IIIa. Einführung in TensorFlow: Realisierung eines Perzeptrons mit TensorFlow

1. Einleitung

1.1. Was haben wir vor?

Im zweiten Artikel dieser Serie sind wir darauf eingegangen, wie man TensorFlow prinzipiell nutzt. Wir wollen das Gelernte an einem einfachen Modell anwenden. Bevor wir dies jedoch tun, müssen wir die Theorie hinter dem Modell verstehen um TensorFlow richtig anwenden zu können.

Dafür bietet sich ein Adaline-Perzeptron sehr gut an. Es ist ein einfaches Modell mit nur einer Schicht, wo die Theorie verständlich ist.

1.2. Aufgabenstellung

Abb.1 Trainingsdaten: Grün \rightarrow Label 0, Rot
\rightarrow Label 1

In Abb.1 sehen wir unsere Trainingsdaten, die
zufällig generiert wurden. Alle grün markierten Datenpunkte haben das Label 0 und die rot markierten Punkte erhalten das Label 1. 

Wir möchten einen Adaline-Perzeptron entwickeln, der unsere Daten  je nach Position in die richtige Klasse zuordnet. Somit haben wir eine Aufgabe mit binärer Klassifikation

2. Grundlagen

2.1. Funktionsweise eines Perzeptrons

Ein Perzeptron ist ein mathematisches Modell, welches eine Nervenzelle beschreiben soll.

Abb.2 Schematische Darstellung einer Nervenzelle und ihren Bestandteilen

Vereinfacht funktioniert eine Nervenzelle, auch Neuron genannt, folgendermaßen: Eine Vielzahl von Reizen bzw. Eingabesignalen wird von den Dendriten aufgenommen, die dann im Kern verarbeitet werden. Wenn die verschiedenen Eingabesignale die ’richtige’ Dosis an Reizen erreichen und einen Schwellwert erreichen, dann feuert das Neuron ab und leitet ein Signal weiter. 

Für eine detaillierte Beschreibung, wie ein Perzeptron mathematisch beschrieben wird, möchte ich auf diesen Artikel hinweisen.

Wir wollen uns in diesem Artikel auf den Adaline-Algorithmus (ADAptive LINear Element) konzentrieren. Dieser ist eine Weiterentwicklung des Perzeptron. Die Besonderheit an diesem Algorithmus liegt darin, dass das Konzept der Fehlerminimierung durch Minimierung der Straffunktion der berechneten und der tatsächlichen Ergebnisse enthält. Ein weiter wesentlicher Unterschied zu einem einfachen Perzeptron ist vor allem, dass wir bei Adaline keine einfache Sprungfunktion als Aktivierungsfunktion haben, sondern eine stetige Funktion nutzen und somit eine Differenzierung/Ableitung der Aktivierungsfunktion durchführen können. Dieser Punkt ist für die Optimierung der Gewichte und des Lernens unseres Modells ein entscheidender Vorteil.

Das Schema in Abb.3 zeigt uns die Funktionsweise, wie unser Adaline-Algorithmus funktionieren soll.

Abb.3 Schematische Darstellung des Adaline-Perzeptrons

  1. Eingang: In dieser Schicht werden unsere Daten ein gepfangen und weitergeleitet
  2. Die Gewichte geben an, welchen Einfluss unsere Eingangssignale haben. Sie sind auch unsere Größe, die in unserem Algorithmus optimiert werden.
  3. Die Nettoeingabefunktion wird durch die Zusammenführung von Eingangssignalen und Gewichten erzeugt. Je nachdem wie die Eingänge und Gewichte verbunden sind,  müssen diese mathematisch korrekt multipliziert werden.
  4. Die Nettoeingabe wird dann, in die Aktivierungsfunktion eingebunden. Je nachdem welche Aktivierungsfunktion man nutzt, ändert sich die Ausgabe nach der Aktivierungsfunktion. 
  5.  In der Fehlerrückgabe werden die vorhergesagten Ausgaben mit den tatsächlichen Werten/Labels verglichen. Auch hier gibt es verschiedene Verfahren, um eine Fehlerfunktion zu bilden. 
  6. In der Optimierung werden dann auf Basis der Fehlerfunktion die Gewichte so optimiert, dass der Fehler zwischen unseren Label und den vorhergesagten Werten minimiert wird.
  7. Der Quantisierer ist ein optionales Element. Bei einer kategorischen Problemstellung bekommen wir nach der Aktivierungsfunktion eine Wahrscheinlichkeit zu der die Daten zu welchem Label zugeteilt werden. Der Quantisierer wandelt diese Wahrscheinlichkeiten zu Labeln um. Zum Beispiel haben wir einen Datensatz und unser Modell sagt voraus, dass dieser Datensatz zu 88 % das Label 1 hat. Je nachdem welche Grenze dem Quantisierer gegeben wird, teilt dieser dann den Datensatz in die entsprechende Klasse ein. Wenn wir sagen die Grenze soll 50% sein, dann sagt der Quantisierer, dass unser Datensatz Label 1 ist.

2.2. Aktivierungsfunktionen

Die Aktivierungsfunktion ist ein sehr wichtiger Bestandteil bei neuronalen Netzen. Diese bestimmen, wie sich das Ausgangssignal verhält. Es gibt eine Vielzahl von Aktivierungsfunktionen, die ihre Vor- und Nachteile haben. Wir wollen uns erstmal auf die Sigmoidfunktion konzentrieren.

Eigentlich haben wir bei der Sprungfunktion alles was wir brauchen. Wenn wir einen Schwellenwert erreichen z \geq 0, dann feuert die Sprungfunktion und das sehr abrupt. Die Sigmoidfunktion hingegen hat einen sanfteren und natürlicheren Verlauf als die Sprungfunktion. Außerdem ist sie eine stetig und differenzierbare Funktion, was sehr vorteilhaft für das Gradientenverfahren (Optimierung) ist. Daher wollen wir die Sigmoidfunktion für unsere Problemstellung nutzen.

    \begin{align*} \text{sig}(z) = \frac{1}{1 + e^{-z}}\end{align*}

Abb.4 Sigmoid-Funktion mit ihrer Ableitung und deren Sättigungsbereichen

2.3. Optimierungsverfahren

2.3.1. Fehlerfunktion

Die wohl am häufigsten genutzten Fehlerfunktionen (oder auch Ziel-, Kosten-, Verlust-, Straffunktion) sind wohl der mittlere quadratische Fehler bei Regressionen und die Kreuzentropie bei kategorischen Daten.

In unserem Beispiel haben wir Daten kategorischer Natur und eine binäre Thematik, weshalb wir uns auf die Kreuzentropie in Kombination mit der Sigmoidfunktion konzentrieren wollen.

Aus der Matrizenrechnung t (z =\boldsymbol{xw}^T) erhalten wir ein Skalar (eindimensional). Geben wir diese in die Sigmoidfunktion ein, kommen wir auf folgende Gleichung.



    \begin{align*} \text{sig}(z=\boldsymbol{xw}^T) = \frac{1}{1 + e^{-\boldsymbol{xw}^T}} \end{align*}


Hinweis: Wie in Abb.4 kann die Sigmoidfunktion nur Werte zwischen 0 und 1 erreichen, ohne diese jemals zu erreichen. Außerdem ändert sich die Funktion bei sehr großen Beträgen nur noch minimal, man spricht auch von Sättigung. Dieser Fakt ist sehr wichtig, wenn um die Optimierung der Gewichte geht. Wenn wir unsere Nettoeingabe nicht skalieren, dann kann es passieren, dass unser Modell sehr langsam lernt, da der Gradient der Sigmoidfunktion bei großen Beträgen sehr klein ist.

Bei Aufgaben mit binärer Klassifizierung hat sich die Kreuzentropie als Fehlerfunktion etabliert. Sie ist ein Maß für die Qualität eines Modells, welche eine Wahrscheinlichkeitsverteilung angibt. Je kleiner diese Größe ist, desto besser unser Modell. Es gilt also unsere Fehlerfunktion zu minimieren!

Wir wollen in einem separaten Artikel genauer auf die Kreuzentropie eingehen. Für den jetzigen Zeitpunkt soll es reichen, wenn wir die Formel vor Augen haben und was sie grob bedeutet.

P = \{p_1,p_2,\dots,p_N\} sei die ‘wahre’ Wahrscheinlichkeitsverteilung aus der Menge X = \{x_1,x_2,\dots,x_N\}, in unserem Fall, die Wahrscheinlichkeitsverteilung, ob ein Datenpunkt dem Label 0 oder 1 zugehört. Wenn wir nun unser Eingangssignal durch die Aktivierungsfunktion fließen lassen, dann erhalten wir ebenfalls eine ‘berechnete’ Wahrscheinlichkeitsverteilung die Q = \{q_1,q_2,\dots,q_N\} genannt werden soll. Um die Wahrscheinlichkeitsverteilungen p und q zu vergleichen, nutzen wir die Kreuzentropie, welche wie folgt für diskrete Daten definiert ist:

    \begin{align*}\log_2{x}&= \operatorname{ld}(x) \\H(P;Q) &= - \sum{P \cdot \operatorname{ld}(Q)}\\H(P;Q) &= -p_1 \operatorname{ld}(q_1) - p_2  \operatorname{ld}(q_2)\end{align*}

Beispiel einer binären Problemstellung. Wir haben unsere Label 0 und 1. p1 ist die Wahrscheinlichkeit, inwiefern unser Datenpunkt das Label 0 hat. Da wir die Trainingsdaten kennen, wissen wir auch das dieser Punkt zu 100 %, welches Label hat. Unser Modell hat zum Beispiel im ersten Durchgang eine Wahrscheinlichkeit von 0.8 und später 0.9 berechnet.

Fall I : P = Q Die Wahrscheinlichkeitsverteilungen P und Q sind identisch:

    \begin{align*}P &= \{p_1 = 1.0, p_2 = 0.0 \} \\Q_0 &= \{q_1 = 1.0, q_2 = 0.0 \} \\ \\H_{0}(P;Q_I) &= -1.0 \operatorname{ld}(1) -0.0 \operatorname{ld}(0.0) = 0.0\\\end{align*}

Fall II: P \neq Q Die Wahrscheinlichkeitsverteilungen P und Q sind nicht identisch:

    \begin{align*}P &= \{p_1 = 1.0, p_2 = 0.0 \} \\Q_{1} &= \{q_1 = 0.8, q_2 = 0.2 \} \\ Q_{2} &= \{q_1 = 0.9, q_2 = 0.1 \} \\ Q_{3} &= \{q_1 = 0.99, q_2 = 0.01 \} \\ \\H_{1}(P;Q_{1}) &= -1.0 \operatorname{ld}(0.8) -0.0 \operatorname{ld}(0.2) = 0.3219 \\H_{2}(P;Q_{2}) &= -1.0 \operatorname{ld}(0.9) -0.0 \operatorname{ld}(0.1) = 0.1520 \\ H_{3}(P;Q_{3}) &= -1.0 \operatorname{ld}(0.99) -0.0 \operatorname{ld}(0.01) = 0.0144\\\end{align*}

In der oberen Berechnung haben wir zum einfachen Verständnis der Kreuzentropie ein einfaches Beispiel. p_1 ist eine 100 % ige  Wahrscheinlichkeit, dass zum Beispiel unser Datensatz das Label 0 hat. Unser perfektes Modell mit Q_0 hat eine Kreuzentropie-Wert von 0. Unser zweites Modell  H_1(P;Q1) hat eine gewisse Unbestimmtheit, die sich durch eine größere Kreuzentropie H_1 = 0.1520 bemerkbar macht. Je mehr sich also unser Modell von den wirklichen Daten abweicht, desto größer ist die Kreuzentropie.

2.3.2. Optimierung nach dem Gradientenverfahren

Wenn wir es also schaffen die Kreuzentropie zu minimieren, dann erhalten wir auch ein besseres Modell! Bei der Optimierung nach dem Gradientenverfahren versuchen wir uns schrittweise an das Minimum zu bewegen.

    \begin{align*}H(P;Q) &= H(y; \varPhi(z)) \\            &= H(y; \text{sig}(z))\\             &= H(y; \text{sig}(xw))\\H' &= \frac{\partial H}{\partial w} \rightarrow Min.\end{align*}

Ziel der Optimierung ist es, dass unsere Gewichte so angepasst werden, dass sich der Fehler in unserer Fehlerfunktion minimiert. Wir leiten also die Fehlerfunktion nach w ab. 

Diese Aufgabe wird zum Glück von TensorFlow übernommen und wir müssen die Randbedingungen nur dem System geben.

Neben dem Gradientenverfahren, gibt es auch noch eine Menge anderer Optimierer, auf die wir später nochmal eingehen werden.

3. Zusammenfassung

Bevor wir TensorFlow nutzen, ist es wichtig, dass wir unser Modell verstehen. TensorFlow ist wie vieles nur ein Werkzeug, wenn man die Grundlagen nicht verstanden hat. Daher haben wir uns in diesem Artikel erstmal auf die Theorie konzentriert und ich habe dabei versucht mich auf das Wesentliche zu beschränken. 

Im nächsten Artikel werden wir dann unser Modell in TensorFlow realisieren.

PS: In einem separaten Artikel wollen später nochmal detaillierter auf Aktivierungsfunktion, Kreuzentropie und das Gradientenverfahren eingehen.

Statistical Relational Learning – Part 2

In the first part of this series onAn Introduction to Statistical Relational Learning”, I touched upon the basic Machine Learning paradigms, some background and intuition of the concepts and concluded with how the MLN template looks like. In this blog, we will dive in to get an in depth knowledge on the MLN template; again with the help of sample examples. I would then conclude by highlighting the various toolkit available and some of its differentiating features.

MLN Template – explained

A Markov logic network can be thought of as a group of formulas incorporating first-order logic and also tied with a weight. But what exactly does this weight signify?

Weight Learning

According to the definition, it is the log odds between a world where F is true and a world where F is false,

and captures the marginal distribution of the corresponding predicate.

Each formula can be associated with some weight value, that is a positive or negative real number. The higher the value of weight, the stronger the constraint represented by the formula. In contrast to classical logic, all worlds (i.e., Herbrand Interpretations) are possible with a certain probability [1]. The main idea behind this is that the probability of a world increases as the number of formulas it violates decreases.

Markov logic networks with its probabilistic approach combined to logic posit that a world is less likely if it violates formulas unlike in pure logic where a world is false if it violates even a single formula. Consider the case when a formula with high weight i.e. more significance is violated implying that it is less likely in occurrence.

Another important concept during the first phase of Weight Learning while applying an MLN template is “Grounding”. Grounding means to replace each variable/function in predicate with constants from the domain.

Weight Learning – An Example

Note: All examples are highlighted in the Alchemy MLN format

Let us consider an example where we want to identify the relationship between 2 different types of verb-noun pairs i.e noun subject and direct object.

The input predicateFormula.mln file contains

  1. The predicates nsubj(verb, subject) and dobj(verb, object) and
  2. Formula of nsubj(+ver, +s) and dobj(+ver, +o)

These predicates or rules are to learn all possible SVO combinations i.e. what is the probability of a Subject-Verb-Object combination. The + sign ensures a cross product between the domains and learns all combinations. The training database consists of the nsubj and dobj tuples i.e. relations is the evidence used to learn the weights.

When we run the above command for this set of rules against the training evidence, we learn the weights as here:

Note that the formula is now grounded by all occurrences of nsubj and dobj tuples from the training database or evidence and the weights are attached to it at the start of each such combination.

But it should be noted that there is no network yet and this is just a set of weighted first-order logic formulas. The MLN template we created so far will generate Markov networks from all of our ground formulas. Internally, it is represented as a factor graph.where each ground formula is a factor and all the ground predicates found in the ground formula are linked to the factor.

Inference

The definition goes as follows:

Estimate probability distribution encoded by a graphical model, for a given data (or observation).

Out of the many Inference algorithms, the two major ones are MAP & Marginal Inference. For example, in a MAP Inference we find the most likely state of world given evidence, where y is the query and x is the evidence.

which is in turn equivalent to this formula.

Another is the Marginal Inference which computes the conditional probability of query predicates, given some evidence. Some advanced inference algorithms are Loopy Belief Propagation, Walk-SAT, MC-SAT, etc.

The probability of a world is given by the weighted sum of all true groundings of a formula i under an exponential function, divided by the partition function Z i.e. equivalent to the sum of the values of all possible assignments. The partition function acts a normalization constant to get the probability values between 0 and 1.

Inference – An Example

Let us draw inference on the the same example as earlier.

After learning the weights we run inference (with or without partial evidence) and query the relations of interest (nsubj here), to get inferred values.

Tool-kits

Let’s look at some of the MLN tool-kits at disposal to do learning and large scale inference. I have tried to make an assorted list of all tools here and tried to highlight some of its main features & problems.

For example, BUGS i.e. Bayesian Logic uses a Swift Compiler but is Not relational! ProbLog has a Python wrapper and is based on Horn clauses but has No Learning feature. These tools were invented in the initial days, much before the present day MLN looks like.

ProbCog developed at Technical University of Munich (TUM) & the AI Lab at Bremen covers not just MLN but also Bayesian Logic Networks (BLNs), Bayesian Networks & ProLog. In fact, it is now GUI based. Thebeast gives a shell to analyze & inspect model feature weights & missing features.

Alchemy from University of Washington (UoW) was the 1st First Order (FO) probabilistic logic toolkit. RockIt from University of Mannheim has an online & rest based interface and uses only Conjunctive Normal Forms (CNF) i.e. And-Or format in its formulas.

Tuffy scales this up by using a Relational Database Management System (RDBMS) whereas Felix allows Large Scale inference! Elementary makes use of secondary storage and Deep Dive is the current state of the art. All of these tools are part of the HAZY project group at Stanford University.

Lastly, LoMRF i.e. Logical Markov Random Field (MRF) is Scala based and has a feature to analyse different hypothesis by comparing the difference in .mln files!

 

Hope you enjoyed the read. The content starts from basic concepts and ends up highlighting key tools. In the final part of this 3 part blog series I would explain an application scenario and highlight the active research and industry players. Any feedback as a comment below or through a message is more than welcome!

Back to Part I – Statistical Relational Learning

Additional Links:

[1] Knowledge base files in Logical Markov Random Fields (LoMRF)

[2] (still) nothing clever Posts categorized “Machine Learning” – Markov Logic Networks

[3] A gentle introduction to statistical relational learning: maths, code, and examples

Auswertung von CSV- und Log-Dateien auf der Command Line mit awk

Die Programmiersprache awk ist klein und unscheinbar, unter Data Science at the Command Line-Verfechtern allerdings ein häufiges Tool zur schnellen Analyse von CSV-Datein und vergleichbar strukturierten Daten (z. B. Logfiles) mit über Trennzeichen differenzierten Spalten. Auch in Shell-Skripten kommt awk meistens dann zum Einsatz, wenn es um den Zugriff, aber auch um die Manipulation von solchen Dateien geht.

Data Science at the Command Line: Facing the Future with Time-Tested Tools

awk wird als Skriptsprache mit nahezu jeder Linux-Distribution ausgeliefert und ist recht einfach eingehalten, kann jedoch auch schnell kryptisch werden. awk wird meistens ad-hoc auf der Kommandozeile ausgeführt, es können jedoch auch Skripte in awk-Dateien erstellt werden. Häufiger Grund für den Einsatz von awk ist die Anwendung von regulären Ausdrücken (Textmustersuche) auf Logdateien.

Nachfolgend ein kleines Tutorial für den Schnelleinstieg in diese interessante Analysetool auf Kommandozeile. Die CSV-Datei einfach hier downloaden: (einen Überblick über den Inhalt bietet auch eine Einführung in Python, die ebenfalls auf dieser CSV-Datei basiert)

CSV-Datei gedownloaded? Dann kann es losgehen im Terminal jeder beliebiger Linux-Distribution:

Anweisungen, so auch die obige, beginnen stets mit “awk”. Da diese CSV-Datei nicht mit dem Standardchar (Komma), sondern einem vertikalen Strich (Pipe) getrennt ist, muss dies via “-F’|'” angegeben werden. Wäre das Trennzeichen ein Semikolon, wäre der Parameter “-F’;'” korrekt. Der Befehl gibt jede Zeile des CSV in der Kommandozeile aus, so dass wie nachfolgend den gesamten Dateiinhalt sehen:

Viele CSV- und Logdateien haben keinen Header, diese hier hat jedoch die erste Zeile als Header, die daher bei der Analyse nicht als Werte-Zeile fehlinterpretiert werden darf, daher wird nachfolgend von nun an die Anweisung “NR>1” mitgegeben:

Spalten werden in awk über das Dollarzeichen angesprochen, folgende Anweisung zeigt uns alle Zeilen der zweiten Spalte:

Diese Skriptsprache beherrscht assoziative Arrays. Es können demnach auch nicht-numerische Schlüssel für den Zugriff auf Datenfelder verwendet werden. Dies machen wir uns für das Anzeigen aller Standorte mit Angabe der jeweiligen Mitarbeiterzahl an dem Standort zu nutze. Die Variable a speichert alle Mitarbeiterzahlen in Spalte 4 über den Schlüssel des Standortnamens in Spalte 2, dann endet der Anweisungsblock und es folgt eine For-Schleife, die alle Schlüsselwerte ausgibt und den dazugehörigen Speicherwert (Mitarbeiterzahl) ausgibt.

Auch If-Anweisungen sind einfach machbar. Folgendes Beispiel unterscheidet die Zeilennummern (Spalte1) nach geraden und ungeraden Zahlen und gibt den dazugehörigen Standortnamen (Spalte 2) aus.

Folgendes Beispiel klassifiziert alle Standorte mit weniger als 10 Mitarbeitern, allerdings nicht über “if…else…”, sondern über die Kurzabfrage nach dem Schema a>b?”True”:”False”.

Folgendes Code-Beispiel zeigt die Zählung der Vorkommnisse (Entsprechung: GROUP BY Spalte3, Count(*)).

Etwas umformuliert, können wir auch die Werte pro Gruppe aufsummieren, nachfolgend beispielhaft der Gewinn (Einnahmen aus Spalte 5 – Kosten aus Spalte 6) und die Mitarbeiterzahl über die jeweilige Gruppe.

Das Zusammenführen von Zeichenketten erfolgt simpel durch Aneinandereihung:

Ein letztes Beispiel möchte keine einzelnen Zeilen des Datensatzes auflisten und auch keine Gruppierung unterscheiden, sondern die Zusammenfassung über die Angabe der gesamten Mitarbeiteranzahl und der Gewinn-Summe über alle Standorte angeben.

Fazit

Als Programmiersprache ist awk sicherlich nur ein nice-to-have, aber wenn man das Prinzip dieser Sprache erstmal verstanden hat, kann sie ein interessantes Tool darstellen, um schon auf Kommandozeilenebene sich schnell einen Überblick über Datenbestände zu beschaffen und auch um Datenqualitätstests durchzuführen.