Posts

Einstieg in das Maschinelle Lernen mit Python(x,y)

Python(x,y) ist eine Python-Distribution, die speziell für wissenschaftliche Arbeiten entwickelt wurde. Es umfasst neben der Programmiersprache auch die Entwicklungsumgebung Spyder und eine Reihe integrierter Python-Bibliotheken. Mithilfe von Python(x,y) kann eine Vielzahl von Interessensbereichen bearbeitet werden. Dazu zählen unter anderem Bildverarbeitung oder auch das maschinelle Lernen. Das All-in-One-Setup für Python(x,y) ist für alle gängigen Betriebssysteme online erhältlich. Read more

Wahrscheinlichkeitsverteilungen – Zentralen Grenzwertsatz verstehen mit Pyhton

Wahrscheinlichkeitsverteilung sind im Data Science ein wichtiges Handwerkszeug. Während in der Mathevorlesung die Dynamik dieser Verteilungen nur durch wildes Tafelgekritzel schwierig erlebbar zu machen ist, können wir mit Programmierkenntnissen (in diesem Fall wieder mit Python) eine kleine Testumgebung für solche Verteilungen erstellen, um ein Gefühl dafür zu entwickeln, wie unterschiedlich diese auf verschiedene Wahrscheinlichkeitswerte, Varianz und Mengen an Datenpunkten reagieren und wann sie untereinander annäherungsweise ersetzbar sind – der zentrale Grenzwertsatz. Den Schwerpunkt lege ich in diesem Artikel auf die Binominal- und Normalverteilung.

Für die folgenden Beispiele werden folgende Python-Bibliotheken benötigt:

Read more

Benford-Analyse

Das Benfordsche Gesetz beschreibt eine Verteilung der Ziffernstrukturen von Zahlen in empirischen Datensätzen. Dieses Gesetz, welches kein striktes Naturgesetz ist, sondern eher ein Erklärungsversuch in der Natur und in der Gesellschaft vorkommende Zahlenmuster vorherzusagen.

Das Benfordsche Gesetz beruht auf der Tatsache, dass die Ziffern in einem Zahlensystem hierarchisch aufeinander aufbauen: Es beginnt mit der 1, dann folgt die 2, dann die 3 usw. In Kombination mit bestimmten Gesetzen der Natur (der natürliche Wachstumsprozess, dabei möglichst energiesparend wachsen/überleben) oder Ökonomie (so günstig wie möglich einkaufen) ist gemäß des Benfordschen Gesetz zu erwarten, dass die Ziffer 1 häufiger vorkommt als die 2, die wiederum häufiger vorkommt als die 3. Die Ziffer 9 braucht demnach den längsten Weg und kommt entsprechend verhältnismäßig seltener vor.

Dieses Phönomen hilft uns bei echten Zufallszahlen nicht weiter, denn dann sind alle Ziffern nicht aufeinander aufbauend, sondern mehr oder weniger gleichberechtigt in ihrem Auftrauen. Bei der klassischen und axiomatischen Wahrscheinlichkeit kommen wir damit also nicht ans Ziel.

Die Benford-Analyse ist im Grunde eine Ausreißeranalyse: Wir vergleichen Ziffernmuster in Datenbeständen mit der Erwartungshaltung des Benfordschen Gesetzes. Weicht das Muster von dieser Erwartung ab, haben wir Diskussionsbedarf.

Moderne Zahlensysteme sind Stellenwert-Zahlensysteme. Neben den Dual-, Oktal- und Hexadezimalzahlensystemen, mit denen sich eigentlich nur Informatiker befassen, wird unser Alltag vom Dezimalzahlensystem geprägt. In diesem Zahlensystem hat jede Stelle die Basis 10 (“dezi”) und einen Exponenten entsprechend des Stellenwertes, multipliziert mit der Ziffer d. Es ist eine Exponentialfunktion, die den Wert der Ziffern in bestimmter Reihenfolge ermittelt:

Z =\sum_{i=-n}^{m}d_{i}\cdot10^{i}

Die Benford-Analyse wird meistens nur für die erste Ziffer (also höchster Stellenwert!) durchgeführt. Dies werden wir gleich einmal beispielhaft umsetzen.

Die Wahrscheinlichkeit des Auftretens der ersten “anführenden” Ziffer d ist ein Logarithmus zur Basis B. Da wir im alltäglichen Leben – wie gesagt – nur im Dezimalzahlensystem arbeiten, ist für uns B = 10.

p(d)=\log_{B}\left( 1 +\frac{1}{d} \right)

Im Standard-Python lässt sich diese Formel leicht mit einer Schleife umsetzen:

Benford-Algorithmus in Python mit NumPy und Pandas

Nachfolgend setzen wir eine Benford-Analyse als Minimalbeispiel in NumPy und Pandas um.

Nun möchten wir eine Tabelle erstellen, mit zwei Spalten, eine für die Ziffer (Digit), die andere für die relative Häufigkeit der Ziffer (Benford Law). Dazu nutzen wir das DataFrame aus dem Pandas-Paket. Das DataFrame erstellen wir aus den zwei zuvor erstellten NumPy-Arrays.

Man könnte sicherlich auch den natürlichen Index des DataFrames nutzen, indem wir diesen nur um jeweils 1 erhöhen, aber das verwirrt später nur und tun wir uns jetzt daher lieber nicht an…

Das Dataframe-Objekt kann direkt plotten (das läuft über die matplotlib, die wir aber nicht direkt einbinden müssen):benfordsches_gesetz_dezimalzahlen_ziffern

Diese neun Balken zeigen die Verteilung der Ziffernhäufigkeit nach dem Benfordschen Gesetz, diese Verteilung ist unsere Erwartungshaltung an andere nummerische Datenbestände, wenn diese einem natürlichen Wachstum unterliegen.

Analyse der Verteilung der ersten Ziffer in Zahlungsdaten

Jetzt brauchen wir Daten mit nummerischen Beträgen, die wir nach Benford testen möchten. Für dieses Beispiel nehme ich aus einem ein SAP-Testdatensatz die Spalte ‘DMBTR’ der Tabelle ‘BSEG’ (SAP FI). Die Spalte ‘DMBTR’ steht für “Betrag in Hauswährung’, die ‘BSEG’ ist die Tabelle für die buchhalterischen Belegsegmente.
Die Datei mit den Testdaten ist über diesen Link zum Download verfügbar (Klick) und enthält 40.000 Beträge.

Wir laden den Inhalt der Datei via NumPy.LoadTxt() und machen aus dem resultierenden NumPy-Array wieder ein Pandas.DataFrame und holen uns die jeweils erste Ziffer für alle Einträge als Liste zurück.

Die Einträge der ersten Ziffer in firstDigits nehmen wir uns dann vor und gruppieren diese über die Ziffer und ihrer Anzahl relativ zur Gesamtanzahl an Einträgen.

Wenn wir die Werte der relativen Anzahl aufsummieren, landen wir bei 94% statt 100%. Dies liegt daran, dass wir die Ziffer 0 ausgelassen haben, diese jedoch tatsächlich vorkommt, jedoch nur bei Beträgen kleiner 1.00. Daher lassen wir die Ziffer 0 außenvor. Wer jedoch mehr als nur die erste Ziffer prüfen möchte, wird die Ziffer 0 wieder mit in die Betrachtung nehmen wollen. Nur zur Probe nocheinmal mit der Ziffer 0, so kommen wir auf die 100% der aufsummierten relativen Häufigkeiten:

Nun erstellen wir ein weiteres Pandas.DataFrame, mit zwei Spalten: Die Ziffern (Digit) und die tatsächliche Häufigkeit in der Gesamtpopulation (Real Distribution):

Abgleich der Ziffernhäufigkeit mit der Erwartung

Nun bringen wir die theoretische Verteilung der Ziffern, also nach dem zuvor genannten Logarithmus, und die tatsächliche Verteilung der ersten Ziffern in unseren Zahlungsdaten in einem Plot zusammen:

In dem Plot wird deutlich, dass die Verteilung der führenden Ziffer in unseren Zahlungsdaten in ziemlich genau unserer Erwartung nach dem Benfordschen Gesetz entspricht. Es sind keine außerordentlichen Ausreißer erkennbar. Das wäre auch absolut nicht zu erwarten gewesen, denn der Datensatz ist mit 40.000 Einträgen umfassend genug, um dieses Muster gut abbilden zu können und von einer Manipulation dieser Beträge im SAP ist ebenfalls nicht auszugehen.

benford-analyse-python-fuer-sap-bseg-dmbtr

Gegenüberstellung: Computer-generierte Zufallszahlen

Jetzt wollen wir nochmal kurz darauf zurück kommen, dass das Benfordsche Gesetz für Zufallszahlen nicht unwendbar ist. Bei echten Zufallszahlen bin ich mir da auch sehr sicher. Echte Zufallszahlen ergeben sich beispielweise beim Lotto, wenn die Bälle mit Einzel-Ziffern durch eine Drehkugel hüpfen. Die Lottozahl-Ermittlung erfolgt durch die Zusammenstellung von jeweils gleichberechtigt erzeugten Ziffern.
Doch wie ist dies bei vom Computer generierten Zufallszahlen? Immerhin heißt es in der Informatik, dass ein Computer im Grunde keine Zufallszahlen erzeugen kann, sondern diese via Takt und Zeit erzeugt und dann durchmischt. Wir “faken” unsere Zahlungsdaten nun einfach mal via Zufallszahlen. Hierzu erstellen wir in NumPy ein Array mit 2000 Einträgen einer Zufallszahl (NumPy.Random.rand(), erzeugt floats 0.xxxxxxxx) und multiplizieren diese mit einem zufälligen Integer (Random.randint()) zwischen 0 und 1000.

Erzeugen wir die obigen Datenstrukturen erneut, zeigt sich, dass die Verteilung der Zufallszahlen ganz anders aussieht: (vier unterschiedliche Durchläufe)

benford-analyse-python-numpy-pseudo-zufallszahlen

Anwendung in der Praxis

Data Scientists machen sich das Benfordsche Gesetz zu Nutze, um Auffälligkeiten in Zahlen aufzuspüren. In der Wirtschaftsprüfung und Forensik ist diese Analyse-Methode recht beliebt, um sich einen Eindruck von nummerischen Daten zu verschaffen, insbesondere von Finanztransaktionen. Die Auffälligkeit durch Abweichung vom Benfordchen Gesetz entsteht z. B. dadurch, dass Menschen eine unbewusste Vorliebe für bestimmte Ziffern oder Zahlen haben. Greifen Menschen also in “natürliche” Daten massenhaft (z. B. durch Copy&Paste) ein, ist es wahrscheinlich, dass sie damit auch vom Muster des Benfordschen Gesetzes abweichen. Weicht das Muster in Zahlungsströmen vom Bendfordsche Erwartungsmuster für bestimmte Ziffern signifikant ab, könnte dies auf Fälle von unnatürlichen Eingriffen hindeuten.

Die Benford-Analyse wird auch gerne eingesetzt, um Datenfälschungen in wissenschaftlichen Arbeiten oder Bilanzfälschungen aufzudecken. Die Benford-Analyse ist dabei jedoch kein Beweis, sondern liefert nur die Indizien, die Detailanalysen nach sich ziehen können/müssen.

Die Rastrigin-Funktion

Jeder Data Scientist kommt hin und wieder mal in die Situation, einen Algorithmus trainieren bzw. optimieren zu wollen oder zu müssen, ohne jedoch, dass passende Trainingsdaten unmittelbar verfügbar wären. Zum einen kann man in solchen Fällen auf Beispieldaten zugreifen, die mit vielen Analysetools mitgeliefert werden, oder aber man generiert sich seine Daten via mathematischer Modelle selbst, die für bestimmte Eigenschaften bekannt sind, die gute Bedingungen für das Optimierungstraining liefern. 

Ein solches Modell, das man als Machine Learning Entwickler kennen sollte, ist die Rastrigin-Funktion, die laut Wikipedia von Leonard A. Rastrigin erstmalig beschrieben wurde. Dabei handelt es sich um eine Häufigkeites-/Wahrscheinlichkeitsverteilung, deren Dichte mehrere lokale Modi (Gipfel) aufweist. Ein Modus (oder Modalwert) ist in einer Häufigkeitsverteilung der häufigste Wert (“Bergspitze”) bzw. der Wert mit der höchsten Wahrscheinlichkeit.

Anmerkung des Autors: Dieser Artikel stellt zum einen die Rastrigin-Funktion und ihre Bedeutung für die Optimierungsrechnung vor, ist zum anderen aber auch eine Einführung in den Umgang mit NumPy-Matrizen (die eine Menge For-Schleifen ersparen können).

Die Rastrigin-Funktion

Mathematisch beschrieben wird die Rastrigin-Funktion wie folgt:

f(x_1 \cdots x_n) = An + \sum_{i=1}^n (x_i^2 -10cos(2\pi x_i))

-5.12 \leq x_i \leq 5.12

Wobei für das globale Minimum gilt: f(0) = 0
Außerdem ist zu beachten, dass A=10 eine Konstante ist.

Die Rastrigin-Funktion im Standard-Python umsetzen und visualisieren

Die Formel lässt sich in Python (wie natürlich in jeder anderen Programmiersprache auch) einfach umsetzen:

Nun können wir über den klassischen Weg der Programmierung einfach eine For-Schleife verwenden, um die Rastrigin-Funktionswerte in eine Liste zu packen und mit einem Plot zu visualsieren, dabei bin ich leider doch nicht ganz um die Verwendung des NumPy-Pakets nicht herumgekommen:

rastrigin-line-chart

Die grafische Darstellung zeigt, dass es sich tatsächlich um eine symmetrische multimodalen Verteilung handelt.

Die Rastrigin-Funktion mehrdimensional umsetzen, mit NumPy-Matrizen-Funktionen

Die obige Umsetzung der Rastrigin-Funktion ist eindimensional (eine Variable), braucht für die Darstellung allerdings zwei Dimensionen (f(x) und die Durchlaufanzahl bzw. Zeitachse). Nun könnten wir die Zahl der Variablen von 1 (x) auf 2 (x und y) erhöhen und eine dreidimensionale Darstellung erzeugen. Eine ähnliche dreidimensionale Darstellung gab es bereits in meiner Vorstellung des k-nearest-Neighbour-Algorithmus nachzuvollziehen. Dabei müssten wir die Konstante A=10 auf A=20 verdoppeln:

rastrigin-funktion-python-3d-plot

Die Rastrigin-Funktion wird gerne für Optimierungsalgorithmen eingesetzt, wofür sie wegen des großen Suchraums und der hohen Anzahl lokaler Modi ein herausforderndes Umfeld bietet. Beispielsweise wird – meines Erachtens nach – das wohl beliebteste Optimierungsverfahren im maschinellen Lernen, das Gradientenverfahren, hier keine guten Ergebnisse liefern, denn es gibt einfach zu viele lokale Minima.

 

 

Python vs R Statistics

Immer wieder wird mir von Einsteigern die Frage gestellt, ob sich der Einstieg und die Einarbeitung in die Programmiersprache Python eher lohnen würde als in R Statistics. Nun gibt es in den englischsprachigen Portalen bereits viele Diskussionen und Glaubenskriege zu diesem Vergleich – diese habe ich mir mit Absicht nicht weiter durchgelesen, sondern ich versuche hier meine Erfahrung aufs Blog zu bringen und bin auf Eure Meinungen/Erfahrungen gespannt!

Mit weniger R-Code schneller zum Ziel, und mit Python darüber hinaus

Was mir beim Einstieg in R gleich auffiel: Nach der Installation kann man sofort loslegen! Ein Plot oder eine Regressionsanalyse ist binnen weniger Code-Zeilen erledigt, denn die Sprache bringt diese Funktionen von Haus aus mit. In Python ist das Ziel auch nicht weit weg, allerdings müssen für die Plots erst die MatplotLib installiert werden, für Matrizenberechnung die Numpy-Bibliothek und um eine, mit der R-Datenstruktur Data.Frame vergleichbare Datenstruktur in Python zu erhalten, die Pandas-Bibliothek. Diese Python-Bibliotheken kann man zwar mit Fug und Recht als Bestandteil des Python-Universums ansehen, standardmäßig ausgeliefert werden sie aber nicht und auch sollten sie streng vom Standardpython in der Anwendung getrennt werden, im Klartext: Die Bibliotheken erfordern extra Einarbeitung und machen die Handhabung komplizierter, das einfache Python verliert ein Stück weit seine Einfachheit.

Auch die beliebte Entwicklungsumgebung R-Studio sucht seinesgleichen und ist IPython meiner Meinung nach hinsichtlich der Usability absolut überlegen. R ist einfach darauf ausgerichtet, Daten zu analysieren und zu visualisieren, aber beschränkt sich eben auch darauf.

“R is more about sketching, and not building,” says Michael Driscoll, CEO of Metamarkets. “You won’t find R at the core of Google’s page rank or Facebook’s friend suggestion algorithms. Engineers will prototype in R, then hand off the model to be written in Java or Python.”

Im Gegenzug ist Python eine Programmiersprache, die nicht nur an den einen Zweck gebunden ist. Mit Python können ebenfalls (Web-)Server- oder Desktop-Anwendungen und somit ohne Technologiebruch analytische Anwendungen komplett in Python entwickelt werden. Und auch wenn R ebenfalls unüberschaubar viele Packages mitbringt, bietet Python noch einiges mehr, beispielsweise zur dreidimensionalen Darstellung von Graphen.

Software-Entwickler lieben Python, Mathematiker eher R

Data Science ist ein äußerst interdisziplinäres Fachgebiet und Data Scientists können Mathematiker, Physiker, Informatiker, Ingenieure oder (wenn auch etwas seltener) Wirtschafts- oder auch Geisteswissenschaftler sein. Ein Großteil kommt aus der Mathematik oder äußerst mathematischer Fachgebiete wie der Physiker oder der Elektroingenieurwissenschaft. In diesen Studiengängen wird überwiegend mit Programmiersprachen gearbeitet, die von Mathematikern für Mathematiker entwickelt wurden, also R Statistics, MATLAB oder Octave. Beispielsweise ist meine Frau studierte Elektotechnikingenieurin und setzte alle ihre Prototypen des maschinellen Lernens in MATLAB um, sie findet sich aber auch in R gut zurecht.

Wer aus der Software-Entwicklung kommt, findet sich in Python vermutlich sehr viel schneller zurecht als in R. In meiner subjektiven Wahrnehmung stelle ich tatsächlich fest, dass diejenigen Data Scientists, die aus der Mathematik zum Data Science gekommen sind, meistens R präferieren und diejenigen, die aus der Anwendungsentwicklung kommen, eher mit Python arbeiten.

datascience

Python kollaboriert besser

Ein Data Scientist kommt selten allein, denn Data Science ist Teamarbeit. Und wo Teams ein gemeinsames Ziel erreicht sollen, werden besondere Anforderungen an die Arbeitsumgebung gestellt. Python gilt als eine syntaktisch leicht verständliche Programmiersprache, die manchmal sogar als “executable Pseudocode” bezeichnet wird (was allerdings dann doch leicht übertrieben ist…). Es ist also für alle Teammitglieder eine relativ einfach zu erlernende Sprache. Dabei muss Python nicht von allen Teammitgliedern favorisiert werden, denn eigene lokale Prototypen können in R, Octave oder was auch immer erstellt werden, lassen sich dann aber auch einfach in Python integrieren. Für richtig schnelle Anwendungen sind Python und R als Interpretersprachen sowieso zu langsam, solche Anwendungen werden am Ende in C/C++ umgesetzt werden müssen, aber selbst dann bietet Python nicht zu unterschätzende Vorteile: Der Erfolg von Python im wissenschaftlichen Rechnen beruht nämlich auch auf der unkomplizierten Integration von Quellcode der Programmiersprachen C, C++ und Fortran.

Neue Spieler auf dem Feld: Scala und Julia

Leider kann ich zu den beiden Programmiersprachen Scala und Julia (noch) nicht viel sagen. Scala scheint sich meiner Einschätzung nach als eine neue Alternative für Python zu entwickeln. Scala ist ein Produkt aus dem Java-Universum und war als eine Programmiersprache für unterschiedlichste Zwecke gedacht. Die Sprache setzt sich im Big Data Science immer weiter durch, einige Tools für Big Data Analytics (Apache Spark, Apache Flink) sind auf Scala ausgelegt und basieren selbst auf dieser Programmiersprache. Was Scala als eine stark von Java inspirierte Sprache sehr sympathisch macht, ist der enorm kompakte Code. Ein MapReduce-Algorithmus lässt sich in Scala mit einem Bruchteil an Code erstellen, als es in Java der Fall wäre, wie es auch die Code-Beispiele der Spark-Webseite eindrücklich zeigen: (Was ist eigentlich Apache Spark?)

Text Search in Python (Apache Spark)
Text Search in Scala (Apache Spark)
Text Search in Java (Apache Spark)

Julia wurde (ähnlich wie R) explizit für den Zweck der statistischen Datenanalyse entwickelt, wird auf Grund des aktuellen Beta-Status noch kaum produktiv eingesetzt. Da Julia auf sehr schnelle Anwendungen ausgerichtet ist, liegt in Julia die neue Hoffnung für jene, für die R und Python zu langsame Interpretersprachen sind.

Buchempfehlungen zum Einstieg in R oder Python

Es versteht sich von selbst, dass ich alle Bücher auch selbst besitze und mehr als nur das Vorwort gelesen habe…

Was ist Eure Erfahrung? Ihr seid gefragt!

Schreibt Eure Meinung einfach als Kommentar zu diesem Artikel! Wer meint, den Vergleich logischer, “richtiger” und nachvollziehbarer aufs digitale Papier bringen zu können, darf einen Artikelvorschlag übrigens gerne an redaktion@data-science-blog.com senden!

Machine Learning mit Python – Minimalbeispiel

Maschinelles Lernen (Machine Learning) ist eine Gebiet der Künstlichen Intelligenz (KI, bzw. AI von Artificial Intelligence) und der größte Innovations- und Technologietreiber dieser Jahre. In allen Trendthemen – wie etwa Industrie 4.0 oder das vernetzte und selbstfahrende Auto – spielt die KI eine übergeordnete Rolle. Beispielsweise werden in Unternehmen viele Prozesse automatisiert und auch Entscheidungen auf operativer Ebene von einer KI getroffen, zum Beispiel in der Disposition (automatisierte Warenbestellungen) oder beim Festsetzen von Verkaufspreisen.

Aufsehen erregte Google mit seiner KI namens AlphaGo, einem Algortihmus, der den Weltmeister im Go-Spiel in vier von fünf Spielen besiegt hatte. Das Spiel Go entstand vor mehr als 2.500 Jahren in China und ist auch heute noch in China und anderen asiatischen Ländern ein alltägliches Gesellschaftsspiel. Es wird teilweise mit dem westlichen Schach verglichen, ist jedoch einfacher und komplexer zugleich (warum? das wird im Google Blog erläutert). Machine Learning kann mit einer Vielzahl von Methoden umgesetzt werden, werden diese Methoden sinnvoll miteinander kombiniert, können durchaus äußerst komplexe KIs erreicht werden.  Der aktuell noch gängigste Anwendungsfall für Machine Learning ist im eCommerce zu finden und den meisten Menschen als die Produktvorschläge von Amazon.com bekannt: Empfehlungsdienste (Recommender System).

Klassifikation via K-Nearest Neighbour Algorithmus

Ein häufiger Zweck des maschinellen Lernens ist, technisch gesehen, die Klassifikation von Daten in Abhängigkeit von anderen Daten. Es gibt mehrere ML-Algorithmen, die eine Klassifikation ermöglichen, die wohl bekannteste Methode ist der k-Nearest-Neighbor-Algorithmus (Deutsch:„k-nächste-Nachbarn”), häufig mit “kNN” abgekürzt. Das von mir interviewte FinTech StartUp Number26 nutzt diese Methodik beispielsweise zur Klassifizierung von Finanztransaktionen.

Um den Algorithmus Schritt für Schritt aufbauen zu können, müssen wir uns

Natürlich gibt es in Python, R und anderen Programmiersprachen bereits fertige Bibliotheken, die kNN bereits anbieten, denen quasi nur Matrizen übergeben werden müssen. Am bekanntesten ist wohl die scikit-learn Bibliothek für Python, die mehrere Nächste-Nachbarn-Modelle umfasst. Mit diesem Minimalbeispiel wollen wir den grundlegenden Algorithmus von Grund auf erlernen. Wir wollen also nicht nur machen, sondern auch verstehen.

Vorab: Verwendete Bibliotheken

Um den nachstehenden Python-Code (Python 3.x, sollte allerdings auch mit Python 2.7 problemlos funktionieren) ausführen zu können, müssen folgende Bibliotheken  eingebunden werden:

Übrigens: Eine Auflistung der wohl wichtigsten Pyhton-Bibliotheken für Datenanalyse und Datenvisualisierung schrieb ich bereits hier.

Schritt 1 – Daten betrachten und Merkmale erkennen

Der erste Schritt ist tatsächlich der aller wichtigste, denn erst wenn der Data Scientist verstanden hat, mit welchen Daten er es zu tun hat, kann er die richtigen Entscheidungen treffen, wie ein Algorithmus richtig abgestimmt werden kann und ob er für diese Daten überhaupt der richtige ist.

In der Realität haben wir es oft mit vielen verteilten Daten zu tun, in diesem Minimalbeispiel haben wir es deutlich einfacher: Der Beispiel-Datensatz enthält Informationen über Immobilien über vier Spalten.

  • Quadratmeter: Größe der nutzbaren Fläche der Immobilie in der Einheit m²
  • Wandhoehe: Höhe zwischen Fußboden und Decke innerhalb der Immobilie in der Einheit m
  • IA_Ratio: Verhältnis zwischen Innen- und Außenflächen (z. B. Balkon, Garten)
  • Kategorie: Enthält eine Klassifizierung der Immobilie als “Haus”, “Wohnung” und “Büro”

 

beispiel-txt-file

[box]Hinweis für Python-Einsteiger: Die Numpy-Matrix ist speziell für Matrizen-Kalkulationen entwickelt. Kopfzeilen oder das Speichern von String-Werten sind für diese Datenstruktur nicht vorgesehen![/box]

Aufgerufen wird diese Funktion dann so:

Die Matrix mit den drei Spalten (Quadratmeter, Wandhohe, IA_Ratio) landen in der Variable “dataSet”.

Schritt 2 – Merkmale im Verhältnis zueinander perspektivisch betrachten

Für diesen Anwendungsfall soll eine Klassifizierung (und gewissermaßen die Vorhersage) erfolgen, zu welcher Immobilien-Kategorie ein einzelner Datensatz gehört. Im Beispieldatensatz befinden sich vier Merkmale: drei Metriken und eine Kategorie (Wohnung, Büro oder Haus). Es stellt sich zunächst die Frage, wie diese Merkmale zueinander stehen. Gute Ideen der Datenvisualisierung helfen hier fast immer weiter. Die gängigsten 2D-Visualisierungen in Python wurden von mir bereits hier zusammengefasst.

[box]Hinweis: In der Praxis sind es selten nur drei Dimensionen, mit denen Machine Learning betrieben wird. Das Feature-Engineering, also die Suche nach den richtigen Features in verteilten Datenquellen, macht einen wesentlichen Teil der Arbeit eines Data Scientists aus – wie auch beispielsweise Chief Data Scientist Klaas Bollhoefer (siehe Interview) bestätigt.[/box]

Die beiden Scatter-Plots zeigen, das Häuser (blau) in allen Dimensionen die größte Varianz haben. Büros (gelb) können größer und höher ausfallen, als Wohnungen (rot), haben dafür jedoch tendenziell ein kleineres IA_Ratio. Könnten die Kategorien (blau, gelb, rot) durch das Verhältnis innerhalb von einem der beiden Dimensionspaaren in dem zwei dimensionalen Raum exakt voneinander abgegrenzt werden, könnten wir hier stoppen und bräuchten auch keinen kNN-Algorithmus mehr. Da wir jedoch einen großen Überschneidungsbereich in beiden Dimensionspaaren haben (und auch Wandfläche zu IA_Ratio sieht nicht besser aus),

Eine 3D-Visualisierung eignet sich besonders gut, einen Überblick über die Verhältnisse zwischen den drei Metriken zu erhalten: (die Werte wurden hier bereits normalisiert, liegen also zwischen 0,00 und 1,00)

3D Scatter Plot in Python [Matplotlib]

Es zeigt sich gerade in der 3D-Ansicht recht deutlich, dass sich Büros und Wohnungen zum nicht unwesentlichen Teil überschneiden und hier jeder Algorithmus mit der Klassifikation in Probleme geraten wird, wenn uns wirklich nur diese drei Dimensionen zur Verfügung stehen.

Schritt 3 – Kalkulation der Distanzen zwischen den einzelnen Punkten

Bei der Berechnung der Distanz in einem Raum hilft uns der Satz des Pythagoras weiter. Die zu überbrückende Distanz, um von A nach B zu gelangen, lässt sich einfach berechnen, wenn man entlang der Raumdimensionen Katheten aufspannt.

c = \sqrt{a^2+ b^2}

Die Hypotenuse im Raum stellt die Distanz dar und berechnet sich aus der Wurzel aus der Summe der beiden Katheten im Quadrat. Die beiden Katheten bilden sich aus der Differenz der Punktwerte (q, p) in ihrer jeweiligen Dimension.Bei mehreren Dimensionen gilt der Satz entsprechend:

Distanz = \sqrt{(q_1-p_1)^2+(q_2-p_2)^2+…+(q_n-p_n)^2}

Um mit den unterschiedlichen Werte besser in ihrer Relation zu sehen, sollten sie einer Normalisierung unterzogen werden. Dabei werden alle Werte einer Dimension einem Bereich zwischen 0.00 und 1.00 zugeordnet, wobei 0.00 stets das Minimum und 1.00 das Maximum darstellt.

NormWert = \frac{Wert - Min}{Wertspanne} = \frac{Wert - Min}{Max - Min}

Die Funktion kann folgendermaßen aufgerufen werden:

Schritt 4 & 5 – Klassifikation durch Eingrenzung auf k-nächste Nachbarn

Die Klassifikation erfolgt durch die Kalkulation entsprechend der zuvor beschriebenen Formel für die Distanzen in einem mehrdimensionalen Raum, durch Eingrenzung über die Anzahl an k Nachbarn und Sortierung über die berechneten Distanzen.

Über folgenden Code rufen wir die Klassifikations-Funktion auf und legen die k-Eingrenzung fest, nebenbei werden Fehler gezählt und ausgewertet. Hier werden der Reihe nach die ersten 30 Zeilen verarbeitet:

Nur 30 Testdatensätze auszuwählen ist eigentlich viel zu knapp bemessen und hier nur der Übersichtlichkeit geschuldet. Besser ist für dieses Beispiel die Auswahl von 100 bis 300 Datensätzen. Die Ergebnisse sind aber bereits recht ordentlich, allerdings fällt dem Algorithmus – wie erwartet – noch die Unterscheidung zwischen Wohnungen und Büros recht schwer.

0 – klassifiziert wurde: Buero, richtige Antwort: Buero
1 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
2 – klassifiziert wurde: Buero, richtige Antwort: Buero
3 – klassifiziert wurde: Buero, richtige Antwort: Buero
4 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
5 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
6 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
7 – klassifiziert wurde: Wohnung, richtige Antwort: Buero
8 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
9 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
10 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
11 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
12 – klassifiziert wurde: Buero, richtige Antwort: Buero
13 – klassifiziert wurde: Wohnung, richtige Antwort: Buero
14 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
15 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
16 – klassifiziert wurde: Buero, richtige Antwort: Buero
17 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
18 – klassifiziert wurde: Haus, richtige Antwort: Haus
19 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
20 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
21 – klassifiziert wurde: Buero, richtige Antwort: Buero
22 – klassifiziert wurde: Buero, richtige Antwort: Buero
23 – klassifiziert wurde: Buero, richtige Antwort: Buero
24 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
25 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
26 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
27 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
28 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
29 – klassifiziert wurde: Buero, richtige Antwort: Buero
Error Count: 2

Über weitere Tests wird deutlich, dass k nicht zu niedrig und auch nicht zu hoch gesetzt werden darf.

 Datensätze  k Fehler
 150 1   25
 150 3   23
 150 5   21
 150 20   26

Ein nächster Schritt wäre die Entwicklung eines Trainingprogramms, dass die optimale Konfiguration (k-Eingrenzung, Gewichtung usw.) ermittelt.

Fehlerraten herabsenken

Die Fehlerquote ist im Grunde niemals ganz auf Null herabsenkbar, sonst haben wir kein maschinelles Lernen mehr, sondern könnten auch feste Regeln ausmachen, die wir nur noch einprogrammieren (hard-coding) müssten. Wer lernt, macht auch Fehler! Dennoch ist eine Fehlerquote von 10% einfach zu viel für die meisten Anwendungsfälle. Was kann man hier tun?

  1. Den Algorithmus verbessern (z. B. optimale k-Konfiguration und Gewichtung finden)
  2. mehr Merkmale finden (= mehr Dimensionen)
  3. mehr Daten hinzuziehen (gut möglich, dass alleine dadurch z. B. Wohnungen und Büros besser unterscheidbar werden)
  4. einen anderen Algorithmus probieren (kNN ist längst nicht für alle Anwendungen ideal!)

Das Problem mit den Dimensionen

Theoretisch kann kNN mit undenklich vielen Dimensionen arbeiten, allerdings steigt der Rechenaufwand damit auch ins unermessliche. Der k-nächste-Nachbar-Algorithmus ist auf viele Daten und Dimensionen angewendet recht rechenintensiv.

In der Praxis hat nicht jedes Merkmal die gleiche Tragweite in ihrer Bedeutung für die Klassifikation und mit jeder weiteren Dimension steigt auch die Fehleranfälligkeit, insbesondere durch Datenfehler (Rauschen). Dies kann man sich bei wenigen Dimensionen noch leicht bildlich vorstellen, denn beispielsweise könnten zwei Punkte in zwei Dimensionen nahe beieinander liegen, in der dritten Dimension jedoch weit auseinander, was im Ergebnis dann eine lange Distanz verursacht. Wenn wir beispielsweise 101 Dimensionen berücksichtigen, könnten auch hier zwei Punkte in 100 Dimensionen eng beieinander liegen, läge jedoch in der 101. Dimension (vielleicht auch auf Grund eines Datenfehlers) eine lange Distanz vor, wäre die Gesamtdistanz groß. Mit Gewichtungen könnten jedoch als wichtiger einzustufenden Dimensionen bevorzugt werden und als unsicher geltende Dimensionen entsprechend entschärft werden.

Je mehr Dimensionen berücksichtigt werden sollen, desto mehr Raum steht zur Verfügung, so dass um wenige Datenpunkte viel Leerraum existiert, der dem Algorithmus nicht weiterhilft. Je mehr Dimensionen berücksichtigt werden, desto mehr Daten müssen zu Verfügung gestellt werden, im exponentiellen Anstieg – Wo wir wieder beim Thema Rechenleistung sind, die ebenfalls exponentiell ansteigen muss.

Weiterführende Literatur


Machine Learning in Action

 


Introduction to Machine Learning with Python

Einführung in Data Science: Grundprinzipien der Datenanalyse mit Python

SMART DATA Developer Conference

SMART DATA Developer Conference macht Softwareentwickler und IT-Professionals fit für Big Data

Nahezu alle befragten Unternehmen geben in der aktuellen Studie „Big Data Use Cases 2015“ der Business Application Research Center – BARC GmbH an, dass strategische Entscheidungen von Daten gestützt sind oder sogar alleinig auf Grundlage von Ergebnissen aus Big-Data-Analysen getroffen werden. Der Studie zufolge ist die größte Herausforderung für Unternehmen derzeit das fehlende fachliche oder technische Know-how. Genau hier setzt die SMART DATA Developer Conference an.

Big Data & Smart Analytics – Durchblick im Markt

Das gesamte Programm der Veranstaltung finden Sie unter smart-data-developer-conference.de/#program

„Nicht die Technik ist heute die Hürde für erfolgreiche Geschäftsmodelle, sondern das Kundenverständnis. Das erreicht man nur mit Smart Data“, so Michael Nolting, Sevenval Technologies GmbH und Keynotesprecher der SMART DATA Developer Conference.

[box type=”tick”]15% Rabatt bei Eingabe des Werbe-Codes: SMART16science[/box]

In seiner eröffnenden Session entwickelt er eine Matrix, die den Teilnehmer befähigt, verfügbare Technologie-Stacks zu bewerten: Welche Technologie und welcher Anbieter sind für den speziellen Anwendungsfall am besten geeignet? Mit dieser Entscheidungshilfe lassen sich Verfahren schnell vergleichen, damit das passende zuverlässig ermittelt wird.

Weitere Themen im Programm sind:

  • Batch & Stream Processing mit Google Dataflow
  • Datenanalysen mit Python und ApacheSpark
  • Datenqualität und –visualisierung
  • uvm

Die SMART DATA Developer Conference vom 18. – 19. April 2016 in München macht Softwareentwickler mit den Herausforderungen von Big Data vertraut. Im Konferenzprogramm erlangen sie Wissen zu Speicherung, Analyse, Plattformen und Tools. In kleinen Gruppen können sie am Workshoptag diese Technologien intensiv trainieren.

Leser des Data Science Blog erhalten mit dem Code SMART16science einen Rabatt von 15 % bei Anmeldung. Damit ist die Teilnahme an der Konferenz ab EUR 425 zzgl. MwSt. möglich oder an beiden Tagen ab EUR 935. Programm und Anmeldung unter smart-data-developer.de.

Top 10 der Python Bibliotheken für Data Science

Python gilt unter Data Scientists als Alternative zu R Statistics. Ich bevorzuge Python auf Grund seiner Syntax und Einfachheit gegenüber R, komme hinsichtlich der vielen Module jedoch häufig etwas durcheinander. Aus diesem Grund liste ich hier die – meiner Einschätzung nach – zehn nützlichsten Bibliotheken für Python, um einfache Datenanalysen, aber auch semantische Textanalysen, Predictive Analytics und Machine Learning in die Tat umzusetzen.

NumPy – Numerische Analyse

NumPy ist eine Open Source Erweiterung für Python. Das Modul stellt vorkompilierte Funktionen für die numerische Analyse zur Verfügung. Insbesondere ermöglicht es den einfachen Umgang mit sehr großen, multidimensionalen Arrays (Listen) und Matrizen, bietet jedoch auch viele weitere grundlegende Features (z. B. Funktionen der Zufallszahlenbildung, Fourier Transformation, linearen Algebra). Ferner stellt das NumPy sehr viele Funktionen mathematische Funktionen für das Arbeiten mit den Arrays und Matrizen bereit.

matplotlib – 2D/3D Datenvisualisierung

Die matplotlib erweitert NumPy um grafische Darstellungsmöglichkeiten in 2D und 3D. Das Modul ist in Kombination mit NumPy wohl die am häufigsten eingesetzte Visualisierungsbibliothek für Python.

Die matplotlib bietet eine objektorientierte API, um die dynamischen Grafiken in Pyhton GUI-Toolkits einbinden zu können (z. B. GTL+ oder wxPython).

NumPy und matplotlib werden auch mit den nachfolgenden Bibliotheken kombiniert.

Bokeh – Interaktive Datenvisualisierung

Während die Plot-Funktionen von matplotlib statisch angezeigt werden, kann in den Visualsierungsplots von Bokeh der Anwender interaktiv im Chart klicken und es verändern. Bokeh ist besonders dann geeignet, wenn die Datenvisualisierung als Dashboard im Webbrowser erfolgen soll.

Das Bild über diesen Artikel zeigt Visualiserungen mit dem Python Package Bokeh.

Pandas – Komplexe Datenanalyse

Pandas ist eine Bibliothek für die Datenverarbeitung und Datenanalyse mit Python. Es erweitert Python um Datenstrukturen und Funktionen zur Verarbeitung von Datentabellen. Eine besondere Stärke von Pandas ist die Zeitreihenanalyse. Pandas ist freie Software (BSD License).

Statsmodels – Statistische Datenanalyse

Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of descriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.

Die explorative Datenanalyse, statistische Modellierung und statistische Tests ermöglicht das Modul Statsmodels. Das Modul bringt neben vielen statistischen Funktionen auch eigene Plots (Visualisierungen) mit. Mit dem Modul wird Predictive Analytics möglich. Statsmodels wird häufig mit NumPy, matplotlib und Pandas kombiniert.

SciPy – Lineare Optimierung

SciPy ist ein sehr verbreitetes Mathematik-Modul für Python, welches den Schwerpunkt auf die mathematische Optimierung legt. Funktionen der linearen Algebra, Differenzialrechnung, Interpolation, Signal- und Bildverarbeitung sind in SciPy enthalten.

scikit-learn – Machine Learning

scikit-learn ist eine Framework für Python, das auf NumPy, matplotlob und SciPy aufsetzt, dieses jedoch um Funktionen für das maschinelle Lernen (Machine Learning) erweitert. Das Modul umfasst für das maschinelle Lernen notwendige Algorithmen für Klassifikationen, Regressionen, Clustering und Dimensionsreduktion.

Mlpy – Machine Learning

Alternativ zu scikit-learn, bietet auch Mlpy eine mächtige Bibliothek an Funktionen für Machine Learning. Mlpy setzt ebenfalls auf NumPy und SciPy, auf, erweitert den Funktionsumfang jedoch um Methoden des überwachten und unüberwachten maschinellen Lernens.

NLTK – Text Mining

NLTK steht für Natural Language Toolkit und ermöglicht den effektiven Einstieg ins Text Mining mit Python. Das Modul beinhaltet eigene (eher einfache) Visualisierungsmöglichkeiten zur Darstellung von Textmuster-Zusammenhängen, z. B. in Baumstrukturen. Für Text Mining und semantische Textanalysen mit Python gibt es wohl nichts besseres als NLTK.

Theano – Multidimensionale Berechnungen & GPU-Processing

Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently

Für multidimensionale Datenanalysen bzw. die Verarbeitung und Auswertung von multidimensionalen Arrays gibt es wohl nichts schnelleres als die Bibliothek Theano. Theano ist dabei eng mit NumPy verbunden.

Theano ermöglicht die Auslagerung der Berechnung auf die GPU (Grafikprozessor), was bis zu 140 mal schneller als auf der CPU sein soll. Getestet habe ich es zwar nicht, aber grundsätzlich ist es wahr, dass die GPU multidimensionale Arrays schneller verarbeiten kann, als die CPU. Zwar ist die CPU universeller (kann quasi alles berechnen), die GPU ist aber auf die Berechnung von 3D-Grafiken optimiert, die ebenfalls über multidimensionalen Vektoren verarbeitet werden.

DataQuest.io – Online Einstieg in Data Science mit Python

Data Science hat unglaublich viele Facetten und eine davon, ist die Analyse von Daten mit der Programmiersprache Python. Diese Programmiersprache ist neben R eine der am häufigsten eingesetzten Programmiersprachen für alle möglichen Aufgaben rund um die Auswertung von Daten.

Wer schon immer in die Datenanalyse mit Python einsteigen wollte, kann dies nun sehr einfach über einen ausgeklügelten Online-Kurs namens DataQuest tun.

Ich selbst habe DataQuest ausprobiert und finde es super. Die ersten Module waren für mich erstmal sehr zäh, da sich diese mit Pythen und einigen Programmiergrundlagen befassen. Die Module können allerdings in beliebiger Reihenfolge abgearbeitet werden. Hat man den “Learning Python”-Teil aber durch, wird es schnell sehr spezifisch und auch als Experte kann die Aufgaben als guten Denksport verstehen.

Sehr gut dabei ist, dass der komplette Kurs online in der Cloud stattfindet. Benötigt wird nichts weiter als ein gewöhnlicher Internet-Browser und man muss sich nicht mit der Einrichtung von Python und der Entwicklungsumgebung auf dem Computer beschäftigen. DataQuest stellt über den Browser server-seitig die Entwicklungsumgebung bereit. Es kann also sofort nach der Account-Einrichtung losgehen! Die Kurse von DataQuest gibt es allerdings nur auf Englisch.

Der Kursumfang beginnt recht ausführlich über die Grundlagen der Programmierung, basierend auf Python. Die Grundlagen werden jedoch bereits überwiegend anhand von Aufgaben im Bereich der Datenanalyse erklärt, beispielsweise den Zugriff auf Textdateien.

Zumindest alle Grundlagen-Kurse sind kostenlos. Der weitere Kursinhalt über die Programmiergrundlagen hinaus befasst sich direkt mit dem Einstieg in Data Science mit der explorativen Datenanalyse, der Datenvisualisierung und der Statistik im Allgemeinen und Predictive Analytics im Speziellen. Ferner sollen in der Zukunft Kurse mit einen Einstieg ins Maschinelle Lernen (Machine Learning) angeboten werden. Die interessantesten Kurse können jedoch nur über den Premium-Account gestartet werden. Dieser ist für bezahlbare 35 US-Dollar pro Monat zu haben.

URL zum Anbieter: www.dataquest.io