All about Big Data Storage and Analytics

Object-centric Data Modelling for Process Mining and BI

Object-centric Process Mining on Data Mesh Architectures

In addition to Business Intelligence (BI), Process Mining is no longer a new phenomenon, but almost all larger companies are conducting this data-driven process analysis in their organization.

The database for Process Mining is also establishing itself as an important hub for Data Science and AI applications, as process traces are very granular and informative about what is really going on in the business processes.

The trend towards powerful in-house cloud platforms for data and analysis ensures that large volumes of data can increasingly be stored and used flexibly. This aspect can be applied well to Process Mining, hand in hand with BI and AI.

New big data architectures and, above all, data sharing concepts such as Data Mesh are ideal for creating a common database for many data products and applications.

The Event Log Data Model for Process Mining

Process Mining as an analytical system can very well be imagined as an iceberg. The tip of the iceberg, which is visible above the surface of the water, is the actual visual process analysis. In essence, a graph analysis that displays the process flow as a flow chart. This is where the processes are filtered and analyzed.

The lower part of the iceberg is barely visible to the normal analyst on the tool interface, but is essential for implementation and success: this is the Event Log as the data basis for graph and data analysis in Process Mining. The creation of this data model requires the data connection to the source system (e.g. SAP ERP), the extraction of the data and, above all, the data modeling for the event log.

Simple Data Model for a Process Mining Event Log

Simple Data Model for a Process Mining Event Log.

As part of data engineering, the data traces that indicate process activities are brought into a log-like schema. A simple event log is therefore a simple table with the minimum requirement of a process number (case ID), a time stamp and an activity description.

Event Log in Process Mining

Example Event Log for Process Mining

An Event Log can be seen as one big data table containing all the process information. Splitting this big table into several data tables is due to the goal of increasing the efficiency of storing the data in a normalized database.

The following example SQL-query is inserting Event-Activities from a SAP ERP System into an existing event log database table (one big table). It shows that events are based on timestamps (CPUDT, CPUTM) and refer each to one of a list of possible activities (dependent on VGABE).

Attention: Please see this SQL as a pure example of event mining for a classic (single table) event log! It is based on a German SAP ERP configuration with customized processes.

An Event Log can also include many other columns (attributes) that describe the respective process activity in more detail or the higher-level process context.

Incidentally, Process Mining can also work with more than just one timestamp per activity. Even the small Process Mining tool Fluxicon Disco made it possible to handle two activities from the outset. For example, when creating an order in the ERP system, the opening and closing of an input screen could be recorded as a timestamp and the execution time of the micro-task analyzed. This concept is continued as so-called task mining.

Task Mining

Task Mining is a subtype of Process Mining and can utilize user interaction data, which includes keystrokes, mouse clicks or data input on a computer. It can also include user recordings and screenshots with different timestamp intervals.

As Task Mining provides a clearer insight into specific sub-processes, program managers and HR managers can also understand which parts of the process can be automated through tools such as RPA. So whenever you hear that Process Mining can prepare RPA definitions you can expect that Task Mining is the real deal.

Machine Learning for Process and Task Mining on Text and Video Data

Process Mining and Task Mining is already benefiting a lot from Text Recognition (Named-Entity Recognition, NER) by Natural Lamguage Processing (NLP) by identifying events of processes e.g. in text of tickets or e-mails. And even more Task Mining will benefit form Computer Vision since videos of manufacturing processes or traffic situations can be read out. Even MTM analysis can be done with Computer Vision which detects movement and actions in video material.

Object-Centric Process Mining

Object-centric Process Data Modeling is an advanced approach of dynamic data modelling for analyzing complex business processes, especially those involving multiple interconnected entities. Unlike classical process mining, which focuses on linear sequences of activities of a specific process chain, object-centric process mining delves into the intricacies of how different entities, such as orders, items, and invoices, interact with each other. This method is particularly effective in capturing the complexities and many-to-many relationships inherent in modern business processes.

Note from the author: The concept and name of object-centric process mining was introduced by Wil M.P. van der Aalst 2019 and as a product feature term by Celonis in 2022 and is used extensively in marketing. This concept is based on dynamic data modelling. I probably developed my first event log made of dynamic data models back in 2016 and used it for an industrial customer. At that time, I couldn’t use the Celonis tool for this because you could only model very dedicated event logs for Celonis and the tool couldn’t remap the attributes of the event log while on the other hand a tool like Fluxicon disco could easily handle all kinds of attributes in an event log and allowed switching the event perspective e.g. from sales order number to material number or production order number easily.

An object-centric data model is a big deal because it offers the opportunity for a holistic approach and as a database a single source of truth for Process Mining but also for other types of analytical applications.

Enhancement of the Data Model for Obect-Centricity

The Event Log is a data model that stores events and their related attributes. A classic Event Log has next to the Case ID, the timestamp and a activity description also process related attributes containing information e.g. about material, department, user, amounts, units, prices, currencies, volume, volume classes and much much more. This is something we can literally objectify!

The problem of this classic event log approach is that this information is transformed and joined to the Event Log specific to the process it is designed for.

An object-centric event log is a central data store for all kind of events mapped to all relevant objects to these events. For that reason our event log – that brings object into the center of gravity – we need a relational bridge table (Event_Object_Relation) into the focus. This tables creates the n to m relation between events (with their timestamps and other event-specific values) and all objects.

For fulfillment of relational database normalization the object table contains the object attributes only but relates their object attribut values from another table to these objects.

Advanced Event Log with dynamic Relations between Objects and Events

Advanced Event Log with dynamic Relations between Objects and Events

The above showed data model is already object-centric but still can become more dynamic in order to object attributes by object type (e.g. the type material will have different attributes then the type invoice or department). Furthermore the problem that not just events and their activities have timestamps but also objects can have specific timestamps (e.g. deadline or resignation dates).

Advanced Event Log with dynamic Relations between Objects and Events and dynamic bounded attributes and their values to Events - And the same for Objects.

Advanced Event Log with dynamic Relations between Objects and Events and dynamic bounded attributes and their values to Events – And the same for Objects.

A last step makes the event log data model more easy to analyze with BI tools: Adding a classical time dimension adding information about each timestamp (by date, not by time of day), e.g. weekdays or public holidays.

Advanced Event Log with dynamic Relations between Objects and Events and dynamic bounded attributes and their values to Events and Objects. The measured timestamps (and duration times in case of Task Mining) are enhanced with a time-dimension for BI applications.

Advanced Event Log with dynamic Relations between Objects and Events and dynamic bounded attributes and their values to Events and Objects. The measured timestamps (and duration times in case of Task Mining) are enhanced with a time-dimension for BI applications.

For analysis the way of Business Intelligence this normalized data model can already be used. On the other hand it is also possible to transform it into a fact-dimensional data model like the star schema (Kimball approach). Also Data Science related use cases will find granular data e.g. for training a regression model for predicting duration times by process.

Note from the author: Process Mining is often regarded as a separate discipline of analysis and this is a justified classification, as process mining is essentially a graph analysis based on the event log. Nevertheless, process mining can be considered a sub-discipline of business intelligence. It is therefore hardly surprising that some process mining tools are actually just a plugin for Power BI, Tableau or Qlik.

Storing the Object-Centrc Analytical Data Model on Data Mesh Architecture

Central data models, particularly when used in a Data Mesh in the Enterprise Cloud, are highly beneficial for Process Mining, Business Intelligence, Data Science, and AI Training. They offer consistency and standardization across data structures, improving data accuracy and integrity. This centralized approach streamlines data governance and management, enhancing efficiency. The scalability and flexibility provided by data mesh architectures on the cloud are very beneficial for handling large datasets useful for all analytical applications.

Note from the author: Process Mining data models are very similar to normalized data models for BI reporting according to Bill Inmon (as a counterpart to Ralph Kimball), but are much more granular. While classic BI is satisfied with the header and item data of orders, process mining also requires all changes to these orders. Process mining therefore exceeds this data requirement. Furthermore, process mining is complementary to data science, for example the prediction of process runtimes or failures. It is therefore all the more important that these efforts in this treasure trove of data are centrally available to the company.

Central single source of truth models also foster collaboration, providing a common data language for cross-functional teams and reducing redundancy, leading to cost savings. They enable quicker data processing and decision-making, support advanced analytics and AI with standardized data formats, and are adaptable to changing business needs.

DATANOMIQ Data Mesh Cloud Architecture - This image is animated! Click to enlarge!

DATANOMIQ Data Mesh Cloud Architecture – This image is animated! Click to enlarge!

 

Central data models in a cloud-based Data Mesh Architecture (e.g. on Microsoft Azure, AWS, Google Cloud Platform or SAP Dataverse) significantly improve data utilization and drive effective business outcomes. And that´s why you should host any object-centric data model not in a dedicated tool for analysis but centralized on a Data Lakehouse System.

About the Process Mining Tool for Object-Centric Process Mining

Celonis is the first tool that can handle object-centric dynamic process mining event logs natively in the event collection. However, it is not neccessary to have Celonis for using object-centric process mining if you have the dynamic data model on your own cloud distributed with the concept of a data mesh. Other tools for process mining such as Signavio, UiPath, and process.science or even the simple desktop tool Fluxicon Disco can be used as well. The important point is that the data mesh approach allows you to easily generate classic event logs for each analysis perspective using the dynamic object-centric data model which can be used for all tools of process visualization…

… and you can also use this central data model to generate data extracts for all other data applications (BI, Data Science, and AI training) as well!

DATANOMIQ Cloud Architecture for Data Mesh - Process Mining, BI and Data Science Applications

Data Mesh Architecture on Cloud for BI, Data Science and Process Mining

Companies use Business Intelligence (BI), Data Science, and Process Mining to leverage data for better decision-making, improve operational efficiency, and gain a competitive edge. BI provides real-time data analysis and performance monitoring, while Data Science enables a deep dive into dependencies in data with data mining and automates decision making with predictive analytics and personalized customer experiences. Process Mining offers process transparency, compliance insights, and process optimization. The integration of these technologies helps companies harness data for growth and efficiency.

Applications of BI, Data Science and Process Mining grow together

More and more all these disciplines are growing together as they need to be combined in order to get the best insights. So while Process Mining can be seen as a subpart of BI while both are using Machine Learning for better analytical results. Furthermore all theses analytical methods need more or less the same data sources and even the same datasets again and again.

Bring separate(d) applications together with Data Mesh

While all these analytical concepts grow together, they are often still seen as separated applications. There often remains the question of responsibility in a big organization. If this responsibility is decided as not being a central one, Data Mesh could be a solution.

Data Mesh is an architectural approach for managing data within organizations. It advocates decentralizing data ownership to domain-oriented teams. Each team becomes responsible for its Data Products, and a self-serve data infrastructure is established. This enables scalability, agility, and improved data quality while promoting data democratization.

In the context of a Data Mesh, a Data Product refers to a valuable dataset or data service that is managed and owned by a specific domain-oriented team within an organization. It is one of the key concepts in the Data Mesh architecture, where data ownership and responsibility are distributed across domain teams rather than centralized in a single data team.

A Data Product can take various forms, depending on the domain’s requirements and the data it manages. It could be a curated dataset, a machine learning model, an API that exposes data, a real-time data stream, a data visualization dashboard, or any other data-related asset that provides value to the organization.

However, successful implementation requires addressing cultural, governance, and technological aspects. One of this aspect is the cloud architecture for the realization of Data Mesh.

Example of a Data Mesh on Microsoft Azure Cloud using Databricks

The following image shows an example of a Data Mesh created and managed by DATANOMIQ for an organization which uses and re-uses datasets from various data sources (ERP, CRM, DMS, IoT,..) in order to provide the data as well as suitable data models as data products to applications of Data Science, Process Mining (Celonis, UiPath, Signavio & more) and Business Intelligence (Tableau, Power BI, Qlik & more).

Data Mesh on Azure Cloud with Databricks and Delta Lake for Applications of Business Intelligence, Data Science and Process Mining.

Data Mesh on Azure Cloud with Databricks and Delta Lake for Applications of Business Intelligence, Data Science and Process Mining.

Microsoft Azure Cloud is favored by many companies, especially for European industrial companies, due to its scalability, flexibility, and industry-specific solutions. It offers robust IoT and edge computing capabilities, advanced data analytics, and AI services. Azure’s strong focus on security, compliance, and global presence, along with hybrid cloud capabilities and cost management tools, make it an ideal choice for industrial firms seeking to modernize, innovate, and improve efficiency. However, this concept on the Azure Cloud is just an example and can easily be implemented on the Google Cloud (GCP), Amazon Cloud (AWS) and now even on the SAP Cloud (Datasphere) using Databricks.

Databricks is an ideal tool for realizing a Data Mesh due to its unified data platform, scalability, and performance. It enables data collaboration and sharing, supports Delta Lake for data quality, and ensures robust data governance and security. With real-time analytics, machine learning integration, and data visualization capabilities, Databricks facilitates the implementation of a decentralized, domain-oriented data architecture we need for Data Mesh.

Furthermore there are also alternate architectures without Databricks but more cloud-specific resources possible, for Microsoft Azure e.g. using Azure Synapse instead. See this as an example which has many possible alternatives.

Summary – What value can you expect?

With the concept of Data Mesh you will be able to access all your organizational internal and external data sources once and provides the data as several data models for all your analytical applications. The data models are seen as data products with defined value, costs and ownership. Each applications has its own data model. While Data Science Applications have more raw data, BI applications get their well prepared star schema galaxy models, and Process Mining apps get normalized event logs. Using data sharing (in Databricks: Delta Sharing) data products or single datasets can be shared through applications and owners.

Lambda Architecture vs Kappa Architecture for Big Data Cloud Platforms? Let us discuss which architecture suits best for what use cases.

Big Data – Lambda or Kappa Architecture?

Big Data Analytics stands apart from conventional data processing in its fundamental nature. In the realm of Big Data, there are two prominent architectural concepts that perplex companies embarking on the construction or restructuring of their Big Data platform: Lambda architecture or Kappa architecture. Thus, it is crucial for such companies to contemplate and decide which architectural approach best aligns with their goals.

Lambda – Architecture

Introduced in 2011 during the peak of Big Data’s prominence, the Lambda architecture remains a significant presence in the field. Despite being the older of the two architectures, it offers a more comprehensive approach by incorporating three layers: the batch layer, the speed layer (also known as the stream layer), and the serving layer.

The Batch Layer is responsible for processing the entire dataset, ensuring the generation of the most accurate results. However, this comes at the cost of higher latency due to the batch loading of data. On the flip side, the batch layer can handle complex calculations without time constraints. It stores incoming raw data and filters it for subsequent applications.

Batch runs are suitable for non-time-sensitive data that require regular updates, such as daily or weekly incremental loads. Additionally, batch runs are necessary for complete data migration or overwriting (Full Load) scenarios.

The Speed Layer operates with low latency, producing almost real-time results. It calculates real-time views that complement the batch views. The speed layer receives incoming data and provides incremental updates to the batch layer results. By implementing incremental deduction logic, the speed layer significantly reduces computational costs.

Here is a simplified depiction of the Lambda architecture, showcasing the multi-store concept and the serving layer. In this representation, there is a separate store for events within the speed layer and another store for data loaded during batch processing. The serving layer acts as a mediator, enabling subsequent applications to access the data. It is important to note that in the Lambda architecture, the serving layer can be omitted, allowing batch processing and event streaming to remain separate entities.

Here is a simplified depiction of the Lambda architecture, showcasing the multi-store concept and the serving layer. In this representation, there is a separate store for events within the speed layer and another store for data loaded during batch processing. The serving layer acts as a mediator, enabling subsequent applications to access the data. It is important to note that in the Lambda architecture, the serving layer can be omitted, allowing batch processing and event streaming to remain separate entities.

The batch views within the Lambda architecture allow for the application of more complex or resource-intensive rules, resulting in superior data quality and reduced bias over time. On the other hand, the real-time views provide immediate access to the most current data.

The Serving Layer serves as a conduit for various data queries originating from both the batch and speed layers. It receives batch views from the batch layer and near-real-time views from the speed layer, utilizing this data to facilitate standard reporting and ad hoc analytics.

The Lambda architecture effectively balances speed, reliability, and scalability. However, it is worth mentioning that while the batch layer and real-time stream handle different scenarios, their underlying processing logic often shares similarities. As a result, the development and maintenance efforts for both layers should not be underestimated.

Kappa – Architecture

Jay Kreps introduced the Kappa architecture in 2014 as an alternative to the Lambda architecture. It addresses the redundancy present in the Lambda architecture by completely removing the batch component. By eliminating the parallel operation of two pipelines, the Kappa architecture simplifies the overall architectural complexity.

In the Kappa architecture, only the speed layer, represented by an event-based streaming pipeline, remains. The fundamental concept is to handle real-time data processing and continuous data reprocessing using a single stream processing engine. This approach allows for the avoidance of a multi-layer lambda architecture while ensuring the quality of data processing is maintained.

Illustrated simplified Kappa Architecture. This architectural concept relies on event streaming as the core element of data delivery.

Illustrated simplified Kappa Architecture. This architectural concept relies on event streaming as the core element of data delivery.

In practical implementation, the Kappa architecture is commonly deployed using Apache Kafka or Kafka-based tools. Applications can directly read from and write to Kafka or an alternative message queue tool. For existing event sources, listeners are utilized to stream writes directly from database logs or similar data stores. This approach eliminates the need for inbound batch processing and reduces resource requirements.

By treating every data point as a streaming event, the Kappa architecture enables the ability to near-realtime analytics and observe the state of all data in the organization at any given point. Queries can be performed at a single location, eliminating the need to compare batch and velocity views.

However, there are challenges associated with this architecture. Data processing must be done as a data stream, leading to difficulties such as managing duplicate events, cross-referencing events, and maintaining correct operation order. While batch processing can handle retrospective consolidation of multiple data sets, these challenges persist in the Kappa architecture. As a result, implementing architectures based on the Kappa concept can be more complex compared to those based on the Lambda concept, even though the latter may appear clearer in architectural sketches.

The Kappa architecture is particularly suitable when event streaming or real-time processing use cases are predominant. It offers the advantage of having a single ETL platform to develop and maintain. It is well-suited for developing data systems that emphasize online learning and do not require a separate batch layer. The sequence of events and queries is not predefined but generated in later steps based on business logic, prioritizing speed.

Use cases – When to use which architecture?

It is important to note that Kappa architecture does not serve as a direct substitute for Lambda architecture, as there are certain use cases supported by Lambda that cannot be seamlessly migrated. The Lambda architecture is better suited for implementing complex data processes and ensuring consistently complete data provisioning compared to the pure event processing approach of Kappa. As a result, many Data Lakehouse systems are built upon the foundations of the Lambda architecture.

Requirements that clearly speak for Lambda

  • If data is to be processed ad-hoc on quasi unchanging, quality-assured databases, or if the focus of the database is on data quality and the avoidance of inconsistencies.
  • When fast responses are required, but the system must be able to handle different update cycles.

Requirements that clearly speak in favor of Kappa:

  • When the algorithms applied to the real-time data and the historical data are identical.
  • If the analytics system is online learning capable and therefore does not require a batch layer.
  • The order of events and queries does not matter, but the stream processing platforms can exchange data with the database instantly at any time.

If your requirements prioritize a highly reliable Data Lakehouse update process and efficient machine learning model training for accurate event predictions, the Lambda architecture is the recommended choice. By leveraging both the batch layer and the speed layer, the Lambda architecture ensures minimal errors and optimized processing speed.

Alternatively, if you seek a streamlined Big Data architecture that excels in handling distinct and continuously emerging events (e.g., fueling data for numerous mobile applications), the Kappa architecture is the ideal solution for data platforms with the main purpose of real-time data processing. Its focus on unique, ongoing events allows for effective and responsive data processing.

How to reduce costs for Process Mining

Process mining has emerged as a powerful Business Process Intelligence discipline (BPI) for analyzing and improving business processes. It involves extracting data from source systems to gain insights into process behavior and uncover opportunities for optimization. While there are many approaches to create value with process mining, organizations often face challenges when it comes to the cost of implementing the necessary solution. In this article, we will highlight the key elements when it comes to process mining architectures as well as the most common mistakes, to help organizations leverage the power of process mining while maintain cost control.

Process Mining - Elements of Process Mining and their cost aspects

Process Mining – Elements of Process Mining and their cost aspects

Data Extraction for process mining

Most process mining projects underestimate the complexity of data extraction. Even for well-known sources like SAP-ERP’s, the extraction often consumes 50% of the first pilot’s resources. As a result, the extraction pipelines are often built with the credo of “asap” and this is where the cost-drama begins. Process Mining demands Big Data in 99% of the cases, releasing bad developed extraction jobs will end in big cost chunks down the value stream. Frequently organizations perform full loads of big SAP tables, causing source system performance impact, increasing maintenance, and moving hundred GB’s of data on daily basis without any new value. Other organizations fall for the connectors, provided by some process mining platform tools, promising time-to-value being the best. Against all odds the data is getting extracted then into costly third-party platforms where they can be only consumed by the platforms process mining tool itself. On top of that, these organizations often perform more than one Business Process Intelligence discipline, resulting in extracting the exact same data multiple times.

Process Mining - Data Extraction

Process Mining – Data Extraction

The data extraction for process mining should be well planed and match the data strategy of the organization. By considering lightweighted data preprocessing techniques organizations can save both time and money. When accepting the investment character of big data extractions, the investment should be done properly in the beginning and therefore cost beneficial in the long term.

Cloud-Based infrastructure with process mining?

Depending on the data strategy of one organization, one cost-effective approach to process mining could be to leverage cloud computing resources. Cloud platforms, such as Amazon Web Services (AWS), Microsoft Azure, or Google Cloud Platform (GCP), provide scalable and flexible infrastructure options. By using cloud services, organizations can avoid the upfront investment in hardware and maintenance costs associated with on-premises infrastructure. They can pay for resources on a pay-as-you-go basis, scaling up or down as needed, which can significantly reduce costs. When dealing with big data in the cloud, meeting the performance requirements while keeping cost control can be a balancing act, that requires a high skillset in cloud technologies. Depending the organization situation and data strategy, on premises or hybrid approaches should be also considered. But costs won’t decrease only migrating from on-premises to cloud and vice versa. What makes the difference is a smart ETL design capturing the nature of process mining data.

Process Mining Cloud Architecture on "pay as you go" base.

Process Mining Cloud Architecture on “pay as you go” base.

Storage for process mining data

Storing data is a crucial aspect of process mining, as in most cases big data is involved. Instead of investing in expensive data storage solutions, which some process mining solutions offer, organizations can opt for cost-effective alternatives. Cloud storage services like Amazon S3, Azure Blob Storage, or Google Cloud Storage provide highly scalable and durable storage options at a fraction of the cost of process mining storage systems. By utilizing these services, organizations can store large volumes of event data without incurring substantial expenses. Moreover, when big data engineering technics, consider profound process mining logics the storage cost cut down can be tremendous.

Process Mining - Infrastructure Cost Curve - On-Premise vs Cloud

Process Mining – Infrastructure Cost Curve: On-Premise vs Cloud

Process Mining Tools

While some commercial process mining tools can be expensive, there are several powerful more economical alternatives available. Tools like Process Science, ProM, and Disco provide comprehensive process mining capabilities without the hefty price tag. These tools offer functionalities such as event log import, process discovery, conformance checking, and performance analysis. Organizations often mismanage the fact, that there can and should be more then one process mining tool available. As expensive solutions like Celonis have their benefits, not all use cases make up for the price of these tools. As a result, these low ROI-use cases will eat up the margin, or (and that’s even more critical) little promising use cases won’t be investigated on and therefore high hanging fruits never discovered. Leveraging process mining tools can significantly reduce costs while still enabling organizations to achieve valuable process insights.

Process Mining Tool Landscape

Process Mining Tool Landscape (examples shown)

Collaboration

Another cost-saving aspect is to encourage collaboration within the organization itself. Most process mining initiatives require the input from process experts and often involve multiple stakeholders across different departments. By establishing cross-functional teams and supporting collaboration, organizations can share resources and distribute the cost burden. This approach allows for the pooling of expertise, reduces duplication of efforts, and facilitates knowledge exchange, all while keeping costs low.

Process Mining Team Structure

Process Mining Team Structure

Conclusion

Process mining offers tremendous potential for organizations seeking to optimize their business processes. While many organizations start process mining projects euphorically, the costs set an abrupt end to the party. Implementing a low-cost and collaborative architecture can help to create a sustainable value for the organization. By leveraging cloud-based infrastructure, cost-effective storage solutions, big data engineering techniques, process mining tools, well developed data extractions, lightweight data preprocessing techniques, and fostering collaboration, organizations can embark on process mining initiatives without straining their budgets. With the right approach, organizations can unlock the power of process mining and drive operational excellence without losing cost control.

One might argue that implementing process mining is not only about the costs. In the end each organization must consider the long-term benefits and return on investment (ROI). But with a cost controlled and sustainable process mining approach, return on investment is likely higher and less risky.

This article provides general information for process mining cost reduction. Specific strategic decisions should always consider the unique requirements and restrictions of individual organizations.

Was ist eine Vektor-Datenbank? Und warum spielt sie für AI eine so große Rolle?

Wie können Unternehmen und andere Organisationen sicherstellen, dass kein Wissen verloren geht? Intranet, ERP, CRM, DMS oder letztendlich einfach Datenbanken mögen die erste Antwort darauf sein. Doch Datenbanken sind nicht gleich Datenbanken, ganz besonders, da operative IT-Systeme meistens auf relationalen Datenbanken aufsetzen. In diesen geht nur leider dann doch irgendwann das Wissen verloren… Und das auch dann, wenn es nie aus ihnen herausgelöscht wird!

Die meisten Datenbanken sind darauf ausgelegt, Daten zu speichern und wieder abrufbar zu machen. Neben den relationalen Datenbanken (SQL) gibt es auch die NoSQL-Datenbanken wie den Key-Value-Store, Dokumenten- und Graph-Datenbanken mit recht speziellen Anwendungsgebieten. Vektor-Datenbanken sind ein weiterer Typ von Datenbank, die unter Einsatz von AI (Deep Learning, n-grams, …) Wissen in Vektoren übersetzen und damit vergleichbarer und wieder auffindbarer machen. Diese Funktion der Datenbank spielt seinen Vorteil insbesondere bei vielen Dimensionen aus, wie sie Text- und Bild-Daten haben.

Databases Types: Vector Database, Graph Database, Key-Value-Database, Document Database, Relational Database with Row or Column oriented table structures

Datenbank-Typen in grobkörniger Darstellung. Es gibt in der Realität jedoch viele Feinheiten, Übergänge und Überbrückungen zwischen den Datenbanktypen, z. B. zwischen emulierter und nativer Graph-Datenbank. Manche Dokumenten- Vektor-Datenbanken können auch relationale Datenmodellierung. Und eigentlich relationale Datenbanken wie z. B. PostgreSQL können mit Zusatzmodulen auch Vektoren verarbeiten.

Vektor-Datenbanken speichern Daten grundsätzlich nicht relational oder in einer anderen Form menschlich konstruierter Verbindungen. Dennoch sichert die Datenbank gewissermaßen Verbindungen indirekt, die von Menschen jedoch – in einem hochdimensionalen Raum – nicht mehr hergeleitet werden können und sich auf bestimmte Kontexte beziehen, die sich aus den Daten selbst ergeben. Maschinelles Lernen kommt mit der nummerischen Auflösung von Text- und Bild-Daten (und natürlich auch bei ganz anderen Daten, z. B. Sound) am besten zurecht und genau dafür sind Vektor-Datenbanken unschlagbar.

Was ist eine Vektor-Datenbank?

Eine Vektordatenbank speichert Vektoren neben den traditionellen Datenformaten (Annotation) ab. Ein Vektor ist eine mathematische Struktur, ein Element in einem Vektorraum, der eine Reihe von Dimensionen hat (oder zumindest dann interessant wird, genaugenommen starten wir beim Null-Vektor). Jede Dimension in einem Vektor repräsentiert eine Art von Information oder Merkmal. Ein gutes Beispiel ist ein Vektor, der ein Bild repräsentiert: jede Dimension könnte die Intensität eines bestimmten Pixels in dem Bild repräsentieren.
Auf dieseVektor Datenbank Illustration (vereinfacht, symbolisch) Weise kann eine ganze Sammlung von Bildern als eine Sammlung von Vektoren dargestellt werden. Noch gängiger jedoch sind Vektorräume, die Texte z. B. über die Häufigkeit des Auftretens von Textbausteinen (Wörter, Silben, Buchstaben) in sich einbetten (Embeddings). Embeddings sind folglich Vektoren, die durch die Projektion des Textes auf einen Vektorraum entstehen.

Vektor-Datenbanken sind besonders nützlich, wenn man Ähnlichkeiten zwischen Vektoren finden muss, z. B. ähnliche Bilder in einer Sammlung oder die Wörter “Hund” und “Katze”, die zwar in ihren Buchstaben keine Ähnlichkeit haben, jedoch in ihrem Kontext als Haustiere. Mit Vektor-Algorithmen können diese Ähnlichkeiten schnell und effizient aufgespürt werden, was sich mit traditionellen relationalen Datenbanken sehr viel schwieriger und vor allem ineffizienter darstellt.

Vektordatenbanken können auch hochdimensionale Daten effizient verarbeiten, was in vielen modernen Anwendungen, wie zum Beispiel Deep Learning, wichtig ist. Einige Beispiele für Vektordatenbanken sind Elasticsearch / Vector Search, Weaviate, Faiss von Facebook und Annoy von Spotify.

Viele Lernalgorithmen des maschinellen Lernens basieren auf Vektor-basierter Ähnlichkeitsmessung, z. B. der k-Nächste-Nachbarn-Prädiktionsalgorithmus (Regression/Klassifikation) oder K-Means-Clustering. Die Ähnlichkeitsbetrachtung erfolgt mit Distanzmessung im Vektorraum. Die dafür bekannteste Methode, die Euklidische Distanz zwischen zwei Punkten, basiert auf dem Satz des Pythagoras (Hypotenuse ist gleich der Quadratwurzel aus den beiden Dimensions-Katheten im Quadrat, im zwei-dimensionalen Raum). Es kann jedoch sinnvoll sein, aus Gründen der Effizienz oder besserer Konvergenz des maschinellen Lernens andere als die Euklidische Distanz in Betracht zu ziehen.

Vectore-based distance measuring methods: Euclidean Distance L2-Norm, Manhatten Distance L1-Norm, Chebyshev Distance and Cosine Distance

Vectore-based distance measuring methods: Euclidean Distance L2-Norm, Manhatten Distance L1-Norm, Chebyshev Distance and Cosine Distance

Vektor-Datenbanken für Deep Learning

Der Aufbau von künstlichen Neuronalen Netzen im Deep Learning sieht nicht vor, dass ganze Sätze in ihren textlichen Bestandteilen in das jeweilige Netz eingelesen werden, denn sie funktionieren am besten mit rein nummerischen Input. Die Texte müssen in diese transformiert werden, eventuell auch nach diesen in Cluster eingeteilt und für verschiedene Trainingsszenarien separiert werden.

Vektordatenbanken werden für die Datenvorbereitung (Annotation) und als Trainingsdatenbank für Deep Learning zur effizienten Speicherung, Organisation und Manipulation der Texte genutzt. Für Natural Language Processing (NLP) benötigen Modelle des Deep Learnings die zuvor genannten Word Embedding, also hochdimensionale Vektoren, die Informationen über Worte, Sätze oder Dokumente repräsentieren. Nur eine Vektordatenbank macht diese effizient abrufbar.

Vektor-Datenbank und Large Language Modells (LLM)

Ohne Vektor-Datenbanken wären die Erfolge von OpenAI und anderen Anbietern von LLMs nicht möglich geworden. Aber fernab der Entwicklung in San Francisco kann jedes Unternehmen unter Einsatz von Vektor-Datenbanken und den APIs von Google, OpenAI / Microsoft oder mit echten Open Source LLMs (Self-Hosting) ein wahres Orakel über die eigenen Unternehmensdaten herstellen. Dazu werden über APIs die Embedding-Engines z. B. von OpenAI genutzt. Wir von DATANOMIQ nutzen diese Architektur, um Unternehmen und andere Organisationen dazu zu befähigen, dass kein Wissen mehr verloren geht.
Vektor-Datenbank für KI-Applikation (z. B. OpenAI ChatGPT)

Mit der DATANOMIQ Enterprise AI Architektur, die auf jeder Cloud ausrollfähig ist, verfügen Unternehmen über einen intelligenten Unternehmens-Repräsentanten als KI, der für Mitarbeiter relevante Dokumente und Antworten auf Fragen liefert. Sollte irgendein Mitarbeiter im Unternehmen bereits einen bestimmten Vorgang, Vorfall oder z. B. eine technische Konstruktion oder einen rechtlichen Vertrag bearbeitet haben, der einem aktuellen Fall ähnlich ist, wird die AI dies aufspüren und sinnvollen Kontext, Querverweise oder Vorschläge oder lückenauffüllende Daten liefern.

Die AI lernt permanent mit, Unternehmenswissen geht nicht verloren. Das ist Wissensmanagement auf einem neuen Level, dank Vektor-Datenbanken und KI.

Data Lakehouse

Was ist ein Data Lakehouse?

tl;dr

Ein Data Lakehouse ist eine moderne Datenarchitektur, die die Vorteile eines Data Lake und eines Data Warehouse kombiniert. Es kann strukturierte, halbstrukturierte und unstrukturierte Daten in einer Vielzahl von Formaten speichern und verarbeiten und bietet eine flexible und skalierbare Möglichkeit zur Speicherung und Analyse großer Datenmengen. In diesem Artikel werden die Geschichte von Data Lakehouses, ihre Vor- und Nachteile sowie einige der am häufigsten verwendeten Tools für ihre Erstellung erörtert, darunter Apache Spark, Delta Lake, Databricks, Apache Hudi und Apache Iceberg. Organisationen können je nach ihren spezifischen Bedürfnissen und Anforderungen zwischen einem Data Warehouse und einem Data Lakehouse wählen.

Einführung

In der Welt der Daten ist der Begriff Data Lakehouse allgegenwärtig und wird als Lösung für alle Datenanforderungen verkauft. Aber Moment mal, was ist eigentlich ein Data Lakehouse? Der Artikel beginnt mit einer Definition, was ein Lakehouse ist, gibt einen kurzen geschichtlichen Abriss, wie das Lakehouse entstanden ist und zeigt, warum und wie man ein Data Lakehouse aufbauen sollte.

Die Definition eines Data Lakehouse

Ein Data Lakehouse ist eine moderne Datenspeicher- und -verarbeitungsarchitektur, die die Vorteile von Data Lakes und Data Warehouses vereint. Es ist darauf ausgelegt, große Mengen an strukturierten, halbstrukturierten und unstrukturierten Daten aus verschiedenen Quellen zu verarbeiten und eine einheitliche Sicht auf die Daten für die Analyse bereitzustellen.

Data Lakehouses werden auf Cloud-basierten Objektspeichern wie Amazon S3, Google Cloud Storage oder Azure Blob Storage aufgebaut. Sie nutzen auch verteilte Computing-Frameworks wie Apache Spark, um skalierbare und effiziente Datenverarbeitungsfunktionen bereitzustellen.

In einem Data Lakehouse werden die Daten in ihrem Rohformat gespeichert, und Transformationen und Datenverarbeitung werden je nach Bedarf durchgeführt. Dies ermöglicht eine flexible und agile Datenexploration und -analyse, ohne dass komplexe Datenaufbereitungs- und Ladeprozesse erforderlich sind. Darüber hinaus können Data Governance- und Sicherheitsrichtlinien auf die Daten in einem Data Lakehouse angewendet werden, um die Datenqualität und die Einhaltung von Vorschriften zu gewährleisten.

Data Lakehouse Architecture by DATANOMIQ

Data Lakehouse Architecture

Eine kurze Geschichte des Data Lakehouse

Das Konzept des Data Lakehouse ist relativ neu und entstand Mitte der 2010er Jahre als Reaktion auf die Einschränkungen des traditionellen Data Warehousing und die wachsende Beliebtheit von Data Lakes.

Data Warehousing ist seit den 1980er Jahren die wichtigste Lösung für die Speicherung und Verarbeitung von Daten für Business Intelligence und Analysen. Data Warehouses wurden entwickelt, um strukturierte Daten aus Transaktionssystemen in einem zentralen Repository zu speichern, wo sie mit SQL-basierten Tools bereinigt, umgewandelt und analysiert werden konnten.

Mit der zunehmenden Datenmenge und -vielfalt wurde die Verwaltung von Data Warehouses jedoch immer schwieriger und teurer. Data Lakes, die Mitte der 2000er Jahre aufkamen, boten einen alternativen Ansatz für die Datenspeicherung und -verarbeitung. Data Lakes wurden entwickelt, um große Mengen an rohen und unstrukturierten Daten auf skalierbare und kostengünstige Weise zu speichern.

Data Lakes boten zwar viele Vorteile, verfügten aber nicht über die Struktur und die Data Governance-Funktionen von Data Warehouses. Dies machte es schwierig, aus den Daten aussagekräftige Erkenntnisse zu gewinnen und die Datenqualität und die Einhaltung von Vorschriften sicherzustellen.

Das Data Lakehouse wurde als Lösung für dieses Problem entwickelt und kombiniert die Vorteile von Data Lakes und Data Warehouses. Bei einem Data Lakehouse werden die Daten in ihrem Rohformat gespeichert, genau wie bei einem Data Lake. Das Data Lakehouse bietet jedoch auch die Struktur und die Governance-Funktionen eines Data Warehouse, was eine einfachere Datenverwaltung und -analyse ermöglicht.

Wann wird ein Data Lakehouse verwendet?

Ein Data Lakehouse kann für eine Vielzahl von Anwendungsfällen der Datenspeicherung und -verarbeitung eingesetzt werden, insbesondere für solche, bei denen große Mengen unterschiedlicher Datentypen aus verschiedenen Quellen anfallen. Einige häufige Anwendungsfälle sind:

  1. Datenexploration und -erkennung: Ein Data Lakehouse ermöglicht es Benutzern, Rohdaten auf flexible und agile Weise zu untersuchen und zu analysieren, ohne dass komplexe Datenaufbereitungsprozesse erforderlich sind. Dies kann Unternehmen dabei helfen, Muster und Erkenntnisse zu erkennen, die sonst nur schwer zu entdecken wären.
  2. Erweiterte Analysen und maschinelles Lernen: Data Lakehouses können erweiterte Analysen und maschinelles Lernen unterstützen, indem sie eine einheitliche Sicht auf die Daten bieten, die zum Trainieren von Modellen und zur Erstellung von Vorhersagen verwendet werden kann.
  3. Datenverarbeitung in Echtzeit: Ein Data Lakehouse kann zum Speichern und Verarbeiten von Echtzeit-Datenströmen von IoT-Geräten, Social-Media-Feeds und anderen Quellen verwendet werden, um Einblicke und Maßnahmen in Echtzeit zu ermöglichen.
  4. Datenintegration und -verwaltung: Data Lakehouses können Unternehmen dabei helfen, Daten aus verschiedenen Quellen zu integrieren und zu verwalten, um Datenqualität, Konsistenz und Compliance zu gewährleisten.
  5. Kunde 360: Ein Data Lakehouse kann zur Konsolidierung von Kundendaten aus verschiedenen Quellen wie Transaktionssystemen, sozialen Medien und Kundensupportsystemen verwendet werden, um eine vollständige Sicht auf den Kunden zu erhalten und personalisierte Erfahrungen zu ermöglichen.

Data Lakehouse vs. Data Warehouse

Data Lakehouse Schema

Data Lakehouse Schema

Das Data Lakehouse ist also eine moderne Alternative zu Data Warehouse und Data Lake. Aber wie entscheidet man, ob man ein Data Lakehouse oder ein Data Warehouse einsetzt? Hier sind einige Faktoren, die bei der Bewertung der Verwendung eines Data Lakehouse gegenüber einem Data Warehouse für Ihr Unternehmen zu berücksichtigen sind:

  1. Datentypen und -quellen: Wenn Ihr Unternehmen strukturierte Daten aus transaktionalen Systemen speichern und analysieren muss, ist ein Data Warehouse möglicherweise die bessere Wahl. Wenn Sie jedoch verschiedene Datentypen und -quellen haben, einschließlich unstrukturierter und halbstrukturierter Daten, ist ein Data Lakehouse die bessere Wahl.
  2. Anforderungen an die Datenverarbeitung: Wenn Ihr Unternehmen komplexe Abfragen und Aggregationen von Daten durchführen muss, ist ein Data Warehouse möglicherweise die bessere Wahl. Wenn Sie jedoch Ad-hoc-Abfragen und explorative Analysen durchführen müssen, ist ein Data Lakehouse besser geeignet.
  3. Datenvolumen: Wenn Sie relativ kleine Datenmengen haben, ist ein Data Warehouse möglicherweise die kostengünstigere Wahl. Wenn Sie jedoch große Datenmengen haben, die schnell wachsen, wäre ein Data Lakehouse die bessere Wahl.
  4. Datenlatenz: Wenn Ihr Unternehmen Daten in Echtzeit verarbeiten und analysieren muss, ist ein Data Lakehouse möglicherweise die bessere Wahl. Wenn Ihre Analyse jedoch eine gewisse Latenzzeit tolerieren kann, könnte ein Data Warehouse die bessere Wahl sein.
  5. Data Governance und Compliance: Wenn Ihr Unternehmen strenge Anforderungen an die Datenverwaltung und -einhaltung hat, ist ein Data Warehouse möglicherweise die bessere Wahl. Ein Data Lakehouse kann jedoch auch Data Governance und Compliance unterstützen, indem es die Datenabfolge, Zugriffskontrollen und Auditing-Funktionen bereitstellt.

Die Entscheidung für das eine oder das andere hängt hauptsächlich von der Menge und Häufigkeit der zu verarbeitenden Daten ab. Aber auch die Art der Daten (strukturiert oder unstrukturiert) spielt eine wichtige Rolle.

Tools zum Aufbau eines Data Lakehouse

Nachfolgend eine Liste an Tools, die für Data Lakehouses infrage kommen, ohne Anspruch auf Vollständigkeit:

  1. Apache Spark: Spark ist eine beliebte Open-Source-Datenverarbeitungs-Engine, die für den Aufbau eines Data Lakehouse verwendet werden kann. Spark unterstützt eine Vielzahl von Datenquellen, einschließlich strukturierter, halbstrukturierter und unstrukturierter Daten, und kann sowohl für die Batch- als auch für die Echtzeit-Datenverarbeitung verwendet werden. Spark ist direkt auf mehreren Cloud-Plattformen verfügbar, darunter AWS, Azure und Google Cloud Platform.Apacke Spark ist jedoch mehr als nur ein Tool, es ist die Grundbasis für die meisten anderen Tools. So basieren z. B. Databricks und Azure Synapse auf Apache Spark, vereinfachen den Umgang mit Spark für den Benutzer dabei gleichzeitig sehr.
  2. Delta Lake: Delta Lake ist eine Open-Source-Speicherschicht, die auf einem Data Lake läuft und Funktionen für die Zuverlässigkeit, Qualität und Leistung von Daten bietet. Delta Lake baut auf Apache Spark auf und ist auf mehreren Cloud-Plattformen verfügbar, darunter AWS, Azure und Google Cloud Platform.
  3. AWS Lake Formation: AWS Lake Formation ist ein verwalteter Service, der den Prozess der Erstellung, Sicherung und Verwaltung eines Data Lakehouse auf AWS vereinfacht. Lake Formation bietet eine Vielzahl von Funktionen, einschließlich Datenaufnahme, Datenkatalogisierung und Datentransformation, und kann mit einer Vielzahl von Datenquellen verwendet werden.
  4. Azure Synapse Analytics: Azure Synapse Analytics ist ein verwalteter Analysedienst, der eine einheitliche Erfahrung für Big Data und Data Warehousing bietet. Synapse Analytics umfasst eine Data Lakehouse-Funktion, die das Beste aus Data Lakes und Data Warehouses kombiniert, um eine flexible und skalierbare Lösung für die Speicherung und Verarbeitung von Daten zu bieten.
  5. Google Cloud Data Fusion: Google Cloud Data Fusion ist ein vollständig verwalteter Datenintegrationsdienst, der zum Aufbau eines Data Lakehouse auf der Google Cloud Platform verwendet werden kann. Data Fusion bietet eine Vielzahl von Funktionen zur Datenaufnahme, -umwandlung und -verarbeitung und kann mit einer Vielzahl von Datenquellen verwendet werden.
  6. Databricks: Databricks ist eine Cloud-basierte Datenverarbeitungs- und Analyseplattform, die auf Apache Spark aufbaut. Sie bietet einen einheitlichen Arbeitsbereich für Data Engineering, Data Science und maschinelles Lernen, der zum Aufbau und Betrieb eines Data Lakehouse verwendet werden kann. Databricks ist auf AWS, Azure und Google Cloud Platform verfügbar.
  7. Apache Hudi: Apache Hudi ist ein Open-Source-Datenmanagement-Framework, das eine effiziente und skalierbare Datenaufnahme, -speicherung und -verarbeitung ermöglicht. Hudi bietet Funktionen wie inkrementelle Verarbeitung, Upserts und Deletes sowie Datenversionierung, um die Datenqualität in einem Data Lakehouse zu erhalten. Apache Hudi ist auf AWS, Azure und Google Cloud Platform verfügbar.
  8. Apache Iceberg: Apache Iceberg ist ein Open-Source-Tabellenformat, das schnelle und effiziente Datenabfragen ermöglicht und gleichzeitig transaktionale und konsistente Ansichten von Daten in einem Data Lakehouse bietet. Es ist so konzipiert, dass es mit einer Vielzahl von Speichersystemen wie dem Hadoop Distributed File System (HDFS), Amazon S3 und Azure Blob Storage zusammenarbeitet. Apache Iceberg ist auf AWS, Azure und Google Cloud Platform verfügbar.

Alle diese Tools haben sich aufgrund ihrer Benutzerfreundlichkeit, Skalierbarkeit und Unterstützung für eine Vielzahl von Datenverarbeitungs- und Analyseanwendungen für den Aufbau von Data Lakehouses durchgesetzt. Die Wahl des Tools hängt von Ihren spezifischen Anforderungen ab, und es ist wichtig, jedes Tool sorgfältig zu bewerten, um festzustellen, welches den Anforderungen Ihres Unternehmens am besten entspricht.

Fazit

In diesem Artikel haben wir das Konzept des Data Lakehouse, seine Geschichte sowie seine Vor- und Nachteile erläutert. Wir haben auch über einige der gängigsten Tools gesprochen, die zum Aufbau eines Data Lakehouse verwendet werden, darunter Apache Spark, Apache Delta Lake, Databricks, Apache Hudi und Apache Iceberg.

Wir haben erörtert, wie Unternehmen zwischen einem Data Warehouse und einem Data Lakehouse wählen können und welche Faktoren bei dieser Entscheidung zu berücksichtigen sind. Zusammenfassend lässt sich sagen, dass es Vor- und Nachteile gibt, die zu berücksichtigen sind und mit den eigenen Anforderungen verglichen werden sollten.

Zusammengefasst bietet ein Data Lakehouse folgende Vor- und Nachteile:

Vorteile eines Data Lakehouse:

  1. Flexibilität: Ein Data Lakehouse bietet eine flexible Datenarchitektur, die strukturierte, halbstrukturierte und unstrukturierte Daten in einer Vielzahl von Formaten speichern und verarbeiten kann, einschließlich Data Lakes und Data Warehouses.
  2. Skalierbarkeit: Ein Data Lakehouse kann skaliert werden, um die Anforderungen großer und komplexer Datenverarbeitungs- und Analyse-Workloads zu erfüllen.
  3. Kosteneffektiv: Ein Data Lakehouse kann zur Kostensenkung beitragen, indem es den Bedarf an mehreren Datensilos beseitigt und die Datenduplizierung reduziert.
  4. Verarbeitung in Echtzeit: Ein Data Lakehouse kann für die Datenverarbeitung in Echtzeit genutzt werden, so dass Unternehmen datengesteuerte Entscheidungen in Echtzeit treffen können.
  5. Datenverwaltung: Ein Data Lakehouse kann zur Verbesserung der Data Governance beitragen, indem es ein zentrales Repository für alle Daten bereitstellt und eine fein abgestufte Zugriffskontrolle ermöglicht.

Nachteile, die vor der Entscheidung für ein Data Lakehouse zu berücksichtigen sind:

  1. Komplexität: Der Aufbau eines Data Lakehouse kann komplex sein und erfordert ein tiefes Verständnis von Datenmanagement- und -verarbeitungstechnologien.
  2. Datenqualität: Die Datenqualität kann in einem Data Lakehouse aufgrund der Vielfalt der Datenquellen und der fehlenden Struktur eine Herausforderung darstellen.
  3. Sicherheit: Die Sicherheit kann in einem Data Lakehouse ein Problem darstellen, da es oft notwendig ist, den Zugriff auf große Datenmengen zu verwalten, die an verschiedenen Orten gespeichert sind.
  4. Qualifikationen: Der Aufbau und die Pflege eines Data Lakehouse erfordern ein spezifisches Skillset, das sich von dem des traditionellen Data Warehousing oder der Big Data-Verarbeitung unterscheiden kann.
  5. Werkzeuge: Es gibt zwar viele Tools für den Aufbau eines Data Lakehouse, aber angesichts des rasanten Innovationstempos kann es eine Herausforderung sein, mit den neuesten Tools und Technologien Schritt zu halten.

Abschließend lässt sich sagen, dass ein Data Lakehouse für Unternehmen, die eine flexible, skalierbare und kosteneffiziente Methode zur Speicherung und Verarbeitung großer Datenmengen benötigen, erhebliche Vorteile bieten. Auch wenn der Aufbau eines Data Lakehouse grundsätzlich komplexer ist, gibt es viele Tools und Technologien, die Unternehmen beim Aufbau und Betrieb einer erfolgreichen Data Lakehouse-Architektur unterstützen und dieses vereinfachen.

Haben Sie bereits ein Data Lakehouse im Einsatz oder überlegen Sie, eines für Ihr Unternehmen zu bauen? Schreiben Sie mich an!

Big Data – Das Versprechen wurde eingelöst

Big Data tauchte als Buzzword meiner Recherche nach erstmals um das Jahr 2011 relevant in den Medien auf. Big Data wurde zum Business-Sprech der darauffolgenden Jahre. In der Parallelwelt der ITler wurde das Tool und Ökosystem Apache Hadoop quasi mit Big Data beinahe synonym gesetzt. Der Guardian verlieh Apache Hadoop mit seinem Konzept des Distributed Computing mit MapReduce im März 2011 bei den MediaGuardian Innovation Awards die Auszeichnung “Innovator of the Year”. Im Jahr 2015 erlebte der Begriff Big Data in der allgemeinen Geschäftswelt seine Euphorie-Phase mit vielen Konferenzen und Vorträgen weltweit, die sich mit dem Thema auseinandersetzten. Dann etwa im Jahr 2018 flachte der Hype um Big Data wieder ab, die Euphorie änderte sich in eine Ernüchterung, zumindest für den deutschen Mittelstand. Die große Verarbeitung von Datenmassen fand nur in ganz bestimmten Bereichen statt, die US-amerikanischen Tech-Riesen wie Google oder Facebook hingegen wurden zu Daten-Monopolisten erklärt, denen niemand das Wasser reichen könne. Big Data wurde für viele Unternehmen der traditionellen Industrie zur Enttäuschung, zum falschen Versprechen.

Von Big Data über Data Science zu AI

Einer der Gründe, warum Big Data insbesondere nach der Euphorie wieder aus der Diskussion verschwand, war der Leitspruch “Shit in, shit out” und die Kernaussage, dass Daten in großen Mengen nicht viel wert seien, wenn die Datenqualität nicht stimme. Datenqualität hingegen, wurde zum wichtigen Faktor jeder Unternehmensbewertung, was Themen wie Reporting, Data Governance und schließlich dann das Data Engineering mehr noch anschob als die Data Science.

Google Trends - Big Data (blue), Data Science (red), Business Intelligence (yellow) und Process Mining (green).

Google Trends – Big Data (blue), Data Science (red), Business Intelligence (yellow) und Process Mining (green). Quelle: https://trends.google.de/trends/explore?date=2011-03-01%202023-01-03&geo=DE&q=big%20data,data%20science,Business%20Intelligence,Process%20Mining&hl=de

Small Data wurde zum Fokus für die deutsche Industrie, denn “Big Data is messy!”1 und galt als nur schwer und teuer zu verarbeiten. Cloud Computing, erst mit den Infrastructure as a Service (IaaS) Angeboten von Amazon, Microsoft und Google, wurde zum Enabler für schnelle, flexible Big Data Architekturen. Zwischenzeitlich wurde die Business Intelligence mit Tools wie Qlik Sense, Tableau, Power BI und Looker (und vielen anderen) weiter im Markt ausgebaut, die recht neue Disziplin Process Mining (vor allem durch das deutsche Unicorn Celonis) etabliert und Data Science schloss als Hype nahtlos an Big Data etwa ab 2017 an, wurde dann ungefähr im Jahr 2021 von AI als Hype ersetzt. Von Data Science spricht auf Konferenzen heute kaum noch jemand und wurde hype-technisch komplett durch Machine Learning bzw. Artificial Intelligence (AI) ersetzt. AI wiederum scheint spätestens mit ChatGPT 2022/2023 eine neue Euphorie-Phase erreicht zu haben, mit noch ungewissem Ausgang.

Big Data Analytics erreicht die nötige Reife

Der Begriff Big Data war schon immer etwas schwammig und wurde von vielen Unternehmen und Experten schnell auch im Kontext kleinerer Datenmengen verwendet.2 Denn heute spielt die Definition darüber, was Big Data eigentlich genau ist, wirklich keine Rolle mehr. Alle zuvor genannten Hypes sind selbst Erben des Hypes um Big Data.

Während vor Jahren noch kleine Datenanalysen reichen mussten, können heute dank Data Lakes oder gar Data Lakehouse Architekturen, auf Apache Spark (dem quasi-Nachfolger von Hadoop) basierende Datenbank- und Analysesysteme, strukturierte Datentabellen über semi-strukturierte bis komplett unstrukturierte Daten umfassend und versioniert gespeichert, fusioniert, verknüpft und ausgewertet werden. Das funktioniert heute problemlos in der Cloud, notfalls jedoch auch in einem eigenen Rechenzentrum On-Premise. Während in der Anfangszeit Apache Spark noch selbst auf einem Hardware-Cluster aufgesetzt werden musste, kommen heute eher die managed Cloud-Varianten wie Microsoft Azure Synapse oder die agnostische Alternative Databricks zum Einsatz, die auf Spark aufbauen.

Die vollautomatisierte Analyse von textlicher Sprache, von Fotos oder Videomaterial war 2015 noch Nische, gehört heute jedoch zum Alltag hinzu. Während 2015 noch von neuen Geschäftsmodellen mit Big Data geträumt wurde, sind Data as a Service und AI as a Service heute längst Realität!

ChatGPT und GPT 4 sind King of Big Data

ChatGPT erschien Ende 2022 und war prinzipiell nichts Neues, keine neue Invention (Erfindung), jedoch eine große Innovation (Marktdurchdringung), die großes öffentliches Interesse vor allem auch deswegen erhielt, weil es als kostenloses Angebot für einen eigentlich sehr kostenintensiven Service veröffentlicht und für jeden erreichbar wurde. ChatGPT basiert auf GPT-3, die dritte Version des Generative Pre-Trained Transformer Modells. Transformer sind neuronale Netze, sie ihre Input-Parameter nicht nur zu Klasseneinschätzungen verdichten (z. B. ein Bild zeigt einen Hund, eine Katze oder eine andere Klasse), sondern wieder selbst Daten in ähnliche Gestalt und Größe erstellen. So wird aus einem gegeben Bild ein neues Bild, aus einem gegeben Text, ein neuer Text oder eine sinnvolle Ergänzung (Antwort) des Textes. GPT-3 ist jedoch noch komplizierter, basiert nicht nur auf Supervised Deep Learning, sondern auch auf Reinforcement Learning.
GPT-3 wurde mit mehr als 100 Milliarden Wörter trainiert, das parametrisierte Machine Learning Modell selbst wiegt 800 GB (quasi nur die Neuronen!)3.

ChatGPT basiert auf GPT3.5 und wurde in 3 Schritten trainiert. Neben Supervised Learning kam auch Reinforcement Learning zum Einsatz.

ChatGPT basiert auf GPT-3.5 und wurde in 3 Schritten trainiert. Neben Supervised Learning kam auch Reinforcement Learning zum Einsatz. Quelle: openai.com

GPT-3 von openai.com war 2021 mit 175 Milliarden Parametern das weltweit größte Neuronale Netz der Welt.4 

Größenvergleich: Parameteranzahl GPT-3 vs GPT-4

Größenvergleich: Parameteranzahl GPT-3 vs GPT-4 Quelle: openai.com

Der davor existierende Platzhirsch unter den Modellen kam von Microsoft mit “nur” 10 Milliarden Parametern und damit um den Faktor 17 kleiner. Das nun neue Modell GPT-4 ist mit 100 Billionen Parametern nochmal 570 mal so “groß” wie GPT-3. Dies bedeutet keinesfalls, dass GPT-4 entsprechend 570 mal so fähig sein wird wie GPT-3, jedoch wird der Faktor immer noch deutlich und spürbar sein und sicher eine Erweiterung der Fähigkeiten bedeuten.

Was Big Data & Analytics heute für Unternehmen erreicht

Auf Big Data basierende Systeme wie ChatGPT sollte es – der zuvor genannten Logik folgend – jedoch eigentlich gar nicht geben dürfen, denn die rohen Datenmassen, die für das Training verwendet wurden, konnten nicht im Detail auf ihre Qualität überprüft werden. Zum Einen mittelt die Masse an Daten die in ihnen zu findenden Fehler weitgehend raus, zum Anderen filtert Deep Learning selbst relevante Muster und unliebsame Ausreißer aus den Datenmassen heraus. Neuronale Netze, der Kern des Deep Learning, können durchaus als große Filter verstanden und erklärt werden.

Davon abgesehen, dass die neuen ChatBot-APIs von den Cloud-Providern Microsoft, Google und auch Amazon genutzt werden können, um Arbeitsprozesse und Kommunikation zu automatisieren, wird Big Data heute in vielen Unternehmen dazu eingesetzt, um Unternehmens-/Finanzkennzahlen auszuwerten und vorherzusagen, um Produktionsqualität zu überwachen, um Maschinen-Sensordaten mit den Geschäftsdaten aus ERP-, MES- und CRM-Systemen zu verheiraten, um operative Prozesse über mehrere IT-Systeme hinweg zu rekonstruieren und auf Schwachstellen hin zu untersuchen und um Schlussendlich auch den weiteren Datenhunger zu stillen, z. B. über Text-Extraktion aus Webseiten (Intelligence Gathering), die mit NLP und Computer Vision mächtiger wird als je zuvor.

Big Data hält sein Versprechen dank AI

Die frühere Enttäuschung aus Big Data resultierte aus dem fehlenden Vermittler zwischen Big Data (passive Daten) und den Applikationen (z. B. Industrie 4.0). Dieser Vermittler ist der aktive Part, die AI und weiterführende Datenverarbeitung (z. B. Lakehousing) und Analysemethodik (z. B. Process Mining). Davon abgesehen, dass mit AI über Big Data bereits in Medizin und im Verkehrswesen Menschenleben gerettet wurden, ist Big Data & AI längst auch in gewöhnlichen Unternehmen angekommen. Big Data hält sein Versprechen für Unternehmen doch noch ein und revolutioniert Geschäftsmodelle und Geschäftsprozesse, sichert so Wettbewerbsfähigkeit. Zumindest, wenn Unternehmen sich auf diesen Weg tatsächlich einlassen.

Quellen:

  1. Edd Dumbill: What is big data? An introduction to the big data landscape. (Memento vom 23. April 2014 im Internet Archive) auf: strata.oreilly.com.
  2. Fergus Gloster: Von Big Data reden aber Small Data meinen. Computerwoche, 1. Oktober 2014
  3. Bussler, Frederik (July 21, 2020). “Will GPT-3 Kill Coding?”. Towards Data Science. Retrieved August 1, 2020.2022
  4. developer.nvidia.com, 1. Oktober 2014
Cloud Data Platform for Shopfloor Management

How Cloud Data Platforms improve Shopfloor Management

In the era of Industry 4.0, linking data from MES (Manufacturing Execution System) with that from ERP, CRM and PLM systems plays an important role in creating integrated monitoring and control of business processes.

ERP (Enterprise Resource Planning) systems contain information about finance, supplier management, human resources and other operational processes, while CRM (Customer Relationship Management) systems provide data about customer relationships, marketing and sales activities. PLM (Product Lifecycle Management) systems contain information about products, development, design and engineering.

By linking this data with the data from MES, companies can obtain a more complete picture of their business operations and thus achieve better monitoring and control of their business processes. Of central importance here are the OEE (Overall Equipment Effectiveness) KPIs that are so important in production, as well as the key figures from financial controlling, such as contribution margins. The fusion of data in a central platform enables smooth analysis to optimize processes and increase business efficiency in the world of Industry 4.0 using methods from business intelligence, process mining and data science. Companies also significantly increase their enterprise value with the linking of this data, thanks to the data and information transparency gained.

Cloud Data Platform for shopfloor management and data sources such like MES, ERP, PLM and machine data.

Cloud Data Platform for shopfloor management and data sources such like MES, ERP, PLM and machine data. Copyright by DATANOMIQ.

If the data sources are additionally expanded to include the machines of production and logistics, much more in-depth analyses for error detection and prevention as well as for optimizing the factory in its dynamic environment become possible. The machine sensor data can be monitored directly in real time via respective data pipelines (real-time stream analytics) or brought into an overall picture of aggregated key figures (reporting). The readers of this data are not only people, but also individual machines or entire production plants that can react to this data.

As a central data architecture there are dozens of analytical applications which can be fed with data:

OEE key figures for Shopfloor reporting
Process Mining (e.g. material flow analysis) for manufacturing and supply chain.
Detection of anomalies on the shopfloor or on individual machines.
Predictive maintenance for individual machines or entire production lines.

This solution scales completely automatically in terms of both performance and cost. It looks beyond individual problems since it offers universal and flexible scope for action. In other words, it will result in a “god mode” for the management being able to drill-down from a specific client project to insights into single machines involved into each project.

Are you interested in scalable data architectures for your shopfloor management? Or would you like to discuss a specific problem with us? Or maybe you are interested in an individual data strategy? Then get in touch with me! 🙂

Benjamin Aunkofer - Interview über AI as a Service

Interview – Daten vermarkten, nicht verkaufen!

Das Format Business Talk am Kudamm in Berlin führte ein Interview mit Benjamin Aunkofer zu den Themen “Daten vermarkten, nicht verkaufen!”.

In dem Interview erklärt Benjamin Aunkofer, warum der Datenschutz für die meisten Anwendungsfälle keine Rolle spielt und wie Unternehmen mit Data as a Service oder AI as a Service Ihre Daten zu Geld machen, selbst dann, wenn diese Daten nicht herausgegeben werden können.

Nachfolgend das Interview auf Youtube sowie die schriftliche Form zum Nachlesen:


Nachfolgend das Transkript zum Interview:

1 – Herr Aunkofer, Daten gelten als der wichtigste Rohstoff des 22. Jahrhunderts. Bei der Vermarktung datengestützter Dienstleistung tun sich deutsche Unternehmen im Vergleich zur Konkurrenz aus den USA oder Asien aber deutlich schwerer. Woran liegt das?

Ach da will ich keinen Hehl draus machen. Die Unterschiede liegen in den verschiedenen Kulturen begründet. In den USA herrscht in der Gesellschaft ein sehr freiheitlicher Gedanke, der wohl eher darauf hinausläuft, dass wer Daten sammelt, über diese dann eben auch weitgehend verfügt.

In Asien ist die Kultur eher kollektiv ausgerichtet, um den Einzelnen geht es dort ja eher nicht so.

In Deutschland herrscht auch ein freiheitlicher Gedanke – Gott sei Dank – jedoch eher um den Schutz der personenbezogenen Daten.

Das muss nun aber gar nicht schlimm sein. Zwar mag es in Deutschland etwas umständlicher und so einen Hauch langsamer sein, Daten nutzen zu dürfen. Bei vielen Anwendungsfällen kann man jedoch sehr gut mit korrekt anonymisierten Massendaten arbeiten und bei gesellschaftsfördernen Anwendungsfällen, man denke z. B. an medizinische Vorhersagen von Diagnosen oder Behandlungserfolgen oder aber auch bei der Optimierung des öffentlichen Verkehrs, sind ja viele Menschen durchaus bereit, ihre Daten zu teilen.

 Gesellschaftlichen Nutzen haben wir aber auch im B2B Geschäft, bei dem wir in Unternehmen und Institutionen die Prozesse kundenorientierter und schneller machen, Maschinen ausfallsicherer machen usw.. Da haben wir meistens sogar mit gar keinen personenbezogenen Daten zu tun.

2 – Sind die Bedenken im Zusammenhang mit Datenschutz und dem Schutz von Geschäftsgeheimnissen nicht berechtigt?

Also mit Datenschutz ist ja der gesetzliche Datenschutz gemeint, der sich nur auf personenbezogene Daten bezieht. Für Anwendungsfälle z. B. im Customer Analytics, also da, wo man Kundendaten analysieren möchte, geht das nur über die direkte Einwilligung oder eben durch anonymisierte Massendaten. Bei betrieblicher Prozessoptimierung, Anlagenoptimierung hat man mit personenbezogenen Daten aber fast nicht zu tun bzw. kann diese einfach vorher wegfiltern.

Ein ganz anderes Thema ist die Datensicherheit. Diese schließt die Sicherheit von personenbezogenen Daten mit ein, betrifft aber auch interne betriebliche Angelegenheiten, so wie etwas Lieferanten, Verträge, Preise… vielleicht Produktions- und Maschinendaten, natürlich auch Konstruktionsdaten in der Industrie.

Dieser Schutz ist jedoch einfach zu gewährleisten, wenn man einige Prinzipien der Datensicherheit verfolgt. Wir haben dafür Checklisten, quasi wie in der Luftfahrt. Bevor der Flieger abhebt, gehen wir die Checks durch… da stehen so Sachen drauf wie Passwortsicherheit, Identity Management, Zero Trust, Hybrid Cloud usw.

3 – Das Rückgrat der deutschen Wirtschaft sind die vielen hochspezialisierten KMU. Warum sollte sich beispielsweise ein Maschinenbauer darüber Gedanken machen, datengestützte Geschäftsmodelle zu entwickeln?

Nun da möchte ich dringend betonen, dass das nicht nur für Maschinenbauer gilt, aber es stimmt schon, dass Unternehmen im Maschinenbau, in der Automatisierungstechnik und natürlich der Werkzeugmaschinen richtig viel Potenzial haben, ihre Geschäftsmodelle mit Daten auszubauen oder sogar Datenbestände aufzubauen, die dann auch vermarktet werden können, und das so, dass diese Daten das Unternehmen gar nicht verlassen und dabei geheim bleiben.

4 – Daten verkaufen, ohne diese quasi zu verkaufen? Wie kann das funktionieren?

Das verrate ich gleich, aber reden wir vielleicht kurz einmal über das Verkaufen von Daten, die man sogar gerne verkauft. Das Verkaufen von Daten ist nämlich gerade so ein Trend. Das Konzept dafür heißt Data as a Service und bezieht sich dabei auf öffentliche Daten aus Quellen der Kategorie Open Data und Public Data. Diese Daten können aus dem Internet quasi gesammelt, als Datenbasis dann im Unternehmen aufgebaut werden und haben durch die Zusammenführung, Bereinigung und Aufbereitung einen Wert, der in die Millionen gehen kann. Denn andere Unternehmen brauchen vielleicht auch diese Daten, wollen aber nicht mehr warten, bis sie diese selbst aufbauen. Beispiele dafür sind Daten über den öffentlichen Verkehr, Infrastruktur, Marktpreise oder wir erheben z. B. für einen Industriekonzern Wasserqualitätsdaten beinahe weltweit aus den vielen vielen regionalen Veröffentlichungen der Daten über das Trinkwasser. Das sind zwar hohe Aufwände, aber der Wert der zusammengetragenen Daten ist ebenfalls enorm und kann an andere Unternehmen weiterverkauft werden. Und nur an jene Unternehmen, an die man das eben zu tun bereit ist.

5 – Okay, das sind öffentliche Daten, die von Unternehmen nutzbar gemacht werden. Aber wie ist es nun mit Daten aus internen Prozessen?

Interne Daten sind Geschäftsgeheimnisse und dürfen keinesfalls an Dritte weitergegeben werden. Dazu gehören beispielsweise im Handel die Umsatzkurven für bestimmte Produktkategorien sowie aber auch die Retouren und andere Muster des Kundenverhaltens, z. B. die Reaktion auf die Konfiguration von Online-Marketingkampagnen. Die Unternehmen möchten daraus jedoch Vorhersagemodelle oder auch komplexere Anomalie-Erkennung auf diese Daten trainieren, um sie für sich in ihren operativen Prozessen nutzbar zu machen. Machine Learning, übrigens ein Teilgebiet der KI (Künstlichen Intelligenz), funktioniert ja so, dass man zwei Algorithmen hat. Der erste Algorithmus ist ein Lern-Algorithmus. Diesen muss man richtig parametrisieren und überhaupt erstmal den richtigen auswählen, es gibt nämlich viele zur Auswahl und ja, die sind auch miteinander kombinierbar, um gegenseitige Schwächen auszugleichen und in eine Stärke zu verwandeln. Der Lernalgorithmus erstellt dann, über das Training mit den Daten, ein Vorhersagemodell, im Grunde eine Formel. Das ist dann der zweite Algorithmus. Dieser Algorithmus entstand aus den Daten und reflektiert auch das in den Daten eingelagerte Wissen, kanalisiert als Vorhersagemodell. Und dieses kann dann nicht nur intern genutzt werden, sondern auch anderen Unternehmen zur Nutzung zur Verfügung gestellt werden.

6 – Welche Arten von Problemen sind denn geeignet, um aus Daten ein neues Geschäftsmodell entwickeln zu können?

Alle operativen Geschäftsprozesse und deren Unterformen, also z. B. Handels-, Finanz-, Produktions- oder Logistikprozesse generieren haufenweise Daten. Das Problem für ein Unternehmen wie meines ist ja, dass wir zwar Analysemethodik kennen, aber keine Daten. Die Daten sind quasi wie der Inhalt einer Flasche oder eines Ballons, und der Inhalt bestimmt die Form mit. Unternehmen mit vielen operativen Prozessen haben genau diese Datenmengen.Ein Anwendungsfallgebiet sind z. B. Diagnosen. Das können neben medizinischen Diagnosen für Menschen auch ganz andere Diagnosen sein, z. B. über den Zustand einer Maschine, eines Prozesses oder eines ganzen Unternehmens. Die Einsatzgebiete reichen von der medizinischen Diagnose bis hin zu der Diagnose einer Prozesseffizienz oder eines Zustandes in der Wirtschaftsprüfung.Eine andere Kategorie von Anwendungsfällen sind die Prädiktionen durch Text- oder Bild-Erkennung. In der Versicherungsindustrie oder in der Immobilienbranche B. gibt es das Geschäftsmodell, dass KI-Modelle mit Dokumenten trainiert werden, so dass diese automatisiert, maschinell ausgelesen werden können. Die KI lernt dadurch, welche Textstellen im Dokument oder welche Objekte im Bild eine Rolle spielen und verwandelt diese in klare Aussagen.

Die Industrie benutzt KI zur generellen Objekterkennung z. B. in der Qualitätsprüfung. Hersteller von landwirtschaftlichen Maschinen trainieren KI, um Unkraut über auf Videobildern zu erkennen. Oder ein Algorithmus, der gelernt hat, wie Ultraschalldaten von Mirkochips zu interpretieren sind, um daraus Beschädigungen zu erkennen, so als Beispiel, den kann man weiterverkaufen.

Das Verkaufen erfolgt dabei idealerweise hinter einer technischen Wand, abgeschirmt über eine API. Eine API ist eine Schnittstelle, über die man die KI verwenden kann. Daraus wird dann AI as a Service, also KI als ein Service, den man Dritten gegen Bezahlung nutzen lassen kann.

7 – Gehen wir mal in die Praxis: Wie lassen sich aus erhobenen Daten Modelle entwickeln, die intern genutzt oder als Datenmodell an Kunden verkauft werden können?

Zuerst müssen wir die Idee natürlich richtig auseinander nehmen. Nach einer kurzen Euphorie-Phase, wie toll die Idee ist, kommt ja dann oft die Ernüchterung. Oft überwinden wir aber eben diese Ernüchterung und können starten. Der einzige Knackpunkt sind meistens fehlende Daten, denn ja, wir reden hier von großen Datenhistorien, die zum Einen überhaupt erstmal vorliegen müssen, zum anderen aber auch fast immer aufbereitet werden müssen.Wenn das erledigt ist, können wir den Algorithmus trainieren, ihn damit auf eine bestimmte Problemlösung sozusagen abrichten.Übrigens können Kunden oder Partner die KI selbst nachtrainieren, um sie für eigene besondere Zwecke besser vorzubereiten. Nehmen wir das einfache Beispiel mit der Unkrauterkennung via Bilddaten für landwirtschaftliche Maschinen. Nun sieht Unkraut in fernen Ländern sicherlich ähnlich, aber doch eben anders aus als hier in Mitteleuropa. Der Algorithmus kann jedoch nachtrainiert werden und sich der neuen Situation damit anpassen. Hierfür sind sehr viel weniger Daten nötig als es für das erstmalige Anlernen der Fall war.

8 – Viele Unternehmen haben Bedenken wegen des Zeitaufwands und der hohen Kosten für Spezialisten. Wie hoch ist denn der Zeit- und Kostenaufwand für die Implementierung solcher KI-Modelle in der Realität?

Das hängt sehr stark von der eigentlichen Aufgabenstellung ab, ob die Daten dafür bereits vorliegen oder erst noch generiert werden müssen und wie schnell das alles passieren soll. So ein Projekt dauert pauschal geschätzt gerne mal 5 bis 8 Monate bis zur ersten nutzbaren Version.

Sehen Sie die zwei anderen Video-Interviews von Benjamin Aunkofer:

 

 

 

 

 

 


 

Better Customer Service Using Big Data

Big data is frequently discussed across many industries by more than just business owners, CEOs or IT managers. Big data and big data analytics are two critical elements of modern business that company leaders and their employees should understand if they want to make more informed decisions.

In addition to the highly data-driven business landscape, people’s needs and expectations are changing. Companies with superb customer service gain a competitive advantage over competitors with poor operations.

The power of big data analytics helps organizations take steps to improve their customer service offerings, ultimately meeting or exceeding the needs and expectations of existing and potential clients.

An Overview of Big Data

What exactly is big data and how is it different from traditional data?

Big data describes large, diverse datasets growing at increasing rates and proving highly useful in business. Datasets are so voluminous that traditional data processing software solutions cannot manage them properly.

Here are the “five Vs,” or essential qualities, that accurately describe big data:

  • Volume
  • Velocity
  • Variety
  • Veracity
  • Value

Businesses that leverage big data can address or even prevent a range of problems that would otherwise be more challenging to solve.

Organizations collect, combine and mine three types of data — structured, semi-structured and unstructured — for advanced analytics applications.

Benefits of Big Data Analytics

After analyzing big data, gathering new insights on company operations and other critical business issues helps companies overcome existing problems. Some of these might be costly and cause potential obstacles.

Here are two main benefits of big data analytics:

Customer Attraction and Retention

Big data analytics gives companies detailed insights into customers’ wants and needs.

For example, organizations can review customer data and adjust their current sales or marketing strategies to increase loyalty and satisfaction. Big data can also highlight changes in client sentiment and predict future trends.

Increased Employee Productivity

Monitoring employee performance is essential for most companies. Thankfully, big data analysis can show leaders how individual workers perform and measure their productivity.

Big data can analyze important factors such as absenteeism rates, number of sick days taken, workload and output. Once this information is collected, supervisors can relay findings to employees and make improvements to bolster productivity.

Other benefits exist, but these two examples provide a glimpse into the world of big data and how transformative it is in the modern business world.

How to Use Big Data to Improve Customer Service

There are a few ways businesses can harness big data analytics to gain insights and take actionable steps to improve their customer service offerings. Here’s how.

Solves Customer Inquiries More Effectively

Contacting a customer service center is often time-consuming and headache-inducing for a consumer, especially when the representative cannot answer a question or solve a problem.

Lack of effectiveness and speed are two of the most common causes of customer service frustration. Qualitative and quantitative big data analytics let customer service employees identify their weaknesses, such as their familiarity with a product or service, and take action accordingly.

For example, a representative can spend more time learning about customers’ most common issues while using a specific product, allowing them to solve problems faster and more effectively.

Increases Personalized Offers

A business can achieve significant revenue growth by aligning customer behaviors and marketing messages. Personalized offerings are becoming increasingly popular among consumers. In other words, people want companies to see them as individuals rather than a source of profit.

Big data analytics helps organizations increase the number and quality of personalized offerings. For example, analytics can reveal critical customer information, like how much money they spend, what products they buy and which services they use.

These details help employees create and automate personalized marketing offers. Customer service representatives can also use this data to make recommendations based on buyer preferences, improving the experience and building loyalty.

Empowers Customer Service Representatives

Big data analytics are a major boon to customer service representatives. These employees are considered the face of the company, meaning they must have access to all the resources they need. Insights from big data are no exception.

Representatives working with results from big data analysis are in a better position to respond to inquiries more quickly and provide effective customer solutions. They will likely perform well if they have insights at their disposal.

Provide Superior Customer Support With Big Data Analytics

No matter the industry, virtually every organization relies on data, whether it’s sales, web traffic, customer, supply chain management or inventory data.

Data is becoming increasingly important for companies in today’s competitive business environment. The role of big data will continue to grow as more organizations recognize its positive impact on customer service and satisfaction.