Data Science Knowledge Stack – Abstraction of the Data Science Skillset

What must a Data Scientist be able to do? Which skills does as Data Scientist need to have? This question has often been asked and frequently answered by several Data Science Experts. In fact, it is now quite clear what kind of problems a Data Scientist should be able to solve and which skills are necessary for that. I would like to try to bring this consensus into a visual graph: a layer model, similar to the OSI layer model (which any data scientist should know too, by the way).
I’m giving introductory seminars in Data Science for merchants and engineers and in those seminars I always start explaining what we need to work out together in theory and practice-oriented exercises. Against this background, I came up with the idea for this layer model. Because with my seminars the problem already starts: I am giving seminars for Data Science for Business Analytics with Python. So not for medical analyzes and not with R or Julia. So I do not give a general knowledge of Data Science, but a very specific direction.

A Data Scientist must deal with problems at different levels in any Data Science project, for example, the data access does not work as planned or the data has a different structure than expected. A Data Scientist can spend hours debating its own source code or learning the ropes of new DataScience packages for its chosen programming language. Also, the right algorithms for data evaluation must be selected, properly parameterized and tested, sometimes it turns out that the selected methods were not the optimal ones. Ultimately, we are not doing Data Science all day for fun, but for generating value for a department and a data scientist is also faced with special challenges at this level, at least a basic knowledge of the expertise of that department is a must have.

Read this article in German:
“Data Science Knowledge Stack – Was ein Data Scientist können muss“

Data Science Knowledge Stack

With the Data Science Knowledge Stack, I would like to provide a structured insight into the tasks and challenges a Data Scientist has to face. The layers of the stack also represent a bidirectional flow from top to bottom and from bottom to top, because Data Science as a discipline is also bidirectional: we try to answer questions with data, or we look at the potentials in the data to answer previously unsolicited questions.

The DataScience Knowledge Stack consists of six layers:

Database Technology Knowledge

A Data Scientist works with data which is rarely directly structured in a CSV file, but usually in one or more databases that are subject to their own rules. In particular, business data, for example from the ERP or CRM system, are available in relational databases, often from Microsoft, Oracle, SAP or an open source alternative. A good Data Scientist is not only familiar with Structured Query Language (SQL), but is also aware of the importance of relational linked data models, so he also knows the principle of data table normalization.

Other types of databases, so-called NoSQL databases (Not only SQL) are based on file formats, column or graph orientation, such as MongoDB, Cassandra or GraphDB. Some of these databases use their own programming languages ​​(for example JavaScript at MongoDB or the graph-oriented database Neo4J has its own language called Cypher). Some of these databases provide alternative access via SQL (such as Hive for Hadoop).

A data scientist has to cope with different database systems and has to master at least SQL – the quasi-standard for data processing.

Data Access & Transformation Knowledge

If data are given in a database, Data Scientists can perform simple (and not so simple) analyzes directly on the database. But how do we get the data into our special analysis tools? To do this, a Data Scientist must know how to export data from the database. For one-time actions, an export can be a CSV file, but which separators and text qualifiers should be used? Possibly, the export is too large, so the file must be split.
If there is a direct and synchronous data connection between the analysis tool and the database, interfaces like REST, ODBC or JDBC come into play. Sometimes a socket connection must also be established and the principle of a client-server architecture should be known. Synchronous and asynchronous encryption methods should also be familiar to a Data Scientist, as confidential data are often used, and a minimum level of security is most important for business applications.

Many datasets are not structured in a database but are so-called unstructured or semi-structured data from documents or from Internet sources. And again we have interfaces, a frequent entry point for Data Scientists is, for example, the Twitter API. Sometimes we want to stream data in near real-time, let it be machine data or social media messages. This can be quite demanding, so the data streaming is almost a discipline with which a Data Scientist can come into contact quickly.

Programming Language Knowledge

Programming languages ​​are tools for Data Scientists to process data and automate processing. Data Scientists are usually no real software developers and they do not have to worry about software security or economy. However, a certain basic knowledge about software architectures often helps because some Data Science programs can be going to be integrated into an IT landscape of the company. The understanding of object-oriented programming and the good knowledge of the syntax of the selected programming languages ​​are essential, especially since not every programming language is the most useful for all projects.

At the level of the programming language, there is already a lot of snares in the programming language that are based on the programming language itself, as each has its own faults and details determine whether an analysis is done correctly or incorrectly: for example, whether data objects are copied or linked as reference, or how NULL/NaN values ​​are treated.

Data Science Tool & Library Knowledge

Once a data scientist has loaded the data into his favorite tool, for example, one of IBM, SAS or an open source alternative such as Octave, the core work just began. However, these tools are not self-explanatory and therefore there is a wide range of certification options for various Data Science tools. Many (if not most) Data Scientists work mostly directly with a programming language, but this alone is not enough to effectively perform statistical data analysis or machine learning: We use Data Science libraries (packages) that provide data structures and methods as a groundwork and thus extend the programming language to a real Data Science toolset. Such a library, for example Scikit-Learn for Python, is a collection of methods implemented in the programming language. The use of such libraries, however, is intended to be learned and therefore requires familiarization and practical experience for reliable application.

When it comes to Big Data Analytics, the analysis of particularly large data, we enter the field of Distributed Computing. Tools (frameworks) such as Apache Hadoop, Apache Spark or Apache Flink allows us to process and analyze data in parallel on multiple servers. These tools also provide their own libraries for machine learning, such as Mahout, MLlib and FlinkML.

Data Science Method Knowledge

A Data Scientist is not simply an operator of tools, he uses the tools to apply his analysis methods to data he has selected for to reach the project targets. These analysis methods are, for example, descriptive statistics, estimation methods or hypothesis tests. Somewhat more mathematical are methods of machine learning for data mining, such as clustering or dimensional reduction, or more toward automated decision making through classification or regression.

Machine learning methods generally do not work immediately, they have to be improved using optimization methods like the gradient method. A Data Scientist must be able to detect under- and overfitting, and he must prove that the prediction results for the planned deployment are accurate enough.

Special applications require special knowledge, which applies, for example, to the fields of image recognition (Visual Computing) or the processing of human language (Natural Language Processiong). At this point, we open the door to deep learning.


Data Science is not an end in itself, but a discipline that would like to answer questions from other expertise fields with data. For this reason, Data Science is very diverse. Business economists need data scientists to analyze financial transactions, for example, to identify fraud scenarios or to better understand customer needs, or to optimize supply chains. Natural scientists such as geologists, biologists or experimental physicists also use Data Science to make their observations with the aim of gaining knowledge. Engineers want to better understand the situation and relationships between machinery or vehicles, and medical professionals are interested in better diagnostics and medication for their patients.

In order to support a specific department with his / her knowledge of data, tools and analysis methods, every data scientist needs a minimum of the appropriate skills. Anyone who wants to make analyzes for buyers, engineers, natural scientists, physicians, lawyers or other interested parties must also be able to understand the people’s profession.

Engere Data Science Definition

While the Data Science pioneers have long established and highly specialized teams, smaller companies are still looking for the Data Science Allrounder, which can take over the full range of tasks from the access to the database to the implementation of the analytical application. However, companies with specialized data experts have long since distinguished Data Scientists, Data Engineers and Business Analysts. Therefore, the definition of Data Science and the delineation of the abilities that a data scientist should have, varies between a broader and a more narrow demarcation.

A closer look at the more narrow definition shows, that a Data Engineer takes over the data allocation, the Data Scientist loads it into his tools and runs the data analysis together with the colleagues from the department. According to this, a Data Scientist would need no knowledge of databases or APIs, neither an expertise would be necessary …

In my experience, DataScience is not that narrow, the task spectrum covers more than just the core area. This misunderstanding comes from Data Science courses and – for me – I should point to the overall picture of Data Science again and again. In courses and seminars, which want to teach Data Science as a discipline, the focus will of course be on the core area: programming, tools and methods from mathematics & statistics.

Data Leader Day 2017 – Die Benefits für Data Scientists & Data Engineers

In eigener Sache…

Der Data Leader Day ( am 09.11.2017 im Spreespeicher in Berlin ist das Event für praktische Umsetzungsempfehlungen für die Big Data und Data Science von führenden Anwendern aus der Industrie – unsere Data Leader. Vor allem die hochrangigen Referenten ziehen dabei Teilnehmer aus der ganzen DACH-Region an, um neue Kontakte zu knüpfen und wichtige Impulse für die eigene digitale Weiterentwicklung zu erhalten. Es handelt sich dabei jedoch nicht um eine anonyme Veranstaltung, sondern um ein Event mit der richtigen Konfiguration zum Fachsimpeln und Netzwerken in einer persönlichen Atmosphäre.

Firmenkontaktgespräche auf dem Data Leader Day

Der Data Leader Day 2017 bringt Nachwuchskräfte aus der Big Data Welt und Unternehmen zusammen. Dafür richten wir einen Young Professional Roundtable ein, an dem wir das Zusammentreffen organisieren.

Für Studenten, Absolventen und Young Professionals

Sie haben bereits erste Erfahrung als Data Scientist gesammelt und möchten sich weiterentwickeln? Neben dem umfangreichen Vortragsprogramm präsentieren sich Firmenvertreter und Recruiter auf dem Data Leader Day in Berlin. Dort haben Sie die Möglichkeit, mehr über die Aufgaben, Arbeitsweise und Karrierewege als Data Scientist in Gesprächen mit Entscheidern zu erfahren.

Nachwuchskräfte, die an Praktika, Werksstudentenstellen und Direkteinstiege im Bereich Data Science interessiert sind, können sich vorab für Einzelgespräche bewerben.

Connected Industry, der Hauptorganisator der Veranstaltung, vergibt für Young Professionals 30 Tickets zum Preis von 50 € (inkl. Verpflegung, Event-Teilnahme und -unterlagen) für Nachwuchskräfte. Bewerben Sie sich jetzt mit einer kurzen Vorstellung zu Ihrer Person und einem Lebenslauf als PDF-Datei via E-Mail an

Für Personaler und Führungskräfte

Der Data Leader Day am 09.11.2017 im Berliner Spreespeicher ist das Premium-Event, das sich mit den Möglichkeiten und Lösungen rund um die Digitalisierung, Big Data und Industrie 4.0 beschäftigt. Mit dabei sind u.a. Dr. Eberhard Kurz (CIO, Deutsche Bahn), Dr. Andreas Braun (Head of Global Data & Analytics, Allianz), Steffen Winkler (Vice President, Bosch Rexroth), Dr. Michael Müller-Wünsch (CIO, Otto Group), Helen Arnold (President SAP Data Network) und Peter Krause (Geschäftsführer, First Sensor).

Der Data Leader Day ist darüber hinaus die Plattform für neue Kontakte zu Young Professionals aus dem Bereich Data Science. Als Besucher erhalten Sie die Möglichkeit, sich als attraktiver Arbeitgeber zu präsentieren und den Data Science Nachwuchs auf sich aufmerksam zu machen. Gerne stehen wir Ihnen vorab für die Organisation von persönlichen Einzelgesprächen mit Nachwuchskräften zur Verfügung.

25% Ticket-Rabatt über den Buchungscode “DATASCIENCEBLOG”

Alle diejenigen, die es mit dem aufmerksamen Lesen bis an diese Stelle geschafft haben, dürfen sich über einen 25%igen Rabatt auf alle Tickets für den Data Leader Day 2017 freuen. Das funktioniert so: Rufen Sie sich die Ticket-Sektion auf auf oder klicken Sie auf diesen Direktlink zum Ticketverkauf.


harnham-logo datanomiq-logo
netdescribe-logo celonis-logo

Volunteers für den Data Leader Day gesucht!

Wir suchen motivierte Studierende und Promovierende, die uns bei der Durchführung der Konferenz als Volunteer unterstützen. Dabei erhaltet ihr einen Überblick über aktuelle Praxis- und Forschungsthemen, persönliche Kontakte zu den Entscheidern der deutschen Digitalwirtschaft sowie einen Einblick in den Ablauf hinter den Kulissen einer Konferenz.

Holen Sie sich Anregungen aus unterschiedlichen Branchen und treffen Sie führende Persönlichkeiten der deutschen Digitalwirtschaft sowie aus den Digital bzw. Data Labs der traditionellen Industrie.

Was muss ich als Volunteer machen?

  • Unterstützung am Empfang der Konferenz
  • Allgemeine organisatorische Tätigkeiten
  • Moderation des Young Professional Networkings
  • Beantwortung von organisatorischen Fragen von Vortragenden und Konferenzteilnehmern Unterstützung des Organisationsteams
Was bekomme ich dafür?

  • Kostenfreie Teilnahme an der Konferenz im Rahmen der betreuten Kurse, inkl. Unterlagen
  • Kostenfreier Teilnahme am
  • Kostenfreie Verpflegung (Pausen, Mittagessen, etc.)
  • Provision für Einladung von Teilnehmern

  1. November 2017 (07.30 Uhr – 18.30 Uhr)

Spreespeicher (Stralauer Allee 2, 10245 Berlin)

Wie kann ich mich bewerben?

Um als Volunteer am Data Leader Day 2017 teilzunehmen, bewerbt Euch bis zum 15.10.2017 unter Wir geben euch zeitnah Bescheid, ob ihr dabei seid. Wir freuen uns auf euch!

Rückblick: Data Leader Day 2016

Rückblick: Agenda, Sponsoren und Fotos vom Data Leader Day 2016


Data Science Knowledge Stack – Was ein Data Scientist können muss

Was muss ein Data Scientist können? Diese Frage wurde bereits häufig gestellt und auch häufig beantwortet. In der Tat ist man sich mittlerweile recht einig darüber, welche Aufgaben ein Data Scientist für Aufgaben übernehmen kann und welche Fähigkeiten dafür notwendig sind. Ich möchte versuchen, diesen Konsens in eine Grafik zu bringen: Ein Schichten-Modell, ähnlich des OSI-Layer-Modells (welches übrigens auch jeder Data Scientist kennen sollte).
Ich gebe Einführungs-Seminare in Data Science für Kaufleute und Ingenieure und bei der Erläuterung, was wir in den Seminaren gemeinsam theoretisch und mit praxisnahen Übungen erarbeiten müssen, bin ich auf die Idee für dieses Schichten-Modell gekommen. Denn bei meinen Seminaren fängt es mit der Problemstellung bereits an, ich gebe nämlich Seminare für Data Science für Business Analytics mit Python. Also nicht beispielsweise für medizinische Analysen und auch nicht mit R oder Julia. Ich vermittle also nicht irgendein Data Science, sondern eine ganz bestimmte Richtung.

Ein Data Scientist muss bei jedem Data Science Vorhaben Probleme auf unterschiedlichsten Ebenen bewältigen, beispielsweise klappt der Datenzugriff nicht wie geplant oder die Daten haben eine andere Struktur als erwartet. Ein Data Scientist kann Stunden damit verbringen, seinen eigenen Quellcode zu debuggen oder sich in neue Data Science Pakete für seine ausgewählte Programmiersprache einzuarbeiten. Auch müssen die richtigen Algorithmen zur Datenauswertung ausgewählt, richtig parametrisiert und getestet werden, manchmal stellt sich dabei heraus, dass die ausgewählten Methoden nicht die optimalen waren. Letztendlich soll ein Mehrwert für den Fachbereich generiert werden und auch auf dieser Ebene wird ein Data Scientist vor besondere Herausforderungen gestellt.

english-flagRead this article in English:
“Data Science Knowledge Stack – Abstraction of the Data Scientist Skillset”

Data Science Knowledge Stack

Mit dem Data Science Knowledge Stack möchte ich einen strukturierten Einblick in die Aufgaben und Herausforderungen eines Data Scientists geben. Die Schichten des Stapels stellen zudem einen bidirektionalen Fluss dar, der von oben nach unten und von unten nach oben verläuft, denn Data Science als Disziplin ist ebenfalls bidirektional: Wir versuchen gestellte Fragen mit Daten zu beantworten oder wir schauen, welche Potenziale in den Daten liegen, um bisher nicht gestellte Fragen zu beantworten.

Der Data Science Knowledge Stack besteht aus sechs Schichten:

Database Technology Knowledge

Ein Data Scientist arbeitet im Schwerpunkt mit Daten und die liegen selten direkt in einer CSV-Datei strukturiert vor, sondern in der Regel in einer oder in mehreren Datenbanken, die ihren eigenen Regeln unterliegen. Insbesondere Geschäftsdaten, beispielsweise aus dem ERP- oder CRM-System, liegen in relationalen Datenbanken vor, oftmals von Microsoft, Oracle, SAP oder eine Open-Source-Alternative. Ein guter Data Scientist beherrscht nicht nur die Structured Query Language (SQL), sondern ist sich auch der Bedeutung relationaler Beziehungen bewusst, kennt also auch das Prinzip der Normalisierung.

Andere Arten von Datenbanken, sogenannte NoSQL-Datenbanken (Not only SQL)  beruhen auf Dateiformaten, einer Spalten- oder einer Graphenorientiertheit, wie beispielsweise MongoDB, Cassandra oder GraphDB. Einige dieser Datenbanken verwenden zum Datenzugriff eigene Programmiersprachen (z. B. JavaScript bei MongoDB oder die graphenorientierte Datenbank Neo4J hat eine eigene Sprache namens Cypher). Manche dieser Datenbanken bieten einen alternativen Zugriff über SQL (z. B. Hive für Hadoop).

Ein Data Scientist muss mit unterschiedlichen Datenbanksystemen zurechtkommen und mindestens SQL – den Quasi-Standard für Datenverarbeitung – sehr gut beherrschen.

Data Access & Transformation Knowledge

Liegen Daten in einer Datenbank vor, können Data Scientists einfache (und auch nicht so einfache) Analysen bereits direkt auf der Datenbank ausführen. Doch wie bekommen wir die Daten in unsere speziellen Analyse-Tools? Hierfür muss ein Data Scientist wissen, wie Daten aus der Datenbank exportiert werden können. Für einmalige Aktionen kann ein Export als CSV-Datei reichen, doch welche Trennzeichen und Textqualifier können verwendet werden? Eventuell ist der Export zu groß, so dass die Datei gesplittet werden muss.
Soll eine direkte und synchrone Datenanbindung zwischen dem Analyse-Tool und der Datenbank bestehen, kommen Schnittstellen wie REST, ODBC oder JDBC ins Spiel. Manchmal muss auch eine Socket-Verbindung hergestellt werden und das Prinzip einer Client-Server-Architektur sollte bekannt sein. Auch mit synchronen und asynchronen Verschlüsselungsverfahren sollte ein Data Scientist vertraut sein, denn nicht selten wird mit vertraulichen Daten gearbeitet und ein Mindeststandard an Sicherheit ist zumindest bei geschäftlichen Anwendungen stets einzuhalten.

Viele Daten liegen nicht strukturiert in einer Datenbank vor, sondern sind sogenannte unstrukturierte oder semi-strukturierte Daten aus Dokumenten oder aus Internetquellen. Auch hier haben wir es mit Schnittstellen zutun, ein häufiger Einstieg für Data Scientists stellt beispielsweise die Twitter-API dar. Manchmal wollen wir Daten in nahezu Echtzeit streamen, beispielsweise Maschinendaten. Dies kann recht anspruchsvoll sein, so das Data Streaming beinahe eine eigene Disziplin darstellt, mit der ein Data Scientist schnell in Berührung kommen kann.

Programming Language Knowledge

Programmiersprachen sind für Data Scientists Werkzeuge, um Daten zu verarbeiten und die Verarbeitung zu automatisieren. Data Scientists sind in der Regel keine richtigen Software-Entwickler, sie müssen sich nicht um Software-Sicherheit oder -Ergonomie kümmern. Ein gewisses Basiswissen über Software-Architekturen hilft jedoch oftmals, denn immerhin sollen manche Data Science Programme in eine IT-Landschaft integriert werden. Unverzichtbar ist hingegen das Verständnis für objektorientierte Programmierung und die gute Kenntnis der Syntax der ausgewählten Programmiersprachen, zumal nicht jede Programmiersprache für alle Vorhaben die sinnvollste ist.

Auf dem Level der Programmiersprache gibt es beim Arbeitsalltag eines Data Scientists bereits viele Fallstricke, die in der Programmiersprache selbst begründet sind, denn jede hat ihre eigenen Tücken und Details entscheiden darüber, ob eine Analyse richtig oder falsch abläuft: Beispielsweise ob Datenobjekte als Kopie oder als Referenz übergeben oder wie NULL-Werte behandelt werden.

Data Science Tool & Library Knowledge

Hat ein Data Scientist seine Daten erstmal in sein favorisiertes Tool geladen, beispielsweise in eines von IBM, SAS oder in eine Open-Source-Alternative wie Octave, fängt seine Kernarbeit gerade erst an. Diese Tools sind allerdings eher nicht selbsterklärend und auch deshalb gibt es ein vielfältiges Zertifizierungsangebot für diverse Data Science Tools. Viele (wenn nicht die meisten) Data Scientists arbeiten überwiegend direkt mit einer Programmiersprache, doch reicht diese alleine nicht aus, um effektiv statistische Datenanalysen oder Machine Learning zu betreiben: Wir verwenden Data Science Bibliotheken, also Pakete (Packages), die uns Datenstrukturen und Methoden als Vorgabe bereitstellen und die Programmiersprache somit erweitern, damit allerdings oftmals auch neue Tücken erzeugen. Eine solche Bibliothek, beispielsweise Scikit-Learn für Python, ist eine in der Programmiersprache umgesetzte Methodensammlung und somit ein Data Science Tool. Die Verwendung derartiger Bibliotheken will jedoch gelernt sein und erfordert für die zuverlässige Anwendung daher Einarbeitung und Praxiserfahrung.

Geht es um Big Data Analytics, also die Analyse von besonders großen Daten, betreten wir das Feld von Distributed Computing (Verteiltes Rechnen). Tools (bzw. Frameworks) wie Apache Hadoop, Apache Spark oder Apache Flink ermöglichen es, Daten zeitlich parallel auf mehren Servern zu verarbeiten und auszuwerten. Auch stellen diese Tools wiederum eigene Bibliotheken bereit, für Machine Learning z. B. Mahout, MLlib und FlinkML.

Data Science Method Knowledge

Ein Data Scientist ist nicht einfach nur ein Bediener von Tools, sondern er nutzt die Tools, um seine Analyse-Methoden auf Daten anzuwenden, die er für die festgelegten Ziele ausgewählt hat. Diese Analyse-Methoden sind beispielweise Auswertungen der beschreibenden Statistik, Schätzverfahren oder Hypothesen-Tests. Etwas mathematischer sind Verfahren des maschinellen Lernens zum Data Mining, beispielsweise Clusterung oder Dimensionsreduktion oder mehr in Richtung automatisierter Entscheidungsfindung durch Klassifikation oder Regression.

Maschinelle Lernverfahren funktionieren in der Regel nicht auf Anhieb, sie müssen unter Einsatz von Optimierungsverfahren, wie der Gradientenmethode, verbessert werden. Ein Data Scientist muss Unter- und Überanpassung erkennen können und er muss beweisen, dass die Vorhersageergebnisse für den geplanten Einsatz akkurat genug sind.

Spezielle Anwendungen bedingen spezielles Wissen, was beispielsweise für die Themengebiete der Bilderkennung (Visual Computing) oder der Verarbeitung von menschlicher Sprache (Natural Language Processiong) zutrifft. Spätestens an dieser Stelle öffnen wir die Tür zum Deep Learning.


Data Science ist kein Selbstzweck, sondern eine Disziplin, die Fragen aus anderen Fachgebieten mit Daten beantworten möchte. Aus diesem Grund ist Data Science so vielfältig. Betriebswirtschaftler brauchen Data Scientists, um Finanztransaktionen zu analysieren, beispielsweise um Betrugsszenarien zu erkennen oder um die Kundenbedürfnisse besser zu verstehen oder aber, um Lieferketten zu optimieren. Naturwissenschaftler wie Geologen, Biologen oder Experimental-Physiker nutzen ebenfalls Data Science, um ihre Beobachtungen mit dem Ziel der Erkenntnisgewinnung zu machen. Ingenieure möchten die Situation und Zusammenhänge von Maschinenanlagen oder Fahrzeugen besser verstehen und Mediziner interessieren sich für die bessere Diagnostik und Medikation bei ihren Patienten.

Damit ein Data Scientist einen bestimmten Fachbereich mit seinem Wissen über Daten, Tools und Analyse-Methoden ergebnisorientiert unterstützen kann, benötigt er selbst ein Mindestmaß an der entsprechenden Fachexpertise. Wer Analysen für Kaufleute, Ingenieure, Naturwissenschaftler, Mediziner, Juristen oder andere Interessenten machen möchte, muss eben jene Leute auch fachlich verstehen können.

Engere Data Science Definition

Während die Data Science Pioniere längst hochgradig spezialisierte Teams aufgebaut haben, suchen beispielsweise kleinere Unternehmen eher den Data Science Allrounder, der vom Zugriff auf die Datenbank bis hin zur Implementierung der analytischen Anwendung das volle Aufgabenspektrum unter Abstrichen beim Spezialwissen übernehmen kann. Unternehmen mit spezialisierten Daten-Experten unterscheiden jedoch längst in Data Scientists, Data Engineers und Business Analysts. Die Definition für Data Science und die Abgrenzung der Fähigkeiten, die ein Data Scientist haben sollte, schwankt daher zwischen der breiteren und einer engeren Abgrenzung.

Die engere Betrachtung sieht vor, dass ein Data Engineer die Datenbereitstellung übernimmt, der Data Scientist diese in seine Tools lädt und gemeinsam mit den Kollegen aus dem Fachbereich die Datenanalyse betreibt. Demnach bräuchte ein Data Scientist kein Wissen über Datenbanken oder APIs und auch die Fachexpertise wäre nicht notwendig…

In der beruflichen Praxis sieht Data Science meiner Erfahrung nach so nicht aus, das Aufgabenspektrum umfasst mehr als nur den Kernbereich. Dieser Irrtum entsteht in Data Science Kursen und auch in Seminaren – würde ich nicht oft genug auf das Gesamtbild hinweisen. In Kursen und Seminaren, die Data Science als Disziplin vermitteln wollen, wird sich selbstverständlich auf den Kernbereich fokussiert: Programmierung, Tools und Methoden aus der Mathematik & Statistik.

Data Science and Predictive Analytics in Healthcare

Doing data science in a healthcare company can save lives. Whether it’s by predicting which patients have a tumor on an MRI, are at risk of re-admission, or have misclassified diagnoses in electronic medical records are all examples of how predictive models can lead to better health outcomes and improve the quality of life of patients.  Nevertheless, the healthcare industry presents many unique challenges and opportunities for data scientists.

The impact of data science in healthcare

Healthcare providers have a plethora of important but sensitive data. Medical records include a diverse set of data such as basic demographics, diagnosed illnesses, and a wealth of clinical information such as lab test results. For patients with chronic diseases, there could be a long and detailed history of data available on a number of health indicators due to the frequency of visits to a healthcare provider. Information from medical records can often be combined with outside data as well. For example, a patient’s address can be combined with other publicly available information to determine the number of surgeons that practice near a patient or other relevant information about the type of area that patients reside in.

With this rich data about a patient as well as their surroundings, models can be built and trained to predict many outcomes of interest. One important area of interest is models predicting disease progression, which can be used for disease management and planning. For example, at Fresenius Medical Care (where we primarily care for patients with chronic conditions such as kidney disease), we use a Chronic Kidney Disease progression model that can predict the trajectory of a patient’s condition to help clinicians decide whether and when to proceed to the next stage in their medical care. Predictive models can also notify clinicians about patients who may require interventions to reduce risk of negative outcomes. For instance, we use models to predict which patients are at risk for hospitalization or missing a dialysis treatment. These predictions, along with the key factors driving the prediction, are presented to clinicians who can decide if certain interventions might help reduce the patient’s risk.

Challenges of data science in healthcare

One challenge is that the healthcare industry is far behind other sectors in terms of adopting the latest technology and analytics tools. This does present some challenges, and data scientists should be aware that the data infrastructure and development environment at many healthcare companies will not be at the bleeding edge of the field. However it also means there are a lot of opportunities for improvement, and even small simple models can yield vast improvements over current methods.

Another challenge in the healthcare sector arises from the sensitive nature of medical information. Due to concerns over data privacy, it can often be difficult to obtain access to data that the company has. For this reason, data scientists considering a position at a healthcare company should be aware of whether there is already an established protocol for data professionals to get access to the data. If there isn’t, be aware that simply getting access to the data may be a major effort in itself.

Finally, it is important to keep in mind the end-use of any predictive model. In many cases, there are very different costs to false-negatives and false-positives. A false-negative may be detrimental to a patient’s health, while too many false-positives may lead to many costly and unnecessary treatments (also to the detriment of patients’ health for certain treatments as well as economy overall). Education about the proper use of predictive models and their limitations is essential for end-users. Finally, making sure the output of a predictive model is actionable is important. Predicting that a patient is at high-risk is only useful if the model outputs is interpretable enough to explain what factors are putting that patient at risk. Furthermore, if the model is being used to plan interventions, the factors that can be changed need to be highlighted in some way – telling a clinician that a patient is at risk because of their age is not useful if the point of the prediction is to lower risk through intervention.

The future of data science in the healthcare sector

The future holds a lot of promise for data science in healthcare. Wearable devices that track all kinds of activity and biometric data are becoming more sophisticated and more common. Streaming data coming from either wearables or devices providing treatment (such as dialysis machines) could eventually be used to provide real-time alerts to patients or clinicians about health events outside of the hospital.

Currently, a major issue facing medical providers is that patients’ data tends to exist in silos. There is little integration across electronic medical record systems (both between and within medical providers), which can lead to fragmented care. This can lead to clinicians receiving out of date or incomplete information about a patient, or to duplication of treatments. Through a major data engineering effort, these systems could (and should) be integrated. This would vastly increase the potential of data scientists and data engineers, who could then provide analytics services that took into account the whole patients’ history to provide a level of consistency across care providers. Data workers could use such an integrated record to alert clinicians to duplications of procedures or dangerous prescription drug combinations.

Data scientists have a lot to offer in the healthcare industry. The advances of machine learning and data science can and should be adopted in a space where the health of individuals can be improved. The opportunities for data scientists in this sector are nearly endless, and the potential for good is enormous.

Unternehmen brauchen eine Datenstrategie

Viele Unternehmen stecken gerade in der Digitalisierung fest, digitalisieren Prozesse und Dokumente, vernetzen immer mehr Maschinen und Endgeräte, und generieren dabei folglich immer mehr Daten. Aber auch ungeachtet der aktuellen Digitalisierungs- und Vernetzungsinitiativen verfügen Unternehmen bereits längst über einen wahren Datenschatz in Ihren ERP-, CRM- und sonstigen IT-Systemen. Hinzu kommt ein beinahe unerschöpfliches Datenpotenzial aus externen Quellen hinzu, insbesondere dem Social Media, den Finanzportalen und behördlichen Instituten (Open Data).

Nur die wenigsten Unternehmen – jene dürfen wir ohne Zweifel zu den Gewinnern der Digitalisierung zählen – verfügen über eine konkrete Strategie, wie Daten aus unternehmensinternen und -externen Datenquellen zur Geschäftsoptimierung genutzt werden können: Die Datenstrategie.

Was ist eine Datenstrategie?

Die Datenstrategie ist ein ausformulierter und zielorientierter Verfahrensplan, um Daten in Mehrwert zu verwandeln. Er bringt während seiner Formulierung alle nötigen Funktionsbereichen zusammen, also IT-Administratoren, kaufmännische Entscheider und natürlich Data Scientists bzw. Datenexperten (welche genaue Berufsbezeichnung auch immer damit verbunden sein mag).

Die Datenstrategie ist ein spezieller Business Plan zur gewinnorientierten Datennutzung. In ihr werden klare Ziele und Zeitvorgaben (kurz-, mittel-, langfristig) definiert, der voraussichtliche Ressourcen-Einsatz und die Rahmenbedingungen benannt. Dazu gehören sowohl die technischen (Hardware, Software) als auch die rechtlichen Rahmen (Datenschutz, Datensicherheit, Urheberrecht usw.). Die Datenstrategie die Herausforderungen nachvollziehbar heraus und stellt im Abgleich fest, ob die bestehende Belegschaft im aktuellen Zustand die nötigen Kapazitäten und Qualifikationen hat bzw. ob Maßnahmen zum Erwerb von Know-How (Qualifizierung, Recruiting) ergriffen werden sollten.

Wozu braucht ein Unternehmen eine Datenstrategie?

Viele Unternehmen – ich bin zumindest mit vielen solcher Unternehmen im Gespräch – wissen oft nicht, wie sie am Trend zur Datennutzung partizipieren können, bevor es der Wettbewerb tut bzw. man für neue Märkte unzureichend / zu spät vorbereitet ist. Sie wissen, dass es Potenziale für die Nutzung von Daten gibt, jedoch nicht, welche Tragweite derartige Projekte hinsichtlich des Einsatzes und des Ergebnisses haben werden. Diesen Unternehmen fehlt eine Datenstrategie als ein klarer Fahrplan, um über Datenanalyse die bestehenden Geschäfte zu optimieren. Und möglicherweise auch, um neue Geschäftsmöglichkeiten zu erschließen.

Demgegenüber steht eine andere Art von Unternehmen: Diese sind bereits seit Jahren in die Nutzung von Big Data eingestiegen und haben nun viele offene Baustellen, verschiedene neue Tools und eine große Vielfalt an Projektergebnissen. Einige dieser Unternehmen sehen sich nunmehr mit einer Komplexität konfrontiert, für die der Wunsch nach Bereinigung aufkommt. Hier dient die Datenstrategie zur Fokussierung der Ressourcen auf die individuell besten, d.h. gewinnträchtigsten bzw. nötigsten Einsatzmöglichkeiten, anstatt alle Projekte auf einmal machen.

Zusammenfassend kann demnach gesagt werden, dass eine Datenstrategie dazu dient, sich nicht in Big Data bzw. Data Science Projekte zu verrennen oder mit den falschen Projekten anzufangen. Die Strategie soll Frustration vermeiden und schon vom Ansatz her dafür sorgen, dass die nächst höhere Etage – bis hin zum Vorstand – Big Data Projekte nicht für sinnlos erklärt und die Budgets streicht.

Wie entsteht eine Datenstrategie?

Ein ganz wesentlicher Punkt ist, dass die Datenstrategie kein Dokument wird, welches mühsam nur für die Schublade erstellt wurde. Der Erfolg entsteht schließlich nicht auf schönen Strategiefolien, sondern aus zielgerichteter Hands-on-Arbeit. Zudem ist es erfolgskritisch, dass die Datenstrategie für jeden beteiligten Mitarbeiter verständlich ist und keine Beraterfloskeln enthält, jedoch fachlich und umsetzungsorientiert bleibt. Im Kern steht sicherlich in der Regel eine Analysemethodik (Data Science), allerdings soll die Datenstrategie alle relevanten Fachbereiche im Unternehmen mitnehmen und somit ein Gemeinschaftsgefühl (Wir-Gefühl) erschaffen, und keinesfalls die Erwartung vermitteln, die IT mache da schon irgendwas. Folglich muss die Datenstrategie gemeinschaftlich entwickelt werden, beispielsweise durch die Gründung eines Komitees, welches aus Mitarbeitern unterschiedlichster Hintergründe besetzt ist, die der Interdisziplinität gerecht wird. Eine entsprechend nötige Interdisziplinität des Teams bringt übrigens – das wird häufig verschwiegen – auch Nachteile mit sich, denn treffen die führenden Köpfe aus den unterschiedlichen Fachbereichen aufeinander, werden Vorschläge schnell abgehoben und idealistisch, weil sie die Erwartungen aller Parteien erfüllen sollen. Eine gute Datenstrategie bleibt jedoch auf dem Boden und hat realistische Ziele, sie orientiert sich an den Gegebenheiten und nicht an zukünftigen Wunschvorstellungen einzelner Visionäre.

Idealerweise wird die Entwicklung der Datenstrategie von jemanden begleitet, der sowohl Erfahrung in Verarbeitung von Daten als auch vom Business hat, und der über explizite Erfahrung mit Big Data Projekten verfügt. Gerade auch das Einbeziehen externer Experten ermöglicht, dass indirekt durch den Erfahrungseinfluss aus bereits gemachten Fehlern in anderen Unternehmen gelernt werden kann.

Mehr dazu im nächsten Artikel: Die fünf Schritte zur Datenstrategie! 

Höhere Mathematik als Grundvoraussetzung für Data Scientists

Data Scientist ist der „sexiest Job“ auf der Welt. Data Science ist die neu erfundene Wissenschaft, die viele unserer Probleme lösen und uns die Zukunft angenehmer gestalten wird. Aber was genau ist Data Science? Was ist ein Datascientist und was macht er? Welche Ausbildung benötigt man, um ein Data Scientist zu sein? Muss er tiefe Kenntnisse der höheren Mathematik besitzen oder reicht das reine Methodenwissen aus? Diese Fragestellungen möchte ich in diesem Beitrag diskutieren.

Was versteht man also unter dem Begriff „Data Science“?

Dieses Wissensgebiet beschäftigt sich mit der Extraktion von Wissen aus Daten. Der Begriff selbst existiert bereits seit über 50 Jahren. Peter Naur verwendete ihn 1960 als Ersatz für den Begriff „Informatik“. 1997 schlug C.F. Jeff Wu in einem Vortrag anlässlich seiner Ernennung zum H. C. Carver Professor of Statistics vor, den Begriff „Statistiker“ in den Begriff „Datenwissenschafter“ umzubenennen. Ich persönlich hege aber Zweifel, dass Datenwissenschafter nur Statistiker sind.

Betrachtet man die Lehrpläne der Studiengänge für Data Science, so bestehen diese aus folgenden Fächern:

  • Mathematische Grundlagen (auch Teile der höheren Mathematik)
  • Stochastik
  • Statistik
  • Grundlegendes Wissen aus der Informatik (besonders auf dem Gebiet der Datenbanken und Big Data Technologien)
  • Signalverarbeitung

Sicherlich ist die obige Aufzählung gar nicht vollständig, da ich meine, dass auch Methoden der mathematischen Optimierung in diese Lehrpläne aufgenommen werden müssen.

Data Science beschäftigt sich also mit der Extraktion von Wissen aus Daten und leitet Empfehlungen daraus ab. Unmittelbar daraus ergibt sich daher auch die Aufgabenbeschreibung für den Data Scientist.

Der Aufgabenbereich eines Data Scientist.

Aus der Beschreibung des Tätigkeitsbereiches von Data Science ergibt sich nun unmittelbar die Aufgabenbeschreibung für den Data Scientist. Er muss aus Daten Wissen extrahieren und Handlungsempfehlungen ableiten. Daraus erkennt man sofort, dass seine Aufgabenstellung umfassender als die eines Statistikers ist. Ungeachtet einer Diskussion, ob der Aufgabenbereich von einer einzigen Person überhaupt zu bewerkstelligen ist, unterteilt er sich also in folgende Teilbereiche.

  • Datenextraktion, -zusammenführung und – aggregation
  • Datenanalyse
  • Hypothesenfindung (zusammen mit den entsprechenden Fachbereichen)
  • Hypothesentests
  • Erstellung von Prognosemodellen
  • Mathematischen Optimierungsrechnungen

Er unterstützt damit sehr viele Fachbereiche eines Unternehmens, benötigt aber auch bei der Durchführung seiner Aufgabengebiete Unterstützung von den Fachbereichen. Zudem bedürfen die letzten drei Punkte der obigen Liste auch ein tiefes Verständnis der angewendeten Algorithmen aus mathematischer Sicht. Es reicht sicherlich nicht aus, zu wissen, welche Methode für die Erzielung einer korrekten Beantwortung einer Fragestellung zu verwenden ist, vielmehr muss er auch wissen, ob die Voraussetzungen zur Anwendung der spezifischen Methode gegeben ist. So z.B. verwenden sehr viele Methoden und Verfahren der Statistik die – in der Praxis nicht immer gegebene – Voraussetzung, dass Daten normalverteilt sind. Da die erzielten Ergebnisse meist numerischer Natur sind bzw. auf numerischen Input basieren, sollte auch zudem Kenntnisse der numerischen Mathematik aufweisen. Zusammenfassend gesagt, ist also ein tiefes Wissen der Algorithmen notwendig, diese basieren auf Mathematik und deshalb lässt sich die Mathematik auch nicht aus dem Anforderungsprofil eines Data Scientist wegdiskutieren.

Warum diese Diskussion?

Ich erlebe immer wieder, dass mit den Argumentationen aufgefahren wird, es wäre nicht notwendig, dass ein Data Scientist eine fundierte Ausbildung auf dem Gebiet Mathematik (im Sinne von „höherer“ Mathematik) benötigt. Sogar bei einer Veranstaltung der Firma IBM musste ich hören, dass Online-Course – wie z. B. Coursera – ausreichen würden, der Rest, also das fehlende Wissen, würde dann durch ausreichend Praxis und Schulungen dieser Firma ohnehin vermittelt bzw. erarbeitet werden. Dass dem nicht so sein kann, ist augenscheinlich, wenn man sich das Vorlesungsverzeichnis z. B. des Studiums Technische Mathematik ansieht. Wann hat man schon die notwendige Zeit, sich mit den Themen Algebra, Analysis, Topologie, Funktionentheorie, Wahrscheinlichkeitsrechnung, Statistik, usw. intensiver auseinanderzusetzen, das Verständnis dieser Teildisziplinen durch das Studium und Lösen von mathematischen Problemen aufzubauen, wenn nicht während eines entsprechenden Studiums? Ich bin der Meinung, dass das im Selbststudium ohne Anleitung und Kontrolle und die dazugehörigen fachlichen Diskussionen mit den Lehrenden und Studienkollegen kaum möglich ist.


Aus den oben angeführten Gründen heraus, plädiere ich für eine fundierte Basisausbildung, die dem Studium eines Mathematikers schon sehr nahekommt. Reines oberflächliches Anschneiden der Themen, wird nicht zum gewünschten Erfolg bzw. zur notwendigen Qualität führen. Den Allrounder wird es ohnehin nicht geben, d.h. die Spezialisierungen werden auch – so wie bei Mathematikern – bei den Data Scientists erhalten bleiben. Über eine rege Diskussion zu diesem Thema würde ich mich natürlich sehr freuen.

Geht mit Künstlicher Intelligenz nur „Malen nach Zahlen“?

Mit diesem Beitrag möchte ich darlegen, welche Grenzen uns in komplexen Umfeldern im Kontext Steuerung und Regelung auferlegt sind. Auf dieser Basis strebe ich dann nachgelagert eine Differenzierung in Bezug des Einsatzes von Data Science und Big Data, ab sofort mit Big Data Analytics bezeichnet, an. Aus meiner Sicht wird oft zu unreflektiert über Data Science und Künstliche Intelligenz diskutiert, was nicht zuletzt die Angst vor Maschinen schürt.

Basis meiner Ausführungen im ersten Part meines Beitrages ist der Kategorienfehler, der von uns Menschen immer wieder in Bezug auf Kompliziertheit und Komplexität vollführt wird. Deshalb werde ich am Anfang einige Worte über Kompliziertheit und Komplexität verlieren und dabei vor allem auf die markanten Unterschiede eingehen.

Kompliziertheit und Komplexität – der Versuch einer Versöhnung

Ich benutze oft die Begriffe „tot“ und „lebendig“ im Kontext von Kompliziertheit und Komplexität. Themenstellungen in „lebendigen“ Kontexten können niemals kompliziert sein. Sie sind immer komplex. Themenstellungen in „toten“ Kontexten sind stets kompliziert. Das möchte ich am Beispiel eines Uhrmachers erläutern, um zu verdeutlichen, dass auch Menschen in „toten“ Kontexten involviert sein können, obwohl sie selber lebendig sind. Deshalb die Begriffe „tot“ und „lebendig“ auch in Anführungszeichen.

Ein Uhrmacher baut eine Uhr zusammen. Dafür gibt es ein ganz klar vorgegebenes Rezept, welches vielleicht 300 Schritte beinhaltet, die in einer ganz bestimmten Reihenfolge abgearbeitet werden müssen. Werden diese Schritte befolgt, wird definitiv eine funktionierende Uhr heraus kommen. Ist der Uhrmacher geübt, hat er also genügend praktisches Wissen, ist diese Aufgabe für ihn einfach. Für mich als Ungelernten wird diese Übung schwierig sein, niemals komplex, denn ich kann ja einen Plan befolgen. Mit Übung bin ich vielleicht irgendwann so weit, dass ich diese Uhr zusammen gesetzt bekomme. Der Bauplan ist fix und ändert sich nicht. Man spricht hier von Monokontexturalität. Solche Tätigkeiten könnte man auch von Maschinen ausführen lassen, da klar definierte Abfolgen von Schritten programmierbar sind.

Nun stellen wir uns aber mal vor, dass eine Schraube fehlt. Ein Zahnrad kann nicht befestigt werden. Hier würde die Maschine einen Fehler melden, weil jetzt der Kontext verlassen wird. Das Fehlen der Schraube ist nicht Bestandteil des Kontextes, da es nicht Bestandteil des Planes und damit auch nicht Bestandteil des Programmcodes ist. Die Maschine weiß deshalb nicht, was zu tun ist. Der Uhrmacher ist in der Lage den Kontext zu wechseln. Er könnte nach anderen Möglichkeiten der Befestigung suchen oder theoretisch probieren, ob die Uhr auch ohne Zahnrad funktioniert oder er könnte ganz einfach eine Schraube bestellen und später den Vorgang fortsetzen. Der Uhrmacher kann polykontextural denken und handeln. In diesem Fall wird dann der komplizierte Kontext ein komplexer. Der Bauplan ist nicht mehr gültig, denn Bestellung einer Schraube war in diesem nicht enthalten. Deshalb meldet die Maschine einen Fehler. Der Bestellvorgang müsste von einem Menschen in Form von Programmcode voraus gedacht werden, so dass die Maschine diesen anstoßen könnte. Damit wäre diese Option dann wieder Bestandteil des monokontexturalen Bereiches, in dem die Maschine agieren kann.

Kommen wir in diesem Zusammenhang zum Messen und Wahrnehmen. Maschinen können messen. Messen passiert in monokontexturalen Umgebungen. Die Maschine kann messen, ob die Schraube festgezogen ist, die das Zahnrad hält: Die Schraube ist „fest“ oder „lose“. Im Falle des Fehlens der Schraube verlässt man die Ebene des Messens und geht in die Ebene der Wahrnehmung über. Die Maschine kann nicht wahrnehmen, der Uhrmacher schon. Beim Wahrnehmen muss man den Kontext erst einmal bestimmen, da dieser nicht per se gegeben sein kann. „Die Schraube fehlt“ setzt die Maschine in den Kontext „ENTWEDER fest ODER lose“ und dann ist Schluss. Die Maschine würde stetig zwischen „fest“ und „lose“ iterieren und niemals zum Ende gelangen. Eine endlose Schleife, die mit einem Fehler abgebrochen werden muss. Der Uhrmacher kann nach weiteren Möglichkeiten suchen, was gleichbedeutend mit dem Suchen nach einem weiteren Kontext ist. Er kann vielleicht eine neue Schraube suchen oder versuchen das Zahnrad irgendwie anders geartet zu befestigen.

In „toten“ Umgebungen ist der Mensch mit der Umwelt eins geworden. Er ist trivialisiert. Das ist nicht despektierlich gemeint. Diese Trivialisierung ist ausreichend, da ein Rezept in Form eines Algorithmus vorliegt, welcher zielführend ist. Wahrnehmen ist also nicht notwendig, da kein Kontextwechsel vorgenommen werden muss. Messen reicht aus.

In einer komplexen und damit „lebendigen“ Welt gilt das Motto „Sowohl-Als-Auch“, da hier stetig der Kontext gewechselt wird. Das bedeutet Widersprüchlichkeiten handhaben zu müssen. Komplizierte Umgebungen kennen ausschließlich ein „Entweder-Oder“. Damit existieren in komplizierten Umgebungen auch keine Widersprüche. Komplizierte Sachverhalte können vollständig in Programmcode oder Algorithmen geschrieben und damit vollständig formallogisch kontrolliert werden. Bei komplexen Umgebungen funktioniert das nicht, da unsere Zweiwertige Logik, auf die jeder Programmcode basieren muss, Widersprüche und damit Polykontexturalität ausschließen. Komplexität ist nicht kontrollier-, sondern bestenfalls handhabbar.

Diese Erkenntnisse möchte ich nun nutzen, um das bekannte Cynefin Modell von Dave Snowden zu erweitern, da dieses in der ursprünglichen Form zu Kategorienfehler zwischen Kompliziertheit und Komplexität verleitet. Nach dem Cynefin Modell werden die Kategorien „einfach“, „kompliziert“ und „komplex“ auf einer Ebene platziert. Das ist aus meiner Sicht nicht passfähig. Die Einstufung „einfach“ und damit auch „schwierig“, die es im Modell nicht gibt, existiert eine Ebene höher in beiden Kategorien, „kompliziert“ und „komplex“. „Einfach“ ist also nicht gleich „einfach“.

„Einfach“ in der Kategorie „kompliziert“ bedeutet, dass das ausreichende Wissen, sowohl praktisch als auch theoretisch, gegeben ist, um eine komplizierte Fragestellung zu lösen. Grundsätzlich ist ein Lösungsweg vorhanden, den man theoretisch kennen und praktisch anwenden muss. Wird eine komplizierte Fragestellung als „schwierig“ eingestuft, ist der vorliegende Lösungsweg nicht bekannt, aber grundsätzlich vorhanden. Er muss erlernt werden, sowohl praktisch als auch theoretisch. In der Kategorie „kompliziert“ rede ich also von Methoden oder Algorithmen, die an den bekannten Lösungsweg an-gelehnt sind.

Für „komplexe“ Fragestellungen kann per Definition kein Wissen existieren, welches in Form eines Rezeptes zu einem Lösungsweg geformt werden kann. Hier sind Erfahrung, Talent und Können essentiell, die Agilität im jeweiligen Kontext erhöhen. Je größer oder kleiner Erfahrung und Talent sind, spreche ich dann von den Wertungen „einfach“, „schwierig“ oder „chaotisch“. Da kein Rezept gegeben ist, kann man Lösungswege auch nicht vorweg in Form von Algorithmen programmieren. Hier sind Frameworks und Heuristiken angebracht, die genügend Freiraum für das eigene Denken und Fühlen lassen.

Die untere Abbildung stellt die Abhängigkeiten und damit die Erweiterung des Cynefin Modells dar.

Data Science und „lebendige“ Kontexte – der Versuch einer Versöhnung

Gerade beim Einsatz von Big Data Analytics sind wir dem im ersten Part angesprochenen Kategorienfehler erlegen, was mich letztlich zu einer differenzierten Sichtweise auf Big Data Analytics verleitet. Darauf komme ich nun zu sprechen.

In vielen Artikeln, Berichten und Büchern wird Big Data Analytics glorifiziert. Es gibt wenige Autoren, die eine differenzierte Betrachtung anstreben. Damit meine ich, klare Grenzen von Big Data Analytics, insbesondere in Bezug zum Einsatz auf Menschen, aufzuzeigen, um damit einen erfolgreichen Einsatz erst zu ermöglichen. Auch viele unserer Hirnforscher tragen einen erheblichen Anteil zum Manifestieren des Kategorienfehlers bei, da sie glauben, Wirkmechanismen zwischen der materiellen und der seelischen Welt erkundet zu haben. Unser Gehirn erzeugt aus dem Feuern von Neuronen, also aus Quantitäten, Qualitäten, wie „Ich liebe“ oder „Ich hasse“. Wie das funktioniert ist bislang unbekannt. Man kann nicht mit Algorithmen aus der komplizierten Welt Sachverhalte der komplexen Welt erklären. Die Algorithmen setzen auf der Zweiwertigen Logik auf und diese lässt keine Kontextwechsel zu. Ich habe diesen Fakt ja im ersten Teil eingehend an der Unterscheidung zwischen Kompliziertheit und Komplexität dargelegt.

Es gibt aber auch erfreulicherweise, leider noch zu wenige, Menschen, die diesen Fakt erkennen und thematisieren. Ich spreche hier stellvertretend Prof. Harald Walach an und zitiere aus seinem Artikel »Sowohl als auch« statt »Entweder-oder« – oder: wie man Kategorienfehler vermeidet.

„Die Wirklichkeit als Ganzes ist komplexer und lässt sich genau nicht mit solchen logischen Instrumenten komplett analysieren. … Weil unser Überleben als Art davon abhängig war, dass wir diesen logischen Operator so gut ausgeprägt haben ist die Gefahr groß dass wir nun alles so behandeln. … Mit Logik können wir nicht alle Probleme des Lebens lösen. … Geist und neuronale Entladungen sind Prozesse, die unterschiedlichen kategorialen Ebenen angehören, so ähnlich wie „blau“ und „laut“.

Aus diesen Überlegungen habe ich eine Big Data Analytics Matrix angefertigt, mit welcher man einen Einsatz von Big Data Analytics auf Menschen, also in „lebendige“ Kontexte, verorten kann.

Die Matrix hat zwei Achsen. Die x-Achse stellt dar, auf welcher Basis, einzelne oder viele Menschen, Erkenntnisse direkt aus Daten und den darauf aufsetzenden Algorithmen gezogen werden sollen. Die y-Achse bildet ab, auf welcher Basis, einzelne oder viele Menschen, diese gewonnenen Erkenntnisse dann angewendet werden sollen. Um diese Unterteilung anschaulicher zu gestalten, habe ich in den jeweiligen Quadranten Beispiele eines möglichen Einsatzes von Big Data Analytics im Kontext Handel zugefügt.

An der Matrix erkennen wir, dass wir auf Basis von einzelnen Individuen keine Erkenntnisse maschinell über Algorithmen errechnen können. Tun wir das, begehen wir den von mir angesprochenen Kategorienfehler zwischen Kompliziertheit und Komplexität. In diesem Fall kennzeichne ich den gesamten linken roten Bereich der Matrix. Anwendungsfälle, die man gerne in diesen Bereich platzieren möchte, muss man über die anderen beiden gelben Quadranten der Matrix lösen.

Für das Lösen von Anwendungsfällen innerhalb der beiden gelben Quadranten kann man sich den Fakt zu Nutze machen, dass sich komplexe Vorgänge oft durch einfache Handlungsvorschriften beschreiben lassen. Achtung! Hier bitte nicht dem Versuch erlegen sein, „einfach“ und „einfach“ zu verwechseln. Ich habe im ersten Teil bereits ausgeführt, dass es sowohl in der Kategorie „kompliziert“, als auch in der Kategorie „komplex“, einfache Sachverhalte gibt, die aber nicht miteinander ob ihrer Schwierigkeitsstufe verglichen werden dürfen. Tut man es, dann, ja sie wissen schon: Kategorienfehler. Es ist ähnlich zu der Fragestellung: “Welche Farbe ist größer, blau oder rot?” Für Details hierzu verweise ich Sie gerne auf meinen Beitrag Komplexitäten entstehen aus Einfachheiten, sind aber schwer zu handhaben.

Möchten sie mehr zu der Big Data Analytics Matrix und den möglichen Einsätzen er-fahren, muss ich sie hier ebenfalls auf einen Beitrag von mir verweisen, da diese Ausführungen diesen Beitrag im Inhalt sprengen würden.

Mensch und Maschine – der Versuch einer Versöhnung

Wie Ihnen sicherlich bereits aufgefallen ist, enthält die Big Data Analytics Matrix keinen grünen Bereich. Den Grund dafür habe ich versucht, in diesem Beitrag aus meiner Sicht zu untermauern. Algorithmen, die stets monokontextural aufgebaut sein müssen, können nur mit größter Vorsicht im „lebendigen“ Kontext angewendet werden.

Erste Berührungspunkte in diesem Thema habe ich im Jahre 1999 mit dem Schreiben meiner Diplomarbeit erlangt. Die Firma, in welcher ich meine Arbeit verfasst habe, hat eine Maschine entwickelt, die aufgenommene Bilder aus Blitzgeräten im Straßenverkehr automatisch durchzieht, archiviert und daraus Mahnschreiben generiert. Ein Problem dabei war das Erkennen der Nummernschilder, vor allem wenn diese verschmutzt waren. Hier kam ich ins Spiel. Ich habe im Rahmen meiner Diplomarbeit ein Lernverfahren für ein Künstlich Neuronales Netz (KNN) programmiert, welches genau für diese Bilderkennung eingesetzt wurde. Dieses Lernverfahren setzte auf der Backpropagation auf und funktionierte auch sehr gut. Das Modell lag im grünen Bereich, da nichts in Bezug auf den Menschen optimiert werden sollte. Es ging einzig und allein um Bilderkennung, also einem „toten“ Kontext.

Diese Begebenheit war der Startpunkt für mich, kritisch die Strömungen rund um die Künstliche Intelligenz, vor allem im Kontext der Modellierung von Lebendigkeit, zu erforschen. Einige Erkenntnisse habe ich in diesem Beitrag formuliert.

In eigener Sache: Der Data Leader Day 2017

Der Data Science Blog ist Co-Organisator des Data Leader Day 2017

Der Data Leader Day am 09.11.2017 ist ein Event für Unternehmen aus dem deutschsprachigen Raum, das sich mit den Möglichkeiten und Lösungen rund um die Datennutzung zur Geschäftsoptimierung oder der Bildung von neuen Geschäftsmodellen beschäftigt. Zu den Speakern zählen CIOs, CDOs und Chief Data Scientists aus der ganzen DACH-Region. Das Event eignet sich für Entscheider, Absolventen und Studenten, die neue Kontakte knüpfen und wichtige Impulse für die eigene digitale Weiterentwicklung erhalten möchten. In einem innovativem Programm mit Keynote, Präsentationen sowie Use & Business Cases wird aufgezeigt, wie die Digitalisierung im Unternehmen umgesetzt und als neues Wertschöpfungsinstrument eingesetzt werden kann.

Der Data Leader Day wendet sich gezielt an Entscheider und Data Scientists mit Digitalisierungsauftrag/-bezug sowie alle Interessenten rund um die Trendthemen Big Data und Industrie 4.0.

Zu den Highlights des Events zählen ein Fireside Chat “CIO vs CDO – Wem gehört die Zukunft” und der Data Leader Award in den Kategorien Retail, Finance und Industry 4.0. Aktuelle Informationen erhalten Sie auf

Die Location

Passend zu einem herausragenden Event ein einmaliges Ambiente: Die Spreespeicher waren ein Symbol für fortschrittliches Denken in der Gründerzeit. Heute sind sie das Synonym einer dynamischen Entwicklung im 21. Jahrhundert. Der Spreespeicher im Spreequartier Berlin war bereits die Location für den Data Leader Day 2016 und wurde sowohl von den Organisatoren als auch von den Teilnehmern sehr gut bewertet.

Spreequartier Berlin
Stralauer Allee 2,

10245 Berlin

Job-Titel der Teilnehmer

Was den Data Leader Day von anderen Veranstaltungen absetzt: Wir wenden uns vor allem an Führungskräfte mit Digitalisierungsauftrag.
Typische Job-Bezeichnungen der Teilnehmer (basierend auf den Teilnehmern im vergangenen Jahr):

Chief Executive Officer Leiter Operations Chief Data Scientist
Chief Data Officer Leiter Einkauf Big Data Engineer
Chief Digital Office Leiter Finanzen Data Scientist
Chief Information Officer Leiter Produktion BI Consultant
Chief Technology Officer Leiter Marketing Data Architect

25% Nachlass für Data Scientists (nur 20x verfügbar!)

Wer ein Ticket zum besten Preis erwerben möchte, sollte jetzt zugreifen und folgenden Rabatt-Code verwenden:


Der Rabattcode kann einfach in das Feld unten links im Buchungsfenster auf eingegeben werden und führt zu einer Reduzierung des Ticketpreises um 25%.

Hinweis: Das Kontingent für den Rabatt-Code ist auf 20 Tickets begrenzt! Besser jetzt zugreifen!



Lernplattform dataX Academy gewinnt Sonderpreis für “Digitale Bildung”

Sponsored Post

Big Data ist die Zukunft, doch den meisten Unternehmen fehlen ausgebildete Datenexperten. Die Berliner Gründer Leo Marose und Stefan Berntheisel haben eine Lernplattform entwickelt, die Datenkompetenz auf eine völlig neue Art und Weise vermitteln soll – interaktiv und am Beispiel realistischer Szenarien. Für ihr Konzept werden sie jetzt vom Bundeswirtschaftsministerium auf der CeBIT 2017 mit dem Sonderpreis für “Digitale Bildung” ausgezeichnet.

Der Bedarf an Experten für Themen wie Big Data, Machine Learning und künstlicher Intelligenz wächst rasant, das Angebot für Weiterbildungen ist aber immer noch gering. “Unternehmen sammeln immer mehr Daten, um wettbewerbsfähig zu sein – wissen aber oft nichts damit anzufangen”, erinnert sich der ehemalige Strategie-Berater Leo Marose. “Wir haben schnell gemerkt, dass hier ein riesiger Markt schlummert”. Gemeinsam mit dem IT-Systemarchitekten Stefan Berntheisel startet er 2016 dataX Academy. Die Idee: Angehende Data Scientists und Data Engineers sollen den Umgang mit komplexen Datensätzen nicht nur wie bislang in der Theorie, sondern auch in der Praxis lernen. Dazu stellt dataX Academy Online-Kurse mit echten Datensets und einer eigenen Programmierumgebung zur Verfügung. “Die Nutzer lösen dann realistische Übungsaufgaben, z. B. müssen sie herausfinden, an welchen Orten in New York mit der höchsten Taxi-Nachfrage zu rechnen ist. Allein für diese Aufgabe stehen mehr als 1,1 Milliarden echte Datenpunkte zur Verfügung”, erklärt Stefan Berntheisel. Andere Aufgaben stammen aus Bereichen wie Marketing, Geografie oder Logistik. Die Kurse werden gemeinsam mit Experten entwickelt und die Teilnehmer durch realistische Aufgaben und Probleme besser an die Praxis herangeführt. “Wir stellen immer die gesamte technische Infrastruktur für die Lernumgebung”, sagt Stefan Berntheisel und fügt hinzu: “So können Firmen ihre Mitarbeiter z. B. in Data Science sehr kostengünstig weiterbilden.” Die Kurse kosten zwischen 79 und 300 Euro. Mit dem Konzept gewann das Duo zuletzt den Startup-Award auf der Learntec 2017, der größten Messe für digitales Lernen in Europa, und erhielt eine EXIST-Förderung in Höhe von 125.000 Euro von der FU Berlin. Auf der diesjährigen CeBIT wird dataX Academy nun vom Bundeswirtschaftsministerium mit dem Sonderpreis für “Digitale Bildung” ausgezeichnet und erhält ein Preisgeld in Höhe von 10.000 Euro.

dataX Academy arbeitet aktuell an einer Finanzierungsrunde

– denn der Markt für Big Data wächst bis 2020 auf 61 Milliarden Dollar

Wenige Monate nach der Idee zu dataX Academy starteten Leo Marose und Stefan Berntheisel im Sommer 2016 einen ersten Produkttest in Indien, Europa und den USA – mit Erfolg. “Unsere Tests liefen sehr vielversprechend. Aktuell liegen unsere Akquisitionskosten pro Nutzer bei durchschnittlich einem Dollar. Deshalb arbeiten wir jetzt an einer weiteren Finanzierung, um unser Wachstum weiter zu beschleunigen”, sagt Leo Marose. Schon 2020 ist der Wachstumsmarkt Big Data über 61 Milliarden Dollar schwer, Experten schätzen das jährliche Wachstum auf satte 30 Prozent. Zwar gibt es bereits große E-Learning-Player am Markt mit vielseitigem Angebot, diese seien oft aber “nur in wenigen Bereichen spezialisiert und setzen vor allem auf Lernvideos oder Multiple-Choice-Tests”, so Stefan Berntheisel. “Der Bedarf ist riesig – allein in den USA fehlen über 500.000 Experten für Data Science, Data Engineering und Co. In Deutschland sind Datenexperten aktuell sogar noch schwieriger zu finden.” Deshalb rollt dataX Academy seine Lernplattform aktuell in Deutschland aus. Große Marken wie Daimler, Audi, Siemens und die Boston Consulting Group haben bereits Interesse angemeldet.

Über die dataX Academy

Das Berliner Startup dataX Academy trainiert die Datenexperten von Morgen. Mit der Plattform können Nutzer den Umgang mit “Big Data” nicht nur in der Theorie, sondern auch in der Praxis lernen. Dazu stellt dataX Online-Kurse mit echten Datensets und einer eigenen Programmierumgebung Verfügung. Die Kurse werden gemeinsam mit Experten entwickelt und die angehenden Data Scientists sowie Data Engineers durch realistische Aufgaben und Probleme besser an die Praxis herangeführt. So können Unternehmen oder Forschungseinrichtungen ihre Mitarbeiter kostengünstig weiterbilden.

Hinter der Idee stecken die Berliner Unternehmer Leo Marose und Stefan Berntheisel. Sie haben bereits zuvor das Online-Magazin BOXROX aufgebaut – mit monatlich einer Million Seitenaufrufe und internationalen Werbekunden wie Adidas, Reebok oder Nike. Zuletzt gewann dataX Academy den Startup-Award auf der Learntec, der größten Messe für digitales Lernen in Europa, und wurde vom Bundeswirtschaftsministerium mit dem Sonderpreis für “Digitale Bildung” auf der CeBit 2017 ausgezeichnet.


Leo Marose

Tel.: 0163 7788742




Weitere Referenzen zu dataX Academy



Was macht einen guten Data Scientist aus? Kurzinterviews mit 6 führenden Experten!

Was macht eigentlichen einen guten Data Scientist aus?

Diese Frage wurde mir von Studenten und Absolventen, aber auch von alteingesessenen CIOs bereits häufiger gestellt. Gerade Deutsche Unternehmen sind hinsichtlich der Möglichkeiten mit Data Science noch nicht so recht aufgeklärt und auch erst seit wenigen Jahren bieten Hochschulen entsprechende Schwerpunkte oder sogar ganze Studiengänge an. Zumindest für Wirtschaftsunternehmen ist Data Science eine neue Disziplin und somit ist es auch nicht verwunderlich, dass für das Berufsbild des Data Scientists noch ganz unterschiedliche Auffassungen vorherrschen – Und ganz ehrlich: Die Recruiter mit ihren wirren Anforderungsprofilen machen es nicht besser!

Dieses Mal möchte ich selbst jedoch einen Schritt zurücktreten und keine konkrete Antwort auf die Frage geben, was denn einen guten Data Scientist ausmacht. Ich habe diese Frage einfach mal an Experten weitergeleitet, die ich zu den führenden Data Science Experten in Deutschland zähle. Und hier sind ihre Antworten: Read more