All about Big Data Storage and Analytics

Der Blick für das Wesentliche: Die Merkmalsselektion

In vielen Wissensbasen werden Datensätze durch sehr große Merkmalsräume beschrieben. Während der Generierung einer Wissensbasis wird versucht jedes mögliche Merkmal zu erfassen, um einen Datensatz möglichst genau zu beschreiben. Dabei muss aber nicht jedes Merkmal einen nachhaltigen Wert für das Predictive Modelling darstellen. Ein Klassifikator arbeitet mit reduziertem Merkmalsraum nicht nur schneller, sondern in der Regel auch weitaus effizienter. Oftmals erweist sich ein automatischer Ansatz der Merkmalsselektion besser, als ein manueller, da durchaus Zusammenhänge existieren können, die wir selbst so nicht identifizieren können.

Die Theorie: Merkmalsselektion

Automatische Merkmalsselektionsverfahren unterscheiden 3 verschiedene Arten: Filter, Wrapper und Embedded Methods. Einen guten Überblick über Filter- und Wrapper-Verfahren bieten Kumari et al. in ihrer Arbeit “Filter versus wrapper feature subset selection in large dimensionality micro array: A review” (Download als PDF).

Der Filter-Ansatz bewertet die Merkmale unabhängig des Klassifikators. Dabei werden univariate und multivariate Methoden unterschieden. Univariate Methoden bewerten die Merkmale separat, während der multivariate Ansatz mehrere Merkmale kombiniert. Für jedes Merkmal bzw. jedes Merkmalspaar wird ein statistischer Wert berechnet, der die Eignung der Merkmale für die Klassifikation angibt. Mithilfe eines Schwellwertes werden dann geeignete Merkmale herausgefiltert. Der Filter-Ansatz bietet eine schnelle und, aufgrund der geringen Komplexität, leicht skalierbare Lösung für die Merkmalsselektion. Der Nachteil von Filter-Selektoren besteht in der Missachtung der Abhängigkeiten zwischen den Merkmalen. So werden redundante Merkmale ähnlich bewertet und verzerren später die Erfolgsrate des Klassifikators. Bekannte Beispiele für Filter-Selektoren sind unter anderem die Euklidische Distanz und der Chi-2-Test.

Der Wrapper-Ansatz verbindet die Merkmalsbewertung mit einem Klassifikator. Innerhalb des Merkmalsraumes werden verschiedene Teilmengen von Merkmalen generiert und mithilfe eines trainierten Klassifikators getestet. Um alle möglichen Teilmengen des Merkmalsraumes zu identifizieren, wird der Klassifikator mit einem Suchalgorithmus kombiniert. Da der Merkmalsraum mit Zunahme der Anzahl der Merkmale exponentiell steigt, werden heuristische Suchmethoden für die Suche nach optimalen Teilmengen genutzt. Im Gegensatz zu den Filtern können hier redundante Merkmale abgefangen werden. Die Nutzung eines Klassifikators zur Bewertung der Teilmengen ist zugleich Vor- und Nachteil. Da die generierte Teilmenge auf einen speziellen Klassifikator zugeschnitten wird, ist nicht gewährleistet, dass die Menge auch für andere Klassifikatoren optimal ist. Somit ist dieser Ansatz zumeist abhängig vom gewählten Klassifikator. Zudem benötigt der Wrapper-Ansatz eine viel höhere Rechenzeit. Wrapper-Selektoren werden beispielsweise durch Genetische Algorithmen und Sequentielle Forward/Backward-Selektoren vertreten.

Embedded-Ansätze stellen eine Sonderform der Wrapper-Methode da. Allerdings werden Merkmalssuche und Klassifikatoren-Training nicht getrennt. Die Suche der optimalen Teilmenge ist hier im Modelltraining eingebettet. Dadurch liefern Embedded-Ansätze die gleichen Vorteile wie die Wrapper-Methoden, während die Rechenzeit dabei erheblich gesenkt werden kann. Der reduzierte Merkmalsraum ist aber auch hier vom jeweiligen Klassifikator abhängig. Klassifikatoren, die den Embedded-Ansatz ermöglichen sind beispielsweise der Random-Forest oder die Support-Vector-Maschine.

Entwicklungsgrundlage

Analog zum letzten Tutorial wird hier Python(x,y) und die Datenbasis „Human Activity Recognition Using Smartphones“ genutzt. Die Datenbasis beruht auf erfassten Sensordaten eines Smartphones während speziellen menschlichen Aktivitäten: Laufen, Treppen hinaufsteigen, Treppen herabsteigen, Sitzen, Stehen und Liegen. Auf den Aufzeichnungen von Gyroskop und Accelerometer wurden mehrere Merkmale erhoben. Die Datenmenge, alle zugehörigen Daten und die Beschreibung der Daten sind frei verfügbar.

(https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones)

Alle Daten liegen im Textformat vor. Für ein effizienteres Arbeiten mit der Datenbasis wurden diese im Vorfeld in das csv-Dateiformat überführt.

Python-Bibliotheken

Alle für das Data Mining relevanten Bibliotheken sind in Python(x,y) bereits enthalten. Für die Umsetzung werden folgende Bibliotheken genutzt:

Die Bibliotheken NumPy und Pandas unterstützen die Arbeit mit verschiedenen Datenstrukturen und scikit-learn umfasst alle Funktionen des maschinellen Lernens.

Daten vorbereiten

Vor der Anwendung der einzelnen Verfahren werden die Daten vorbereitet. Das Data Frame wird eingelesen, die Klassen in numerische Labels überführt und das Datenfeld in Merkmale (X) und Klassenspalte (y) separiert. Weiterhin wird die informationslose Spalte subject entfernt.

1. Verfahren: RFECV

Der RFECV (Recursive Feature Elimination with Cross Validation) ist ein Vertreter des Wrapper-Ansatzes. In diesem Beispiel wird die Merkmalsselektion mit einem Support Vector Klassifikator kombiniert. Der RFECV berechnet ein Ranking über die einzelnen Merkmale. Dabei bestimmt der Selektor selbst die optimale Menge der Merkmale. Alle Merkmale mit Platz 1 im Ranking bilden den optimalen Merkmalsraum.

2. Verfahren: Random Forest-Klassifikator

Der Random-Forest-Klassifikator gehört zu den Modellen, die einen Embedded-Ansatz ermöglichen. Während des Klassifikatoren-Trainings wird jedem Merkmal ein Wert zugeordnet. Je höher der Wert, desto bedeutsamer das Merkmal. Allerdings ist hier eine manuelle Filterung notwendig, da anders als beim RFECV kein internes Optimum ermittelt wird. Mithilfe eines geeigneten Schwellwertes können die zu wählenden Merkmale bestimmt werden. In diesem Beispiel werden alle Merkmale selektiert, die eine Wichtung größer dem Mittelwert erhalten.

3. Verfahren: Select K Best

Das Select K Best-Verfahren gehört den Filter-Ansätzen an. Daher kommt hier anders als bei den anderen beiden Verfahren kein Klassifikator zum Einsatz. Auch in diesem Verfahren wird für jedes Merkmal ein Wert berechnet, der die Wichtigkeit des Merkmals beziffert. Für die Berechnung der Werte können verschiedene Methoden verwendet werden. In diesem Beispiel wird eine Varianzanalyse genutzt (Parameter f_classif). Auch hier wird mithilfe eines manuellen Schwellwertes der reduzierte Merkmalsraum bestimmt.

Ergebnisse

Für die Bewertung der einzelnen Selektionsverfahren werden die einzelnen Verfahren in den Data-Mining-Prozess (siehe vorheriges Tutorial: Einstieg in das maschinelle Lernen mit Python(x,y)) integriert. Die nachfolgende Tabelle veranschaulicht die Ergebnisse der Klassifikation der einzelnen Verfahren.

 

Selektionsverfahren

Anzahl der Merkmale

Erfolgsrate Klassifikation

Ohne

561

93,96%

RFECV

314

94,03%

Random Forest

118

90,43%

Select K Best

186

92,30%

 

Durch den RFECV konnte das Ergebnis der Klassifikation leicht verbessert werden. Die anderen Selektionsverfahren, die auch deutlich weniger Merkmale nutzen, verschlechtern das Ergebnis sogar. Dies liegt vor allem an der manuellen Regulierung des Schwellwertes.

Responsible Handling of Data – Process Mining Rule 2 of 4

This is article no. 2 of the four-part article series Privacy, Security and Ethics in Process Mining.

Like in any other data analysis technique, you must be careful with the data once you have obtained it. In many projects, nobody thinks about the data handling until it is brought up by the security department. Be that person who thinks about the appropriate level of protection and has a clear plan already prior to the collection of the data.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 2 von 4

Do:

  • Have external parties sign a Non Disclosure Agreement (NDA) to ensure the confidentiality of the data. This holds, for example, for consultants you have hired to perform the process mining analysis for you, or for researchers who are participating in your project. Contact your legal department for this. They will have standard NDAs that you can use.
  • Make sure that the hard drive of your laptop, external hard drives, and USB sticks that you use to transfer the data and your analysis results are encrypted.

Don’t:

  • Give the data set to your co-workers before you have checked what is actually in the data. For example, it could be that the data set contains more information than you requested, or that it contains sensitive data that you did not think about. For example, the names of doctors and nurses might be mentioned in a free-text medical notes attribute. Make sure you remove or anonymize (see guideline No. 3) all sensitive data before you pass it on.
  • Upload your data to a cloud-based process mining tool without checking that your organization allows you to upload this kind of data. Instead, use a desktop-based process mining tool (like Disco [3] or ProM [4]) to analyze your data locally or get the cloud-based process mining vendor to set-up an on-premise version of their software within your organization. This is also true for cloud-based storage services like Dropbox: Don’t just store data or analysis results in the cloud even if it is convenient.

Five Illusions about Big Data you can’t help but believe in

Big Data is a smorgasbord of data. Even the marketing world has acknowledged the gravity of Big Data. But alas! Instead of having such a resplendent data power by our side, we are no closer to construct smart marketing decisions than before, when the concept was not well known.

So, something is definitely not right, right? Not all information derived from this industry is precise and to address this issue, I have highlighted five common misconceptions about Big Data. Know it, work on it and gain from it.

 

Misconception 1: Human touch surpasses automation

Entrepreneurs are the ones who pull their weight. The human effort they offer yields potential success for the firm, only if it is backed by meaningful data.
“One of the most common misconceptions is that people believe they will always outperform computers in their decision-making process. That may have been the case in the past, but with the complexity of today’s markets and the advancement of technology, this assumption no longer holds true,” says Victor Rosenman, CEO of Feedvisor, the pioneer of Algo-Commerce. He added, “All business owners are constantly required to make critical decisions, and the most effective decisions are not based on gut feelings, but on facts and data.”

Misconception 2: Data leads to more costs

Money makes a business. It is also the other way round. Using artificial intelligence, small business-owners benefit the most. AI saves time and money both, thus helps in raising the revenues. You need to understand that big data wouldn’t be enjoying the current hot seat status, if it was that expensive to implement. They are low on cost now, even getting lower. Moreover, besides being inexpensive, big data also aid in curbing other costs that the company would have to bear otherwise.

Misconception 3: Data takes the lead in big changes

“The view of cognitive systems as brains that automatically solve any problem is a popular misconception.” – IBM’s Brandon Buckner recently said. Integrated tools are mostly implemented to do stuffs like gauge human expertise and enhance human intelligence. By this, he meant that technologies actually support your business instead of taking the lead. With data, business-owners enjoy better decision-making capabilities, which is propitious for future business endeavours.

Misconception 4: Little data is too little to make any impact

Though big data arrests the glowing eyes, little data seizes the mind.  Little data is a small set of data. We know that people always look for a bulk of information, but at times, quality is not what they seek. Sometimes, little data can do the job, which bulk data fail to do. The information in little data is more restrained, clean and unprecedented.

Misconception 5: Big data for big businesses

No more, you need to shell out ludicrous amounts of money to acquire big data technologies. Non- Fortune 500 companies are also introducing big data in their systems. And the best part is that it is no more confined to a single sector, it is omnipresent in almost every industry.

In 2011 McKinsey Global Institute report called “Big data: The next frontier for innovation, competition, and productivity” revealed: “The use of big data will become a key basis of competition and growth for individual firms.” Now it is 2017, so just think how big Big Data must have grown in size and scope over the past 6 years.

Künstliche Intelligenz und Data Science in der Automobilindustrie

Data Science und maschinelles Lernen sind die wesentlichen Technologien für die automatisch lernenden und optimierenden Prozesse und Produkte in der Automobilindustrie der Zukunft. In diesem Beitrag werde die zugrundeliegenden Begriffe Data Science (bzw. Data Analytics) und maschinelles Lernen sowie deren Zusammenhang definiert. Darüber hinaus wird der Begriff Optimizing Analytics definiert und die Rolle der automatischen Optimierung als Schlüsseltechnologie in Kombination mit Data Analytics dargelegt. Der Stand der Nutzung dieser Technologien in der Automobilindustrie wird anhand der wesentlichen Teilprozesse in der automobilen Wertschöpfungskette (Entwicklung, Einkauf, Logistik, Produktion, Marketing, Sales und Aftersales, Connected Customer) an exemplarischen Beispielen erläutert. Dass die Industrie heute erst am Anfang der Nutzungsmöglichkeiten steht, wird anhand von visionären Anwendungsbeispielen verdeutlicht, die die revolutionären Möglichkeiten dieser Technologien darstellen. Der Beitrag zeigt auf, wie die Automobilindustrie umfassend, vom Produkt und dessen Entstehungsprozess bis zum Kunden und dessen Verbindung zum Produkt, durch diese Technologie effizienter und kundenorientierter wird.

Read more

Maschinelles Lernen mit Entscheidungsbaumverfahren – Artikelserie

Das Entscheidungsbaumverfahren (Decision Tree) ist eine verbreitete Möglichkeit der Regression oder Klassifikation über einen vielfältigen Datensatz. Das Verfahren wird beispielsweise dazu verwendet, um die Kreditwürdigkeit von Bankkunden zu klassifizieren oder auch, um eine Funktion zur Vorhersage einer Kaufkraft zu bilden.

Sicherlich hat beinahe jeder Software-Entwickler bereits einen Entscheidungsbaum (meistens binäre Baumstrukturen) programmiert und auch Maschinenbauingenieure benutzen Entscheidungsbäume, um Konstruktionsstrukturen darzustellen. Im Data Science haben Entscheidungsbäume allerdings eine etwas andere Bedeutung, denn ein Data Scientist befasst sich weniger mit dem manuellen Erstellen von solchen Baumstrukturen, sondern viel mehr mit Algorithmen, die ausreichend gute (manchmal: best mögliche) Baumstrukturen automatisch aus eine Menge mehr oder weniger bekannter Daten heraus generieren, die dann für eine automatische Klassifikation bzw. Regression dienen können.

Entscheidungsbäume sind also eine Idee des überwachten maschinellen Lernens, bei der Algorithmen zum Einsatz kommen, die aus einer Datenmenge heraus eine hierarchische Struktur von möglichst wenigen Entscheidungswegen bilden. Diese Datenmenge stellt eine sogenannte Trainingsstichprobe dar. Meiner Erfahrung nach werde Entscheidungsbäume oftmals in ihrer Mächtigkeit, aber auch in ihrer Komplexität unterschätzt und die Einarbeitung fiel mehr selbst schwerer, als ich anfangs annahm: In der Praxis stellt das Verfahren den Data Scientist vor viele Herausforderungen.

In dieser Artikelserie wird es vier nachfolgende Teile geben (Verlinkung erfolgt nach Veröffentlichung):

  • Teil 1 von 4 – Maße für Unreinheit in Daten
  • Teil 2 von 4 – Algorithmen für Entscheidungsbäume
  • Teil 3 von 4 – Entscheidungsbaumverfahren in Python programmieren
  • Teil 4 von 4 – Stärken und Schwächen der Verfahren im Fazit

 

 

Interview – die Zukunft des Data Science

Interview mit Herrn Dr. Helmut Linde von SAP über Data Science heute und in Zukunft

dr-helmut-lindeHerr Dr. Helmut Linde ist Head of Data Science bei SAP Custom Development. Der studierte Physiker und Mathematiker promovierte im Jahre 2006 und war seitdem für den Softwarekonzern mit Hauptsitz in Walldorf tätig. Dort baute Linde das Geschäft mit Dienstleistungen und kundenspezifischer Entwicklung rund um die Themen Prognose- und Optimierungsalgorithmen mit auf und leitet heute eine globale Data Science Practice.

Data Science Blog: Herr Dr. Linde, welcher Weg hat Sie in den Analytics-Bereich der SAP geführt?

Als theoretischer Physiker habe ich mich natürlich immer schon für die mathematische Modellierung komplexer Sachverhalte interessiert. Gleichzeitig finde ich es extrem spannend, geschäftliche Fragestellungen zu lösen und dadurch in der realen Welt etwas zu bewegen. Die SAP mit ihrer weltweiten Präsenz in allen größeren Branchen und ihrer umfassenden Technologie-Plattform hat mir die ideale Möglichkeit geboten, diese Interessen zusammenzubringen.

Data Science Blog: Welche Analysen führen Sie für Ihre Kundenaufträge durch? Welche Vorteile generieren Sie für Ihre Kunden?

Mein Team arbeitet global und branchenübergreifend, d.h. wir befassen uns mit einer großen Bandbreite analytischer Fragestellungen. Oft geht es dabei darum, das Verhalten von Endkunden besser zu verstehen und vorherzusagen. Auch die Optimierung von Lieferketten und Lagerbeständen ist ein häufiger Anwendungsfall. In unseren Projekten geht es z.B. darum, den Absatz von Tageszeitungen zu prognostizieren, Schichten für Call-Center-Mitarbeiter optimal zu planen, Lastspitzen in Stromnetzen zu vermeiden und vieles andere mehr.

Das Hauptaugenmerk meines Teams liegt dabei auf der Entwicklung von analytischen Software-Lösungen. Für unsere Kunden heißt das, dass sie nicht nur einmalig Wettbewerbsvorteile aus ihren Daten ziehen, sondern Prognosen und Optimierung wiederholbar, nachhaltig und skalierbar in ihre Geschäftsprozesse integrieren können. Außerdem profitieren Kunden natürlich von der Größe der SAP und unserer langjährigen Erfahrung. Bei den allermeisten Anfragen können wir sagen: „Ja, etwas sehr ähnliches haben wir schon einmal gemacht.“

Data Science Blog: Viele Unternehmen haben den Einstieg ins Data Science noch nicht gefunden. Woran hängt es Ihrer Erfahrung nach?

Zunächst einmal sehe ich – basierend auf der Menge an Anfragen, die auf meinem Schreibtisch landen – einen äußerst positiven Trend, der zeigt, dass in vielen Unternehmen das Thema Data Science enorm an Bedeutung gewinnt.

Andererseits gibt es sicherlich Fachgebiete, die leichter zugänglich sind. Nicht in jedem Unternehmen gibt es die kritische Masse an Expertise und Unterstützung, die für konkrete Projekte nötig ist.

Data Science Blog: Welche Möglichkeiten bietet Data Science für die Industrie 4.0?

Unter Industrie 4.0 verstehe ich eine immer stärkere Vernetzung von Maschinen, Sensoren und Erzeugnissen. Schon für das Zusammenführen und Bereinigen der dabei anfallenden Daten wird man einen steigenden Grad an Automatisierung durch Algorithmen benötigen, da ansonsten die manuellen Aufwände viele Anwendungsfälle unwirtschaftlich machen. Darauf aufbauend werden Algorithmen den Kern vieler neuer Szenarien bilden. Mit einigen unserer Kunden arbeiten wir beispielsweise an Projekten, bei denen die Qualität von Endprodukten anhand von Maschineneinstellungen und Sensorwerten vorhergesagt wird. Dies erlaubt eine präzisere Steuerung der Produktion und führt zu reduziertem Ausschuss.  Ein anderes Beispiel ist ein Projekt mit einer Eisenbahngesellschaft, bei dem wir automatisch gewisse Stromverbraucher wie Heizungen oder Klimaanlagen für wenige Minuten abschalten, wenn im Stromnetz eine unerwünschte Lastspitze vorhergesagt wird.

Data Science Blog: Welche Tools verwenden Sie bei Ihrer Arbeit? Setzen Sie dabei auch auf Open Source?

In unseren Projekten orientieren wir uns immer an den Notwendigkeiten des konkreten Anwendungsfalles und an der bereits vorhandenen IT-Landschaft beim Kunden. Schließlich muss unsere Lösung dazu passen und sauber integriert und gewartet werden können. Natürlich kommen häufig hauseigene Werkzeuge wie SAP Predictive Analysis für die Modellbildung oder SAP Lumira für schnelle Visualisierung zum Einsatz. Als Plattform spielt SAP HANA eine große Rolle – nicht nur zur Datenhaltung, sondern auch zur Ausführung von Algorithmen und als Anwendungsserver. In SAP HANA gibt es auch eine Schnittstelle zu ‚R‘, so dass in manchen Projekten auch Open Source zum Einsatz kommt.

Data Science Blog: Was sind aktuelle Trends im Bereich Data Science? Um welche Methoden dreht es sich aktuell besonders stark bei SAP?

Einer der größten Trends der letzten Jahre ist sicherlich die zunehmend ganzheitliche Nutzung von Daten, insbesondere auch von rohen, unstrukturierten Daten gepaart mit einem höheren Grad an Automatisierung. Wo vor vielleicht fünf oder zehn Jahren noch großer Wert auf Datenvorverarbeitung und Feature Engineering gelegt wurde, werden diese Schritte heute zunehmend von den Tools selbständig durchgeführt.

Gleichzeitig wachsen klassisches Business Intelligence und Data Science immer mehr zusammen. Wir sehen eine steigende Zahl von Projekten, in denen Kunden analytische Lösungen implementieren, welche in Komplexität und Funktionsumfang deutlich über traditionelle Berichte und Dashboards hinausgehen, dabei aber durchaus ohne fortgeschrittene Mathematik auskommen.

Data Science Blog: Sofern Sie sich einen Ausblick zutrauen, welche Trends kommen 2017 und 2018 vermutlich auf uns zu?

Data-Science-Methoden und traditionelle Geschäftsprozesse werden immer enger verzahnt. In Zukunft übernehmen Algorithmen viel mehr jener Tätigkeiten, die auch nach umfassender Prozessautomatisierung heute immer noch von Sachbearbeitern zu erledigen sind – zum Beispiel eingehende Zahlungen einer Rechnung zuzuordnen, Lebensläufe von Bewerbern vor zu sortieren, die Plausibilität von Abrechnungen zu prüfen und Ähnliches.

Data Science Blog: Gehört die Zukunft weiterhin den Data Scientists oder eher den selbstlernenden Tools, die Analysen automatisiert für das Business entwickeln, durchführen und verbessern werden?

Es gibt definitiv einen Trend zu stärkerer Automatisierung bei den Tools und den starken Wunsch, Kompetenzen näher an die Endanwender zu bringen. Analysen werden zunehmend in den Geschäftsbereichen selbst durchgeführt.

Gleichzeitig sehe ich einen Wandel in der Rolle des Data Scientist. Es reicht nicht mehr, viele Algorithmen und ein paar Data Mining Tools im Detail zu kennen, um wirklich Mehrwert zu stiften. Der Data Scientist der Zukunft ist ein Vordenker, der ganzheitliche Visionen entwickelt, wie geschäftliche Fragestellungen mit Hilfe von Analytik gelöst werden können. Dabei müssen neue oder geänderte Geschäftsprozesse, ihre technische Umsetzung und algorithmische Lösungen gleichermaßen angegangen werden. Nehmen Sie als Beispiel das Thema Predictive Maintenance: Es gibt viele Data Scientists, die aus Sensordaten etwas über den Zustand einer Maschine ableiten können. Aber nur wenige Experten verstehen es, dies dann auch noch sinnvoll in reale Instandhaltungsprozesse einzubetten.

Die Nachfrage nach einem solchen Rollenprofil, für das es heute noch nicht einmal einen wirklich treffenden und allgemein gebräuchlichen Namen gibt, wird auch in Zukunft weit höher sein als die Verfügbarkeit von qualifizierten Kandidaten.

Data Science Blog: Wie sieht Ihrer Erfahrung nach der Arbeitsalltag als Data Scientist nach dem morgendlichen Café bis zum Feierabend aus?

Unsere Arbeitstage sind sehr abwechslungsreich. Jeder Data Scientist hat meistens ein größeres Kundenprojekt, das 60% bis 90% der Arbeitszeit benötigt. Dazu gehören normalerweise Workshops beim Kunden vor Ort – je nach Projekt und Standort können das zwei Tage in der Schweiz oder auch mal zwei Wochen in China sein. Außerdem fließt natürlich viel Zeit in die Analyse und Visualisierung von Daten, das Programmieren von Algorithmen und Anwendungen sowie die Erstellung von Unterlagen. Manchmal arbeiten wir nebenbei noch an einem anderen kleineren Projekt, zum Beispiel der Entwicklung eines Prototyps für eine Kundenpräsentation.

Einen Großteil unserer Projektarbeit liefern wir remote, das heißt, wir sind nur zu Workshops oder bei besonderem Bedarf beim Kunden vor Ort. Die Entwicklungs- und Analysearbeit erfolgt dann aus dem Büro oder, je nach Präferenz, auch aus dem Home Office. Insgesamt ermöglicht die Arbeitsweise eine gute Work-Life-Balance für alle Lebensmodelle.

Data Science Blog: Welches Wissen und welche Erfahrung setzen Sie für Ihre Data Scientists voraus? Und nach welchen Kriterien stellen Sie Data Science Teams für Ihre Projekte zusammen?

Der Großteil unserer Data Scientists hat einen akademischen Hintergrund mit Promotion und teilweise auch Post-Doc-Erfahrung in einem quantitativen Feld. Man sollte neben oder nach dem Studium schon einige Jahre praktische Erfahrung in quantitativen Analysen und idealerweise auch in Software-Entwicklung gesammelt haben, um als Data Scientist in Projekten erfolgreich zu sein. Daneben ist uns eine hohe Selbständigkeit und Eigenmotivation sehr wichtig, da wir in Projekten mit sehr unterschiedlichen Herausforderungen und vielen neuen und wechselnden Technologien konfrontiert sind, die hohe Umsicht und Flexibilität erfordern.

Unsere Projektteams stellen wir je nach Anforderungen zusammen. Bei Projekten, die stärker auf das Ergebnis einer Analyse abzielen, stellen wir oft ein kleines Projektteam komplett aus geeigneten Data Scientists zusammen. Wenn der Fokus stärker in Richtung eines Software-Produkts geht, wird häufig nur der analytische Kern und ggf. Anforderungs- und Projektmanagement von Data Scientists aus meinem Team übernommen. Dazu stoßen dann noch Kollegen aus anderen Bereichen, die beispielsweise Erfahrung mit bestimmten Backend-Technologien, als Software-Architekt, oder als UX-Designer mitbringen.

Data Science Blog: Grenzen Sie auch andere Rollen ab, wie beispielsweise den Data Engineer? Oder sind beide Tätigkeitsfelder untrennbar miteinander verbunden?

Aus meiner Sicht ist es wichtig, dass der Data Scientist, der für die Analyse der Daten verantwortlich ist, so weit wie möglich auch in die Vorverarbeitung und Vorbereitung der Daten mit einbezogen wird. Je nach Projekt können gewisse Tätigkeiten auch von Kollegen mit anderem Profil übernommen werden, aber die dedizierte Rolle eines Data Engineers gibt es bei uns nicht.

Data Science Blog: Sind gute Data Scientists Ihrer Erfahrung nach tendenziell eher Beratertypen oder introvertierte Nerds?

Ein wirklich guter Data Scientist passt weder in die eine noch in die andere Schublade. Sie oder er überzeugt in erster Linie durch Kompetenz – und zwar sowohl in geschäftlichen Fragestellungen als auch in technischen und mathematischen. Gleichzeitig ist die Fähigkeit notwendig, gegenüber Projektpartnern und Kunden überzeugend aufzutreten und komplexe Sachverhalte klar und anschaulich zu strukturieren.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik oder Wirtschaftslehre, abgeschlossen haben, was würden sie diesen jungen Damen und Herren raten, wie sie einen guten Einstieg ins Data Science bewältigen können?

Seien Sie neugierig und erweitern Sie Ihren Horizont! Die führenden Data Scientists sind Unternehmensberater, Software-Architekt und Mathematiker in einer Person. Versuchen Sie, systematisch Erfahrung in allen drei Bereichen aufzubauen.

Data Leader Mindset

Wie werden Führungskräfte zum Data Leader?

Als eine Keynote am Data Leader Day 2016 (www.dataleaderday.com) erläuterte ich den Weg einer gewöhnlichen Führungskräft hin zum Data Leader, gemäß meiner Erfahrung. Ein Data Leader ist eine Führungskraft mit datengetriebener, problemlösungsorientierter Denkweise.

Die Präsentation findet sich nachfolgend eingebettet und zeigt die Route von der konventionellen Führungskraft zum innovativen Data Leader:

Read more

Interview – Mit Data Science Kundenverhalten vorhersagen

Frau Dr. Eva-Marie Müller-Stüler ist Associate Director in Decision Science der KPMG LLP in London. Sie absolvierte zur Diplom-Mathematikerin an der Technischen Universität München, mit einem einjährigen Auslandssemester in Tokyo, und promovierte an der Philipp Universität in Marburg.

linkedin-button xing-button

english-flagRead this article in English:
“Interview – Using Decision Science to forecast customer behaviour”

Data Science Blog: Frau Dr. Müller-Stüler, welcher Weg hat Sie bis an die Analytics-Spitze der KPMG geführt?

Ich hatte schon immer viel Spaß an analytischen Fragestellungen, aber auch ein großes Interesse an Menschen und Finance. Die Frage wie Menschen ticken und Entscheidungen treffen finde ich unglaublich spannend. Im Mathematikstudium und auch bei der Doktorarbeit kamen dann das Auswerten von großen Datenmengen und das Programmieren von Algorithmen hinzu. Die solide mathematische Ausbildung kombiniert mit dem spezifischen Branchen- und Finanzverständnis ermöglicht es mir das Geschäftsmodell meiner Kunden zu verstehen und Methoden zu entwickeln, die den Markt verändern und neue Wege finden.

Data Science Blog: Welche Analysen führen Sie für Ihre Kundenaufträge durch? Welche Vorteile generieren Sie für Ihre Kunden?

Unser Team beschäftigt sich hauptsächlich mit Behaviour und Customer Science. Daher auch der Slogan „We understand human behaviour and we change it“. Unser Focus ist der Mensch (z.B. Kunde oder der Mitarbeiter) und die Frage, wie wir ihn durch das Verständnis seiner Datenartefakte im Verhalten ändern bzw. zukünftiges Verhalten vorhersagen können. Auf dieser Basis entwickeln wir Always-on forecasting Modelle, die es dem Mandanten ermöglichen, bereits im Vorfeld zu agieren. Das kann z.B. bedeuten, durch ortgenaue Informationen spezifische Kundennachfrage an einem bestimmten Standort vorherzusagen, wie sie verbessert oder in die gewünschte Richtung beeinflusst werden kann oder durch welche Maßnahmen bzw. Promotions welcher Kundentyp optimal erreicht wird. Oder auch die Frage wo und mit welcher Produktmischung am besten ein neues Geschäft eröffnet werden soll, ist mit Predictive Analytics viel genauer vorherzusagen als durch herkömmliche Methoden.

Data Science Blog: Welche Voraussetzungen müssen erfüllt sein, damit prädiktive Analysen für Kundenverhalten adäquat funktionieren?

Die Daten müssen natürlich eine gewisse Qualität und Historie haben um z. B. auch Trends und Zyklen zu erkennen. Oft kann man sich aber auch über die Einbindung neuer Datenquellen einen Vorteil erschaffen. Dabei ist Erfahrung und Kreativität enorm wichtig, um zu verstehen was möglich ist und die Qualität verbessert oder ob etwas nur für mehr Rauschen sorgt.

Data Science Blog: Welche externen Datenquellen müssen Sie dafür einbinden? Wie behandeln Sie unstrukturierte Daten?

Hier in England ist man – was externe Datenquellen angeht – schon sehr verwöhnt. Wir benutzen im Schnitt an die 10.000 verschiedene Signale, die je nach Fragestellung unterschiedlich seien können: z. B. die Zusammensetzung der Bevölkerung, Nahverkehrsinformationen, die Nähe von Sehenswürdigkeiten, Krankenhäusern, Schulen, Kriminalitätsraten und vieles mehr. Der Einfluss eines Signals ist bei jedem Problem unterschiedlich. So kann eine hohe Anzahl an Taschendiebstählen ein Zeichen dafür sein, dass in der Gegend viel los ist und die Menschen im Schnitt viel Bargeld bei sich tragen. Das kann z. B. für einen Fast Food-Retailer in der Innenstadt durchaus einen positiven Einfluss auf sein Geschäft haben in einer anderen Gegend aber das Gegenteil bedeuten.

Data Science Blog: Welche Möglichkeiten bietet Data Science für die Forensik bzw. zur Betrugserkennung?

Da jeden Kunden tausende Datensignale umgeben und er durch sein Verhalten weitere produziert und aussendet, kann man gerade beim Online-Geschäft schon ein ziemlich gutes Bild über die Person bekommen. Jede Art von Mensch hat ein gewisses Verhaltensmuster und das gilt auch für Betrüger. Diese Muster muss man nur rechtzeitig erkennen oder vorherzusagen lernen.

Data Science Blog: Welche Tools verwenden Sie bei Ihrer Arbeit? In welchen Fällen setzten Sie auf proprietäre Software, wann hingegen auf Open Source?

Das hängt vom Arbeitsschritt und dem definierten Ziel ab. Wir unterscheiden unser Team in unterschiedliche Gruppen: Unsere Data Wrangler (die für das Extrahieren, Erzeugen und Aufbereiten der Daten zuständig sind) arbeiten mit anderen Tools als z. B. unsere Data Modeller. Im Grunde umfasst es die gesamte Palette von SQL Server, R, Python, manchmal aber auch Matlab oder SAS. Immer häufiger arbeiten wir auch mit auf Cloud-Technologie basierenden Lösungen. Data Visualisation und Dashboards in Qlik, Tableau oder Alteryx geben wir in der Regel jedoch an andere Teams weiter.

Data Science Blog: Wie sieht Ihrer Erfahrung nach der Arbeitsalltag als Data Scientist nach dem morgendlichen Café bis zum Feierabend aus?

Meine Rolle ist vielleicht am besten zu beschreiben als der Player-Coach. Da läuft von allem etwas mit ein. Am Anfang eines Projektes geht es vor Allem darum, mit den Mandaten die Fragestellung zu erarbeiten und das Projekt zu gewinnen. Teil dessen ist auch neue Ideen und Methoden zu entwickeln.  Während eines Projektes sind das Team Management, der Wissenstransfer im Team, der Review und das Hinterfragen der Modelle meine Hauptaufgaben. Am Schluss kommt dann der endgültige Sign-off des Projektes. Da ich oft mehrere Projekte in unterschiedlichen Stadien gleichzeitig leite, wird es garantiert nie langweilig.

Data Science Blog: Sind gute Data Scientists Ihrer Erfahrung nach tendenziell eher Beratertypen oder introvertierte Nerds?

Das hängt so ein bisschen davon ab wo man seinen Schwerpunkt sieht. Als Data Visualizer oder Data Artist geht es darum die Informationen auf das wesentlich zu reduzieren und toll und verständlich darzustellen. Dafür braucht man Kreativität und ein gutes Verständnis für das Geschäft und einen sicheren Umgang mit den Tools.

Der Data Analyst beschäftigt sich vor Allem mit dem „Slice and Dice“ von Data. Ziel ist es, die Vergangenheit zu analysieren und Zusammenhänge zu erkennen. Es ist wichtig zusätzlich zu dem finanziellen Wissen auch gute mathematische Fähigkeiten zu haben.

Der Data Scientist ist der mathematischste von allen. Er beschäftigt sich damit aus den Daten tiefere Zusammenhänge zu erkennen und Vorhersagen zu treffen. Dabei geht es um die Entwicklung von komplizierten Modellen oder auch Machine Learning Algorithmen. Ohne eine gute mathematische Ausbildung und Programmierkenntnisse ist es leider nicht möglich die Sachen in voller Tiefe zu verstehen. Die Gefahr falsche Schlüsse zu ziehen oder Korrelationen zu interpretieren, die sich aber nicht bedingen ist sehr groß. Ein einfaches Beispiel hierfür ist, dass im Sommer, wenn das Wetter schön ist, mehr Menschen Eis essen und in Seen baden gehen. Daher lässt sich eine eindeutige Korrelation zwischen Eis essen und der Anzahl an Ertrunkenen zeigen, obwohl nicht das Eis essen zum Ertrinken führt sondern die beeinflussende Variable die Temperatur ist. Daher ist ein Doktor in einem mathematiknahen Fach schon wichtig.

Genauso ist aber für den Data Scientist auch das entsprechende Finanz- und Branchenwissen wichtig, denn seine Erkenntnisse und Lösung müssen relevant für den Kunden sein und deren Probleme lösen oder Prozesse verbessern. Die tollste AI Maschine bringt keiner Bank einen Wettbewerbsvorteil, wenn sie den Eisverkauf auf Basis des Wetters vorhersagt. Das kann zwar rechnerisch 100% richtig sein, hat aber keine Relevanz für den Kunden.

Es ist im Grunde wie in anderen Bereichen (z. B. der Medizin) auch. Es gibt viele verschiedene Schwerpunkte und für ernsthafte Probleme wendet man sich am besten an einen Spezialisten, damit man keine falschen Schlüsse zieht.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik oder Wirtschaftslehre, abgeschlossen haben, was würden sie diesen jungen Damen und Herren raten, wie sie gute Data Scientists werden können?

Nie aufhören mit dem Lernen!  Der Markt entwickelt sich derzeit unglaublich schnell und hat so viele tolle Seiten. Man sollte einfach mit Leidenschaft, Begeisterung und Kreativität dabei sein und Spaß an der Erkennung von Mustern und Zusammenhängen haben. Wenn man sich dann noch mit interessanten und inspirierenden Menschen umgibt, von denen man noch mehr lernen kann, bin ich zuversichtlich, dass man eine tolle Arbeitszeit haben wird.

A review of Language Understanding tools – IBM Conversation

In the first part of this series, we saw how top firms with their different assistants are vying to acquire a space in the dialogue market. In this second and final part of this blog-series on Conversational AI, I go more technical to discuss the fundamentals of the underlying concept behind building a Dialogue system i.e. the cornerstone of any Language Understanding tool. Moreover, I explain this by reviewing one such Language Understanding tool as an example that is available in the IBM Bluemix suite, called as IBM Conversation.

IBM Conversation within Bluemix

IBM Conversation was built on the lines of IBM Watson from the IBM Bluemix suite. It is now the for dialogue construction after IBM Dialog was deprecated.We start off by searching and then creating a dedicated environment in the console.

ibm-bluemix-screenshot

Setting up IBM Conversation from the Bluemix Catalog/Console

Basics

Conversation component in IBM Bluemix  is based on the Intent, Entity and Dialogue architecture. And the same is the case with Microsoft LUIS (LUIS stands for Language Understanding Intelligent Service). One of the key components involves doing what is termed as Natural Language Understanding or NLU for short. It extracts words from a textual sentence to understand the grammar dependencies to construct high level semantic information that identifies the underlying intent and entity in the given utterance. It returns a confidence measure i.e. the top-most extracted intent out of the many pre-specified intents that gives us the most likely intent from the given utterance as per our trained model.

These are all statistically/machine learned based on the training data. Go over the demo, tutorial and documentation to get a more in-depth view of things at IBM Conversation.

The intent, entity and dialogue based architecture forms the crux of any SLU system to extract semantic information from speech and enables such a system to be generic across the various Language Understanding toolkits.

alexa-interaction-model-ask-screenshot

The Alexa Interaction model based on intent and slots in ASK

Another huge advantage that ASK provides for building such an architecture, is that it has multi-lingual support.

Conceptual Mapping

Intents can be thought of as classes where one classifies the input examples into one of them. For example,

Call Mark is mapped to the MOBILE class and Navigate to Munich is mapped to the ROUTE class

The entities are labels, so e.g. from above, you can have

Mark as a PERSON and Munich as a CITY.

Major advantage and drawback

Both Conversation and LUIS use a non-Machine Learning based approach for software developers or business users to create a fast prototype. It is definitely easy to begin with and gives a lot of options to create drag and drop based dialogue system. However, it can’t scale up to large data. A hybrid approach that can combine or build a dynamic system on top of this static approach is needed for scalable industry solutions.

Extensions

Moreover, an end to end workflow can be built by plugging in components from Node-RED and introduction to the same can be viewed in the below video.

What’s good is that they have a component for Conversation as well. So, we can build a complete chatbot starting from a speech to text component to get the human commands translated to text, followed by a conversation component to build up the dialog and lastly by a text to speech component to translate this textual dialogue back to speech to be spoken by a humanoid or a mobile device!

Missing components and possible future work

It is not possible to add entities/intent dynamically through the UI after the initial workspace is constructed. The advanced response tab doesn’t allow to edit (add) the entities in the response field, like for example adding variables to the context. We can edit it (highlighted in orange) but it doesn’t save or get reflected.

{
“output”: {
“text”: “I understand you want me to turn on something. You can say turn on the wipers or switch on the lights.”
},
“context”: {
“toppings”: “<? context.toppings.append( ‘onions’ ) ?>”
},
“entities”: {
   “appliance”: “<? entities.appliance.append( ‘mobile’ ) ?>”
}
}

Moreover, the link which only mentions accessing intents and entities but not modifying them.

watson-developer-cloud-screenshot watson-developer-cloud-screenshot2

The only place to add the intent, entities is back in the work space and not programmatically at run time. Perhaps, a possible solution can be to use UI with DB data to save the intermediate and newly discovered intent/entity values and then update the workspace later.

As I end this blog, perhaps there would be another AI assistant released that has moved beyond its embryonic stage to conquer real life application scenarios. Conversational AI is hot property, so dive in to reap its benefits, both from an end user and developer’s perspective!

Note: Hope you enjoyed the read. I have deliberately kept the content a mix of non technical and technical to build the excitement and buzz going around this exciting field of conversational AI! Publishing this blog was on my list as I was compiling lot of facts since last few weeks but I had to hurry even more, given the recent news surrounding this upsurge. As always, any feedback as a comment below or through a message are more than welcome!

Interview – Data Science im Online Marketing

Interview mit Thomas Otzasek, Head of Data Science bei der Smarter Ecommerce GmbH

Thomas Otzasek ist Head of Data Science bei der Smarter Ecommerce GmbH in Linz, ein Unternehmen für die Automatisierung des professionellen Suchmaschinen Marketings. Herr Otzasek leitet das Data Science Team zur Automatisierung von operativen Prozessen im Suchmaschinen Marketing mit Machine Learning. Weitere interessante Blogposts von Thomas Otzasek zum Thema Suchmaschinen Marketing und Data Science finden Sie im Whoop! Blog.

Data Science Blog: Herr Otzasek, welcher Weg hat Sie zum Data Science für das Suchmaschinen Marketing geführt?

Ich war schon immer an Zahlen interessiert und begann daher im Jahr 2002 ein Masterstudium der Statistik an der Johannes Kepler Universität in Linz. Im Jahr 2006 wurde an dieser Uni dann erstmalig der Studiengang Bioinformatik mit Schwerpunkt Machine Learning angeboten, der mich ebenfalls angesprochen hat. Im Jahr 2009 habe ich beide Masterstudien erfolgreich abgeschlossen.

Nachdem ich in diversen Branchen u.a. als Business Analyst oder Software-Entwickler gearbeitet habe, überzeugte mich im Jahr 2015 die Firma Smarter Ecommerce mit einer innovativen Produktidee, für die ich den fehlenden Data Science Puzzleteil ideal ausfüllen konnte. Seitdem sind wir auf Wachstumskurs und konnten unsere Mitarbeiterzahl innerhalb von 15 Monaten auf derzeit 85 Mitarbeiter mehr als verdoppeln.

Data Science Blog: Welche Bedeutung hat Big Data und Data Science für Ihre Branche?

Im Suchmaschinen Marketing gibt es sehr viel manuelle Arbeit. Mit dem Einsatz von Data Science können wir diese manuelle Arbeit unterstützen oder automatisieren. Ist das Produktsortiment entsprechend groß, können wir die Platzierung in Online-Anzeigen soweit optimieren, wie es selbst dem besten Mitarbeiter ohne entsprechende Tools niemals möglich wäre.

Wir übernehmen das Aussteuern von Google Shopping, für welche Produkte wo genau Anzeigen zu welchen Konditionen geschaltet werden. Wir haben dafür Machine Learning Modelle entwickelt, die diese Anzeigenschaltung optimieren. Der dafür von meinem Data Science Team entwickelte Prototyp ist seit über einem Jahr produktiv im Einsatz.

Data Science Blog: Was optimieren diese Algorithmen des maschinellen Lernens?

Der vollautomatisierte Ansatz kommt bei unserem Produkt Whoop! für Google Shopping zum Einsatz. Google Shopping ist ein Teil von Google AdWords. Wir verwenden den Produkt-Datenfeed des Kunden, die Performance-Historie von Google AdWords, unsere jahrelange Google Shopping Erfahrung sowie die Ziele des Kunden bezüglich der Anzeigen um z. B. die Kosten-Umsatz-Relation oder die Kosten pro Akquisition zu optimieren.

Die Herausforderung ist, das richtige Gebot für das jeweilige Produkt zu wählen. Wenn Sie eine ganze Reihe von verschiedenen oder auch ähnlichen Produkten haben (z. B. verschiedene Farben oder Größen), müssen wir diese Gebote so tunen, dass die Reichweite und Zielgruppe ideal ist, ohne dass die Kosten explodieren.

Wird ein Produkt zu hoch geboten, sind nicht nur die Kosten für das bewerbende Unternehmen zu hoch, auch die Platzierung ist dann meistens nicht optimal. Google, unser Anzeigenpartner, verallgemeinert die Suchanfragen im hochpreisigen Segment tendenziell zu sehr, darunter leidet dann die Relevanz. Wird für die Anzeige zu niedrig geboten, wird sie hingegen gar nicht erst angezeigt. Neben der Conversion Rate spielt für unsere Kunden hauptsächlich die Kosten-Umsatz-Relation eine Rolle. Ein Mitarbeiter im Online Marketing könnte diese Optimierung für mehr als eine Hand voll Produkte nicht vornehmen. Denken Sie z. B. an die Mode-Branche, die ein sich schnell umschlagendes Produktsortiment mit vielen Produkten hat.

Data Science Blog: Welche datenwissenschaftlichen Herausforderungen spielen dabei eine Rolle?

Die Produktdaten sind sehr umfangreich, der Anzeigenmarkt und die Produkttrends extrem dynamisch. Außerdem gibt es für viele Produkte nur wenige Klicks, so dass wir ausgeklügelte Algorithmen brauchen, um trotzdem statistisch valide Aussagen treffen zu können.

Für die manuelle Aussteuerung ist die Produktanzahl meist zu groß um produktgenaue Gebote abgeben zu können. Bei einem großen und/oder schnell umschlagenden Produktsortiment haben wir es mit komplexen Strukturen zu tun, die wir in diesen Modellen berücksichtigen müssen, um stets die optimalen Gebote zu setzen.

Das Modell muss dabei jederzeit berücksichtigen, welche Produkte bzw. Anzeigen performen bzw. nicht performen, um jene entsprechend hoch- oder runter zu regeln. Eine einfache Regressionsanalyse reicht da nicht aus. Auch Änderungen des Kunden in den Einstellungen sowie externe Faktoren wie z. B. das Wetter müssen sofort berücksichtigt werden.

Data Science Blog: Welche Methoden des Data Science sind aktuell im Trend und spielen demnächst eine Rolle?

Aus meiner Sicht ist Deep Learning mit neuronalen Netzen der Trend. Vermutlich werden sie sich weiter durchsetzen, denn sie können noch komplexere Aufgaben bewältigen. Aktuell gibt es allerdings teilweise noch Akzeptanzprobleme, da neuronale Netze mit vielen versteckten Schichten eine Blackbox darstellen. Die Ergebnisse sind also im Gegensatz zu weniger komplexen Methoden nicht nachvollziehbar.

Data Science Blog: Auf welche Tools setzen Sie bei Ihrer Arbeit? Bevorzugen Sie Open Source oder proprietäre Lösungen?

Ich habe viel mit proprietären Lösungen gearbeitet, beispielsweise mit SAS oder IBM SPSS. Wir setzen derzeit allerdings auf Open Source, vor allem auf die Programmiersprache R. Neue Mitarbeiter im Data Science Bereich sollten daher zumindest über Grundkenntnisse in R verfügen und die Lust haben, sich tiefer mit dieser Programmiersprache zu befassen.

Wir verwenden unter anderem die Pakete ggplot und Shiny. Mit Shiny erstellen wir interne Web-Applikationen, um Kollegen Analysen zur Verfügung zu stellen. Für Eigenentwicklungen komplexer Visualisierungen ist ggplot perfekt geeignet.

Mit R können wir außerdem selbst eigene Packages erstellen um den Funktionsumfang nach unseren Wünschen zu erweitern. Wir haben daher keinen Grund, auf kostenintensive Lösungen zu setzen.

Data Science Blog: Was macht Ihrer Erfahrung nach einen guten Data Scientist aus?

Aus meiner Sicht sollte man ein Zahlenfreak sein und niemals aufhören Fragen zu stellen, denn darum geht es im Data Science. Gute Data Scientists sind meiner Meinung nach interdisziplinär ausgebildet, kommen also nicht nur aus einer Ecke, sondern besser aus zwei oder drei Fachbereichen. Man benötigt verschiedene Sichtweisen.

Aus welchem Fachbereich man ursprünglich kommt, ist dabei gar nicht so wichtig. Es muss also nicht unbedingt ein Mathematiker oder Statistiker sein.

Data Science Blog: Gibt es eigentlich aus Ihrer Erfahrung heraus einen Unterschied zwischen Mathematikern und Statistikern?

Ja. Mathematiker denken meiner Meinung nach sehr exakt und beweisorientiert. Statistik ist zwar ein Teilbereich der Mathematik, aber für einen Statistiker steht das Schätzen im Vordergrund. Statistiker denken in Verteilungen, Wahrscheinlichkeiten und Intervallen und können gut mit einer gewissen Unsicherheit leben, die reine Mathematiker manchmal unbefriedigt lässt.

Data Science Blog: Für alle diejenigen, die gerade ihr Studium der Statistik, Ingenieurwissenschaft oder was auch immer abschließen. Welchen Rat haben Sie, wie diese Menschen einen Schritt näher ans Data Science herankommen?

Ich würde empfehlen, einfach ein eigenes kleines Projekt zu starten – „Learning by doing“! Ob das Projekt um die eigenen Stromverbrauchsdaten, eine Wettervorhersage oder Fantasy-Football geht ist nicht wichtig. Man stößt dann zwangsläufig auf die verschiedenen Arbeitsschritte und Herausforderungen. Ein empfehlenswerter Workflow ist der Cross Industry Standard Process for Data Mining, kurz CRISP-DM.

Zuerst muss man ein Geschäftsverständnis aufbauen. Weiter geht es mit der Datensammlung und Datenintegration, danach folgt die Datenaufbereitung. Diese Schritte benötigen bereits ca. 80% der Projektzeit. Erst dann können explorative Analysen, Hypothesentests oder Modellierung aufgesetzt werden. Am Ende des Prozesses erfolgt das Deployment.