Haufe Akademie – Sponsor des Data Science Blogs

Die Haufe Akademie ist einer der führenden Anbieter für Qualifizierung und Entwicklung von Menschen und Unternehmen im deutschsprachigen Raum. Passgenaue Lösungen, einzigartige Services, höchste Beratungskompetenz und individuelle Qualifizierung vereinfachen den Erwerb von Fähigkeiten und erleichtern nachhaltige Entwicklungen. Maßgeschneiderte Unternehmenslösungen, ein breites E-Learning Portfolio, Managed Training Services und Consulting unterstützen HR-Verantwortliche und Entscheider:innen bei der Zukunftsgestaltung für Unternehmen. Mehr Kompetenz für Fach- und Führungskräfte ermöglicht ein umfangreiches Angebot an Seminaren, Qualifizierungsprogrammen, Lehrgängen und Tagungen.

Die Haufe Akademie ist Data Science Blog Sponsor

2021 führte die Haufe Akademie über 3.900 firmeninterne Qualifizierungsmaßnahmen für Unternehmen aller Branchen sowie 4.000 Veranstaltungstermine zu rund 1.700 unterschiedlichen betrieblichen Themen in bundesweit über 75 Orten durch. Rund 275.000 Teilnehmer:innen setzten in diesem Jahr bei ihrer Weiterentwicklung auf die Kompetenz und Erfahrung der Haufe Akademie, die seit 1978 am Markt ist. Die Haufe Akademie ist ein Unternehmen der Haufe Gruppe.

Im Laufe der kommenden Monate werden wertbeitragende Artikel und anderer Content hier auf www.data-science-blog.com veröffentlicht. Schon jetzt sind im Rahmen des Sponsorings zwei Fortbildungsangebote im Programm gelistet:

Persönliche Weiterbildung und Entwicklung

Ob es darum geht, das fachliche Know-how, Soft-Skills oder Führungskompetenzen weiterzuentwickeln – bei uns finden Sie die Lösung für Ihr Qualifizierungsziel. In unserem aktuellen Programm mit rund 4.000 Veranstaltungsterminen stehen mehr als 1.700 Weiterbildungsangebote zu allen Bereichen der beruflichen und betrieblichen Praxis zur Auswahl. Wir vermitteln aktuelles Fachwissen und moderne Management-Techniken in Form von Seminaren, Trainings, Tagungen und umfassenden Qualifizierungsprogrammen bis hin zu E-Learnings.

Data Science – Qualify for future!

Der junge Portfoliobereich Data Science unterstützt seit 2019 Mitarbeiter:innen, Teamleader:innen und Unternehmen dabei, die Chancen der digitalen Transformation positiv für sich zu nutzen. Mit kompetenten Trainer:innen nimmt die Haufe Akademie Sie vom Einstieg in die Welt der Daten bis zum Zertifizierungslehrgang an die Hand, um mit Data Science fit für die beruflichen Herausforderungen von morgen zu sein.

Link zu weiteren Informationen…

Data Security for Data Scientists & Co. – Infographic

Data becomes information and information becomes knowledge. For this reason, companies are nowadays also evaluated with regard to their data and their data quality. Furthermore, data is also the material that is needed for management decisions and artificial intelligence. For this reason, IT Security is very important and special consulting and auditing companies offer their own services specifically for the security of IT systems.

However, every Data Scientist, Data Analyst and Data Engineer rarely only works with open data, but rather intensively with customer data. Therefore, every expert for the storage and analysis of data should at least have a basic knowledge of Data Security and work according to certain principles in order to guarantee the security of the data and the legality of the data processing.

There are a number of rules and principles for data security that must be observed. Some of them – in our opinion the most important ones – we from DATANOMIQ have summarized in an infographic for Data Scientists, Data Analysts and Data Engineers. You can download the infographic here: DataSecurity_Infographic

Data Security for Data Scientists, Data Analysts and Data Engineers

Data Security for Data Scientists, Data Analysts and Data Engineers

Download Infographic as PDF

Infographic - Data Security for Data Scientists, Data Analysts and Data Engineers

Infographic – Data Security for Data Scientists, Data Analysts and Data Engineers

Digital Data Taxes in China: How Would Big Tech Be Affected?

As 2020 came to a close, Chinese officials hinted at new data regulations on the horizon. Yao Qian, a Chinese securities official, stated that China should impose a digital data tax on some tech companies. Considering big tech’s prominent presence in the country, these taxes, if enacted, could have considerable impacts on the industry.

The international technology industry is inseparable from China. Several of the world’s largest tech companies are Chinese, and many others have bases of operation in the country. As such, any legislature in the nation regarding technology has significant global implications.

The Current State of Digital Services Taxes

China wouldn’t be the first country to establish a digital services tax (DST). In Europe, eight nations have implemented a DST, and six more have proposed or announced such legislation. Not all of these include a digital data tax, but some do.

France has one of the broadest DSTs, covering revenues from a range of digital services. This includes the transmission of user data for advertising purposes, which seems similar to what China might enact. The U.S., which has no such tax, has opposed these measures, threatening France with tariffs until France agreed to postpone collecting DSTs on U.S. companies.

The United States Trade Representative (USTR) has responded similarly to other nations with DSTs. Given this precedent, it’s possible that it will do the same if China goes through with its tax proposal.

The Financial Impact of Digital Data Taxes in China

Chinese officials have said little about what their DST would include, so the impact is still uncertain. They have, however, mentioned that these taxes would specifically target tech platforms that “hold a large amount of users’ data.” This legislation would likely collect payments from online platforms like Facebook and Google based upon how much user data they hold.

Considering that Google, Facebook, Amazon and Microsoft may store as much as 1,200 petabytes between them, these taxes would quickly become expensive. While none of these are Chinese companies, they all do business in China or with Chinese customers. As a result, Big Tech, which relies heavily on collecting user data, could see substantial losses.

Massive tech corporations aren’t the only ones that could face massive payments. Typically, governments impose DSTs on gross revenue, not net income. Consequently, even smaller, unprofitable tech companies may end up paying significant sums to the Chinese government.

Potential Changes in Data Governance

This new financial burden wouldn’t be the only impact of a digital data tax. The way companies gather and handle user data could shift as they adapt to these changes. For instance, some tech companies could store less data at a time, at least for customers in China, to lower the taxes they have to pay.

Officials have said that these proposed taxes come out of concern for consumers’ data rights. This has been a rising issue as data breaches increase, although these are more often than not due to human error, not the platforms themselves. Still, in response to these regulations, Big Tech could take a step back when it comes to holding user information.

Some companies may respond by stepping out of China. Doing so would help them avoid decreased profits from these taxes but would represent a considerable loss in other areas. There are more than 883 million internet users in China, constituting the world’s largest online community. That market is likely too substantial for companies to ignore, even with more taxes.

While this wouldn’t be the first digital data tax, it would set a new precedent. Officials have proposed treating user data as a natural resource, which would represent a legislative first. As data becomes more crucial to businesses, other nations may follow suit, leading to further regulation of the tech industry.

Big Tech Can Expect Heightened Regulation in the Future

Whether or not China will implement this digital data tax remains uncertain. Even if they don’t, tech companies will likely face increased regulations as time goes on. User data is reaching new heights in both its abundance and utility, and world governments won’t likely sit idly by.

These new regulations may make conducting business, especially internationally, more challenging for Big Tech. On the other hand, they could also protect users. For now, tech companies have to stay vigilant about developing changes and be ready to adapt.

New Era of Data Science in Today’s World

In today’s digital world, most organizations are flooded with data, both structured and unstructured. Data is a commodity now, and organizations should know how to monetize that data and derive a profit from the deluge. And valuing data is one of the best ways enterprises can become successful in distinguishing themselves in the marketplace.

Data is the new oil

Indeed, data itself has become a commodity, and the mere possession of abundant amounts of data is not enough. But the ability to monetize data effectively (and not merely hoard it) can undoubtedly be a source of competitive advantage in the digital economy. However, we need to refine this data. And refinement of this “new oil” will take a reasonable amount of time. In my opinion, we are still not there. As a result, “data refinement” remains a key factor for successful advanced analytics.

If we talk about the level of activity in data and analytics space in the last two years, most advanced analytics evolved around three categories:

  • Descriptive, or what has happened
  • Predictive, or what could happen, and
  • Prescriptive, or what we should do.

Descriptive analytics has been the core analytics for many years. In the past, we could only describe what has happened to historical data (such as that found in a data warehouse), with dashboard reporting, using traditional analytics. But with the advent of advanced analytics, machine learning (ML), and deep learning and artificial intelligence (AI), our focus has changed to real-time analytics. In the last two years, much work has been done in predictive analytics, and as we move forward into our analytics journey, data-centric organizations will now focus on prescriptive analytics. The use of prescriptive analytics, along with predictive analytics, is very important for any organization to be successful in the future.

Current and recent trends in data and analytics

The analytics trends revolve around AI and ML. The Analytics-as-a-Service model is an essential model for any smart, data-driven organization. We can make an impact on society and try to make a better place to live with the use of advanced analytics. At NTT DATA, we strive to solve these problems to improve the quality, safety and advancement of humanity. From a business perspective, we use data analytics and predictive modeling to help companies increase their sales and revenue.

Let me give you some examples. We have been involved with several technology partners in a project for the Smart City. This project involved the use of predictive analytics for the validation of critical alerts to help reduce the time and amount of data required to be processed. It used Internet of Things (IoT) devices, high-definition video cameras, and sound sensors, as well as video and sound data captured from specific locations. Eventually, the solution also integrated with available data from data sources such as crime, weather and social media. The overall objective of the Smart City project was to use and apply advanced analytics with cognitive computing to facilitate safety decision-making, and for a responder to respond earlier based on real-time data.

Another example is the Smart ICU System developed by NTT DATA for predictive detection of threats for seriously ill patients in an ICU, based on the data. This data was consolidated from various medical devices in the ICU into one platform. From that data, we developed a model that predicts the risk of complications that might occur within the next couple of hours or so of a medical event. We have also used advanced analytics provided by weather data forecasting and used predictive models to predict natural disasters.

Data and analytics strategy

A strategy is an essential aspect of any data-driven organization. It should cover data strategy for AI, ML, statistical modeling and other data science disciplines, such as predictive and prescriptive analytics. In general, advanced analytics is more predictive and actionable than retrospective. Smart organizations see positive results when they place a strategy for data and analytics in the hands of employees who are well-positioned to make decisions, such as those who interact with customers, oversee product development, or run production processes. With data-based insight and clear decision rules, employees can deliver more meaningful services, better assess and address customer demands, and optimize production.

Smart organizations must take time to clean and update their underlying modern data architecture — along with their data governance process, for a cleaner data and analytics strategy. A modern data architecture, combined with a good governance process, can leverage AI and ML to help organizations stay ahead of their competitors.

Data analytics innovation

Machine and Deep Learning, along with AI, are all very popular, but I would like to reiterate that advanced technologies like AI and machine learning will continue to transform data analytics. The next innovation could be the use of automated analytics, which machine learning tools can use to identify hidden patterns in data. For example, customer retention issues, customer default on loans, or predicting customers who are prone to auto accidents. Also, predictive analytics and prescriptive analytics are going to be the key for any future innovations in AI and ML.

We must make targeted investments in traditional business innovation tools, along with emerging data analytics tools to derive benefits from data-driven business initiatives. We need to invest in cloud and underlying IT infrastructure to support these analytics and business initiatives. Most importantly, we also need to invest in people — cross training skilled resources and empowering the people who work closely with clients to make the right decisions for analytics.

Zertifikatsstudium „Data Science and Big Data“

Jetzt bewerben für das Zertifikatsstudium „Data Science and Big Data“ an der Technischen Universität Dortmund 

Im Februar startet das erfolgreiche berufsbegleitende Zertifikatsstudium „Data Science and Big Data“ an der Technischen Universität Dortmund zum fünften Mal.
Renommierte Wissenschaftlerinnen und Wissenschaftlern vermitteln Ihnen die neuesten datenwissenschaftlichen Erkenntnisse und zeigen, wie dieses Wissen praxisnah im eigenen Big-Data Projekt umgesetzt werden kann.
Von der Analyse über das Management bis zur zielgerichteten Darstellung der Ergebnisse lernen Sie dabei Methoden der Disziplinen Statistik, Informatik und Journalistik kennen.

Das Zertifikatsstudium richtet sich an alle Personen, die über einen natur-  oder ingenieurwissenschaftlich/ statistische Studienhintergrund verfügen oder aufgrund ihrer mehrjährigen Berufserfahrung mit Fragestellungen zum Thema Datenanalyse vertraut sind.

Mögliche Berufsgruppen sind:

  • Data Analyst
  • Consultant/ Unternehmensberater
  • Business Analyst
  • Software-Entwickler

Das weiterbildende Studium umfasst 10 Veranstaltungstage über eine Dauer von 10 Monaten (Kursabschluss: ca. November 2021). Die Kosten betragen 6.900 € (zahlbar in 3 Raten). Bewerbungsschluss ist der 4. Dezember 2020. Weitere Informationen und Hinweise zur Anmeldung finden Sie unter: http://www.zhb.tu-dortmund.de/datascience

Bei Fragen können Sie sich gerne an den zuständigen Bildungsreferenten Daniel Neubauer wenden: daniel.neubauer@tu-dortmund.de oder 0231/755-6632.


Ergänzend bieten wir einen R-Basis- und R-Vertiefungskurs an. Wenn Sie sich für das Zertifikatsstudium bewerben und für einen Kurs bzw. beide Kurse, erhalten Sie pro R-Kurs einen Rabatt von 250 €. Weitere Informationen finden Sie unter: https://dortmunder-r-kurse.de/kursangebot/

Wir behalten uns vor, das weiterbildende Studium je nach Entwicklungen der Corona-Pandemie als Online-Kurs durchzuführen

Online-Kurse zur Statistiksoftware R

R – ein unverzichtbares Werkzeug für Data Scientists. Lassen Sie sich auf den neusten Stand in der Open Source Statistiksoftware R aus der modernen Datenanalyse bringen.

Zielgruppe unserer Fortbildungen sind nicht nur Statistikerinnen und Statistiker, sondern auch Anwenderinnen und Anwender jeder Fachrichtung aus Industrie und Forschungseinrichtungen, die mit R ihre Daten effektiv analysieren möchten. Sie erwerben durch die Teilnahme Qualifikationen zur selbstständigen Analyse Ihrer eigenen Daten sowie Schlüsselkompetenzen im Umgang mit Big Data. Dafür bieten wir den R-Basiskurs und den R-Vertiefungskurs im November als Online-Veranstaltungen an.


R-Basiskurs:  4. – 6. November (jeweils 9:00 – 13:00 Uhr) – Der Kurs richtet sich an Anfänger ohne Erfahrungen mit R sowie an Nutzer mit rudimentären oder eingerosteten R-Wissen. Entsprechend sind keine Vorkenntnisse über R notwendig. Zusätzlich zu den 3 Online-Tagen erhalten die Teilnehmenden Zugang zu 1,5 Stunden Videomaterial.

R-Vertiefungskurs: 17. – 20. November (jeweils 9:00 – 13:00 Uhr) – Der Vertiefungskurs richtet sich an fortgeschrittene R Nutzer sowie Absolventen des Basiskurses. Er ist ideal für Mitarbeiter aus Unternehmen, die ihre Analysen effizient mit R durchführen möchten.

Weitere Informationen zu den Inhalten und zur Anmeldung finden Sie unter: https://dortmunder-r-kurse.de/kursangebot/

Bei Fragen können Sie sich gerne an den zuständigen Bildungsreferenten Daniel Neubauer wenden: daniel.neubauer@tu-dortmund.de oder 0231/755-6632.

Die führende Fachkonferenz für Machine Learning

Seien Sie dabei, wenn sich am 16. bis 17. November 2020 Anwender, Entscheider und Experten von Predictive Analytics und Machine Learning virtual treffen, um sich über die neuesten Erkenntnisse und Fortschritte zu informieren.

Vom Data Lab zu Data Ops

Die Zeit des Experimentierens ist vorbei. Unternehmen erwarten, dass ihre Data Labs das liefern, was ihnen der KI-Hype versprochen hat: mehr Kunden, höhere Umsätze, effizientere Prozesse und vieles mehr. Doch viele Projekte stecken in der PoC-Falle fest: sie funktionieren als Prototyp – aber nicht im realen Betrieb. Aus der Data Science muss eine Data Industry werden: wir müssen selbst lernen, effizienter und effektiver zu werden – und zwar darin die wirklich kritischen Herausforderungen im Unternehmen zu identifizieren, die passenden Lösungsideen zu entwickeln, die Ideen schnell in funktionierende Modelle zu übersetzen, aus den Modellen skalierbare Lösungen zu entwickeln und schließlich dafür zu sorgen, dass diese Lösungen von den Fachbereichen gewinnbringend genutzt werden. Dies verlangt ein neues Selbstverständnis: wir sind nicht das Experimentierlabor der Unternehmen – sondern deren Maschinenraum: Data Ops statt Data Labs.

Predictive Analytics für die Finanz- & Versicherungsbranche

Auf der diesjährigen Konferenz starten wir ein neues Format: eine Vortragsreihe für angewandte Predictive Analytics in der Finanz- und Versicherungsbranche. Dieser eintägige Track zeigt Ihnen die wichtigsten Anwendungsfälle von Machine & Deep Learning für Banken, Versicherungen, Investoren und Fonds auf, indem er Ihnen reale Projekte von bekannten Unternehmen vorstellt. Sie erfahren, wie Sie Datenschutz- und Regulierungsprobleme lösen, Ihre Datenbestände mit Data Governance und Datenstrategie verwalten und verwerten sowie mit Data Science & Analytics erfolgreiche Datenprodukte entwickeln und betreiben.

Lassen Sie sich wertvolle Tipps und Tricks von erfahrenen Experten aus namhaften Unternehmen nicht entgehen!

Mit dem Code “DATASCIENCEPAW” bekommen Sie zusätzliche 15 Prozent Rabatt auf Ihre Buchung.

Grenzenloses Machine Learning und Digital Analytics Wissen auf der Data Driven Business Berlin 2020

2 Konferenzen, 2 Tage & unbegrenztes Networking unter einem Dach

Vom 16. – 17. November 2020 trifft sich die Machine Learning & Digital Analytics-Szene virtuell, um die neuesten und wichtigsten Entwicklungen zu diskutieren.

Sichern Sie sich grenzenloses Machine Learning und Digital Analytics Wissen auf der Data Driven Business – zwei Konferenzen, gemeinsam oder separat buchbar. In hochkarätigen Sessions werden Inhalte vermittelt, die besonders fortgeschrittene Nutzer ansprechen, aber auch für Anfänger einen guten Einstieg bieten.

Lassen Sie sich Case Studies, Deep Dives und Keynotes von erfahrenen Experten aus namhaften Unternehmen nicht entgehen.

Zwei Tage lang dreht sich alles um die Themen Digital Analytics und den Einsatz von Machine Learning. Hier gibt es umsetzbare Inhalte statt Buzzwords, 100%ige Tool- & Service-Neutralität sowie die besten Networkingmöglichkeiten mit nationalen und internationalen Experten. Inspiration bei den Keynotes, umsetzbare Taktiken zu spezifischen Themen in den Sessions oder Deep Dives mit hochtechnischem Fokus – Sie haben die Wahl und stellen so aus unterschiedlichen Tracks Ihr eigenes, für Sie relevantes Programm zusammen. Holen Sie das bestmögliche aus Ihrer Zeit auf der Data Driven Business in Berlin!

Zwei Konferenzen unter einem Dach

– gemeinsam oder separat buchbar:

  1. Marketing Analytics Summit
    ist DIE Konferenz für Digital Analysts. Optimieren Sie den Einsatz von Daten für Ihr Marketing! Das Konferenzformat besteht aus Vorträgen, Teilnehmerdiskussionen und -aktionen. Hier treffen Sie Kollegen und Experten, die den Unterschied machen.
  2. Predictive Analytics World
    ist die führende anbieterunabhängige Fachkonferenz für Machine Learning. Anwender, Entscheider und Experten von Predictive Analytics und Machine Learning treffen sich hier, um sich über die neuesten Erkenntnisse und Fortschritte zu informieren.

Mit dem Code „DATASCIENCEPAW“ bekommen Sie zusätzliche 15 Prozent Rabatt auf Ihre Buchung.

DIE Konferenz für Digital Analysts

Optimieren Sie den Einsatz von Daten für Ihr Marketing

Lernen Sie am 16. und 17. November 2020 auf der Marketing Analytics Summit in Berlin alles, was wichtig ist, um datengetriebenes Marketing zu meistern und treffen Sie Kollegen und Experten, die den Unterschied machen.

Sie haben die Wahl zwischen Keynotes, Teilnehmerdiskussionen und -aktionen, Präsentationen und Workshops zu den Themen:

  1. Data Strategy & Governance
  • Data Driven Culture
  • Datenarchitektur und -management
  • Data Literacy
  • Data Privacy
  • Datenqualität

2.Technology & Tools

  • Tracking & Analytics Tools
  • Neue Technologien & deren Implementierung
  • Make or Buy Entscheidungen (Tools & Datenhaltung)
  1. KPIs, Dashboard & Visual Analytics
  • KPI Definition und Steuerung
  • Graphische Darstellung von Daten/KPIs
  • Reporting
  1. MarketingAnalytics & Applications
  • Machine Learning & AI Anwendungen im Marketing
  • Mulitvariate Analysemethoden
  • Personalisierung im Marketing
  • Social Media Analytics
  • Customer Journey Analysen
  • Kampagnenauswertung und -optimierung
  • Marketingattribution

Zwei Tage volles Programm

Vervielfachen Sie Ihr Wissen und Können mit den neuesten Erkenntnissen, aktuellsten Entwicklungen und den relevantesten Beispielen datengestützten Marketings. Lernen Sie eine neue Generation von Marketing-Tools, Techniken und Strategien kennen und vernetzen Sie sich mit Entwicklern und Anwendern!

Kollegen und Experten präsentieren und diskutieren den Einsatz von Digital Analytics, Customer Insights und künstlicher Intelligenz im Marketing. Lernen Sie eine neue Generation von Marketing-Tools, Techniken und Strategien kennen und vernetzen Sie sich mit Entwicklern und Anwendern.

Lassen Sie sich wertvolle Tipps und Tricks von erfahrenen Experten aus namhaften Unternehmen nicht entgehen!

Mit dem Code „DATASCIENCEPAW“ bekommen Sie zusätzliche 15 Prozent Rabatt auf Ihre Buchung.

Sechs Eigenschaften einer modernen Business Intelligence

Völlig unabhängig von der Branche, in der Sie tätig sind, benötigen Sie Informationssysteme, die Ihre geschäftlichen Daten auswerten, um Ihnen Entscheidungsgrundlagen zu liefern. Diese Systeme werden gemeinläufig als sogenannte Business Intelligence (BI) bezeichnet. Tatsächlich leiden die meisten BI-Systeme an Mängeln, die abstellbar sind. Darüber hinaus kann moderne BI Entscheidungen teilweise automatisieren und umfassende Analysen bei hoher Flexibilität in der Nutzung ermöglichen.

english-flagRead this article in English:
“Six properties of modern Business Intelligence”

Lassen Sie uns die sechs Eigenschaften besprechen, die moderne Business Intelligence auszeichnet, die Berücksichtigungen von technischen Kniffen im Detail bedeuten, jedoch immer im Kontext einer großen Vision für die eigene Unternehmen-BI stehen:

1.      Einheitliche Datenbasis von hoher Qualität (Single Source of Truth)

Sicherlich kennt jeder Geschäftsführer die Situation, dass sich seine Manager nicht einig sind, wie viele Kosten und Umsätze tatsächlich im Detail entstehen und wie die Margen pro Kategorie genau aussehen. Und wenn doch, stehen diese Information oft erst Monate zu spät zur Verfügung.

In jedem Unternehmen sind täglich hunderte oder gar tausende Entscheidungen auf operative Ebene zu treffen, die bei guter Informationslage in der Masse sehr viel fundierter getroffen werden können und somit Umsätze steigern und Kosten sparen. Demgegenüber stehen jedoch viele Quellsysteme aus der unternehmensinternen IT-Systemlandschaft sowie weitere externe Datenquellen. Die Informationsbeschaffung und -konsolidierung nimmt oft ganze Mitarbeitergruppen in Anspruch und bietet viel Raum für menschliche Fehler.

Ein System, das zumindest die relevantesten Daten zur Geschäftssteuerung zur richtigen Zeit in guter Qualität in einer Trusted Data Zone als Single Source of Truth (SPOT) zur Verfügung stellt. SPOT ist das Kernstück moderner Business Intelligence.

Darüber hinaus dürfen auch weitere Daten über die BI verfügbar gemacht werden, die z. B. für qualifizierte Analysen und Data Scientists nützlich sein können. Die besonders vertrauenswürdige Zone ist jedoch für alle Entscheider diejenige, über die sich alle Entscheider unternehmensweit synchronisieren können.

2.      Flexible Nutzung durch unterschiedliche Stakeholder

Auch wenn alle Mitarbeiter unternehmensweit auf zentrale, vertrauenswürdige Daten zugreifen können sollen, schließt das bei einer cleveren Architektur nicht aus, dass sowohl jede Abteilung ihre eigenen Sichten auf diese Daten erhält, als auch, dass sogar jeder einzelne, hierfür qualifizierte Mitarbeiter seine eigene Sicht auf Daten erhalten und sich diese sogar selbst erstellen kann.

Viele BI-Systeme scheitern an der unternehmensweiten Akzeptanz, da bestimmte Abteilungen oder fachlich-definierte Mitarbeitergruppen aus der BI weitgehend ausgeschlossen werden.

Moderne BI-Systeme ermöglichen Sichten und die dafür notwendige Datenintegration für alle Stakeholder im Unternehmen, die auf Informationen angewiesen sind und profitieren gleichermaßen von dem SPOT-Ansatz.

3.      Effiziente Möglichkeiten zur Erweiterung (Time to Market)

Bei den Kernbenutzern eines BI-Systems stellt sich die Unzufriedenheit vor allem dann ein, wenn der Ausbau oder auch die teilweise Neugestaltung des Informationssystems einen langen Atem voraussetzt. Historisch gewachsene, falsch ausgelegte und nicht besonders wandlungsfähige BI-Systeme beschäftigen nicht selten eine ganze Mannschaft an IT-Mitarbeitern und Tickets mit Anfragen zu Änderungswünschen.

Gute BI versteht sich als Service für die Stakeholder mit kurzer Time to Market. Die richtige Ausgestaltung, Auswahl von Software und der Implementierung von Datenflüssen/-modellen sorgt für wesentlich kürzere Entwicklungs- und Implementierungszeiten für Verbesserungen und neue Features.

Des Weiteren ist nicht nur die Technik, sondern auch die Wahl der Organisationsform entscheidend, inklusive der Ausgestaltung der Rollen und Verantwortlichkeiten – von der technischen Systemanbindung über die Datenbereitstellung und -aufbereitung bis zur Analyse und dem Support für die Endbenutzer.

4.      Integrierte Fähigkeiten für Data Science und AI

Business Intelligence und Data Science werden oftmals als getrennt voneinander betrachtet und geführt. Zum einen, weil Data Scientists vielfach nur ungern mit – aus ihrer Sicht – langweiligen Datenmodellen und vorbereiteten Daten arbeiten möchten. Und zum anderen, weil die BI in der Regel bereits als traditionelles System im Unternehmen etabliert ist, trotz der vielen Kinderkrankheiten, die BI noch heute hat.

Data Science, häufig auch als Advanced Analytics bezeichnet, befasst sich mit dem tiefen Eintauchen in Daten über explorative Statistik und Methoden des Data Mining (unüberwachtes maschinelles Lernen) sowie mit Predictive Analytics (überwachtes maschinelles Lernen). Deep Learning ist ein Teilbereich des maschinellen Lernens (Machine Learning) und wird ebenfalls für Data Mining oder Predictvie Analytics angewendet. Bei Machine Learning handelt es sich um einen Teilbereich der Artificial Intelligence (AI).

In der Zukunft werden BI und Data Science bzw. AI weiter zusammenwachsen, denn spätestens nach der Inbetriebnahme fließen die Prädiktionsergebnisse und auch deren Modelle wieder in die Business Intelligence zurück. Vermutlich wird sich die BI zur ABI (Artificial Business Intelligence) weiterentwickeln. Jedoch schon heute setzen viele Unternehmen Data Mining und Predictive Analytics im Unternehmen ein und setzen dabei auf einheitliche oder unterschiedliche Plattformen mit oder ohne Integration zur BI.

Moderne BI-Systeme bieten dabei auch Data Scientists eine Plattform, um auf qualitativ hochwertige sowie auf granularere Rohdaten zugreifen zu können.

5.      Ausreichend hohe Performance

Vermutlich werden die meisten Leser dieser sechs Punkte schon einmal Erfahrung mit langsamer BI gemacht haben. So dauert das Laden eines täglich zu nutzenden Reports in vielen klassischen BI-Systemen mehrere Minuten. Wenn sich das Laden eines Dashboards mit einer kleinen Kaffee-Pause kombinieren lässt, mag das hin und wieder für bestimmte Berichte noch hinnehmbar sein. Spätestens jedoch bei der häufigen Nutzung sind lange Ladezeiten und unzuverlässige Reports nicht mehr hinnehmbar.

Ein Grund für mangelhafte Performance ist die Hardware, die sich unter Einsatz von Cloud-Systemen bereits beinahe linear skalierbar an höhere Datenmengen und mehr Analysekomplexität anpassen lässt. Der Einsatz von Cloud ermöglicht auch die modulartige Trennung von Speicher und Rechenleistung von den Daten und Applikationen und ist damit grundsätzlich zu empfehlen, jedoch nicht für alle Unternehmen unbedingt die richtige Wahl und muss zur Unternehmensphilosophie passen.

Tatsächlich ist die Performance nicht nur von der Hardware abhängig, auch die richtige Auswahl an Software und die richtige Wahl der Gestaltung von Datenmodellen und Datenflüssen spielt eine noch viel entscheidender Rolle. Denn während sich Hardware relativ einfach wechseln oder aufrüsten lässt, ist ein Wechsel der Architektur mit sehr viel mehr Aufwand und BI-Kompetenz verbunden. Dabei zwingen unpassende Datenmodelle oder Datenflüsse ganz sicher auch die neueste Hardware in maximaler Konfiguration in die Knie.

6.      Kosteneffizienter Einsatz und Fazit

Professionelle Cloud-Systeme, die für BI-Systeme eingesetzt werden können, bieten Gesamtkostenrechner an, beispielsweise Microsoft Azure, Amazon Web Services und Google Cloud. Mit diesen Rechnern – unter Einweisung eines erfahrenen BI-Experten – können nicht nur Kosten für die Nutzung von Hardware abgeschätzt, sondern auch Ideen zur Kostenoptimierung kalkuliert werden. Dennoch ist die Cloud immer noch nicht für jedes Unternehmen die richtige Lösung und klassische Kalkulationen für On-Premise-Lösungen sind notwendig und zudem besser planbar als Kosten für die Cloud.

Kosteneffizienz lässt sich übrigens auch mit einer guten Auswahl der passenden Software steigern. Denn proprietäre Lösungen sind an unterschiedliche Lizenzmodelle gebunden und können nur über Anwendungsszenarien miteinander verglichen werden. Davon abgesehen gibt es jedoch auch gute Open Source Lösungen, die weitgehend kostenfrei genutzt werden dürfen und für viele Anwendungsfälle ohne Abstriche einsetzbar sind.

Die Total Cost of Ownership (TCO) gehören zum BI-Management mit dazu und sollten stets im Fokus sein. Falsch wäre es jedoch, die Kosten einer BI nur nach der Kosten für Hardware und Software zu bewerten. Ein wesentlicher Teil der Kosteneffizienz ist komplementär mit den Aspekten für die Performance des BI-Systems, denn suboptimale Architekturen arbeiten verschwenderisch und benötigen mehr und teurere Hardware als sauber abgestimmte Architekturen. Die Herstellung der zentralen Datenbereitstellung in adäquater Qualität kann viele unnötige Prozesse der Datenaufbereitung ersparen und viele flexible Analysemöglichkeiten auch redundante Systeme direkt unnötig machen und somit zu Einsparungen führen.

In jedem Fall ist ein BI für Unternehmen mit vielen operativen Prozessen grundsätzlich immer günstiger als kein BI zu haben. Heutzutage könnte für ein Unternehmen nichts teurer sein, als nur nach Bauchgefühl gesteuert zu werden, denn der Markt tut es nicht und bietet sehr viel Transparenz.

Dennoch sind bestehende BI-Architekturen hin und wieder zu hinterfragen. Bei genauerem Hinsehen mit BI-Expertise ist die Kosteneffizienz und Datentransparenz häufig möglich.