Interview – Customer Data Platform, more than CRM 2.0?

Interview with David M. Raab from the CDP Institute

David M. Raab is as a consultant specialized in marketing software and service vendor selection, marketing analytics and marketing technology assessment. Furthermore he is the founder of the Customer Data Platform Institute which is a vendor-neutral educational project to help marketers build a unified customer view that is available to all of their company systems.

Furthermore he is a Keynote-Speaker for the Predictive Analytics World Event 2019 in Berlin.

Data Science Blog: Mr. Raab, what exactly is a Customer Data Platform (CDP)? And where is the need for it?

The CDP Institute defines a Customer Data Platform as „packaged software that builds a unified, persistent customer database that is accessible by other systems“.  In plainer language, a CDP assembles customer data from all sources, combines it into customer profiles, and makes the profiles available for any use.  It’s important because customer data is collected in so many different systems today and must be unified to give customers the experience they expect.

Data Science Blog: Is it something like a CRM System 2.0? What Use Cases can be realized by a Customer Data Platform?

CRM systems are used to interact directly with customers, usually by telephone or in the field.  They work almost exclusively with data that is entered during those interactions.  This gives a very limited view of the customer since interactions through other channels such as order processing or Web sites are not included.  In fact, one common use case for CDP is to give CRM users a view of all customer interactions, typically by opening a window into the CDP database without needing to import the data into the CRM.  There are many other use cases for unified data, including customer segmentation, journey analysis, and personalization.  Anything that requires sharing data across different systems is a CDP use case.

Data Science Blog: When does a CDP make sense for a company? It is more relevant for retail and financial companies than for industrial companies, isn´t it?

CDP has been adopted most widely in retail and online media, where each customer has many interactions and there are many products to choose from.  This is a combination that can make good use of predictive modeling, which benefits greatly from having more complete data.  Financial services was slower to adopt, probably because they have fewer products but also because they already had pretty good customer data systems.  B2B has also been slow to adopt because so much of their customer relationship is handled by sales people.  We’ve more recently been seeing growth in additional sectors such as travel, healthcare, and education.  Those involve fewer transactions than retail but also rely on building strong customer relationships based on good data.

Data Science Blog: There are several providers for CDPs. Adobe, Tealium, Emarsys or Dynamic Yield, just to name some of them. Do they differ a lot between each other?

Yes they do.  All CDPs build the customer profiles I mentioned.  But some do more things, such as predictive modeling, message selection, and, increasingly, message delivery.  Of course they also vary in the industries they specialize in, regions they support, size of clients they work with, and many technical details.  This makes it hard to buy a CDP but also means buyers are more likely to find a system that fits their needs.

Data Science Blog: How established is the concept of the CDP in Europe in general? And how in comparison with the United States?

CDP is becoming more familiar in Europe but is not as well understood as in the U.S.  The European market spent a lot of money on Data Management Platforms (DMPs) which promised to do much of what a CDP does but were not able to because they do not store the level of detail that a CDP does.  Many DMPs also don’t work with personally identifiable data because the DMPs primarily support Web advertising, where many customers are anonymous.  The failures of DMPs have harmed CDPs because they have made buyers skeptical that any system can meet their needs, having already failed once.  But we are overcoming this as the market becomes better educated and more success stories are available.  What’s the same in Europe and the U.S. is that marketers face the same needs.  This will push European marketers towards CDPs as the best solution in many cases.

Data Science Blog: What are coming trends? What will be the main topic 2020?

We see many CDPs with broader functions for marketing execution: campaign management, personalization, and message delivery in particular.  This is because marketers would like to buy as few systems as possible, so they want broader scope in each systems.  We’re seeing expansion into new industries such as financial services, travel, telecommunications, healthcare, and education.  Perhaps most interesting will be the entry of Adobe, Salesforce, and Oracle, who have all promised CDP products late this year or early next year.  That will encourage many more people to consider buying CDPs.  We expect that market will expand quite rapidly, so current CDP vendors will be able to grow even as Adobe, Salesforce, and Oracle make new CDP sales.


You want to get in touch with Daniel M. Raab and understand more about the concept of a CDP? Meet him at the Predictive Analytics World 18th and 19th November 2019 in Berlin, Germany. As a Keynote-Speaker, he will introduce the concept of a Customer Data Platform in the light of Predictive Analytics. Click here to see the agenda of the event.

 


 

Das Potenzial von Prozessanalysen

Haben Sie das große Ganze im Blick? Die Diskussion rund um einen Prozess und seine Schnittstellen zwischen verschiedenen Abteilungen hat sich in den vergangenen Jahren verändert und eine neue Qualität erhalten. Unternehmen möchten nicht mehr erraten, wie die Abläufe organisiert sind. Stattdessen konzentrieren sie sich auf objektive Fakten wie Durchlaufzeiten, Prozessvarianten und deren Optimierung.

Daten liefern wertvolle Erkenntnisse über das Unternehmen, Benutzer, Kundenstämme und Märkte. Diese Daten müssen jedoch bestmöglich analysiert und genutzt werden, was oftmals eine Herausforderung darstellt. Tatsächlich ist für gewöhnlich nicht die Menge an Daten das Problem, sondern deren Aufschlüsselung und erfolgreiche Nutzung. Unsicherheiten bei der Bewertung und Analyse von Prozessen können den Go-Live behindern und das Zusammenspiel von Prozessen und Geschäftsabläufen ineffizient machen. Ohne eine zuverlässige Datenanalyse könnte Ihr Unternehmen Kapital, Talente und sogar Kunden verlieren.

So geht es bei der Prozessanalyse letztlich darum, aus Daten Erkenntnisse zu gewinnen, die zu einem besseren Verständnis Ihres Unternehmens und der geschäftlichen Abläufe führen.

Die „Ist“-Prozesse

Die Analyse des Ist-Zustands hilft Unternehmen, Prozesse zu dokumentieren, nachzuverfolgen und zu optimieren, mit dem Ziel, die Leistung und Effizienz zu steigern und bessere Geschäftsergebnisse zu erzielen. Die Kontextualisierung von Daten eröffnet Ihnen die Möglichkeit, Prozesse zu steuern und zu organisieren, Engpässe zu beseitigen, geschäftliche Präferenzen festzulegen und mithilfe von Process-Mining-Initiativen eine optimale Strategie zu planen. Dies kann sowohl auf Unternehmensebene als auch nur auf einen bestimmten Prozess innerhalb einer Abteilung oder eines Teams angewandt werden.

Es gibt mehrere wichtige Ziele und Gründe für die Analyse des Ist-Zustands, wie beispielsweise:

  • Kosteneinsparungen und Verbesserung des ROI
  • Optimierung bestehender Prozesse oder Schaffung neuer Prozesse
  • Steigerung der Kundenzufriedenheit und -erlebnisse
  • Verbesserung der Koordination von Geschäften und der Reaktionsfähigkeit des Unternehmens
  • Einhaltung neuer regulatorischer Standards
  • Anpassung von Methoden nach einer Fusion oder Akquisition

 Die „Soll“-Prozesse

Einfach ausgedrückt: Der Ist-Zustand stellt dar, wie Ihre Prozesse aktuell verlaufen, der Soll-Zustand, wie Ihre Prozesse zukünftig verlaufen sollen. Bei der Planung der Soll-Prozesse wird der zukünftige Prozessverlauf dokumentiert. Mithilfe des Ist-Diagramms können Sie gemeinsam mit Stakeholdern Entwicklungs- und Optimierungsmöglichkeiten des aktuellen Prozesses identifizieren und notwendige Änderungen dann in Ihrer Roadmap der Soll-Prozesse skizzieren.

Solch eine Analyse kann Ihnen dabei helfen, optimale geschäftliche und innovative OpEx-Entscheidungen für Ihr Unternehmen zu treffen. Führende Unternehmen wie Google und Amazon nutzen Daten beispielsweise, um auf der Basis von Analyseergebnissen datengesteuerte Entscheidungen zu treffen. Oder denken Sie an die Vorteile, die Ihnen Recommendation Engines, PageRank- und Demand-Forecasting-Systeme bieten. Grundlage hierfür sind fortschrittliche Techniken des maschinellen Lernens und der statistischen Modellierung, die zu verbesserten Datenergebnissen führen. Interessanterweise werden diese Techniken – da sie sich auf umfangreiche Datensätze beziehen und Analysen und Ergebnisse in Echtzeit widerspiegeln – auf Bereiche angewendet, die über die menschliche Entscheidungsfindung hinausgehen.

Die Analyse und kontinuierliche Überwachung von qualitativen und quantitativen Daten ermöglicht es uns zudem, Erkenntnisse über potenzielle Risiken und Verbesserungspotenziale zu erhalten. Mithilfe der leistungsstarken Kombination aus Process Discovery, Prozessanalyse und Conformance-Check können Sie Prozesse verbessern und gewinnbringende Informationen über das eigene Unternehmen erhalten. Zum Beispiel:

  • Über welche Vorfälle möchte ich sofort informiert werden, um entsprechend proaktiv zu handeln?
  • An welchen Stellen kann eine bessere Priorisierung der Aufgaben dabei helfen, die Performance des Unternehmens zu verbessern?
  • Wie kann mehr Transparenz mein Unternehmen voranbringen?
  • Wie lerne ich, in Prozessen zu denken, anstatt nur auf das Bauchgefühl zu vertrauen?

Das geschäftliche Umfeld verändert sich kontinuierlich. Um Schritt zu halten, müssen moderne Unternehmen prozessbasierte Ansätze verfolgen und dabei ist die Prozessanalyse die perfekte Basis.

Mithilfe der Process-Mining-Technologie können moderne Unternehmen ihre Prozessherausforderungen über die Grenzen der Implementierung hinweg bewältigen. Dabei können wir den Proof of Concept für alle vorgeschlagenen Verbesserungen auswerten und relevante Informationen aus einem homogenen Datensatz gewinnen. Zudem kann mithilfe von Prozessmodellierung und Business Process Management (BPM) die möglicherweise schwierige Integrationsphase überwunden werden.

Initiativen für Process-Mining und Prozessanalyse

Process-Mining- und Process-Discovery-Initiativen liefern wichtige Einblicke in den Automatisierungsstatus und in jede Phase der Robotic Process Automation (RPA) – von der Festlegung der Strategie bis zur kontinuierlichen Optimierung und Innovation. Durch datenbasiertes Process Mining kann die Prozessanalyse sogar auf Teams und einzelne Personen ausgedehnt werden. Indem Automatisierungsmöglichkeiten ermittelt und validiert werden, können IT-Störfälle schneller behoben und die Arbeitsgewohnheiten verbessert werden.

Ein weiterer Bereich, in dem sich die Vorteile von Process Mining und der strategischen Prozessanalyse/-ausrichtung bereits auszahlen, ist das IT-Incident-Management. Als „Incident“ wird ein IT-Störfall bezeichnet. Hierbei kann es sich um den vollständigen Ausfall oder um die eingeschränkte Ausführung eines IT-Services handeln. Ziel des Incident-Managements ist es, den IT-Service so schnell wie möglich wiederherzustellen und die Auswirkungen auf den Geschäftsbetrieb zu minimieren. Daher zählt das IT-Incident- Management zu den kritischen Prozessen der Information Technology Library (ITIL).

Process Mining hat das Potenzial, die Incident-Management-Prozesse im Ist-Zustand zu verbessern. Zudem trägt es zu einer höheren Transparenz über die IT-Prozesse bei und bietet so Informationen über außergewöhnliche und unerwünschte Prozessschritte. Durch die Methode ist es ebenfalls möglich, die unterschiedlichen Arbeitsgewohnheiten von verschiedenen Personen und auch Teams zu erfassen. Die Bearbeitungszeiten von Störfällen lassen sich auf diese Weise reduzieren und die Auswirkungen auf Kundenprozesse besser überblicken.

Positive und praktische Erfahrungen mit branchenübergreifendem Process Mining haben zudem zu einer dynamischen Entwicklung von Tools, Anwendungsfällen und auch der Benutzer-Community geführt. Selbst sehr erfahrene Prozessverantwortliche stellen fest, dass durch die Visualisierung von Prozessen neue Ideen und Anregungen für weitere Verbesserungen entstehen.

Der Einsatz von Process Mining für das Incident-Management bietet jedoch noch weitaus mehr potenzielle Vorteile:

  • Ermittlung der Regeln und Abläufe für Eskalationen,
  • Berechnung von Incident-Management-KPIs einschließlich Service Level Agreements (SLA),
  • Ursachenforschung für auftretende Prozessprobleme,
  • Verständnis über die zugrunde liegende Schnittstelle und deren Auswirkung (E-Mail, Webformular, Telefon usw.),
  • Kostenberechnung für störungsanfällige Prozesse,
  • Verknüpfung der Incident-Management-Systeme mit den entsprechenden Prozessen für auftretende Störungen.

Robotic Process Automation (RPA)

RPA (Robotic Process Automation) ermöglicht die Automatisierung manueller, sich wiederholender und fehleranfälliger Aufgaben. Dies setzt jedoch voraus, dass Prozessverantwortliche genau wissen, wie und mit welchem Ziel sie Software-Roboter einsetzen und ihre Leistung messen.

Daher bietet die Kombination aus RPA und Process Mining Unternehmen viele Vorteile: Über den gesamten RPA-Zyklus hinweg können sie die Leistung und die Vorteile ihrer Software-Roboter messen und sie bestmöglich für ihr Szenario einsetzen. Damit eignet sich Process Mining hervorragend als Vorbereitung für Prozessautomatisierung: Durch Process Mining verstehen wir besser, was wir heute für erfolgreiche Prozessinitiativen von morgen benötigen.

Um die Vorteile der robotergesteuerten Automatisierung vollumfänglich auszuschöpfen, müssen Organisationen nicht nur ihre bestehenden Systeme verstehen, sondern auch Möglichkeiten zur Automatisierung ermitteln. Process-Mining-Tools bieten während des gesamten RPA-Zyklus wertvolle Erkenntnisse über die Prozessdaten: von der Festlegung der Strategie bis hin zu kontinuierlichen Verbesserungen und Innovationen.

Zu den Vorteilen von Process Mining und Prozessanalyse im RPA-Zyklus zählen:

  1. Überblick der Prozesslandschaft in einem Unternehmen, basierend auf spezifischen Kriterien,
  2. Identifikation von Prozessen, die während der Vorbereitungsphase für RPA geeignet sind,
  3. Erarbeitung des optimalen Prozessflusses,
  4. Besseres Verständnis darüber, wie RPA auch in veralteten Prozessen und IT-Systemen eingesetzt werden kann,
  5. Überwachung und Analyse der Leistung von RPA-Initiativen während der Implementierungsphase,
  6. Überwachung und kontinuierliche Verbesserung von RPA nach der Implementierung.

Der Weg zu besseren Erkenntnissen

Jedes Unternehmen ist anders und bringt damit ganz unterschiedliche Fragen in Bezug auf seine Prozesse mit. Einige Muster sind trotzdem erkennbar. Beispielsweise stehen Kunden, die datengestützte Prozessanalysen im Rahmen der Geschäftstransformation einführen, in der Regel vor der Herausforderung, Prozesse aus unterschiedlichen Sparten oder Standorten zu harmonisieren. An dieser Stelle sollten Organisationen sich die Daten und Statistiken der jeweiligen Prozesse vor Augen zu führen, anstatt sich auf das Gefühl oder auf die Einschätzung Einzelner zu verlassen.

Auf diese Weise führt eine datengestützte Prozessanalyse zu faktenbasierten Diskussionen und bildet eine wichtige Brücke zwischen der Fachabteilung, Prozessverantwortlichen und dem Management. So lassen sich vor allem Übergaben und abteilungsübergreifende Schritte transparent gestalten und Silo-Denken vermeiden.

Mit anderen Worten: Die richtigen Prozesse von heute sorgen für eine erfolgreiche Transformation von morgen.

Erfahren Sie mehr über Process Mining mit Signavio Process Intelligence und wie Ihr Unternehmen den versteckten Mehrwert von Prozessen für sich nutzen, neue Ideen generieren sowie Zeit und Kosten sparen kann.

Von BI zu PI: Der nächste Schritt auf dem Weg zu datengetriebenen Entscheidungen

„Alles ist stetig und fortlaufend im Wandel.“ „Das Tempo der Veränderungen nimmt zu.“ „Die Welt wird immer komplexer und Unternehmen müssen Schritt halten.“ Unternehmen jeder Art und Größe haben diese Sätze schon oft gehört – vielleicht zu oft! Und dennoch ist es für den Erfolg eines Unternehmens von entscheidender Bedeutung, sich den Veränderungen anzupassen.


Read this article in English: 
“From BI to PI: The Next Step in the Evolution of Data-Driven Decisions”


Sie müssen die zugrunde liegenden organisatorischen Bausteine verstehen, um sicherzustellen, dass die von Ihnen getroffenen Entscheidungen sich auch in die richtige Richtung entwickeln. Es geht sozusagen um die DNA Ihres Unternehmens: die Geschäftsprozesse, auf denen Ihre Arbeitsweise basiert, und die alles zu einer harmonischen Einheit miteinander verbinden. Zu verstehen, wie diese Prozesse verlaufen und an welcher Stelle es Verbesserungsmöglichkeiten gibt, kann den Unterschied zwischen Erfolg und Misserfolg ausmachen.

Unternehmen, die ihren Fokus auf Wachstum gesetzt haben, haben dies bereits erkannt. In der Vergangenheit wurde Business Intelligence als die Lösung für diese Herausforderung betrachtet. In jüngerer Zeit sehen sich zukunftsorientierte Unternehmen damit konfrontiert, Lösungen zu überwachen, die mit dem heutigen Tempo der Veränderungen Schritt halten können. Gleichzeitig erkennen diese Unternehmen, dass die zunehmende Komplexität der Geschäftsprozesse dazu führt, dass herkömmliche Methoden nicht mehr ausreichen.

Anpassung an ein sich änderndes Umfeld? Die Herausforderungen von BI

Business Intelligence ist nicht notwendigerweise überholt oder unnötig. In einer schnelllebigen und sich ständig verändernden Welt stehen die BI-Tools und -Lösungen jedoch vor einer Reihe von Herausforderungen. Hierzu können zählen:

  • Hohe Datenlatenz – Die Datenlatenz gibt an, wie lange ein Benutzer benötigt, um Daten beispielsweise über ein Business-Intelligence-Dashboard abzurufen. In vielen Fällen kann dies mehr als 24 Stunden dauern. Ein geschäftskritischer Zeitraum, da Unternehmen Geschäftschancen für sich nutzen möchten, die möglicherweise ein begrenztes Zeitfenster haben.
  • Unvollständige Datensätze – Business Intelligence verfolgt einen breiten Ansatz, sodass Prüfungen möglicherweise zwar umfassend, aber nicht tief greifend sind. Dies erhöht die Wahrscheinlichkeit, dass Daten übersehen werden; insbesondere in Fällen, in denen die Prüfungsparameter durch die Tools selbst nur schwer geändert werden können.
  • Erkennung statt Analyse – Business-Intelligence-Tools sind in erster Linie darauf ausgelegt, Daten zu finden. Der Fokus hierbei liegt vor allem auf Daten, die für ihre Benutzer nützlich sein können. An dieser Stelle endet jedoch häufig die Leistungsfähigkeit der Tools, da sie Benutzern keine einfachen Optionen bieten, die Daten tatsächlich zu analysieren. Die Möglichkeit, umsetzbare Erkenntnisse zu gewinnen, verringert sich somit.
  • Eingeschränkte Skalierbarkeit – Im Allgemeinen bleibt Business Intelligence ein Bereich für Spezialisten und Experten mit dem entsprechenden Know-how, über das Mitarbeiter im operativen Bereich oftmals nicht verfügen. Ohne umfangreiches Verständnis für die geschäftlichen Prozesse und deren Analyse innerhalb des Unternehmens bleibt die optimierte Anwendung eines bestimmten Business-Intelligence-Tools aber eingeschränkt.
  • Nicht nachvollziehbare Metriken – Werden Metriken verwendet, die nicht mit den Geschäftsprozessen verknüpft sind, kann Business Intelligence kaum positive Veränderungen innerhalb eines Unternehmens unterstützen. Für Benutzer ist es schwierig, Ergebnisse richtig auszuwerten und zu verstehen und diese Ergebnisse zweckdienlich zu nutzen.

Process Intelligence: der nächste wegweisende Schritt

Es bedarf einer effektiveren Methode zur Prozessanalyse, um eine effiziente Arbeitsweise und fundierte Entscheidungsfindung sicherzustellen. An dieser Stelle kommt Process Intelligence (PI) ins Spiel. PI bietet die entscheidenden Hintergrundinformationen für die Beantwortung von Fragen, die mit Business-Intelligence-Tools unbeantwortet bleiben.

Process Intelligence ermöglicht die durchgehende Visualisierung von Prozessabläufen mithilfe von Rohdaten. Mit dem richtigen Process-Intelligence-Tool können diese Rohdaten sofort analysiert werden, sodass Prozesse präzise angezeigt werden. Der Endbenutzer kann diese Informationen nach Bedarf einsehen und bearbeiten, ohne eine Vorauswahl für die Analyse treffen zu müssen.

Zum Vergleich: Da Business Intelligence vordefinierte Analysekriterien benötigt, kann BI nur dann wirklich nützlich sein, wenn diese Kriterien auch definiert sind. Unternehmen können verzögerte Analysen vermeiden, indem sie Process Intelligence zur Ermittlung der Hauptursache von Prozessproblemen nutzen, und dann die richtigen Kriterien zur Bestimmung des Analyserahmens auswählen.

Anschließend können Sie Ihre Systemprozesse analysieren und erkennen die Diskrepanzen und Varianten zwischen dem angestrebten Geschäftsprozess und dem tatsächlichen Verlauf Ihrer Prozesse. Und je schneller Sie Echtzeit-Einblicke in Ihre Prozesse gewinnen, desto schneller können Sie in Ihrem Unternehmen positive Veränderungen auf den Weg bringen.

Kurz gesagt: Business Intelligence eignet sich dafür, ein breites Verständnis über die Abläufe in einem Unternehmen zu gewinnen. Für einige Unternehmen kann dies ausreichend sein. Für andere hingegen ist ein Überblick nicht genug.

Sie suchen nach einer Möglichkeit um festzustellen, wie jeder Prozess in Ihrer Organisation tatsächlich funktioniert? Die Antwort hierauf lautet Software. Software, die Prozesserkennung, Prozessanalyse und Konformitätsprüfung miteinander kombiniert.

Mit den richtigen Process-Intelligence-Tools können Sie nicht nur Daten aus den verschiedenen IT-Systemen in Ihrem Unternehmen gewinnen, sondern auch Ihre End-to-End-Prozesse kontinuierlich überwachen. So erhalten Sie Erkenntnisse über mögliche Risiken und Verbesserungspotenziale. PI steht für einen kollaborativen Ansatz zur Prozessverbesserung, der zu einem bahnbrechenden Verständnis über die Abläufe in Ihrem Unternehmen führt, und wie diese optimiert werden können.

Erhöhtes Potenzial mit Signavio Process Intelligence

Mit Signavio Process Intelligence erhalten Sie wegweisende Erkenntnisse über Ihre Prozesse, auf deren Basis Sie bessere Geschäftsentscheidungen treffen können. Erlangen Sie eine vollständige Sicht auf Ihre Abläufe und ein Verständnis dafür, was in Ihrer Organisation tatsächlich geschieht.

Als Teil der Signavio Business Transformation Suite lässt sich Signavio Process Intelligence perfekt mit der Prozessmodellierung und -automatisierung kombinieren. Als eine vollständig cloudbasierte Process-Mining-Lösung erleichtert es die Software, organisationsweit zusammenzuarbeiten und Wissen zu teilen.

Generieren Sie neue Ideen, sparen Sie Aufwand und Kosten ein und optimieren Sie Ihre Prozesse. Erfahren Sie mehr über Signavio Process Intelligence.

From BI to PI: The Next Step in the Evolution of Data-Driven Decisions

“Change is a constant.” “The pace of change is accelerating.” “The world is increasingly complex, and businesses have to keep up.” Organizations of all shapes and sizes have heard these ideas over and over—perhaps too often! However, the truth remains that adaptation is crucial to a successful business.


Read this article in German: Von der Datenanalyse zur Prozessverbesserung: So gelingt eine erfolgreiche Process-Mining-Initiative

 


Of course, the only way to ensure that the decisions you make are evolving in the right way is to understand the underlying building blocks of your organization. You can think of it as DNA; the business processes that underpin the way you work and combine to create a single unified whole. Knowing how those processes operate, and where the opportunities for improvement lie, can be the difference between success and failure.

Businesses with an eye on their growth understand this already. In the past, Business Intelligence was seen as the solution to this challenge. In more recent times, forward-thinking organizations see the need for monitoring solutions that can keep up with today’s rate of change, at the same time as they recognize that increasing complexity within business processes means traditional methods are no longer sufficient.

Adapting to a changing environment? The challenges of BI

Business Intelligence itself is not necessarily defunct or obsolete. However, the tools and solutions that enable Business Intelligence face a range of challenges in a fast-paced and constantly changing world. Some of these issues may include:

  • High data latency – Data latency refers to how long it takes for a business user to retrieve data from, for example, a business intelligence dashboard. In many cases, this can take more than 24 hours, a critical time period when businesses are attempting to take advantage of opportunities that may have a limited timeframe.
  • Incomplete data sets – The broad approach of Business Intelligence means investigations may run wide but not deep. This increases the chances that data will be missed, especially in instances where the tools themselves make the parameters for investigations difficult to change.
  • Discovery, not analysis – Business intelligence tools are primarily optimized for exploration, with a focus on actually finding data that may be useful to their users. Often, this is where the tools stop, offering no simple way for users to actually analyze the data, and therefore reducing the possibility of finding actionable insights.
  • Limited scalability – In general, Business Intelligence remains an arena for specialists and experts, leaving a gap in understanding for operational staff. Without a wide appreciation for processes and their analysis within an organization, the opportunities to increase the application of a particular Business Intelligence tool will be limited.
  • Unconnected metrics – Business Intelligence can be significantly restricted in its capacity to support positive change within a business through the use of metrics that are not connected to the business context. This makes it difficult for users to interpret and understand the results of an investigation, and apply these results to a useful purpose within their organization.

Process Intelligence: the next evolutionary step

To ensure companies can work efficiently and make the best decisions, a more effective method of process discovery is needed. Process Intelligence (PI) provides the critical background to answer questions that cannot be answered with Business Intelligence tools.

Process Intelligence offers visualization of end-to-end process sequences using raw data, and the right Process Intelligence tool means analysis of that raw data can be conducted straight away, so that processes are displayed accurately. The end-user is free to view and work with this accurate information as they please, without the need to do a preselection for the analysis.

By comparison, because Business Intelligence requires predefined analysis criteria, only once the criteria are defined can BI be truly useful. Organizations can avoid delayed analysis by using Process Intelligence to identify the root causes of process problems, then selecting the right criteria to determine the analysis framework.

Then, you can analyze your system processes and see the gaps and variants between the intended business process and what you actually have. And of course, the faster you discover what you have, the faster you can apply the changes that will make a difference in your business.

In short, Business Intelligence is suitable for gaining a broad understanding of the way a business usually functions. For some businesses, this will be sufficient. For others, an overview is not enough.

They understand that true insights lie in the detail, and are looking for a way of drilling down into exactly how each process within their organization actually works. Software that combines process discovery, process analysis, and conformance checking is the answer.

The right Process Intelligence tools means you will be able to automatically mine process models from the different IT systems operating within your business, as well as continuously monitor your end-to-end processes for insights into potential risks and ongoing improvement opportunities. All of this is in service of a collaborative approach to process improvement, which will lead to a game-changing understanding of how your business works, and how it can work better.

Early humans evolved from more primitive ancestors, and in the process, learned to use more and more sophisticated tools. For the modern human, working in a complex organization, the right tool is Process Intelligence.

Endless Potential with Signavio Process Intelligence

Signavio Process Intelligence allows you to unearth the truth about your processes and make better decisions based on true evidence found in your organization’s IT systems. Get a complete end-to-end perspective and understanding of exactly what is happening in your organization in a matter of weeks.

As part of Signavio Business Transformation Suite, Signavio Process Intelligence integrates perfectly with Signavio Process Manager and is accessible from the Signavio Collaboration Hub. As an entirely cloud-based process mining solution, the tool makes it easy to collaborate with colleagues from all over the world and harness the wisdom of the crowd.

Find out more about Signavio Process Intelligence, and see how it can help your organization generate more ideas, save time and money, and optimize processes.

Interview: Profitiert Business Intelligence vom Data Warehouse in der Cloud?

Interview mit Ross Perez, Senior Director, Marketing EMEA bei Snowflake

Read this Article in English:
“Does Business Intelligence benefit from Cloud Data Warehousing?”

Profitiert Business Intelligence vom Cloud Data Warehousing?

Ross Perez ist Senior Director Marketing EMEA bei Snowflake. Er leitet das Snowflake-Marketingteam in EMEA und ist damit beauftragt, die Diskussion über Analysen, Daten und Cloud-Data-Warehousing in EMEA voran zu bringen. Vor Snowflake war Ross Produkt Marketer bei Tableau Software, wo er die Iron Viz Championship gründete, den weltweit größten und aufwändigsten Wettbewerb für Datenvisualisierung.

Data Science Blog: Ross, Business Intelligence (BI) ist kein wirklich neuer Trend. In 2019/2020 sollte es kein Thema mehr sein, Daten für das ganze Unternehmen verfügbar zu machen. Stimmt das soweit?

BI ist definitiv ein alter Trend, denn Berichterstattung gibt es schon seit 50 Jahren. Die Menschen sind es gewohnt, Statistiken und Daten für das gesamte Unternehmen und sogar für ihre Geschäftsbereiche zu erhalten. Die Verwendung von BI zur Bereitstellung von Analysen für alle Mitarbeiter im Unternehmen und die Ermutigung zur Entscheidungsfindung auf der Grundlage von Daten für den jeweiligen Bereich ist jedoch relativ neu. In vielen Unternehmen, mit denen Snowflake zusammenarbeitet, gibt es eine neue Gruppe von Mitarbeitern, die gerade erst den Zugriff auf Self-Service-BI- und Visualisierungstools wie Tableau, Looker und Sigma erhalten haben und nun auch anfangen, Antworten auf ihre Fragen zu finden.

Data Science Blog: Bi jetzt ging es im BI vor allem darum Dashboards für Geschäftsberichte zu erstellen. Und dabei spielte das Data Warehouse (DWH) die Rolle des Backends. Heute haben wir einen noch viel größeren Bedarf an Datentransparenz. Wie sollten Unternehmen damit umgehen?

Da immer mehr Mitarbeiter in immer mehr Abteilungen immer häufiger auf Daten zugreifen möchten, steigt die Nachfrage nach Back-End-Systemen – wie dem Data Warehouse – rapide. In vielen Fällen verfügen Unternehmen über Data Warehouses, die nicht für diese gleichzeitige und heterogene Nachfrage gebaut wurden. Die Erfahrungen der Mitarbeiter mit dem DWH und BI sind daher oftmals schlecht, denn Endbenutzer müssen lange auf ihre Berichte warten. Und nun kommt Snowflake ins Spiel: Da wir die Leistung der Cloud nutzen können, um Ressourcen auf Abruf bereitzustellen, können wir beliebig viele Benutzer gleichzeitig bedienen. Snowflake kann zudem unbegrenzte Datenmengen sowohl in strukturierten als auch in halbstrukturierten Formaten speichern.

Data Science Blog: Würden Sie sagen, dass das DWH der Schlüssel dazu ist, ein datengetriebenes Unternehmen zu werden? Was sollte noch bedacht werden?

Absolut. Ohne alle Ihre Daten in einem einzigen, hoch-elastischen und flexiblen Data Warehouse zu haben, kann es eine große Herausforderung sein, den Mitarbeitern im Unternehmen Einblicke zu gewähren.

Data Science Blog: So viel zur Theorie, lassen Sie uns nun über spezifische Anwendungsfälle sprechen. Generell macht es einen großen Unterschied, welche Daten wir speichern und analysieren wollen, beispielsweise Finanz- oder Maschinendaten. Was dürfen wir dabei nicht vergessen, wenn es um die Erstellung eines DWHs geht?

Finanzdaten und Maschinendaten sind sehr unterschiedlich und liegen häufig in unterschiedlichen Formaten vor. Beispielsweise weisen Finanzdaten häufig ein relationales Standardformat auf. Daten wie diese müssen mit Standard-SQL einfach abgefragt werden können, was viele Hadoop- und noSQL-Tools nicht sinnvoll bereitstellen konnten. Zum Glück handelt es sich bei Snowflake um ein SQL-Data-Warehouse nach ANSI-Standard, sodass die Verwendung dieser Art von Daten problemlos möglich ist.

Zum anderen sind Maschinendaten häufig teilstrukturiert oder sogar völlig unstrukturiert. Diese Art von Daten wird mit dem Aufkommen von Internet of Things (IoT) immer häufiger, aber herkömmliche Data Warehouses haben sich bisher kaum darauf vorbereitet, da sie für relationale Daten optimiert wurden. Halbstrukturierte Daten wie JSON, Avro, XML, Orc und Parkett können in Snowflake zur Analyse nahtlos in ihrem nativen Format geladen werden. Dies ist wichtig, da Sie die Daten nicht reduzieren müssen, um sie nutzen zu können.

Beide Datentypen sind wichtig und Snowflake ist das erste Data Warehouse, das nahtlos mit beiden zusammenarbeitet.

Data Science Blog: Zurück zum gewöhnlichen Anwendungsfall im Business, also der Erstellung von Verkaufs- und Einkaufs-Berichten für die Business Manager, die auf Daten von ERP-Systemen – wie etwa von Microsoft oder SAP – basieren. Welche Architektur könnte für das DWH die richtige sein? Wie viele Layer braucht ein DWH dafür?

Die Art des Berichts spielt weitgehend keine Rolle, da Sie in jedem Fall ein Data Warehouse benötigen, das alle Ihre Daten unterstützt und alle Ihre Benutzer bedient. Idealerweise möchten Sie es auch in der Lage sein, es je nach Bedarf ein- und auszuschalten. Das bedeutet, dass Sie eine Cloud-basierte Architektur benötigen… und insbesondere die innovative Architektur von Snowflake, die Speicher und Computer voneinander trennt und es Ihnen ermöglicht, genau das zu bezahlen, was Sie verwenden.

Data Science Blog: Wo würden Sie den Hauptteil der Geschäftslogik für einen Report implementieren? Tendenziell eher im DWH oder im BI-Tool, dass für das Reporting verwendet word? Hängt es eigentlich vom BI-Tool ab?

Das Tolle ist, dass Sie es frei wählen können. Snowflake kann als Data Warehouse für SQL nach dem ANSI-Standard ein hohes Maß an Datenmodellierung und Geschäftslogik-Implementierung unterstützen. Sie können aber auch Partner wie Looker und Sigma einsetzen, die sich auf die Datenmodellierung für BI spezialisiert haben. Wir sind der Meinung, dass es am besten ist, wenn jedes Unternehmen für sich selbst entscheidet, was der individuell richtige Ansatz ist.

Data Science Blog: Snowflake ermöglicht es Organisationen, Daten in der Cloud zu speichern und zu verwalten. Heißt das aber auch, dass Unternehmen ein Stück weit die Kontrolle über ihre eigenen Daten verlieren?

Kunden haben die vollständige Kontrolle über ihre Daten und Snowflake kann keinen Teil ihrer Daten sehen oder ändern. Der Vorteil einer Cloud-Lösung besteht darin, dass Kunden weder die Infrastruktur noch das Tuning verwalten müssen. Sie entscheiden, wie sie ihre Daten speichern und analysieren möchten, und Snowflake kümmert sich um den Rest.

Data Science Blog: Wie groß ist der Aufwand für kleinere oder mittelgroße Unternehmen, ein DWH in der Cloud zu errichten? Und bedeutet es auch, dass damit ein teures Langzeit-Projekt verbunden ist?

Das Schöne an Snowflake ist, dass Sie in wenigen Minuten mit einer kostenlosen Testversion beginnen können. Nun kann der Wechsel von einem herkömmlichen Data Warehouse zu Snowflake einige Zeit in Anspruch nehmen, abhängig von der von Ihnen verwendeten Legacy-Technologie. Snowflake selbst ist jedoch recht einfach einzurichten und sehr gut mit historischen Werkzeugen kompatibel. Der Einstieg könnte daher nicht einfacherer sein.

Von der Datenanalyse zur Prozessverbesserung: So gelingt eine erfolgreiche Process-Mining-Initiative

Den Prozessdaten auf der Spur: Systematische Datenanalyse kombiniert mit Prozessmanagement

Die Digitalisierung verändert Organisationen aller Branchen. In zahlreichen Unternehmen werden alltägliche Betriebsabläufe softwarebasiert modelliert, automatisiert und optimiert. Damit hinterlässt fast jeder Prozess elektronische Spuren in den CRM-, ERP- oder anderen IT-Systemen einer Organisation. Process Mining gilt als effektive Methode, um diese Datenspuren zusammenzuführen und für umfassende Auswertungen zu nutzen. Sie kombiniert die systematische Datenanalyse mit Geschäftsprozessmanagement: Dabei werden Prozessdaten aus den verschiedenen IT-Systemen einer Organisation extrahiert und mit Hilfe von Data-Science-Technologien visualisiert und ausgewertet.


Read this article in English: From BI to PI: The Next Step in the Evolution of Data-Driven Decisions

 


Professionelle Process-Mining-Lösungen erlauben, die Ergebnisse dieser Prozessauswertungen auf Dashboards darzustellen und nach bestimmten Prozessen, Transaktionen, Abteilungen oder Kunden zu filtern. So ist es möglich, die Performance, Durchlaufzeiten und die Kosten einzelner Betriebsabläufe zu erfassen. Prozessverantwortliche werden auf diesem Wege auf Verzögerungen, ineffiziente Abläufe und mögliche Prozessverbesserungen aufmerksam.

Praxisbeispiel: Einkaufsprozess – Prozessabweichungen als Kosten- und Risikofaktor

Ein Beispiel aus dem Unternehmensalltag ist ein einfacher Einkaufsprozess: Ein Mitarbeiter benötigt einen neuen Laptop. Im Normalfall beginnt der Prozess mit der Anfrage des Mitarbeiters, die durch seinen Manager bestätigt wird. Ist kein Laptop vorrätig, löst das für den Einkauf zuständige Team die Bestellung aus. Zu einem späteren Zeitpunkt wird der Laptop dem Mitarbeiter übergeben und das Unternehmen erhält eine Rechnung. Diese Rechnung wird geprüft und fristgemäß gemäß den vorgegebenen Konditionen beglichen. Obwohl dieser alltägliche Prozess nicht sehr komplex ist, weicht er im Unternehmensalltag häufig vom modellierten Idealzustand ab, was unnötige Kosten und möglicherweise auch Risiken verursacht.

Die Gründe sind vielfältig:

  • Freigaben fehlen
  • Während des Bestellprozesses sind Informationen unvollständig
  • Rechnungen werden aufgrund von unvollständigen Informationen mehrfach korrigiert

Process Mining ermöglicht, den gesamten Prozessverlauf alltäglicher Betriebsabläufe unter die Lupe zu nehmen und faktenbasierte Diskussionen zwischen den Fachabteilungen, Prozessverantwortlichen sowie dem Management in einer Organisation anzuregen. So werden unternehmensweite Prozessverbesserungen möglich – vorausgesetzt, die Methode wird richtig angewandt und ist strategisch durchdacht. Doch wie gelingt eine erfolgreiche unternehmensweite Process-Mining-Initiative über Abteilungsgrenzen hinaus?

Wie sich eine erfolgreiche Process-Mining-Initiative auf den Weg bringen lässt

Jedes Unternehmen ist einzigartig und geht mit unterschiedlichen Fragestellungen an eine Process-Mining-Initiative heran: ob einzelne Prozesse gezielt verbessert, Prozesslebenszyklen verkürzt oder abteilungsübergreifende Abläufe an unterschiedlichen Standorten miteinander verglichen werden. Sie alle haben etwas gemeinsam: Eine erfolgreiche Process-Mining-Initiative erfordert ein strategisches Vorgehen.

Schritt 1: Mit Weitsicht planen und richtig kommunizieren

Wie definiere ich die Ziele und den Umfang der Process-Mining-Initiative?

Die Anfangsphase einer Process-Mining-Initiative dient der Planung und entscheidet häufig über den Erfolg eines Projektes. In erster Linie kommt es darauf an, die Ziele des Projektes zu definieren und die Erfolgsfaktoren zu bestimmen. Die Ziele einer erfolgreichen Process-Mining-Initiative sind SMART definiert: spezifisch, messbar, attainable/relevant, reasonable/umsetzbar und zeitgebunden/time-bound. Mögliche Ziele für das Projekt lassen sich zum Beispiel wie folgt formulieren:

  • Prozessdauer auf 25 Tage reduzieren
  • Hauptunterschiede zwischen zwei Ländern hinsichtlich bestimmter Prozesse identifizieren
  • Prozessautomatisierung um 25% steigern

Unter diesen Voraussetzungen lässt sich auch der Rahmen der Process-Mining-Initiative festlegen: Sie halten fest, welche Prozesse, konkret betroffen sind und wie sie mit den IT-Systemen und Mitarbeiterrollen in Ihrer Organisation verknüpft sind.

Welche Rollen und Verantwortlichkeiten gibt es?

Die Ziele Ihrer Process-Mining-Initiative sollten unternehmensweit geteilt werden: Dies erfordert neben einer klaren Strategie eine transparente Kommunikation in der gesamten Organisation: Indem Sie Ihren Mitarbeitern das nötige Wissen an die Hand geben, um die Initiative erfolgreich mitzugestalten, sichern Sie sich auch ihre Unterstützung.

So verstehen sie nicht nur, warum dieses Projekt sinnvoll ist, sondern sind auch in der Lage, das Wissen auf ihre individuelle Rolle und Situation zu übertragen. Im Rahmen einer Process-Mining-Initiative sind verschiedene Projektbeteiligte in unterschiedlichen Rollen aktiv:

Während Projektträger verantwortlich für die Prozessanalyse sind (z. B. Chief Procurement Officer oder Process Owner), wissen Prozessexperten, wie ein bestimmter Prozess verläuft und kennen die verschiedenen Variationen. Sie nutzen Methoden wie Process Mining, um ihr Wissen zu vertiefen und Diskussionen über die gewonnenen Daten anzustoßen. Sie arbeiten eng mit Business-Analysten zusammen, die die Prozessanalyse vorantreiben. Datenexperten wiederum verfolgen die einzelnen Spuren, die ein Prozess in der IT-Landschaft einer Organisation hinterlässt und bereiten sie so auf, dass sie Aufschluss über die Performance eines Prozesses geben.

Wie gestaltet sich die Zusammenarbeit?

Diese unterschiedlichen Rollen gilt es im Rahmen einer erfolgreichen Process-Mining-Initiative an einen Tisch zu bringen: So können die gewonnen Erkenntnisse gemeinsam im Team interpretiert und diskutiert werden, um die richtigen Veränderungen anzustoßen. Die daraus gewonnen Prozessverbesserungen spiegeln das Know-how des gesamten Teams wider und sind das Ergebnis einer erfolgreichen Zusammenarbeit.

Schritt 2: Die technischen Voraussetzungen schaffen

Wie werden Prozessdaten systemübergreifend aggregiert und aufbereitet?

Nun wird es Zeit für die technischen Vorbereitungen: Entscheidend ist es, alle Anforderungen an die beteiligten IT-Systeme zu durchdenken und die IT-Verantwortlichen so früh wie möglich einzubeziehen. Um valide Daten für Prozessverbesserungen zu generieren, sind diese drei Teilschritte nötig:

  1.  Datenextraktion: Relevante Daten aus unterschiedlichen IT-Systemen werden aggregiert (Datenquellen sind datenbasierte Tabellen aus ERP- und CRM-Lösungen, analytische Daten wie Reports, Logdateien, CSV-Dateien usw.)
  2.  Datenumwandlung gemäß den Anforderungen für Process Mining: Die extrahierten Daten werden in Cases (Abfolge verschiedener Prozessschritte) umgewandelt, mit einem Zeitstempel versehen und in Event-Logs gespeichert.
  3.  Datenübertragung: Die Process-Mining-Software greift auf die gespeicherten Event-Logs zu.

Welche Rolle spielen Konnektoren?

Diese Teilschritte werden erfahrungsgemäß mittels eines Software-Konnektors durchgeführt und in regelmäßigen Abständen wiederholt. Ein Software-Konnektor hat die Aufgabe, die Daten aus der IT-Landschaft eines Unternehmens nach den Anforderungen der Process-Mining-Lösung zu übersetzen. Er wird speziell für die Kombination mit bestimmten IT-Systemen wie SAP, Oracle oder Salesforce entwickelt und steuert die gesamte Datenintegration von der Extraktion über die Umwandlung bis zur Datenübertragung.

Process-Mining-Lösungen wie Signavio Process Intelligence verfügen über Standardkonnektoren sowie über eine API für individuell entwickelte Konnektoren. Im Rahmen der technischen Vorbereitungen gilt es, mit Blick auf das jeweilige Szenario über die Möglichkeiten der Umsetzbarkeit zu entscheiden und andere technische Lösungen zu evaluieren.

Schritt 3: Von der Prozessanalyse zur Prozessverbesserung

Wie lassen sich die ermittelten Daten für Verbesserungen nutzen?

Sind die umgewandelten Daten in der Process-Mining-Lösung verfügbar, beginnt die Prozessauswertung. Durch IT-gestütztes Process Mining erhalten Prozessexperten die Möglichkeit, alle vorliegenden Daten zu visualisieren und einzelne Prozesse detailliert auszuwerten. Die vorliegenden Prozesse werden nun hinsichtlich unterschiedlicher Faktoren untersucht, etwa mit Blick auf Durchlaufzeiten, Performance und den Prozessfluss. Im direkten Vergleich lässt sich auf diesem Wege ermitteln, welche Faktoren sich auf die Erfolgskennzahlen auswirken und an welchen Stellen Verzögerungen oder Abweichungen auftreten.

Die so gewonnen Erkenntnisse bilden eine wichtige Grundlage für faktenbasierte Diskussionen zwischen den verschiedenen Stakeholdern der Process-Mining-Initiative. Doch erst die konkreten Schritte, die aus dieser Datenbasis abgeleitet werden, entscheiden über den Erfolg des Projektes: Entscheidend ist, wie diese Erkenntnisse in die Praxis umgesetzt werden.

 

Eine Process-Mining-Lösung, die nicht als reines Analysetool zur Verfügung steht, sondern in eine umfassende Lösung für die Modellierung, Automatisierung und Analyse professioneller Geschäftsprozesse integriert ist, erleichtert den Schritt von der Business Process Discovery zur Prozessverbesserung. Schließlich gilt es, konkrete Prozessverbesserungen und Änderungen zu planen, in den Unternehmensalltag zu integrieren und die Ergebnisse auszuwerten – auch über das Ende der Process-Mining-Initiative hinaus.

Warum ist ein Process-Mining-Projekt nie vollständig abgeschlossen?  

Wer einmal mit der Prozessverbesserung beginnt, wird feststellen: Viele weitere Stellen in den Prozessen warten nur darauf, verbessert zu werden. Daher lohnt es sich, einige Wochen nach der initialen Prozessverbesserung neue Daten zu extrahieren, um herauszufinden, welche Veränderungen nachweislich zu mehr Effizienz geführt haben. Eine kontinuierliche Messung und Auswertung erleichtert einen umfassenden Blick auf die eigene Organisation:

  • Funktionieren die überarbeiteten Prozesse wie geplant?
  • Haben Prozessveränderungen unvorhersehbare Effekte?
  • Treten Schwachstellen in anderen Prozessen auf?
  • Haben sich die Prozesse verändert, seitdem sie überarbeitet wurden?
  • Wie lässt sich ein bestimmter Prozess weiter verbessern?

Somit lässt sich zusammenfassen: Wem es gelingt, die Datenspuren in den IT-Systemen der eigenen Organisation zu verfolgen, ist auf dem richtigen Weg zur kontinuierlichen Verbesserung. Davon profitieren nicht nur die Prozesse und IT-Systeme, sondern auch die Mitarbeiter in den Organisationen.

Über die Integration symbolischer Inferenz in tiefe neuronale Netze

Tiefe neuronale Netze waren in den letzten Jahren eine enorme Erfolgsgeschichte. Viele Fortschritte im Bereich der KI, wie das Erkennen von Objekten, die fließende Übersetzung natürlicher Sprache oder das Spielen von GO auf Weltklasseniveau, basieren auf tiefen neuronalen Netzen. Über die Grenzen dieses Ansatzes gab es jedoch nur wenige Berichte. Eine dieser Einschränkungen ist die Unfähigkeit, aus einer kleinen Anzahl von Beispielen zu lernen. Tiefe neuronale Netze erfordern in der Regel eine Vielzahl von Trainingsbeispielen, während der Mensch aus nur einem einzigen Beispiel lernen kann. Wenn Sie eine Katze einem Kind zeigen, das noch nie zuvor eine gesehen hat, kann es eine weitere Katze anhand dieser einzigen Instanz erkennen. Tiefe neuronale Netze hingegen benötigen Hunderttausende von Bildern, um zu erlernen, wie eine Katze aussieht. Eine weitere Einschränkung ist die Unfähigkeit, Rückschlüsse aus bereits erlerntem Allgemeinwissen zu ziehen. Beim Lesen eines Textes neigen Menschen dazu, weitreichende Rückschlüsse auf mögliche Interpretationen des Textes zu ziehen. Der Mensch ist dazu in der Lage, weil er Wissen aus sehr unterschiedlichen Bereichen abrufen und auf den Text anwenden kann.

Diese Einschränkungen deuten darauf hin, dass in tiefen neuronalen Netzen noch etwas Grundsätzliches fehlt. Dieses Etwas ist die Fähigkeit, symbolische Bezüge zu Entitäten in der realen Welt herzustellen und sie in Beziehung zueinander zu setzen. Symbolische Inferenz in Form von formaler Logik ist seit Jahrzehnten der Kern der klassischen KI, hat sich jedoch als spröde und komplex in der Anwendung erwiesen. Gibt es dennoch keine Möglichkeit, tiefe neuronale Netze so zu verbessern, dass sie in der Lage sind, symbolische Informationen zu verarbeiten? Tiefe neuronale Netzwerke wurden von biologischen neuronalen Netzwerken wie dem menschlichen Gehirn inspiriert. Im Wesentlichen sind sie ein vereinfachtes Modell der Neuronen und Synapsen, die die Grundbausteine des Gehirns ausmachen. Eine solche Vereinfachung ist, dass statt mit zeitlich begrenzten Aktionspotenzialen nur mit einem Aktivierungswert gearbeitet wird. Aber was ist, wenn es nicht nur wichtig ist, ob ein Neuron aktiviert wird, sondern auch, wann genau. Was wäre, wenn der Zeitpunkt, zu dem ein Neuron feuert, einen relationalen Kontext herstellt, auf den sich diese Aktivierung bezieht? Nehmen wir zum Beispiel ein Neuron, das für ein bestimmtes Wort steht. Wäre es nicht sinnvoll, wenn dieses Neuron jedes Mal ausgelöst würde, wenn das Wort in einem Text erscheint? In diesem Fall würde das Timing der Aktionspotenziale eine wichtige Rolle spielen. Und nicht nur das Timing einer einzelnen Aktivierung, sondern auch das Timing aller eingehenden Aktionspotenziale eines Neurons relativ zueinander wäre wichtig. Dieses zeitliche Muster kann verwendet werden, um eine Beziehung zwischen diesen Eingangsaktivierungen herzustellen. Wenn beispielsweise ein Neuron, das ein bestimmtes Wort repräsentiert, eine Eingabesynapse für jeden Buchstaben in diesem Wort hat, ist es wichtig, dass das Wort Neuron nur dann ausgelöst wird, wenn die Buchstabenneuronen in der richtigen Reihenfolge zueinander abgefeuert wurden. Konzeptionell könnten diese zeitlichen Unterschiede als Relationen zwischen den Eingangssynapsen eines Neurons modelliert werden. Diese Relationen definieren auch den Zeitpunkt, zu dem das Neuron selbst im Verhältnis zu seinen Eingangsaktivierungen feuert. Aus praktischen Gründen kann es sinnvoll sein, der Aktivierung eines Neurons mehrere Slots zuzuordnen, wie z.B. den Anfang und das Ende eines Wortes. Andernfalls müssten Anfang und Ende eines Wortes als zwei getrennte Neuronen modelliert werden. Diese Relationen sind ein sehr mächtiges Konzept. Sie ermöglichen es, die hierarchische Struktur von Texten einfach zu erfassen oder verschiedene Bereiche innerhalb eines Textes miteinander in Beziehung zu setzen. In diesem Fall kann sich ein Neuron auf eine sehr lokale Information beziehen, wie z.B. einen Buchstaben, oder auf eine sehr weitreichende Information, wie z.B. das Thema eines Textes.

Eine weitere Vereinfachung im Hinblick auf biologische neuronale Netze besteht darin, dass mit Hilfe einer Aktivierungsfunktion die Feuerrate eines einzelnen Neurons angenähert wird. Zu diesem Zweck nutzen klassische neuronale Netze die Sigmoidfunktion. Die Sigmoidfunktion ist jedoch symmetrisch bezüglich großer positiver oder negativer Eingangswerte, was es sehr schwierig macht, ausssagenlogische Operationen mit Neuronen mit der Sigmoidfunktion zu modellieren. Spiking-Netzwerke hingegen haben einen klaren Schwellenwert und ignorieren alle Eingangssignale, die unterhalb dieses Schwellenwerts bleiben. Daher ist die ReLU-Funktion oder eine andere asymmetrische Funktion eine deutlich bessere Annäherung für die Feuerrate. Diese Asymmetrie ist auch für Neuronen unerlässlich, die relationale Informationen verarbeiten. Das Neuron, das ein bestimmtes Wort repräsentiert, muss nämlich für alle Zeitpunkte, an denen das Wort nicht vorkommt, völlig inaktiv bleiben.

Ebenfalls vernachlässigt wird in tiefen neuronalen Netzwerken die Tatsache, dass verschiedene Arten von Neuronen in der Großhirnrinde vorkommen. Zwei wichtige Typen sind die bedornte Pyramidenzelle, die in erster Linie eine exzitatorische Charakteristik aufweist, und die nicht bedornte Sternzelle, die eine hemmende aufweist. Die inhibitorischen Neuronen sind besonders, weil sie es ermöglichen, negative Rückkopplungsschleifen aufzubauen. Solche Rückkopplungsschleifen finden sich normalerweise nicht in einem tiefen neuronalen Netzwerk, da sie einen inneren Zustand in das Netzwerk einbringen. Betrachten wir das folgende Netzwerk mit einem hemmenden Neuron und zwei exzitatorischen Neuronen, die zwei verschiedene Bedeutungen des Wortes “August” darstellen.

Beide Bedeutungen schließen sich gegenseitig aus, so dass das Netzwerk nun zwei stabile Zustände aufweist. Diese Zustände können von weiteren Eingangssynapsen der beiden exzitatorischen Neuronen abhängen. Wenn beispielsweise das nächste Wort nach dem Wort ‘August’ ein potenzieller Nachname ist, könnte eine entsprechende Eingabesynapse für das Entitätsneuron August-(Vorname) das Gewicht dieses Zustands erhöhen. Es ist nun wahrscheinlicher, dass das Wort “August” als Vorname und nicht als Monat eingestuft wird. Aber bedenken Sie, dass beide Zustände evaluiert werden müssen. In größeren Netzwerken können viele Neuronen durch negative oder positive Rückkopplungsschleifen verbunden sein, was zu einer großen Anzahl von stabilen Zuständen im Netzwerk führen kann.

Aus diesem Grund ist ein effizienter Optimierungsprozess erforderlich, der den besten Zustand in Bezug auf eine Zielfunktion ermittelt. Diese Zielfunktion könnte darin bestehen, die Notwendigkeit der Unterdrückung stark aktivierter Neuronen zu minimieren. Diese Zustände haben jedoch den enormen Vorteil, dass sie es erlauben, unterschiedliche Interpretationen eines bestimmten Textes zu berücksichtigen. Es ist eine Art Denkprozess, in dem verschiedene Interpretationen bewertet werden und die jeweils stärkste als Ergebnis geliefert wird. Glücklicherweise lässt sich die Suche nach einem optimalen Lösungszustand recht gut optimieren.

Der Grund, warum wir in diesen Rückkopplungsschleifen hemmende Neuronen benötigen, ist, dass sonst alle gegenseitig unterdrückenden Neuronen vollständig miteinander verbunden sein müssten. Das würde zu einer quadratisch zunehmenden Anzahl von Synapsen führen.

Durch die negativen Rückkopplungsschleifen, d.h. durch einfaches Verbinden einer negativen Synapse mit einem ihrer Vorläuferneuronen, haben wir plötzlich den Bereich der nichtmonotonen Logik betreten. Die nichtmonotone Logik ist ein Teilgebiet der formalen Logik, in dem Implikationen nicht nur zu einem Modell hinzugefügt, sondern auch entfernt werden. Es wird davon ausgegangen, dass eine nichtmonotone Logik erforderlich ist, um Schlussfolgerungen für viele Common Sense Aufgaben ziehen zu können. Eines der Hauptprobleme der nichtmonotonen Logik ist, dass sie oft nicht entscheiden kann, welche Schlussfolgerungen sie ziehen soll und welche eben nicht. Einige skeptische oder leichtgläubige Schlussfolgerungen sollten nur gezogen werden, wenn keine anderen Schlussfolgerungen wahrscheinlicher sind. Hier kommt die gewichtete Natur neuronaler Netze zum Tragen. In neuronalen Netzen können nämlich eher wahrscheinliche Zustände weniger wahrscheinliche Zustände unterdrücken.

Beispielimplementierung innerhalb des Aika-Frameworks

An dieser Stelle möchte ich noch einmal das Beispielneuron für das Wort ‘der’ vom Anfang aufgreifen. Das Wort-Neuron besteht aus drei Eingabesynapsen, die sich jeweils auf die einzelnen Buchstaben des Wortes beziehen. Über die Relationen werden die Eingabesynapsen nun zueinander in eine bestimmte Beziehung gesetzt, so dass das Wort ‘der’ nur erkannt wird, wenn alle Buchstaben in der korrekten Reihenfolge auftreten.
Als Aktivierungsfunktion des Neurons wird hier der im negativen Bereich abgeschnittene (rectified) hyperbolische Tangens verwendet. Dieser hat gerade bei einem UND-verknüpfenden Neuron den Vorteil, dass er selbst bei sehr großen Werten der gewichteten Summe auf den Wert 1 begrenzt ist. Alternativ kann auch die ReLU-Funktion (Rectified Linear Unit) verwendet werden. Diese eignet sich insbesondere für ODER-verknüpfende Neuronen, da sie die Eingabewerte unverzerrt weiterleitet.
Im Gegensatz zu herkömmlichen neuronalen Netzen gibt es hier mehrere Bias Werte, einen für das gesamte Neuron (in diesem Fall auf 5.0 gesetzt) und einen für jede Synapse. Intern werden diese Werte zu einem gemeinsamen Bias aufsummiert. Es ist schon klar, dass dieses Aufteilen des Bias nicht wirklich gut zu Lernregeln wie der Delta-Rule und dem Backpropagation passt, allerdings eignen sich diese Lernverfahren eh nur sehr begrenzt für diese Art von neuronalem Netzwerk. Als Lernverfahren kommen eher von den natürlichen Mechanismen Langzeit-Potenzierung und Langzeit-Depression inspirierte Ansätze in Betracht.

Fazit

Obwohl tiefe neuronale Netze bereits einen langen Weg zurückgelegt haben und mittlerweile beeindruckende Ergebnisse liefern, kann es sich doch lohnen, einen weiteren Blick auf das Original, das menschliche Gehirn und seine Schaltkreise zu werfen. Wenn eine so inhärent komplexe Struktur wie das menschliche Gehirn als Blaupause für ein neuronales Modell verwendet werden soll, müssen vereinfachende Annahmen getroffen werden. Allerdings ist bei diesem Prozess Vorsicht geboten, da sonst wichtige Aspekte des Originals verloren gehen können.

Referenzen

  1. Der Aika-Algorithm
    Lukas Molzberger
  2. Neuroscience: Exploring the Brain
    Mark F. Bear, Barry W. Connors, Michael A. Paradiso
  3. Neural-Symbolic Learning and Reasoning: A Survey and Interpretation
    Tarek R. Besold, Artur d’Avila Garcez, Sebastian Bader; Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb, ; Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, Gerson Zaverucha
  4. Deep Learning: A Critical Appraisal
    Gary Marcus
  5. Nonmonotonic Reasoning
    Gerhard Brewka, Ilkka Niemela, Mirosław Truszczynski

Cloudera beschleunigt die KI-Industrialisierung mit Cloud nativer Machine-Learning-Plattform

Neues Cloudera-Angebot vereinfacht Machine-Learning-Workflows mit einer einheitlichen Erfahrung für Data Engineering und Data Science auf Kubernetes.

München, Palo Alto (Kalifornien), 5. Dezember 2018 – Cloudera, Inc. (NYSE: CLDR) hat eine Vorschau auf eine neue, Cloud-basierte Machine-Learning-Plattform der nächsten Generation auf Basis von Kubernetes veröffentlicht. Das kommende Cloudera Machine Learning erweitert das Angebot von Cloudera für Self-Service Data Science im Unternehmen. Es bietet eine schnelle Bereitstellung und automatische Skalierung sowie eine containerisierte, verteilte Verarbeitung auf heterogenen Rechnern. Cloudera Machine Learning gewährleistet auch einen sicheren Datenzugriff mit einem einheitlichen Erlebnis in lokalen, Public-Cloud- und hybriden Umgebungen.

Im Gegensatz zu Data-Science-Tools, die nur Teile des Machine-Learning-Workflows adressieren oder nur für die Public Cloud verfügbar sind, kombiniert Cloudera Machine Learning Data Engineering und Data Science, auf beliebigen Daten und überall. Darüber hinaus werden Datensilos aufgelöst, um den kompletten Machine-Learning-Workflow zu vereinfachen und zu beschleunigen. Unternehmen können ab sofort hier Zugang zu einer Vorabversion von Cloudera Machine Learning anfragen.

Container und das Kubernetes-Ökosystem ermöglichen die Agilität der Cloud in verschiedenen Umgebungen mit einer konsistenten Erfahrung und ermöglichen die Bereitstellung skalierbarer Services für die IT in hybriden und Multi-Cloud-Implementierungen. Gleichzeitig sind Unternehmen bestrebt, komplette Machine-Learning-Workflows zu operationalisieren und zu skalieren. Mit Cloudera Machine Learning können Unternehmen Machine Learning von der Forschung bis zur Produktion beschleunigen. Benutzer sind in der Lage, Umgebungen einfach bereitzustellen und Ressourcen zu skalieren und müssen so weniger Zeit für die Infrastruktur und können mehr Zeit für Innovationen aufwenden.

Zu den Fähigkeiten gehören:

  • Nahtlose Portierbarkeit über Private Cloud, Public Cloud und Hybrid Cloud auf Basis von Kubernetes.

  • Schnelle Cloud-Bereitstellung und automatische Skalierung.

  • Skalierbares Data Engineering und Machine Learning mit nahtloser Abhängigkeitsverwaltung durch containerisiertes Python, R und Spark-on-Kubernetes.

  • Hochgeschwindigkeits-Deep-Learning mit verteiltem GPU-Scheduling und Training.

  • Sicherer Datenzugriff über HDFS, Cloud Object Stores und externe Datenbanken hinweg.

„Teams produktiver zu machen, ist entscheidend für die Skalierung von Machine Learning im Unternehmen. Modelle konsistent über eine hochskalierbare, transparente Infrastruktur zu erstellen und einzusetzen und dabei überall auf Daten zuzugreifen, erfordert aber eine neuartige Plattform”, sagt Hilary Mason, General Manager, Machine Learning bei Cloudera. „Cloudera Machine Learning vereint die kritischen Funktionen von Data Engineering, kollaborativer Exploration, Modelltraining und -bereitstellung in einer Cloud-basierten Plattform, die dort läuft, wo Sie sie benötigen – mit den integrierten Sicherheits-, Governance- und Managementfunktionen, die unsere Kunden nachfragen.”

„Bei Akamai haben wir ausgereifte Web-Sicherheitssysteme auf der Grundlage einer umfassenden Datenanalyse und -verarbeitung aufgebaut. Dabei ist uns bewusst geworden, dass Geschwindigkeit und Skalierbarkeit entscheidend für die Erkennung von Anomalien im Internet sind”, sagt Oren Marmor, DevOps Manager, Web Security bei Akamai. „Die Agilität, die Docker und Kubernetes Apache Spark verleihen, ist für uns ein wichtiger Baustein, sowohl für Data Science als auch für Data Engineering. Wir freuen uns sehr über die Einführung der kommenden Cloudera Machine Learning Plattform. Die Möglichkeit, mit der Plattform das Abhängigkeitsmanagement von Betriebssystemen und Bibliotheken zu vereinfachen, ist eine vielversprechende Entwicklung.”


Matt Brandwein, Senior Director of Products bei Cloudera, erläutert im Video, wie die neue Cloudera Plattform Teams in die Lage versetzt, Machine Learning im Unternehmen zu entwickeln und einzusetzen.

Mit Cloudera Machine Learning sowie der Forschung und fachkundigen Beratung durch die Cloudera Fast Forward Labs bietet Cloudera einen umfassenden Ansatz zur Beschleunigung der Industrialisierung von KI.

Um Kunden dabei zu unterstützen, KI überall zu nutzen, hat das Applied Research Team von Cloudera kürzlich Federated Learning eingeführt, um Machine-Learning-Modelle von der Cloud bis zum Edge einzusetzen, gleichzeitig den Datenschutz zu gewährleisten und den Aufwand für die Netzwerkkommunikation zu reduzieren. Der Bericht bietet eine detaillierte, technische Erläuterung des Ansatzes sowie praktische technische Empfehlungen, die sich mit Anwendungsfällen in den Bereichen Mobilfunk, Gesundheitswesen und Fertigung befassen, einschließlich IoT-gesteuerter Predictive Maintenance.

„Federated Learning beseitigt Hindernisse für die Anwendung von Machine Learning in stark regulierten und wettbewerbsorientierten Branchen. Wir freuen uns sehr, unseren Kunden helfen zu können, damit Starthilfe für die Industrialisierung der KI zu erhalten”, so Mike Lee Williams, Forschungsingenieur bei Cloudera Fast Forward Labs.


Mike Lee Williams, Research Engineer bei den Cloudera Fast Forward Labs, erklärt im Video, wie Machine-Learning-Systeme mit Hilfe von Federated Learning ohne direkten Zugriff auf Trainingsdaten aufgebaut werden können. 

Über Cloudera

Bei Cloudera glauben wir, dass Daten morgen Dinge ermöglichen werden, die heute noch unmöglich sind. Wir versetzen Menschen in die Lage, komplexe Daten in klare, umsetzbare Erkenntnisse zu transformieren. Wir sind die moderne Plattform für Machine Learning und Analysen, optimiert für die Cloud. Die größten Unternehmen der Welt vertrauen Cloudera bei der Lösung ihrer herausforderndsten, geschäftlichen Probleme. Weitere Informationen finden Sie unter de.cloudera.com/.

Sentiment Analysis of IMDB reviews

Sentiment Analysis of IMDB reviews

This article shows you how to build a Neural Network from scratch(no libraries) for the purpose of detecting whether a movie review on IMDB is negative or positive.

Outline:

  • Curating a dataset and developing a "Predictive Theory"

  • Transforming Text to Numbers Creating the Input/Output Data

  • Building our Neural Network

  • Making Learning Faster by Reducing "Neural Noise"

  • Reducing Noise by strategically reducing the vocabulary

Curating the Dataset

In [3]:
def pretty_print_review_and_label(i):
    print(labels[i] + "\t:\t" + reviews[i][:80] + "...")

g = open('reviews.txt','r') # features of our dataset
reviews = list(map(lambda x:x[:-1],g.readlines()))
g.close()

g = open('labels.txt','r') # labels
labels = list(map(lambda x:x[:-1].upper(),g.readlines()))
g.close()

Note: The data in reviews.txt we're contains only lower case characters. That's so we treat different variations of the same word, like The, the, and THE, all the same way.

It's always a good idea to get check out your dataset before you proceed.

In [2]:
len(reviews) #No. of reviews
Out[2]:
25000
In [3]:
reviews[0] #first review
Out[3]:
'bromwell high is a cartoon comedy . it ran at the same time as some other programs about school life  such as  teachers  . my   years in the teaching profession lead me to believe that bromwell high  s satire is much closer to reality than is  teachers  . the scramble to survive financially  the insightful students who can see right through their pathetic teachers  pomp  the pettiness of the whole situation  all remind me of the schools i knew and their students . when i saw the episode in which a student repeatedly tried to burn down the school  i immediately recalled . . . . . . . . . at . . . . . . . . . . high . a classic line inspector i  m here to sack one of your teachers . student welcome to bromwell high . i expect that many adults of my age think that bromwell high is far fetched . what a pity that it isn  t   '
In [4]:
labels[0] #first label
Out[4]:
'POSITIVE'

Developing a Predictive Theory

Analysing how you would go about predicting whether its a positive or a negative review.

In [5]:
print("labels.txt \t : \t reviews.txt\n")
pretty_print_review_and_label(2137)
pretty_print_review_and_label(12816)
pretty_print_review_and_label(6267)
pretty_print_review_and_label(21934)
pretty_print_review_and_label(5297)
pretty_print_review_and_label(4998)
labels.txt 	 : 	 reviews.txt

NEGATIVE	:	this movie is terrible but it has some good effects .  ...
POSITIVE	:	adrian pasdar is excellent is this film . he makes a fascinating woman .  ...
NEGATIVE	:	comment this movie is impossible . is terrible  very improbable  bad interpretat...
POSITIVE	:	excellent episode movie ala pulp fiction .  days   suicides . it doesnt get more...
NEGATIVE	:	if you haven  t seen this  it  s terrible . it is pure trash . i saw this about ...
POSITIVE	:	this schiffer guy is a real genius  the movie is of excellent quality and both e...
In [41]:
from collections import Counter
import numpy as np

We'll create three Counter objects, one for words from postive reviews, one for words from negative reviews, and one for all the words.

In [56]:
# Create three Counter objects to store positive, negative and total counts
positive_counts = Counter()
negative_counts = Counter()
total_counts = Counter()

Examine all the reviews. For each word in a positive review, increase the count for that word in both your positive counter and the total words counter; likewise, for each word in a negative review, increase the count for that word in both your negative counter and the total words counter. You should use split(' ') to divide a piece of text (such as a review) into individual words.

In [57]:
# Loop over all the words in all the reviews and increment the counts in the appropriate counter objects
for i in range(len(reviews)):
    if(labels[i] == 'POSITIVE'):
        for word in reviews[i].split(" "):
            positive_counts[word] += 1
            total_counts[word] += 1
    else:
        for word in reviews[i].split(" "):
            negative_counts[word] += 1
            total_counts[word] += 1

Most common positive & negative words

In [ ]:
positive_counts.most_common()

The above statement retrieves alot of words, the top 3 being : ('the', 173324), ('.', 159654), ('and', 89722),

In [ ]:
negative_counts.most_common()

The above statement retrieves alot of words, the top 3 being : ('', 561462), ('.', 167538), ('the', 163389),

As you can see, common words like "the" appear very often in both positive and negative reviews. Instead of finding the most common words in positive or negative reviews, what you really want are the words found in positive reviews more often than in negative reviews, and vice versa. To accomplish this, you'll need to calculate the ratios of word usage between positive and negative reviews.

The positive-to-negative ratio for a given word can be calculated with positive_counts[word] / float(negative_counts[word]+1). Notice the +1 in the denominator – that ensures we don't divide by zero for words that are only seen in positive reviews.

In [58]:
pos_neg_ratios = Counter()

# Calculate the ratios of positive and negative uses of the most common words
# Consider words to be "common" if they've been used at least 100 times
for term,cnt in list(total_counts.most_common()):
    if(cnt > 100):
        pos_neg_ratio = positive_counts[term] / float(negative_counts[term]+1)
        pos_neg_ratios[term] = pos_neg_ratio

Examine the ratios

In [12]:
print("Pos-to-neg ratio for 'the' = {}".format(pos_neg_ratios["the"]))
print("Pos-to-neg ratio for 'amazing' = {}".format(pos_neg_ratios["amazing"]))
print("Pos-to-neg ratio for 'terrible' = {}".format(pos_neg_ratios["terrible"]))
Pos-to-neg ratio for 'the' = 1.0607993145235326
Pos-to-neg ratio for 'amazing' = 4.022813688212928
Pos-to-neg ratio for 'terrible' = 0.17744252873563218

We see the following:

  • Words that you would expect to see more often in positive reviews – like "amazing" – have a ratio greater than 1. The more skewed a word is toward postive, the farther from 1 its positive-to-negative ratio will be.
  • Words that you would expect to see more often in negative reviews – like "terrible" – have positive values that are less than 1. The more skewed a word is toward negative, the closer to zero its positive-to-negative ratio will be.
  • Neutral words, which don't really convey any sentiment because you would expect to see them in all sorts of reviews – like "the" – have values very close to 1. A perfectly neutral word – one that was used in exactly the same number of positive reviews as negative reviews – would be almost exactly 1.

Ok, the ratios tell us which words are used more often in postive or negative reviews, but the specific values we've calculated are a bit difficult to work with. A very positive word like "amazing" has a value above 4, whereas a very negative word like "terrible" has a value around 0.18. Those values aren't easy to compare for a couple of reasons:

  • Right now, 1 is considered neutral, but the absolute value of the postive-to-negative rations of very postive words is larger than the absolute value of the ratios for the very negative words. So there is no way to directly compare two numbers and see if one word conveys the same magnitude of positive sentiment as another word conveys negative sentiment. So we should center all the values around netural so the absolute value fro neutral of the postive-to-negative ratio for a word would indicate how much sentiment (positive or negative) that word conveys.
  • When comparing absolute values it's easier to do that around zero than one.

To fix these issues, we'll convert all of our ratios to new values using logarithms (i.e. use np.log(ratio))

In the end, extremely positive and extremely negative words will have positive-to-negative ratios with similar magnitudes but opposite signs.

In [59]:
# Convert ratios to logs
for word,ratio in pos_neg_ratios.most_common():
    pos_neg_ratios[word] = np.log(ratio)

Examine the new ratios

In [14]:
print("Pos-to-neg ratio for 'the' = {}".format(pos_neg_ratios["the"]))
print("Pos-to-neg ratio for 'amazing' = {}".format(pos_neg_ratios["amazing"]))
print("Pos-to-neg ratio for 'terrible' = {}".format(pos_neg_ratios["terrible"]))
Pos-to-neg ratio for 'the' = 0.05902269426102881
Pos-to-neg ratio for 'amazing' = 1.3919815802404802
Pos-to-neg ratio for 'terrible' = -1.7291085042663878

If everything worked, now you should see neutral words with values close to zero. In this case, "the" is near zero but slightly positive, so it was probably used in more positive reviews than negative reviews. But look at "amazing"'s ratio - it's above 1, showing it is clearly a word with positive sentiment. And "terrible" has a similar score, but in the opposite direction, so it's below -1. It's now clear that both of these words are associated with specific, opposing sentiments.

Run the below code to see more ratios.

It displays all the words, ordered by how associated they are with postive reviews.

In [ ]:
pos_neg_ratios.most_common()

The top most common words for the above code : ('edie', 4.6913478822291435), ('paulie', 4.0775374439057197), ('felix', 3.1527360223636558), ('polanski', 2.8233610476132043), ('matthau', 2.8067217286092401), ('victoria', 2.6810215287142909), ('mildred', 2.6026896854443837), ('gandhi', 2.5389738710582761), ('flawless', 2.451005098112319), ('superbly', 2.2600254785752498), ('perfection', 2.1594842493533721), ('astaire', 2.1400661634962708), ('captures', 2.0386195471595809), ('voight', 2.0301704926730531), ('wonderfully', 2.0218960560332353), ('powell', 1.9783454248084671), ('brosnan', 1.9547990964725592)

Transforming Text into Numbers

Creating the Input/Output Data

Create a set named vocab that contains every word in the vocabulary.

In [19]:
vocab = set(total_counts.keys())

Check vocabulary size

In [20]:
vocab_size = len(vocab)
print(vocab_size)
74074

Th following image rpresents the layers of the neural network you'll be building throughout this notebook. layer_0 is the input layer, layer_1 is a hidden layer, and layer_2 is the output layer.

In [1]:
 
Out[1]:

TODO: Create a numpy array called layer_0 and initialize it to all zeros. Create layer_0 as a 2-dimensional matrix with 1 row and vocab_size columns.

In [21]:
layer_0 = np.zeros((1,vocab_size))

layer_0 contains one entry for every word in the vocabulary, as shown in the above image. We need to make sure we know the index of each word, so run the following cell to create a lookup table that stores the index of every word.

TODO: Complete the implementation of update_input_layer. It should count how many times each word is used in the given review, and then store those counts at the appropriate indices inside layer_0.

In [ ]:
# Create a dictionary of words in the vocabulary mapped to index positions 
# (to be used in layer_0)
word2index = {}
for i,word in enumerate(vocab):
    word2index[word] = i

It stores the indexes like this: 'antony': 22, 'pinjar': 23, 'helsig': 24, 'dances': 25, 'good': 26, 'willard': 71500, 'faridany': 27, 'foment': 28, 'matts': 12313,

Lets implement some functions for simplifying our inputs to the neural network.

In [25]:
def update_input_layer(review):
    """
    The element at a given index of layer_0 should represent
    how many times the given word occurs in the review.
    """
     
    global layer_0
    
    # clear out previous state, reset the layer to be all 0s
    layer_0 *= 0
    
    # count how many times each word is used in the given review and store the results in layer_0 
    for word in review.split(" "):
        layer_0[0][word2index[word]] += 1

Run the following cell to test updating the input layer with the first review. The indices assigned may not be the same as in the solution, but hopefully you'll see some non-zero values in layer_0.

In [26]:
update_input_layer(reviews[0])
layer_0
Out[26]:
array([[ 18.,   0.,   0., ...,   0.,   0.,   0.]])

get_target_for_labels should return 0 or 1, depending on whether the given label is NEGATIVE or POSITIVE, respectively.

In [27]:
def get_target_for_label(label):
    if(label == 'POSITIVE'):
        return 1
    else:
        return 0

Building a Neural Network

In [32]:
import time
import sys
import numpy as np

# Encapsulate our neural network in a class
class SentimentNetwork:
    def __init__(self, reviews,labels,hidden_nodes = 10, learning_rate = 0.1):
        """
        Args:
            reviews(list) - List of reviews used for training
            labels(list) - List of POSITIVE/NEGATIVE labels
            hidden_nodes(int) - Number of nodes to create in the hidden layer
            learning_rate(float) - Learning rate to use while training
        
        """
        # Assign a seed to our random number generator to ensure we get
        # reproducable results
        np.random.seed(1)

        # process the reviews and their associated labels so that everything
        # is ready for training
        self.pre_process_data(reviews, labels)
        
        # Build the network to have the number of hidden nodes and the learning rate that
        # were passed into this initializer. Make the same number of input nodes as
        # there are vocabulary words and create a single output node.
        self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate)

    def pre_process_data(self, reviews, labels):
        
        # populate review_vocab with all of the words in the given reviews
        review_vocab = set()
        for review in reviews:
            for word in review.split(" "):
                review_vocab.add(word)

        # Convert the vocabulary set to a list so we can access words via indices
        self.review_vocab = list(review_vocab)
        
        # populate label_vocab with all of the words in the given labels.
        label_vocab = set()
        for label in labels:
            label_vocab.add(label)
        
        # Convert the label vocabulary set to a list so we can access labels via indices
        self.label_vocab = list(label_vocab)
        
        # Store the sizes of the review and label vocabularies.
        self.review_vocab_size = len(self.review_vocab)
        self.label_vocab_size = len(self.label_vocab)
        
        # Create a dictionary of words in the vocabulary mapped to index positions
        self.word2index = {}
        for i, word in enumerate(self.review_vocab):
            self.word2index[word] = i
        
        # Create a dictionary of labels mapped to index positions
        self.label2index = {}
        for i, label in enumerate(self.label_vocab):
            self.label2index[label] = i
        
    def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
        # Set number of nodes in input, hidden and output layers.
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        # Store the learning rate
        self.learning_rate = learning_rate

        # Initialize weights

        # These are the weights between the input layer and the hidden layer.
        self.weights_0_1 = np.zeros((self.input_nodes,self.hidden_nodes))
    
        # These are the weights between the hidden layer and the output layer.
        self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, 
                                                (self.hidden_nodes, self.output_nodes))
        
        # The input layer, a two-dimensional matrix with shape 1 x input_nodes
        self.layer_0 = np.zeros((1,input_nodes))
    
    def update_input_layer(self,review):

        # clear out previous state, reset the layer to be all 0s
        self.layer_0 *= 0
        
        for word in review.split(" "):
            if(word in self.word2index.keys()):
                self.layer_0[0][self.word2index[word]] += 1
                
    def get_target_for_label(self,label):
        if(label == 'POSITIVE'):
            return 1
        else:
            return 0
        
    def sigmoid(self,x):
        return 1 / (1 + np.exp(-x))
    
    def sigmoid_output_2_derivative(self,output):
        return output * (1 - output)
    
    def train(self, training_reviews, training_labels):
        
        # make sure out we have a matching number of reviews and labels
        assert(len(training_reviews) == len(training_labels))
        
        # Keep track of correct predictions to display accuracy during training 
        correct_so_far = 0

        # Remember when we started for printing time statistics
        start = time.time()
        
        # loop through all the given reviews and run a forward and backward pass,
        # updating weights for every item
        for i in range(len(training_reviews)):
            
            # Get the next review and its correct label
            review = training_reviews[i]
            label = training_labels[i]
            
            ### Forward pass ###

            # Input Layer
            self.update_input_layer(review)

            # Hidden layer
            layer_1 = self.layer_0.dot(self.weights_0_1)

            # Output layer
            layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))
            
            ### Backward pass ###

            # Output error
            layer_2_error = layer_2 - self.get_target_for_label(label) # Output layer error is the difference between desired target and actual output.
            layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2)

            # Backpropagated error
            layer_1_error = layer_2_delta.dot(self.weights_1_2.T) # errors propagated to the hidden layer
            layer_1_delta = layer_1_error # hidden layer gradients - no nonlinearity so it's the same as the error

            # Update the weights
            self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
            self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step

            # Keep track of correct predictions.
            if(layer_2 >= 0.5 and label == 'POSITIVE'):
                correct_so_far += 1
            elif(layer_2 < 0.5 and label == 'NEGATIVE'):
                correct_so_far += 1
            
            sys.stdout.write(" #Correct:" + str(correct_so_far) + " #Trained:" + str(i+1) \
                             + " Training Accuracy:" + str(correct_so_far * 100 / float(i+1))[:4] + "%")
    
    def test(self, testing_reviews, testing_labels):
        """
        Attempts to predict the labels for the given testing_reviews,
        and uses the test_labels to calculate the accuracy of those predictions.
        """
        
        # keep track of how many correct predictions we make
        correct = 0

        # Loop through each of the given reviews and call run to predict
        # its label. 
        for i in range(len(testing_reviews)):
            pred = self.run(testing_reviews[i])
            if(pred == testing_labels[i]):
                correct += 1
            
            sys.stdout.write(" #Correct:" + str(correct) + " #Tested:" + str(i+1) \
                             + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%")
    
    def run(self, review):
        """
        Returns a POSITIVE or NEGATIVE prediction for the given review.
        """
        # Run a forward pass through the network, like in the "train" function.
        
        # Input Layer
        self.update_input_layer(review.lower())

        # Hidden layer
        layer_1 = self.layer_0.dot(self.weights_0_1)

        # Output layer
        layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))
        
        # Return POSITIVE for values above greater-than-or-equal-to 0.5 in the output layer;
        # return NEGATIVE for other values
        if(layer_2[0] >= 0.5):
            return "POSITIVE"
        else:
            return "NEGATIVE"
        

Run the following code to create the network with a small learning rate, 0.001, and then train the new network. Using learning rate larger than this, for example 0.1 or even 0.01 would result in poor performance.

In [ ]:
mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.001)
mlp.train(reviews[:-1000],labels[:-1000])

Running the above code would have given an accuracy around 62.2%

Reducing Noise in Our Input Data

Counting how many times each word occured in our review might not be the most efficient way. Instead just including whether a word was there or not will improve our training time and accuracy. Hence we update our update_input_layer() function.

In [ ]:
def update_input_layer(self,review):
    self.layer_0 *= 0
        
    for word in review.split(" "):
        if(word in self.word2index.keys()):
            self.layer_0[0][self.word2index[word]] =1

Creating and running our neural network again, even with a higher learning rate of 0.1 gave us a training accuracy of 83.8% and testing accuracy(testing on last 1000 reviews) of 85.7%.

Reducing Noise by Strategically Reducing the Vocabulary

Let us put the pos to neg ratio's that we found were much more effective at detecting a positive or negative label. We could do that by a few change:

  • Modify pre_process_data:
    • Add two additional parameters: min_count and polarity_cutoff
    • Calculate the positive-to-negative ratios of words used in the reviews.
    • Change so words are only added to the vocabulary if they occur in the vocabulary more than min_count times.
    • Change so words are only added to the vocabulary if the absolute value of their postive-to-negative ratio is at least polarity_cutoff
In [ ]:
def pre_process_data(self, reviews, labels, polarity_cutoff, min_count):
        
        positive_counts = Counter()
        negative_counts = Counter()
        total_counts = Counter()

        for i in range(len(reviews)):
            if(labels[i] == 'POSITIVE'):
                for word in reviews[i].split(" "):
                    positive_counts[word] += 1
                    total_counts[word] += 1
            else:
                for word in reviews[i].split(" "):
                    negative_counts[word] += 1
                    total_counts[word] += 1

        pos_neg_ratios = Counter()

        for term,cnt in list(total_counts.most_common()):
            if(cnt >= 50):
                pos_neg_ratio = positive_counts[term] / float(negative_counts[term]+1)
                pos_neg_ratios[term] = pos_neg_ratio

        for word,ratio in pos_neg_ratios.most_common():
            if(ratio > 1):
                pos_neg_ratios[word] = np.log(ratio)
            else:
                pos_neg_ratios[word] = -np.log((1 / (ratio + 0.01)))

        # populate review_vocab with all of the words in the given reviews
        review_vocab = set()
        for review in reviews:
            for word in review.split(" "):
                if(total_counts[word] > min_count):
                    if(word in pos_neg_ratios.keys()):
                        if((pos_neg_ratios[word] >= polarity_cutoff) or (pos_neg_ratios[word] <= -polarity_cutoff)):
                            review_vocab.add(word)
                    else:
                        review_vocab.add(word)

        # Convert the vocabulary set to a list so we can access words via indices
        self.review_vocab = list(review_vocab)
        
        # populate label_vocab with all of the words in the given labels.
        label_vocab = set()
        for label in labels:
            label_vocab.add(label)
        
        # Convert the label vocabulary set to a list so we can access labels via indices
        self.label_vocab = list(label_vocab)
        
        # Store the sizes of the review and label vocabularies.
        self.review_vocab_size = len(self.review_vocab)
        self.label_vocab_size = len(self.label_vocab)
        
        # Create a dictionary of words in the vocabulary mapped to index positions
        self.word2index = {}
        for i, word in enumerate(self.review_vocab):
            self.word2index[word] = i
        
        # Create a dictionary of labels mapped to index positions
        self.label2index = {}
        for i, label in enumerate(self.label_vocab):
            self.label2index[label] = i

Our training accuracy increased to 85.6% after this change. As we can see our accuracy saw a huge jump by making minor changes based on our intuition. We can keep making such changes and increase the accuracy even further.

 

Download the Data Sources

The data sources used in this article can be downloaded here:

Einstieg in Natural Language Processing – Teil 2: Preprocessing von Rohtext mit Python

Dies ist der zweite Artikel der Artikelserie Einstieg in Natural Language Processing.

In diesem Artikel wird das so genannte Preprocessing von Texten behandelt, also Schritte die im Bereich des NLP in der Regel vor eigentlichen Textanalyse durchgeführt werden.

Tokenizing

Um eingelesenen Rohtext in ein Format zu überführen, welches in der späteren Analyse einfacher ausgewertet werden kann, sind eine ganze Reihe von Schritten notwendig. Ganz allgemein besteht der erste Schritt darin, den auszuwertenden Text in einzelne kurze Abschnitte – so genannte Tokens – zu zerlegen (außer man bastelt sich völlig eigene Analyseansätze, wie zum Beispiel eine Spracherkennung anhand von Buchstabenhäufigkeiten ect.).

Was genau ein Token ist, hängt vom verwendeten Tokenizer ab. So bringt NLTK bereits standardmäßig unter anderem BlankLine-, Line-, Sentence-, Word-, Wordpunkt- und SpaceTokenizer mit, welche Text entsprechend in Paragraphen, Zeilen, Sätze, Worte usw. aufsplitten. Weiterhin ist mit dem RegexTokenizer ein Tool vorhanden, mit welchem durch Wahl eines entsprechenden Regulären Ausdrucks beliebig komplexe eigene Tokenizer erstellt werden können.

Üblicherweise wird ein Text (evtl. nach vorherigem Aufsplitten in Paragraphen oder Sätze) schließlich in einzelne Worte und Interpunktionen (Satzzeichen) aufgeteilt. Hierfür kann, wie im folgenden Beispiel z. B. der WordTokenizer oder die diesem entsprechende Funktion word_tokenize() verwendet werden.

Stemming & Lemmatizing

Andere häufig durchgeführte Schritte sind Stemming sowie Lemmatizing. Hierbei werden die Suffixe der einzelnen Tokens des Textes mit Hilfe eines Stemmers in eine Form überführt, welche nur den Wortstamm zurücklässt. Dies hat den Zweck verschiedene grammatikalische Formen des selben Wortes (welche sich oft in ihrer Endung unterscheiden (ich gehe, du gehst, er geht, wir gehen, …) ununterscheidbar zu machen. Diese würden sonst als mehrere unabhängige Worte in die darauf folgende Analyse eingehen.

Neben bereits fertigen Stemmern bietet NLTK auch für diesen Schritt die Möglichkeit sich eigene Stemmer zu programmieren. Da verschiedene Stemmer Suffixe nach unterschiedlichen Regeln entfernen, sind nur die Wortstämme miteinander vergleichbar, welche mit dem selben Stemmer generiert wurden!

Im forlgenden Beispiel werden verschiedene vordefinierte Stemmer aus dem Paket NLTK auf den bereits oben verwendeten Beispielsatz angewendet und die Ergebnisse der gestemmten Tokens in einer Art einfachen Tabelle ausgegeben:

Sehr ähnlich den Stemmern arbeiten Lemmatizer: Auch ihre Aufgabe ist es aus verschiedenen Formen eines Wortes die jeweilige Grundform zu bilden. Im Unterschied zu den Stemmern ist das Lemma eines Wortes jedoch klar als dessen Grundform definiert.

Vokabular

Auch das Vokabular, also die Menge aller verschiedenen Worte eines Textes, ist eine informative Kennzahl. Bezieht man die Größe des Vokabulars eines Textes auf seine gesamte Anzahl verwendeter Worte, so lassen sich hiermit Aussagen zu der Diversität des Textes machen.

Außerdem kann das auftreten bestimmter Worte später bei der automatischen Einordnung in Kategorien wichtig werden: Will man beispielsweise Nachrichtenmeldungen nach Themen kategorisieren und in einem Text tritt das Wort „DAX“ auf, so ist es deutlich wahrscheinlicher, dass es sich bei diesem Text um eine Meldung aus dem Finanzbereich handelt, als z. B. um das „Kochrezept des Tages“.

Dies mag auf den ersten Blick trivial erscheinen, allerdings können auch mit einfachen Modellen, wie dem so genannten „Bag-of-Words-Modell“, welches nur die Anzahl des Auftretens von Worten prüft, bereits eine Vielzahl von Informationen aus Texten gewonnen werden.

Das reine Vokabular eines Textes, welcher in der Variable “rawtext” gespeichert ist, kann wie folgt in der Variable “vocab” gespeichert werden. Auf die Ausgabe wurde in diesem Fall verzichtet, da diese im Falle des oben als Beispiel gewählten Satzes den einzelnen Tokens entspricht, da kein Wort öfter als ein Mal vorkommt.

Stopwords

Unter Stopwords werden Worte verstanden, welche zwar sehr häufig vorkommen, jedoch nur wenig Information zu einem Text beitragen. Beispiele in der beutschen Sprache sind: der, und, aber, mit, …

Sowohl NLTK als auch cpaCy bringen vorgefertigte Stopwordsets mit. 

Vorsicht: NLTK besitzt eine Stopwordliste, welche erst in ein Set umgewandelt werden sollte um die lookup-Zeiten kurz zu halten – schließlich muss jedes einzelne Token des Textes auf das vorhanden sein in der Stopworditerable getestet werden!

POS-Tagging

POS-Tagging steht für „Part of Speech Tagging“ und entspricht ungefähr den Aufgaben, die man noch aus dem Deutschunterricht kennt: „Unterstreiche alle Subjekte rot, alle Objekte blau…“. Wichtig ist diese Art von Tagging insbesondere, wenn man später tatsächlich strukturiert Informationen aus dem Text extrahieren möchte, da man hierfür wissen muss wer oder was als Subjekt mit wem oder was als Objekt interagiert.

Obwohl genau die selben Worte vorkommen, bedeutet der Satz „Die Katze frisst die Maus.“ etwas anderes als „Die Maus frisst die Katze.“, da hier Subjekt und Objekt aufgrund ihrer Reihenfolge vertauscht sind (Stichwort: Subjekt – Prädikat – Objekt ).

Weniger wichtig ist dieser Schritt bei der Kategorisierung von Dokumenten. Insbesondere bei dem bereits oben erwähnten Bag-of-Words-Modell, fließen POS-Tags überhaupt nicht mit ein.

Und weil es so schön einfach ist: Die obigen Schritte mit spaCy

Die obigen Methoden und Arbeitsschritte, welche Texte die in natürlicher Sprache geschrieben sind, allgemein computerzugänglicher und einfacher auswertbar machen, können beliebig genau den eigenen Wünschen angepasst, einzeln mit dem Paket NLTK durchgeführt werden. Dies zumindest einmal gemacht zu haben, erweitert das Verständnis für die funktionsweise einzelnen Schritte und insbesondere deren manchmal etwas versteckten Komplexität. (Wie muss beispielsweise ein Tokenizer funktionieren der den Satz “Schwierig ist z. B. dieser Satz.” korrekt in nur einen Satz aufspaltet, anstatt ihn an jedem Punkt welcher an einem Wortende auftritt in insgesamt vier Sätze aufzuspalten, von denen einer nur aus einem Leerzeichen besteht?) Hier soll nun aber, weil es so schön einfach ist, auch das analoge Vorgehen mit dem Paket spaCy beschrieben werden:

Dieser kurze Codeabschnitt liest den an spaCy übergebenen Rohtext in ein spaCy Doc-Object ein und führt dabei automatisch bereits alle oben beschriebenen sowie noch eine Reihe weitere Operationen aus. So stehen neben dem immer noch vollständig gespeicherten Originaltext, die einzelnen Sätze, Worte, Lemmas, Noun-Chunks, Named Entities, Part-of-Speech-Tags, ect. direkt zur Verfügung und können.über die Methoden des Doc-Objektes erreicht werden. Des weiteren liegen auch verschiedene weitere Objekte wie beispielsweise Vektoren zur Bestimmung von Dokumentenähnlichkeiten bereits fertig vor.

Die Folgende Übersicht soll eine kurze (aber noch lange nicht vollständige) Übersicht über die automatisch von spaCy generierten Objekte und Methoden zur Textanalyse geben:

Diese „Vollautomatisierung“ der Vorabschritte zur Textanalyse hat jedoch auch seinen Preis: spaCy geht nicht gerade sparsam mit Ressourcen wie Rechenleistung und Arbeitsspeicher um. Will man einen oder einige Texte untersuchen so ist spaCy oft die einfachste und schnellste Lösung für das Preprocessing. Anders sieht es aber beispielsweise aus, wenn eine bestimmte Analyse wie zum Beispiel die Einteilung in verschiedene Textkategorien auf eine sehr große Anzahl von Texten angewendet werden soll. In diesem Fall, sollte man in Erwägung ziehen auf ressourcenschonendere Alternativen wie zum Beispiel gensim auszuweichen.

Wer beim lesen genau aufgepasst hat, wird festgestellt haben, dass ich im Abschnitt POS-Tagging im Gegensatz zu den anderen Abschnitten auf ein kurzes Codebeispiel verzichtet habe. Dies möchte ich an dieser Stelle nachholen und dabei gleich eine Erweiterung des Pakets spaCy vorstellen: displaCy.

Displacy bietet die Möglichkeit, sich Zusammenhänge und Eigenschaften von Texten wie Named Entities oder eben POS-Tagging graphisch im Browser anzeigen zu lassen.

Nach ausführen des obigen Codes erhält man eine Ausgabe die wie folgt aussieht:

Nun öffnet man einen Browser und ruft die URL ‘http://127.0.0.1:5000’ auf (Achtung: localhost anstatt der IP funktioniert – warum auch immer – mit displacy nicht). Im Browser sollte nun eine Seite mit einem SVG-Bild geladen werden, welches wie folgt aussieht

Die Abbildung macht deutlich was POS-Tagging genau ist und warum es von Nutzen sein kann wenn man Informationen aus einem Text extrahieren will. Jedem Word (Token) ist eine Wortart zugeordnet und die Beziehung der einzelnen Worte durch Pfeile dargestellt. Dies ermöglicht es dem Computer zum Beispiel in dem Satzteil “der grüne Apfel”, das Adjektiv “grün” auf das Nomen “Apfel” zu beziehen und diesem somit als Eigenschaft zuzuordnen.

Nachdem dieser Artikel wichtige Schritte des Preprocessing von Texten beschrieben hat, geht es im nächsten Artikel darum was man an Texten eigentlich analysieren kann und welche Analysemöglichkeiten die verschiedenen für Python vorhandenen Module bieten.