext ein komplexer. Der Bauplan ist nicht mehr gültig, denn Bestellung einer Schraube war in diesem nicht enthalten. Deshalb meldet die Maschine einen Fehler. Der Bestellvorgang müsste von einem Menschen in Form von Programmcode voraus gedacht werden, so dass die Maschine diesen anstoßen könnte. Damit wäre diese Option dann wieder Bestandteil des monokontexturalen Bereiches, in dem die Maschine agieren kann.

Kommen wir in diesem Zusammenhang zum Messen und Wahrnehmen. Maschinen können messen. Messen passiert in monokontexturalen Umgebungen. Die Maschine kann messen, ob die Schraube festgezogen ist, die das Zahnrad hält: Die Schraube ist „fest“ oder „lose“. Im Falle des Fehlens der Schraube verlässt man die Ebene des Messens und geht in die Ebene der Wahrnehmung über. Die Maschine kann nicht wahrnehmen, der Uhrmacher schon. Beim Wahrnehmen muss man den Kontext erst einmal bestimmen, da dieser nicht per se gegeben sein kann. „Die Schraube fehlt“ setzt die Maschine in den Kontext „ENTWEDER fest ODER lose“ und dann ist Schluss. Die Maschine würde stetig zwischen „fest“ und „lose“ iterieren und niemals zum Ende gelangen. Eine endlose Schleife, die mit einem Fehler abgebrochen werden muss. Der Uhrmacher kann nach weiteren Möglichkeiten suchen, was gleichbedeutend mit dem Suchen nach einem weiteren Kontext ist. Er kann vielleicht eine neue Schraube suchen oder versuchen das Zahnrad irgendwie anders geartet zu befestigen.

In „toten“ Umgebungen ist der Mensch mit der Umwelt eins geworden. Er ist trivialisiert. Das ist nicht despektierlich gemeint. Diese Trivialisierung ist ausreichend, da ein Rezept in Form eines Algorithmus vorliegt, welcher zielführend ist. Wahrnehmen ist also nicht notwendig, da kein Kontextwechsel vorgenommen werden muss. Messen reicht aus.

In einer komplexen und damit „lebendigen“ Welt gilt das Motto „Sowohl-Als-Auch“, da hier stetig der Kontext gewechselt wird. Das bedeutet Widersprüchlichkeiten handhaben zu müssen. Komplizierte Umgebungen kennen ausschließlich ein „Entweder-Oder“. Damit existieren in komplizierten Umgebungen auch keine Widersprüche. Komplizierte Sachverhalte können vollständig in Programmcode oder Algorithmen geschrieben und damit vollständig formallogisch kontrolliert werden. Bei komplexen Umgebungen funktioniert das nicht, da unsere Zweiwertige Logik, auf die jeder Programmcode basieren muss, Widersprüche und damit Polykontexturalität ausschließen. Komplexität ist nicht kontrollier-, sondern bestenfalls handhabbar.

Diese Erkenntnisse möchte ich nun nutzen, um das bekannte Cynefin Modell von Dave Snowden zu erweitern, da dieses in der ursprünglichen Form zu Kategorienfehler zwischen Kompliziertheit und Komplexität verleitet. Nach dem Cynefin Modell werden die Kategorien „einfach“, „kompliziert“ und „komplex“ auf einer Ebene platziert. Das ist aus meiner Sicht nicht passfähig. Die Einstufung „einfach“ und damit auch „schwierig“, die es im Modell nicht gibt, existiert eine Ebene höher in beiden Kategorien, „kompliziert“ und „komplex“. „Einfach“ ist also nicht gleich „einfach“.

„Einfach“ in der Kategorie „kompliziert“ bedeutet, dass das ausreichende Wissen, sowohl praktisch als auch theoretisch, gegeben ist, um eine komplizierte Fragestellung zu lösen. Grundsätzlich ist ein Lösungsweg vorhanden, den man theoretisch kennen und praktisch anwenden muss. Wird eine komplizierte Fragestellung als „schwierig“ eingestuft, ist der vorliegende Lösungsweg nicht bekannt, aber grundsätzlich vorhanden. Er muss erlernt werden, sowohl praktisch als auch theoretisch. In der Kategorie „kompliziert“ rede ich also von Methoden oder Algorithmen, die an den bekannten Lösungsweg an-gelehnt sind.

Für „komplexe“ Fragestellungen kann per Definition kein Wissen existieren, welches in Form eines Rezeptes zu einem Lösungsweg geformt werden kann. Hier sind Erfahrung, Talent und Können essentiell, die Agilität im jeweiligen Kontext erhöhen. Je größer oder kleiner Erfahrung und Talent sind, spreche ich dann von den Wertungen „einfach“, „schwierig“ oder „chaotisch“. Da kein Rezept gegeben ist, kann man Lösungswege auch nicht vorweg in Form von Algorithmen programmieren. Hier sind Frameworks und Heuristiken angebracht, die genügend Freiraum für das eigene Denken und Fühlen lassen.

Die untere Abbildung stellt die Abhängigkeiten und damit die Erweiterung des Cynefin Modells dar.

Data Science und „lebendige“ Kontexte – der Versuch einer Versöhnung

Gerade beim Einsatz von Big Data Analytics sind wir dem im ersten Part angesprochenen Kategorienfehler erlegen, was mich letztlich zu einer differenzierten Sichtweise auf Big Data Analytics verleitet. Darauf komme ich nun zu sprechen.

In vielen Artikeln, Berichten und Büchern wird Big Data Analytics glorifiziert. Es gibt wenige Autoren, die eine differenzierte Betrachtung anstreben. Damit meine ich, klare Grenzen von Big Data Analytics, insbesondere in Bezug zum Einsatz auf Menschen, aufzuzeigen, um damit einen erfolgreichen Einsatz erst zu ermöglichen. Auch viele unserer Hirnforscher tragen einen erheblichen Anteil zum Manifestieren des Kategorienfehlers bei, da sie glauben, Wirkmechanismen zwischen der materiellen und der seelischen Welt erkundet zu haben. Unser Gehirn erzeugt aus dem Feuern von Neuronen, also aus Quantitäten, Qualitäten, wie „Ich liebe“ oder „Ich hasse“. Wie das funktioniert ist bislang unbekannt. Man kann nicht mit Algorithmen aus der komplizierten Welt Sachverhalte der komplexen Welt erklären. Die Algorithmen setzen auf der Zweiwertigen Logik auf und diese lässt keine Kontextwechsel zu. Ich habe diesen Fakt ja im ersten Teil eingehend an der Unterscheidung zwischen Kompliziertheit und Komplexität dargelegt.

Es gibt aber auch erfreulicherweise, leider noch zu wenige, Menschen, die diesen Fakt erkennen und thematisieren. Ich spreche hier stellvertretend Prof. Harald Walach an und zitiere aus seinem Artikel »Sowohl als auch« statt »Entweder-oder« – oder: wie man Kategorienfehler vermeidet.

„Die Wirklichkeit als Ganzes ist komplexer und lässt sich genau nicht mit solchen logischen Instrumenten komplett analysieren. … Weil unser Überleben als Art davon abhängig war, dass wir diesen logischen Operator so gut ausgeprägt haben ist die Gefahr groß dass wir nun alles so behandeln. … Mit Logik können wir nicht alle Probleme des Lebens lösen. … Geist und neuronale Entladungen sind Prozesse, die unterschiedlichen kategorialen Ebenen angehören, so ähnlich wie „blau“ und „laut“.

Aus diesen Überlegungen habe ich eine Big Data Analytics Matrix angefertigt, mit welcher man einen Einsatz von Big Data Analytics auf Menschen, also in „lebendige“ Kontexte, verorten kann.

Die Matrix hat zwei Achsen. Die x-Achse stellt dar, auf welcher Basis, einzelne oder viele Menschen, Erkenntnisse direkt aus Daten und den darauf aufsetzenden Algorithmen gezogen werden sollen. Die y-Achse bildet ab, auf welcher Basis, einzelne oder viele Menschen, diese gewonnenen Erkenntnisse dann angewendet werden sollen. Um diese Unterteilung anschaulicher zu gestalten, habe ich in den jeweiligen Quadranten Beispiele eines möglichen Einsatzes von Big Data Analytics im Kontext Handel zugefügt.

An der Matrix erkennen wir, dass wir auf Basis von einzelnen Individuen keine Erkenntnisse maschinell über Algorithmen errechnen können. Tun wir das, begehen wir den von mir angesprochenen Kategorienfehler zwischen Kompliziertheit und Komplexität. In diesem Fall kennzeichne ich den gesamten linken roten Bereich der Matrix. Anwendungsfälle, die man gerne in diesen Bereich platzieren möchte, muss man über die anderen beiden gelben Quadranten der Matrix lösen.

Für das Lösen von Anwendungsfällen innerhalb der beiden gelben Quadranten kann man sich den Fakt zu Nutze machen, dass sich komplexe Vorgänge oft durch einfache Handlungsvorschriften beschreiben lassen. Achtung! Hier bitte nicht dem Versuch erlegen sein, „einfach“ und „einfach“ zu verwechseln. Ich habe im ersten Teil bereits ausgeführt, dass es sowohl in der Kategorie „kompliziert“, als auch in der Kategorie „komplex“, einfache Sachverhalte gibt, die aber nicht miteinander ob ihrer Schwierigkeitsstufe verglichen werden dürfen. Tut man es, dann, ja sie wissen schon: Kategorienfehler. Es ist ähnlich zu der Fragestellung: “Welche Farbe ist größer, blau oder rot?” Für Details hierzu verweise ich Sie gerne auf meinen Beitrag Komplexitäten entstehen aus Einfachheiten, sind aber schwer zu handhaben.

Möchten sie mehr zu der Big Data Analytics Matrix und den möglichen Einsätzen er-fahren, muss ich sie hier ebenfalls auf einen Beitrag von mir verweisen, da diese Ausführungen diesen Beitrag im Inhalt sprengen würden.

Mensch und Maschine – der Versuch einer Versöhnung

Wie Ihnen sicherlich bereits aufgefallen ist, enthält die Big Data Analytics Matrix keinen grünen Bereich. Den Grund dafür habe ich versucht, in diesem Beitrag aus meiner Sicht zu untermauern. Algorithmen, die stets monokontextural aufgebaut sein müssen, können nur mit größter Vorsicht im „lebendigen“ Kontext angewendet werden.

Erste Berührungspunkte in diesem Thema habe ich im Jahre 1999 mit dem Schreiben meiner Diplomarbeit erlangt. Die Firma, in welcher ich meine Arbeit verfasst habe, hat eine Maschine entwickelt, die aufgenommene Bilder aus Blitzgeräten im Straßenverkehr automatisch durchzieht, archiviert und daraus Mahnschreiben generiert. Ein Problem dabei war das Erkennen der Nummernschilder, vor allem wenn diese verschmutzt waren. Hier kam ich ins Spiel. Ich habe im Rahmen meiner Diplomarbeit ein Lernverfahren für ein Künstlich Neuronales Netz (KNN) programmiert, welches genau für diese Bilderkennung eingesetzt wurde. Dieses Lernverfahren setzte auf der Backpropagation auf und funktionierte auch sehr gut. Das Modell lag im grünen Bereich, da nichts in Bezug auf den Menschen optimiert werden sollte. Es ging einzig und allein um Bilderkennung, also einem „toten“ Kontext.

Diese Begebenheit war der Startpunkt für mich, kritisch die Strömungen rund um die Künstliche Intelligenz, vor allem im Kontext der Modellierung von Lebendigkeit, zu erforschen. Einige Erkenntnisse habe ich in diesem Beitrag formuliert.

Der Blick für das Wesentliche: Die Merkmalsselektion

In vielen Wissensbasen werden Datensätze durch sehr große Merkmalsräume beschrieben. Während der Generierung einer Wissensbasis wird versucht jedes mögliche Merkmal zu erfassen, um einen Datensatz möglichst genau zu beschreiben. Dabei muss aber nicht jedes Merkmal einen nachhaltigen Wert für das Predictive Modelling darstellen. Ein Klassifikator arbeitet mit reduziertem Merkmalsraum nicht nur schneller, sondern in der Regel auch weitaus effizienter. Oftmals erweist sich ein automatischer Ansatz der Merkmalsselektion besser, als ein manueller, da durchaus Zusammenhänge existieren können, die wir selbst so nicht identifizieren können.

Die Theorie: Merkmalsselektion

Automatische Merkmalsselektionsverfahren unterscheiden 3 verschiedene Arten: Filter, Wrapper und Embedded Methods. Einen guten Überblick über Filter- und Wrapper-Verfahren bieten Kumari et al. in ihrer Arbeit “Filter versus wrapper feature subset selection in large dimensionality micro array: A review” (Download als PDF).

Der Filter-Ansatz bewertet die Merkmale unabhängig des Klassifikators. Dabei werden univariate und multivariate Methoden unterschieden. Univariate Methoden bewerten die Merkmale separat, während der multivariate Ansatz mehrere Merkmale kombiniert. Für jedes Merkmal bzw. jedes Merkmalspaar wird ein statistischer Wert berechnet, der die Eignung der Merkmale für die Klassifikation angibt. Mithilfe eines Schwellwertes werden dann geeignete Merkmale herausgefiltert. Der Filter-Ansatz bietet eine schnelle und, aufgrund der geringen Komplexität, leicht skalierbare Lösung für die Merkmalsselektion. Der Nachteil von Filter-Selektoren besteht in der Missachtung der Abhängigkeiten zwischen den Merkmalen. So werden redundante Merkmale ähnlich bewertet und verzerren später die Erfolgsrate des Klassifikators. Bekannte Beispiele für Filter-Selektoren sind unter anderem die Euklidische Distanz und der Chi-2-Test.

Der Wrapper-Ansatz verbindet die Merkmalsbewertung mit einem Klassifikator. Innerhalb des Merkmalsraumes werden verschiedene Teilmengen von Merkmalen generiert und mithilfe eines trainierten Klassifikators getestet. Um alle möglichen Teilmengen des Merkmalsraumes zu identifizieren, wird der Klassifikator mit einem Suchalgorithmus kombiniert. Da der Merkmalsraum mit Zunahme der Anzahl der Merkmale exponentiell steigt, werden heuristische Suchmethoden für die Suche nach optimalen Teilmengen genutzt. Im Gegensatz zu den Filtern können hier redundante Merkmale abgefangen werden. Die Nutzung eines Klassifikators zur Bewertung der Teilmengen ist zugleich Vor- und Nachteil. Da die generierte Teilmenge auf einen speziellen Klassifikator zugeschnitten wird, ist nicht gewährleistet, dass die Menge auch für andere Klassifikatoren optimal ist. Somit ist dieser Ansatz zumeist abhängig vom gewählten Klassifikator. Zudem benötigt der Wrapper-Ansatz eine viel höhere Rechenzeit. Wrapper-Selektoren werden beispielsweise durch Genetische Algorithmen und Sequentielle Forward/Backward-Selektoren vertreten.

Embedded-Ansätze stellen eine Sonderform der Wrapper-Methode da. Allerdings werden Merkmalssuche und Klassifikatoren-Training nicht getrennt. Die Suche der optimalen Teilmenge ist hier im Modelltraining eingebettet. Dadurch liefern Embedded-Ansätze die gleichen Vorteile wie die Wrapper-Methoden, während die Rechenzeit dabei erheblich gesenkt werden kann. Der reduzierte Merkmalsraum ist aber auch hier vom jeweiligen Klassifikator abhängig. Klassifikatoren, die den Embedded-Ansatz ermöglichen sind beispielsweise der Random-Forest oder die Support-Vector-Maschine.

Entwicklungsgrundlage

Analog zum letzten Tutorial wird hier Python(x,y) und die Datenbasis „Human Activity Recognition Using Smartphones“ genutzt. Die Datenbasis beruht auf erfassten Sensordaten eines Smartphones während speziellen menschlichen Aktivitäten: Laufen, Treppen hinaufsteigen, Treppen herabsteigen, Sitzen, Stehen und Liegen. Auf den Aufzeichnungen von Gyroskop und Accelerometer wurden mehrere Merkmale erhoben. Die Datenmenge, alle zugehörigen Daten und die Beschreibung der Daten sind frei verfügbar.

(https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones)

Alle Daten liegen im Textformat vor. Für ein effizienteres Arbeiten mit der Datenbasis wurden diese im Vorfeld in das csv-Dateiformat überführt.

Python-Bibliotheken

Alle für das Data Mining relevanten Bibliotheken sind in Python(x,y) bereits enthalten. Für die Umsetzung werden folgende Bibliotheken genutzt:

Die Bibliotheken NumPy und Pandas unterstützen die Arbeit mit verschiedenen Datenstrukturen und scikit-learn umfasst alle Funktionen des maschinellen Lernens.

Daten vorbereiten

Vor der Anwendung der einzelnen Verfahren werden die Daten vorbereitet. Das Data Frame wird eingelesen, die Klassen in numerische Labels überführt und das Datenfeld in Merkmale (X) und Klassenspalte (y) separiert. Weiterhin wird die informationslose Spalte subject entfernt.

1. Verfahren: RFECV

Der RFECV (Recursive Feature Elimination with Cross Validation) ist ein Vertreter des Wrapper-Ansatzes. In diesem Beispiel wird die Merkmalsselektion mit einem Support Vector Klassifikator kombiniert. Der RFECV berechnet ein Ranking über die einzelnen Merkmale. Dabei bestimmt der Selektor selbst die optimale Menge der Merkmale. Alle Merkmale mit Platz 1 im Ranking bilden den optimalen Merkmalsraum.

2. Verfahren: Random Forest-Klassifikator

Der Random-Forest-Klassifikator gehört zu den Modellen, die einen Embedded-Ansatz ermöglichen. Während des Klassifikatoren-Trainings wird jedem Merkmal ein Wert zugeordnet. Je höher der Wert, desto bedeutsamer das Merkmal. Allerdings ist hier eine manuelle Filterung notwendig, da anders als beim RFECV kein internes Optimum ermittelt wird. Mithilfe eines geeigneten Schwellwertes können die zu wählenden Merkmale bestimmt werden. In diesem Beispiel werden alle Merkmale selektiert, die eine Wichtung größer dem Mittelwert erhalten.

3. Verfahren: Select K Best

Das Select K Best-Verfahren gehört den Filter-Ansätzen an. Daher kommt hier anders als bei den anderen beiden Verfahren kein Klassifikator zum Einsatz. Auch in diesem Verfahren wird für jedes Merkmal ein Wert berechnet, der die Wichtigkeit des Merkmals beziffert. Für die Berechnung der Werte können verschiedene Methoden verwendet werden. In diesem Beispiel wird eine Varianzanalyse genutzt (Parameter f_classif). Auch hier wird mithilfe eines manuellen Schwellwertes der reduzierte Merkmalsraum bestimmt.

Ergebnisse

Für die Bewertung der einzelnen Selektionsverfahren werden die einzelnen Verfahren in den Data-Mining-Prozess (siehe vorheriges Tutorial: Einstieg in das maschinelle Lernen mit Python(x,y)) integriert. Die nachfolgende Tabelle veranschaulicht die Ergebnisse der Klassifikation der einzelnen Verfahren.

 

Selektionsverfahren

Anzahl der Merkmale

Erfolgsrate Klassifikation

Ohne

561

93,96%

RFECV

314

94,03%

Random Forest

118

90,43%

Select K Best

186

92,30%

 

Durch den RFECV konnte das Ergebnis der Klassifikation leicht verbessert werden. Die anderen Selektionsverfahren, die auch deutlich weniger Merkmale nutzen, verschlechtern das Ergebnis sogar. Dies liegt vor allem an der manuellen Regulierung des Schwellwertes.

Künstliche Intelligenz und Data Science in der Automobilindustrie

Data Science und maschinelles Lernen sind die wesentlichen Technologien für die automatisch lernenden und optimierenden Prozesse und Produkte in der Automobilindustrie der Zukunft. In diesem Beitrag werde die zugrundeliegenden Begriffe Data Science (bzw. Data Analytics) und maschinelles Lernen sowie deren Zusammenhang definiert. Darüber hinaus wird der Begriff Optimizing Analytics definiert und die Rolle der automatischen Optimierung als Schlüsseltechnologie in Kombination mit Data Analytics dargelegt. Der Stand der Nutzung dieser Technologien in der Automobilindustrie wird anhand der wesentlichen Teilprozesse in der automobilen Wertschöpfungskette (Entwicklung, Einkauf, Logistik, Produktion, Marketing, Sales und Aftersales, Connected Customer) an exemplarischen Beispielen erläutert. Dass die Industrie heute erst am Anfang der Nutzungsmöglichkeiten steht, wird anhand von visionären Anwendungsbeispielen verdeutlicht, die die revolutionären Möglichkeiten dieser Technologien darstellen. Der Beitrag zeigt auf, wie die Automobilindustrie umfassend, vom Produkt und dessen Entstehungsprozess bis zum Kunden und dessen Verbindung zum Produkt, durch diese Technologie effizienter und kundenorientierter wird.

english-flagRead this article in English:
“Artificial Intelligence and Data Science in the Automotive Industry”

Read more