5 Apache Spark Best Practices

Already familiar with the term big data, right? Despite the fact that we would all discuss Big Data, it takes a very long time before you confront it in your career. Apache Spark is a Big Data tool that aims to handle large datasets in a parallel and distributed manner. Apache Spark began as a research project at UC Berkeley’s AMPLab, a student, researcher, and faculty collaboration centered on data-intensive application domains, in 2009. 


Spark’s aim is to create a new framework that was optimized for quick iterative processing, such as machine learning and interactive data analysis while retaining Hadoop MapReduce’s scalability and fault-tolerant. Spark outperforms Hadoop in many ways, reaching performance levels that are nearly 100 times higher in some cases. Spark has a number of components for various types of processing, all of which are based on Spark Core. Today we will be going to discuss in brief the Apache  Spark and 5 of its best practices to look forward to-

What is Apache Spark?

Apache Spark is an open-source distributed system for big data workforces. For fast analytic queries against another size of data, it uses in-memory caching and optimised query execution. It is a parallel processing framework for grouped computers to operate large-scale data analytics applications. This could handle packet and real-time data processing and predictive analysis workloads.

It claims to support code reuse all over multiple workloads—batch processing, interactive queries, real-time analytics, machine learning, and graph processing—and offers development APIs in Java, Scala, Python, and R. With 365,000 meetup members in 2017, Apache Spark is becoming one of the most renowned big data distributed processing frameworks. Explore for Apache Spark Tutorial for more information.

5 best practices of Apache Spark

1. Begin with a small sample of the data.

Because we want to make big data work, we need to start with a small sample of data to see if we’re on the right track. In my project, I sampled 10% of the data and verified that the pipelines were working properly. This allowed me to use the SQL section of the Spark UI to watch the numbers grow throughout the flow while not having to wait too long for it to complete.

In my experience, if you attain your preferred runtime with a small sample, scaling up is usually simple.

2. Spark troubleshooting

For transformations, Spark seems to have a lazy loading behaviour. That is, it will not initiate the transformation computation; instead, it will keep records of the transformation requested. This makes it difficult to determine where in our code there are bugs or areas that need to be optimised. Splitting the code into sections with df.cache() and then using df.count() to force Spark to calculate the df at every section was one practise that we found useful.

Spark actions seem to be keen in that they cause the underlying action to perform a computation. So, if you’ve had a Spark action which you only call when it’s required, pay attention. A Spark action, for instance, is count() on a dataset. You can now inspect the computation of each section using the spark UI and identify any issues. It’s important to note that if you don’t use the sampling we mentioned in (1), you’ll probably end up with a very long runtime that’s difficult to debug.

Check out Apache Spark Training & Certification Course to get yourself certified in Apache Spark with industry-level skills.

3. Finding and resolving Skewness is a difficult task.

Having to look at the stage specifics in the spark UI and looking for just a major difference between both the max and median can help you find the Skewness:

Let’s begin with a definition of Skewness. As previously stated, our data is divided into partitions, and the size of each partition will most likely change as the progress of transformation. This can result in a large difference in size between partitions, indicating that our data is skew. This implies that a few of the tasks were markedly slower than the rest.

Why is this even a bad thing? Because it may cause other stages to stand in line for these few tasks, leaving cores idle. If you understand where all the Skewness has been coming from, you can fix it right away by changing the partitioning.

4. Appropriately cache

Spark allows you to cache datasets in memory. There are a variety of options to choose from:

  • Since the same operation has been computed several times in the pipeline flow, cache it.
  • To allow the required cache setting, use the persist API to enable caching (persist to disc or not; serialized or not).
  • Be cognizant of lazy loading and, if necessary, prime cache up front. Some APIs are eager, while others aren’t.
  • To see information about the datasets you’ve cached, go to the Storage tab in the Spark UI.
  • It’s a good idea to unpersist your cached datasets after you’ve finished using them to free up resources, especially if other people are using the cluster.

5. Spark has issues with iterative code.

It was particularly difficult. Spark uses lazy evaluation so that when the code is run, it only creates a computational graph, a DAG. Once you have an iterative process, however, this method can be very problematic so because DAG finally opens the prior iteration and then becomes extremely large, we mean extremely large. This may be too large for the driver to remember. Because the application is stuck, this makes it appear in the spark UI as if no jobs are running (which is correct) for an extended period of time — until the driver crashes.

This seems to be presently an obvious issue with Spark, and the workaround that worked for me was to use df.checkpoint() / df.reset() / df.reset() / df.reset() / df.reset() / df. every 5–6 iterations, call localCheckpoint() (find your number by experimenting a bit). This works because, unlike cache(), checkpoint() breaks the lineage and the DAG, saves the results and starts from a new checkpoint. The disadvantage is that you don’t have the entire DAG to recreate the df if something goes wrong.


Spark is now one of the most popular projects inside the Hadoop ecosystem, with many companies using it in conjunction with Hadoop to process large amounts of data. In June 2013, Spark was acknowledged into the Apache Software Foundation’s (ASF) entrepreneurial context, and in February 2014, it was designated as an Apache Top-Level Project. Spark could indeed run by itself, on Apache Mesos, or on Apache Hadoop, which is the most common. Spark is used by large enterprises working with big data applications because of its speed and ability to connect multiple types of databases and run various types of analytics applications.

Learning how to make Spark work its magic takes time, but these 5 practices will help you move your project forward and sprinkle some spark charm on your code.

Big Data mit Hadoop und Map Reduce!

Foto von delfi de la Rua auf Unsplash.

Hadoop ist ein Softwareframework, mit dem sich große Datenmengen auf verteilten Systemen schnell verarbeiten lassen. Es verfügt über Mechanismen, welche eine stabile und fehlertolerante Funktionalität sicherstellen, sodass das Tool für die Datenverarbeitung im Big Data Umfeld bestens geeignet ist. In diesen Fällen ist eine normale relationale Datenbank oft nicht ausreichend, um die unstrukturierten Datenmengen kostengünstig und effizient abzuspeichern.

Unterschiede zwischen Hadoop und einer relationalen Datenbank

Hadoop unterscheidet sich in einigen grundlegenden Eigenschaften von einer vergleichbaren relationalen Datenbank.

Eigenschaft Relationale Datenbank Hadoop
Datentypen ausschließlich strukturierte Daten alle Datentypen (strukturiert, semi-strukturiert und unstrukturiert)
Datenmenge wenig bis mittel (im Bereich von einigen GB) große Datenmengen (im Bereich von Terrabyte oder Petabyte)
Abfragesprache SQL HQL (Hive Query Language)
Schema Statisches Schema (Schema on Write) Dynamisches Schema (Schema on Read)
Kosten Lizenzkosten je nach Datenbank Kostenlos
Datenobjekte Relationale Tabellen Key-Value Pair
Skalierungstyp Vertikale Skalierung (Computer muss hardwaretechnisch besser werden) Horizontale Skalierung (mehr Computer können dazugeschaltet werden, um Last abzufangen)

Vergleich Hadoop und Relationale Datenbank

Bestandteile von Hadoop

Das Softwareframework selbst ist eine Zusammenstellung aus insgesamt vier Komponenten.

Hadoop Common ist eine Sammlung aus verschiedenen Modulen und Bibliotheken, welche die anderen Bestandteile unterstützt und deren Zusammenarbeit ermöglicht. Unter anderem sind hier die Java Archive Dateien (JAR Files) abgelegt, die zum Starten von Hadoop benötigt werden. Darüber hinaus ermöglicht die Sammlung die Bereitstellung von grundlegenden Services, wie beispielsweise das File System.

Der Map-Reduce Algorithmus geht in seinen Ursprüngen auf Google zurück und hilft komplexe Rechenaufgaben in überschaubarere Teilprozesse aufzuteilen und diese dann über mehrere Systeme zu verteilen, also horizontal zu skalieren. Dadurch verringert sich die Rechenzeit deutlich. Am Ende müssen die Ergebnisse der Teilaufgaben wieder zu seinem Gesamtresultat zusammengefügt werden.

Der Yet Another Resource Negotiator (YARN) unterstützt den Map-Reduce Algorithmus, indem er die Ressourcen innerhalb eines Computer Clusters im Auge behält und die Teilaufgaben auf die einzelnen Rechner verteilt. Darüber hinaus ordnet er den einzelnen Prozessen die Kapazitäten dafür zu.

Das Hadoop Distributed File System (HDFS) ist ein skalierbares Dateisystem zur Speicherung von Zwischen- oder Endergebnissen. Innerhalb des Clusters ist es über mehrere Rechner verteilt, um große Datenmengen schnell und effizient verarbeiten zu können. Die Idee dahinter war, dass Big Data Projekte und Datenanalysen auf großen Datenmengen beruhen. Somit sollte es ein System geben, welches die Daten auch stapelweise speichert und dadurch schnell verarbeitet. Das HDFS sorgt auch dafür, dass Duplikate von Datensätzen abgelegt werden, um den Ausfall eines Rechners verkraften zu können.

Map Reduce am Beispiel

Angenommen wir haben alle Teile der Harry Potter Romane in Hadoop PDF abgelegt und möchten nun die einzelnen Wörter zählen, die in den Büchern vorkommen. Dies ist eine klassische Aufgabe bei der uns die Aufteilung in eine Map-Funktion und eine Reduce Funktion helfen kann.

Bevor es die Möglichkeit gab, solche aufwendigen Abfragen auf ein ganzes Computer-Cluster aufzuteilen und parallel berechnen zu können, war man gezwungen, den kompletten Datensatz nacheinander zu durchlaufen. Dadurch wurde die Abfragezeit auch umso länger, umso größer der Datensatz wurde. Der einzige Weg, um die Ausführung der Funktion zu beschleunigen ist es, einen Computer mit einem leistungsfähigeren Prozessor (CPU) auszustatten, also dessen Hardware zu verbessern. Wenn man versucht, die Ausführung eines Algorithmus zu beschleunigen, indem man die Hardware des Gerätes verbessert, nennt man das vertikale Skalieren.

Mithilfe von MapReduce ist es möglich eine solche Abfrage deutlich zu beschleunigen, indem man die Aufgabe in kleinere Teilaufgaben aufsplittet. Das hat dann wiederum den Vorteil, dass die Teilaufgaben auf viele verschiedene Computer aufgeteilt und von ihnen ausgeführt werden kann. Dadurch müssen wir nicht die Hardware eines einzigen Gerätes verbessern, sondern können viele, vergleichsweise leistungsschwächere, Computer nutzen und trotzdem die Abfragezeit verringern. Ein solches Vorgehen nennt man horizontales Skalieren.

Kommen wir zurück zu unserem Beispiel: Bisher waren wir bildlich so vorgegangen, dass wir alle Harry Potter Teile gelesen haben und nach jedem gelesenen Wort die Strichliste mit den einzelnen Wörtern einfach um einen Strich erweitert haben. Das Problem daran ist, dass wir diese Vorgehensweise nicht parallelisieren können. Angenommen eine zweite Person will uns unterstützen, dann kann sie das nicht tun, weil sie die Strichliste, mit der wir gerade arbeiten, benötigt, um weiterzumachen. Solange sie diese nicht hat, kann sie nicht unterstützen.

Sie kann uns aber unterstützen, indem sie bereits mit dem zweiten Teil der Harry Potter Reihe beginnt und eine eigene Strichliste nur für das zweite Buch erstellt. Zum Schluss können wir dann alle einzelnen Strichlisten zusammenführen und beispielsweise die Häufigkeit des Wortes “Harry” auf allen Strichlisten zusammenaddieren.

MapReduce am Beispiel von Wortzählungen in Harry Potter Büchern

MapReduce am Beispiel von Wortzählungen in Harry Potter Büchern | Source: Data Basecamp

Dadurch lässt sich die Aufgabe auch relativ einfach horizontal skalieren, indem jeweils eine Person pro Harry Potter Buch arbeitet. Wenn wir noch schneller arbeiten wollen, können wir auch mehrere Personen mit einbeziehen und jede Person ein einziges Kapitel bearbeiten lassen. Am Schluss müssen wir dann nur alle Ergebnisse der einzelnen Personen zusammennehmen, um so zu einem Gesamtergebnis zu gelangen.

Das ausführliche Beispiel und die Umsetzung in Python findest Du hier.

Aufbau eines Hadoop Distributed File Systems

Der Kern des Hadoop Distributed File Systems besteht darin die Daten auf verschiedene Dateien und Computer zu verteilen, sodass Abfragen schnell bearbeitet werden können und der Nutzer keine langen Wartezeiten hat. Damit der Ausfall einer einzelnen Maschine im Cluster nicht zum Verlust der Daten führt, gibt es gezielte Replikationen auf verschiedenen Computern, um eine Ausfallsicherheit zu gewährleisten.

Hadoop arbeitet im Allgemeinen nach dem sogenannten Master-Slave-Prinzip. Innerhalb des Computerclusters haben wir einen Knoten, der die Rolle des sogenannten Masters übernimmt. Dieser führt in unserem Beispiel keine direkte Berechnung durch, sondern verteilt lediglich die Aufgaben auf die sogenannten Slave Knoten und koordiniert den ganzen Prozess. Die Slave Knoten wiederum lesen die Bücher aus und speichern die Worthäufigkeit und die Wortverteilung.

Dieses Prinzip wird auch bei der Datenspeicherung genutzt. Der Master verteilt Informationen aus dem Datensatz auf verschiedenen Slave Nodes und merkt sich, auf welchen Computern er welche Partitionen abgespeichert hat. Dabei legt er die Daten auch redundant ab, um Ausfälle kompensieren zu können. Bei einer Abfrage der Daten durch den Nutzer entscheidet der Masterknoten dann, welche Slaveknoten er anfragen muss, um die gewünschten Informationen zu erhalten.

Kubernetes – der Steuermann für dein Big Data Projekt!

Kubernetes ist ein Container-Orchestrierungssystem. Damit lassen sich also Anwendungen auf verschiedene Container aufteilen, wodurch sie effizient und ausfallsicher ausgeführt werden können. Kubernetes ist ein Open-Source-Projekt und wurde erstmals im Jahr 2014 veröffentlicht. Es ist sehr leistungsfähig und kann verteilte Systeme, die über Tausende von Rechnern verstreut sind, verwalten.

In diesem und in vielen anderen Beiträgen zum Thema Kubernetes wird die Abkürzung k8s genutzt. Sie kommt daher, dass das Wort Kubernetes mit k beginnt, mit s endet und dazwischen 8 Buchstaben stehen. Bevor wir beginnen, noch eine kleine Anmerkung, woher der Name Kubernetes eigentlich stammt: Das griechische Wort „Kubernetes“ bedeutet Steuermann und beschreibt genau das, was Kubernetes macht, es steuert. Es steuert verschiedene sogenannte Container und koordiniert deren Ausführung.

Was sind Container und warum brauchen wir sie?

Eines der bestimmenden Merkmale von Big Data oder Machine Learning Projekte ist, dass ein einzelner Computer in vielen Fällen nicht ausreicht, um die gewaltigen Rechenlasten bewältigen zu können. Deshalb ist es notwendig, mehrere Computer zu verwenden, die sich die Arbeit teilen können. Zusätzlich können durch ein solches System auch Ausfälle von einzelnen Computern kompensiert werden, wodurch wiederum sichergestellt ist, dass die Anwendung durchgehend erreichbar ist. Wir bezeichnen eine solche Anordnung von Computern als Computing-Cluster oder verteiltes System für paralleles Rechnen.

Im Mittelpunkt des Open Source Projektes Docker stehen die sogenannten Container. Container sind alleinstehende Einheiten, die unabhängig voneinander ausgeführt werden und immer gleich ablaufen. Docker-Container können wir uns tatsächlich relativ praktisch wie einen Frachtcontainer vorstellen. Angenommen, in diesem Container arbeiten drei Menschen an einer bestimmten Aufgabe (Ich weiß, dass dies wahrscheinlich gegen jedes geltende Arbeitsschutzgesetz verstößt, aber es passt nun mal sehr gut in unser Beispiel).

In ihrem Container finden sie alle Ressourcen und Maschinen, die sie für ihre Aufgabe benötigen. Über eine bestimmte Lucke im Container bekommen sie die Rohstoffe geliefert, die sie benötigen, und über eine andere Lucke geben sie das fertige Produkt heraus. Unser Schiffscontainer kann dadurch ungestört und weitestgehend autark arbeiten. Den Menschen darin wird es nicht auffallen, ob sich das Schiff inklusive Container gerade im Hamburger Hafen, in Brasilien oder irgendwo bei ruhigem Seegang auf offenem Meer befindet. Solange sie kontinuierlich Rohstoffe geliefert bekommen, führen sie ihre Aufgabe aus, egal wo sie sind.

Kubernetes Containers - Foto von Ian Taylor auf Unsplash

Foto von Ian Taylor auf Unsplash

Genauso verhält es sich mit Docker Containern im Softwareumfeld. Es handelt sich dabei um genau definierte, abgeschlossene Applikationen, die auf verschiedenen Maschinen/Rechnern laufen können. Solange sie die festgelegten Inputs kontinuierlich erhalten, können sie auch kontinuierlich weiterarbeiten, unabhängig von ihrer Umgebung.

Was macht Kubernetes?

Wir nutzen Computing-Cluster, um rechenintensive Projekte, wie Machine Learning Modelle, auf mehreren Rechnern zuverlässig und effizient laufen lassen zu können. In Containern wiederum programmieren wir Unteraufgaben, die in sich abgeschlossen sein können und die immer gleich ablaufen, egal ob auf Rechner 1 oder Rechner 2. Das klingt doch eigentlich ausreichend, oder?

Verteilte Systeme bieten gegenüber Einzelrechnern neben Vorteilen auch zusätzliche Herausforderungen, beispielsweise bei der gemeinsamen Nutzung von Daten oder der Kommunikation zwischen den Rechnern innerhalb des Clusters. Kubernetes übernimmt die Arbeit die Container auf das Cluster zu verteilen und sorgt für den reibungslosen Ablauf des Programmes. Dadurch können wir uns auf das eigentliche Problem, also unseren konkreten Anwendungsfall, konzentrieren.

Kubernetes ist also wie der Kapitän, oder Steuermann, auf dem großen Containerschiff, der die einzelnen Container auf seinem Schiff richtig platziert und koordiniert.

Aufbau eines Kubernetes Clusters

Kubernetes wird normalerweise auf einem Cluster von Computern installiert. Jeder Computer in diesem Cluster wird als Node bezeichnet. Auf einem Computer bzw. Node wiederum laufen mehrere sogenannte Pods. Auf den Pods sind die schlussendlichen Container mit den kleineren Applikationen installiert und können in einem lokalen System kommunizieren.

Damit die Pods und die Container darin ohne Komplikationen laufen können, gibt es einige Hilfsfunktionen und -komponenten im Kubernetes Cluster, die dafür sorgen, dass alle Systeme reibungslos funktionieren:

Aufbau Kubernetes Cluster | Abbildung: Kubernetes

Aufbau Kubernetes Cluster | Abbildung: Kubernetes

  • Control Plane: Das ist der Rechner, welcher das komplette Cluster überwacht. Auf diesem laufen keine Pods für die Anwendung. Stattdessen werden den einzelnen Pods die Container zugewiesen, die auf ihnen laufen sollen.
  • Sched: Der Scheduler hält innerhalb des Clusters Ausschau nach neu erstellen Pods und teilt diese zu bestehenden Nodes zu.
  • ETCD: Ein Speicher für alle Informationen, die im Cluster anfallen und aufbewahrt werden müssen, bspw. Metadaten zur Konfiguration.
  • Cloud Controller Manager (CCM): Wenn ein Teil des Systems auf Cloud Ressourcen läuft, kommt diese Komponente zum Einsatz und übernimmt die Kommunikation und Koordination mit der Cloud.
  • Controller Manager (CM): Die wichtigste Komponente im Kubernetes Cluster überwacht das Cluster und sucht nach ausgefallenen Nodes, um dann die Container und Pods neu zu verteilen.
  • API: Diese Schnittstelle ermöglicht die Kommunikation zwischen den Nodes und dem Control Plane.


Die Nodes sind deutlich schlanker aufgebaut als das Control Plane und enthalten neben den Pods zwei wesentliche Komponenten zur Überwachung:

  • Kubelet: Es ist das Control Plane innerhalb eines Nodes und sorgt dafür, dass alle Pods einwandfrei laufen.
  • Kube-Proxy (k-proxy): Diese Komponente verteilt den eingehenden Node Traffic an die Pods, indem es das Netzwerk innerhalb des Nodes erstellt.


Ein Netzwerk aus verschiedenen Computern wird als Cluster bezeichnet und wird genutzt, um große Rechenlasten auf mehrere Computer aufteilen und dadurch effizienter gestalten zu können. Die kleinste Einheit, in die man eine Applikation aufteilen kann, ist der Docker Container. Dieser beinhaltet eine Unteraufgabe des Programms, die autark, also unabhängig vom System, ausgeführt wird.

Da es in einem Computing-Cluster sehr viele dieser Container geben kann, übernimmt Kubernetes für uns das Management der Container, also unter anderem deren Kommunikation und Koordinierung. Das Kubernetes Cluster hat dazu verschiedene Komponenten die dafür sorgen, dass alle Container laufen und das System einwandfrei funktioniert.

Process Mining mit Fluxicon Disco – Artikelserie

Dieser Artikel der Artikelserie Process Mining Tools beschäftigt sich mit dem Anbieter Fluxicon. Das im Jahr 2010 gegründete Unternehmen, bis heute geführt von den zwei Gründern Dr. Anne Rozinat und Dr. Christian W. Günther, die beide bei Prof. Wil van der Aalst in Eindhoven promovierten, sowie einem weiteren Mitarbeiter, ist eines der ersten Tool-Anbieter für Process Mining. Das Tool Disco ist das Kernprodukt des Fluxicon-Teams und bietet pures Process Mining.

Die beiden Gründer haben übrigens eine ganze Reihe an Artikeln zu Process Mining (ohne Sponsoring / ohne Entgelt) veröffentlicht.

Lösungspakete: Standard-Lizenz
Zielgruppe:  Lauf Fluxicon für Unternehmen aller Größen.
Datenquellen: Keine Standard-Konnektoren. Benötigt fertiges Event Log.
Datenvolumen: Unlimitierte Datenmengen, Beschränkung nur durch Hardware.
Architektur: On-Premise / Desktop-Anwendung

Diese Software für Process Mining ist für jeden, der in Process Mining reinschnuppern möchte, direkt als Download verfügbar. Die Demo-Lizenz reicht aus, um eigene Event-Logs auszuprobieren oder das mitgelieferte Event-Log (Sandbox) zu benutzen. Es gibt ferner mehrere Evaluierungslizenz-Modelle sowie akademische Lizenzen via Kooperationen mit Hochschulen.

Fluxicon Disco erfreut sich einer breiten Nutzerbasis, die seit 2012 über das jährliche ‘Process Mining Camp’ (https://fluxicon.com/camp/index und http://processminingcamp.com ) und seit 2020 auch über das monatliche ‘Process Mining Café’ (https://fluxicon.com/cafe/) vorangetrieben wird.

Bedienbarkeit und Anpassungsfähigkeit der Analysen

Fluxicon Disco bietet den Vorteil des schnellen Einstiegs in datengetriebene Prozessanalysen und ist überaus nutzerfreundlich für den Analysten. Die Oberflächen sind leicht zu bedienen und die Bedeutung schnell zu erfassen oder zumindest zu erahnen. Die Filter-Möglichkeiten sind überraschend umfangreich und äußerst intuitiv bedien- und kombinierbar.

Fluxicon Disco Process Mining

Fluxicon Disco Process Mining – Das Haupt-Dashboard zeigt den Process Flow aus der Rekonstruktion auf Basis des Event Logs. Hier wird die Frequenz-Ansicht gezeigt, die Häufigkeiten von Cases und Events darstellt.

Disco lässt den Analysten auf Process Mining im Kern fokussieren, es können keine Analyse-Diagramme strukturell hinzugefügt, geändert oder gelöscht werden, es bleibt ein statischer Report ohne weitere BI-Funktionalitäten.

Die Visualisierung des Prozess-Graphen im Bereich “Map” ist übersichtlich, stets gut lesbar und leicht in der Abdeckung zu steuern. Die Hauptmetrik kann zwischen der Frequenz- zur Zeit-Orientierung hin und her geschaltet werden. Neben der Hauptmetrik kann auch eine zweite Metrik (Secondary Metric) zur Ansicht hinzugefügt werden, was sehr sinnvoll ist, wenn z. B. neben der durchschnittlichen Zeit zwischen Prozessaktivitäten auch die Häufigkeit dieser Prozessfolgen in Relation gesetzt werden soll.

Die Ansicht “Statistics” zeigt die wesentlichen Einblicke nach allen Dimensionen aus statistischer Sicht: Welche Prozessaktivitäten, Ressourcen oder sonstigen Features treten gehäuft auf? Diese Fragen werden hier leicht beantwortet, ohne dass der Analyst selbst statistische Berechnungen anstellen muss – jedoch auch ohne es zu dürfen, würde er wollen.

Die weitere Ansicht “Cases” erlaubt einen Einblick in die Prozess-Varianten und alle Einzelfälle innerhalb einer Variante. Diese Ansicht ist wichtig für Prozessoptimierer, die Optimierungspotenziale vor allem in häufigen, sich oft wiederholenden Prozessverläufen suchen möchten. Für Compliance-Analysten sind hingegen eher die oft vielen verschiedenen Einzelfälle spezieller Prozessverläufe der Fokus.

Für Einsteiger in Process Mining als Methodik und Disco als Tool empfiehlt sich übrigens das Process Mining Online Book: https://processminingbook.com


Fluxicon Disco ist eine Desktop-Anwendung, die nicht als Cloud- oder Server-Version verfügbar ist. Es ist möglich, die Software auf einem Windows Application Server on Premise zu installieren und somit als virtuelle Umgebung via Microsoft Virtual Desktop oder via Citrix als virtuelle Anwendung für mehrere Anwender zugleich verfügbar zu machen. Allerdings ist dies keine hochgradige Integration in eine Enterprise-IT-Infrastruktur.

Auch wird von Disco vorausgesetzt, dass Event Logs als einzelne Tabellen bereits vorliegen müssen. Dieses Tool ist also rein für die Analyse vorgesehen und bietet keine Standardschnittstellen mit vorgefertigten Skripten zur automatischen Herstellung von Event Logs beispielsweise aus Salesforce CRM oder SAP ERP.

Grundsätzlich sollte Process Mining methodisch stets als Doppel-Disziplin betrachtet werden: Der erste Teil des Process Minings fällt in die Kategorie Data Engineering und umfasst die Betrachtung der IT-Systeme (ERP, CRM, SRM, PLM, DMS, ITS,….), die für einen bestimmten Prozess relevant sind, und die in diesen System hinterlegten Datentabellen als Datenquellen. Die in diesen enthaltenen Datenspuren über Prozessaktivitäten müssen dann in ein Prozessprotokoll überführt und in ein Format transformiert werden, das der Inputvoraussetzung als Event Log für das jeweilige Process Mining Tool gerecht wird. Minimalanforderung ist hierbei zumindest eine Vorgangsnummer (Case ID), ein Zeitstempel (Event Time) einer Aktivität und einer Beschreibung dieser Aktivität (Event).

Das Event Log kann dann in ein oder mehrere Process Mining Tools geladen werden und die eigentliche Prozessanalyse kann beginnen. Genau dieser Schritt der Kategorie Data Analytics kann in Fluxicon Disco erfolgen.

Zum Einspeisen eines Event Logs kann der klassische CSV-Import verwendet werden oder neuerdings auch die REST-basierte Airlift-Schnittstelle, so dass Event Logs direkt von Servern On-Premise oder aus der Cloud abgerufen werden können.

Prinzip des direkten Zugriffs auf Event Logs von Servern via Airlift.

Import von Event Logs als CSV (“Open file”) oder von Servern auch aus der Cloud.

Sind diese Limitierungen durch die Software für ein Unternehmen, bzw. für dessen Vorhaben, vertretbar und bestehen interne oder externe Ressourcen zum Data Engineering von Event Logs, begeistert die Einfachheit von Process Mining mit Fluxicon Disco, die den schnellsten Start in diese Analyse verspricht, sofern die Daten als Event Log vorbereitet vorliegen.


Die Skalierbarkeit im Sinne hochskalierender Datenmengen (Big Data Readiness) sowie auch im Sinne eines Ausrollens dieser Analyse-Software auf einer Konzern-Ebene ist nahezu nicht gegeben, da hierzu Benutzer-Berechtigungsmodelle fehlen. Ferner darf hierbei nicht unberücksichtigt bleiben, dass Disco, wie zuvor erläutert, ein reines Analyse-/Visualisierungstool ist und keine Event Logs generieren kann (der Teil der Arbeit, der viele Hardware Ressourcen benötigt).

Für die reine Analyse läuft Disco jedoch auch mit vielen Daten sehr zügig und ist rein auf Ebene der Hardware-Ressourcen limitiert. Vertikales Upscaling ist auf dieser Ebene möglich, dazu empfiehlt sich diese Leselektüre zum System-Benchmark.


Fluxicon Disco ist eines der Process Mining Tools der ersten Stunde und wird auch heute noch stetig vom Fluxicon Team mit kleinen Updates versorgt, die Weiterentwicklung ist erkennbar, beschränkt sich jedoch auf Process Mining im Kern.


Die Preisgestaltung wird, wie auch bei den meisten anderen Anbietern für Process Mining Tools, nicht transparent kommuniziert. Aus eigener Einsatzerfahrung als Berater können mit Preisen um 1.000 EUR pro Benutzer pro Monat gerechnet werden, für Endbenutzer in Anwenderunternehmen darf von anderen Tarifen ausgegangen werden.

Studierende von mehr als 700 Universitäten weltweit (siehe https://fluxicon.com/academic/) können Fluxicon Disco kostenlos nutzen und das sehr unkompliziert. Sie bekommen bereits automatisch akademische Lizenzen, sobald sie sich mit ihrer Uni-Email-Adresse in dem Tool registrieren. Forscher und Studierende, deren Uni noch kein Partner ist, können sehr leicht auch individuelle akademische Lizenzen anfragen.


Fluxicon Disco ist ein Process Mining Tool der ersten Stunde und das bis heute. Das Tool beschränkt sich auf das Wesentliche, bietet keine Big Data Plattform mit Multi-User-Management oder anderen Möglichkeiten integrierter Data Governance, auch sind keine Standard-Schnittstellen zu anderen IT-Systemen vorhanden. Auch handelt es sich hierbei nicht um ein Tool, das mit anderen BI-Tools interagieren oder gar selbst zu einem werden möchte, es sind keine eigenen Report-Strukturen erstellbar. Fluxicon Disco ist dafür der denkbar schnellste Einstieg mit minimaler Rüstzeit in Process Mining für kleine bis mittelständische Unternehmen, für die Hochschullehre und nicht zuletzt auch für Unternehmensberatungen oder Wirtschaftsprüfungen, die ihren Kunden auf schlanke Art und Weise Ist-Prozessanalysen ergebnisorientiert anbieten möchten.

Dass Disco seitens Fluxicon nur für kleine und mittelgroße Unternehmen bestimmt ist, ist nicht ganz zutreffend. Die meisten Kunden sind grosse Unternehmen (Banken, Versicherungen, Telekommunikationsanabieter, Ministerien, Pharma-Konzerne und andere), denn diese haben komplexe Prozesse und somit den größten Optimierungsbedarf. Um Process Mining kommen die Unternehmen nicht herum und so sind oft auch mehrere Tools verschiedener Anbieter im Einsatz, die sich gegenseitig um ihre Stärken ergänzen, für Fluxicon Disco ist dies die flexible Nutzung, nicht jedoch das unternehmensweite Monitoring. Der flexible und schlanke Einsatz von Disco in vielen Unternehmen zeigt sich auch mit Blick auf die Sprecher und Teilnehmer der jährlichen Nutzerkonferenz, dem Process Mining Camp.

AI Platforms – A Comprehensive Guide

A comprehensive guide compiled to introduce readers to AI platforms, their types, and benefits. A concluding section to discuss AI platform selection strategy with Attri’s Best of Breed approach to build AI platforms. 

Don’t you think that this century is really fortunate? In my opinion, the answer is yes; we witnessed technological transformations and their miracles that created substantial changes in our lifestyle. While talking about these life-changing technological revolutions, AI or artificial intelligence deserves a front seat due to its incredible contribution and capabilities. Now everyone knows AI has limitless potential simply from creating funny faces in mobile to taking informed and intelligent business decisions. In the last 50 years, we have progressed by leaps and bounds to give machines the ability to understand, help and mimic us.

Artificial intelligence enables machines to imitate human intelligence across a variety of domains ranging from problem-solving and reasoning to General Intelligence and in-depth knowledge representation. With tremendous progress in AI, another enabler came into existence and received attention—AI platforms. AI-platform is a layer that integrates all the tools and processes required to build, deploy and monitor ML models. In this article, we shall go through the various aspects of AI platforms covering a range of topics like AI Platform types, the benefits such platforms entail, selection strategy in detail as well as a brief look into Attri’s industry contribution with an Open AI Platform.

Diving Deeper With AI Platforms

The AI Platform acts as a layer over your current AI infrastructure and integrates all the tools and processes required to develop ML models. It provides you the flexibility to integrate all your ML models under a single roof. With this flexibility, you can create and deploy several ML models over the platform. Further, you can even monitor these models to confirm that they are serving their intended purpose. AI platform makes your AI adoption easy by attaining the following requirements–

  • Use of vast data to develop ML solutions.
  • Ensure transparency and reproducibility within a project
  • Accelerate collaboration and governance within teams
  • Ensure scalability for ever-growing machine learning demands

An ideal AI platform should ensure the following features for better addressing different challenges.

  • Seamless access control: Ensure robust access control to team members in order to conquer the challenge of centralized data access with AI projects.
  • Excellent monitoring: Integrate top-notch observability practices while developing ML models.
  • Data and technology-agnostic integration: Seamless experience to enterprises with infrastructure set up responsibility handed over to platform providers
  • All-inclusive Platform: Single platform to facilitate all underlying tasks from data preparation to model deployment
  • Continuous Improvement: Ability to produce and deploy models as a reproducible package and thereby integrate changes with models that are already in production
  • Rapid Processing: Faster data preparation and powerful visual interfaces

AI Platform Classification

With loads of AI platform providers available in the market, AI platform classification becomes a tough job, as it requires thinking separately on each platform’s offerings, its features, and cost factors. Also, you need to check whether AI solutions are open source AI platforms or proprietary offerings.

We have decided to present an AI platform classification based on its striking features and offerings. With this, we have classified AI platforms across three main classes—

  • AI cloud-based platforms
  • AI conversational platforms
  • No code AI platforms

Cloud based AI Platforms

All major cloud providers offer cloud-based AI platforms to boost businesses with AI capabilities. With cloud AI platforms, enterprises can leverage cloud providers’ matchless technical expertise to overcome affordability and data requirement challenges associated with AI implementation. Cloud-based AI offerings benefit businesses with economic AI solutions, defined and pre-packaged services, lower risks, and modern technology.

Amazon Web Services

AWS offers a comprehensive set of AI solutions to conquer major hurdles in the AI adoption journey of businesses. AWS has been recognized as the topmost cloud AI partner with its broad capable portfolio. AWS pre-trained models cater to diverse use cases like forecasting, recommendations, computer vision, language interpretation, customer engagement, and safety for deploying ML models at scale. Amazon also provides text analytics, NLP, chatbots, and document analysis solutions. Fully managed AWS packages amplify your experience with minimum resource requirements and wizard-based friendly model development experience. Hence, AWS is one of the top cloud AI partners that cater to your AI adoption needs.

Google cloud

 The Google Cloud Platform (GCP) is a Google offering for cloud-driven computing services devised to support multiple use cases such as hosting containerized applications, massive-scale data analytics platforms, and even applying ML and AI for business use cases. Google AI Platform is a Google Cloud offering that helps build, deploy and manage machine learning models in the cloud.

Google leverages enterprise AI experience through its consumer-facing products. Google helps improve customer satisfaction through Contact Center AI. Google offering DialogFlow CX is used to create advanced chatbots that handle customer messaging, response, and voice recognition. Digiflow is applied to create virtual agents for messaging services, mobile apps, and IoT devices.

Google’s Cloud Vision API is beneficial to recognize objects, logos, and landmarks within content or images. Google provides Natural Language API to bring more clarity in content classification, entities, syntax, and sentiments. Further, Google speech API helps in converting audio to text and recognizing 110 languages.

Google’s Cloud ML services facilitate better decision-making with end-to-end ML solutions. Google offers an all-inclusive ML development platform that enables effective decision-making backed by explainable AI, continuous evaluation, data labeling, pipelines, training, and what-if tool. This platform is based on the TensorFlow framework and it enables building predictive models for various scenarios.

Kubeflow is a Cloud-Native and open-source platform that helps you build portable ML pipelines that can be executed on-premises or on the cloud. With this, you can access Google technologies like TPUs, TensorFlow, and TFX tools as you deploy your ML models in production.

For expert ML developers, Google provides an Open Source AI platform with TensorFlow models that are trained for various scenarios. It offers an excellent prediction service using trained models.

Microsoft Azure

Similar to Amazon Web Services, Microsoft Azure ML capabilities are based on its real-time and live applications. Azure provides superior machine learning capabilities to develop, train, and deploy machine learning models through Azure Machine Learning, Azure Databricks, and ONNX.

  • Azure Machine Learning

A Python-based ML service to facilitate automated machine learning.

  • ONNX

An open-source model format enables machine learning through various frameworks and hardware platforms of the user’s choice.

  • Azure Cognitive Search

Formerly known as Azure Search,this is the only cloud search service that allows built-in AI capabilities to explore content effectively at scale. Microsoft empowers the user with cognitive search services like text analytics, translation, document analytics, custom vision, and Azure Machine Learning solutions.

IBM Cloud

IBM has brought Watson studio a data analysis application to accelerate innovation and ML-centric practices in business.  IBM Cloud AI Platform offers 170 services with more emphasis on data-speech conversions and analytics. Watson Studio offers an all-inclusive suite to work with data and train, build and deploy ML models.

An innovative giant IBM also brought AI based learning platform recently to aid academic stakeholder like students, researchers and teachers.

AI Conversational Platforms

Conversational AI opens new doors for automated conversations between an enterprise and its customers. These conversations include messaging or voice-based communication platforms to enable text or audio-based conversation.

Conversational platforms leverage your customer experience with a range of applications such as follow-up, guidance, or the resolution of customer queries and round-the-clock support. These platforms are beneficial to drive more leads, increase conversions by cross-selling and upselling, promotional efforts, customer research, queries resolution and customer feedback handling, etc.

AI technology helps systems to mimic human conversations to a certain level and with great accuracy. An AI offering- Natural Language processing is used to shape these conversations by understanding intent, text, speech, and languages.

Intelligent Virtual Assistants

The intelligent virtual assistants represent an advanced level of Conversational AI and their discussion is incomplete without a mention to Siri and Alexa. Most popular intelligent virtual assistants include Siri by Apple, Alexa by Amazon, Google Assistant, and Bixby by Samsung. While Alexa performs as a voice assistant for the home, Siri and Bixby stand as mobile assistants with numerous operations support like navigation, text-to-speech, response to weather, quick reply, and address search.

SAP Conversational AI

SAP Conversational AI is one of the leading conversational AI platforms. With its friendly UI and multiple versioning, it offers a better experience of mimicking human conversations. SAP Conversational AI Platform uses NLP to facilitate developing chatbot that works more humanely and serves your customers 24*7. Its striking features include—

  • Simple integration
  • NLP capabilities
  • Analytics tools to help you
  • Multi-language support


A powerful self-learning Conversational AI Platform enriched with NLP capabilities and machine learning. It secures top position in the Conversational AI Platform list due to its learning from previous conversations and improving responses over time. Its feature set include—

  • No technical expertise required
  • Self-learning abilities
  • NLP capabilities


An enterprise-grade Conversational AI Platform to cater to your consumer as well as staff needs. It helps to build a virtual chatbot for any suitable platform without compromising the safety and security standards. Its major features cover—

  • The high degree of customization for chatbots
  • Comprehensive analytics with FAQs and alerts
  • Simple integration with ML models and channels
  • Flexible deployment
  • Supported with a multi-pronged NLP engine


It is an excellent option as a Deep-Domain Conversational AI Platform with NLP capabilities. It can be used for both text-based and voice-based virtual assistants. This platform effectively caters to multiple industries and their numerous use cases. Check its striking features list—

  • Open-source platform
  • NLP capabilities
  • Supports discovering on-demand video or music
  • Quick chat-based transactions

No Code AI Platforms

As discussed above, AI platform classification necessitates platform considerations from various perspectives. We are introducing another category of AI platforms—No Code AI Platforms. The motivation behind introducing these platforms is to encourage enterprise AI adoption while keeping AI implementation costs low and minimizing dependencies on skilled professionals. Many IT giants are now offering no-code AI Platforms to enterprises for their AI adoption.

Google ML Kit

Google ML Kit comes with Android and iOS and it facilitates the integration of functions with lesser codes or with minimum knowledge of machine learning algorithms. This open source AI Platform supports different features such as text recognition, face detection, and landmark recognition.

RapidMiner Studio

RapidMiner Studio enables powerful data analytics with drag and drop features. Rapidminer Studio allows easy integration with databases, warehouses, social media for easy data access by authorized persons.

ML Platform Selection Strategy

Having discussed so many types of ML platforms, their features, and offerings, the next question is–how to select the best ML Platform for an enterprise AI adoption. Well, to answer this Million-Dollar question, we need to consider a few key aspects, such as

  • Who will use and benefit from the AI Platform? It is required to find out AI platform users here, the data science team, analytics team, developers, and how the platform will benefit each stakeholder.
  • The next aspect is to explore the skill levels of AI platform users, are they competent to handle ML development and analytics requirements with years of experience
  • Proficiency of users with programming languages
  • The next point in finalizing the AI platform strategy is to conclude code-first or code-free approaches to streamline AI workflows. This aspect can be studied by thinking about different attributes such as data preparation ease, feature engineering automation, ML algorithms, Model Deployment ease, and platform integration aspects.

Once you come up with answers to these queries, you will be able to finalize the best AI Platform Selection strategy for your enterprise. It can be a unique cloud platform, or even it can be a hybrid solution with a “best-of-breed” approach.

All-in-one platform strategy involves getting one end-to-end platform for the entire AI project lifecycle from raw data prep to ETL to building and operationalizing models followed by monitoring and governance of systems.

The best-of-breed approach allows using the preferred and custom tools for each phase of the lifecycle and aligning these tools together to build a customized platform solution for AI adoption.

This approach offers an excellent AI platform solution for organizations looking for flexible, inexpensive, change-oriented AI solutions and having a DIY spirit. With this mix-and-match approach, you can combine APIs offered by different cloud platforms and deliver AI solutions that cater to your AI use cases. Organizations using the best-of-breed approach are more comfortable with technology shifts with their abilities to use, adopt and swap out tools as requirement changes.

Business Process AI Transformation Simplified With Attri’s Open AI Platform

At Attri, we provide AI platform solutions to diverse industry verticals. With our flagship Open AI Platform, we heighten your AI adoption experience with a rich array of platform features like—

  • Customizable best-of-breed architecture
  • Utilize existing infrastructure
  • AI as a platform solution
  • Reduced effort in migrating to a new technology
  • Centralized Monitoring and Governance
  • Explainable and Responsible AI

We help you achieve your business process transformation goals with our unique AI offerings such as Open AI Platform  and Open AI solutions.

Our AI platform assures multiple benefits to your enterprise while keeping AI adoptions costs low and ensuring faster AI implementations. We can summarize the benefits of Attri Open AI Platform as under–

No efforts in reinventing complete AI suites

Attri’s AI Platform integrates multiple AI services and eliminates the need for reinventing complete AI suites. The platform delights enterprises with scalability, the ability to reuse current infrastructure, and customizable architecture.

Accelerated Go To Market

Attri’s Open AI Platform ensures accelerated GTM with a sincere approach to testing, reviewing, and finalizing reference templates for different industries.

No vendor lock-in

With Open AI Platform, we bring client-friendly policies such as no vendor lock-in and flexibility to choose their preferred tools and technology.

High reliability

We keep our AI Platform highly reliable with a comprehensive testing approach. We also meet the growing requirements of enterprises by ensuring high scalability with our open AI platform.

Get connected with us for your enterprise AI adoption requirements.

Know more about our Open AI Platform…

Artikelserie: BI Tools im Vergleich – Qlik Sense

Dies ist ein Artikel der Artikel-Serie “BI Tools im Vergleich – Einführung und Motivation“, zu der auch die vorab sehr lesenswerten einführenden Worte und die Ausführungen zur Datenbasis gehören. Auf Grundlage derselben Daten wurde analog zu diesem Artikel hier auch ein Artikel über Microsoft Power BI und einen zu Tableau.

Übrigens gibt es auch Erweiterungen für Qlik Sense, die Process Mining ermöglichen. Eine dieser Erweiterungen ist die von MEHRWERK Process Mining.


Neben Qlik Sense gibt es auch das lang bewährte Qlik View, dass auf der gleichen In-Memory-Kerntechnologie basiert. Qlik Sense wurde im Jahr 2014 vom schwedischen Softwareunternehmen Qlik Tech herausgebracht und bei Qlik Sense liegt auch der Fokus der Weiterentwicklung. Es handelt sich um Self-Service-BI und eine Plattform für Visual Data Analysis. Dabei gibt es die Möglichkeit einer On Premise Server Version (interne Cloud) oder auf die Server von Qlik zu setzen und somit gänzlich auf die Qlik Sense Cloud zu setzen, also die Qlik Sense Cloud als SaaS-Lösung. Dazu gibt es noch Qlik Sense Desktop, das für kleinere Projekte ausreichen kann und ganz ohne die Cloud auskommt, jedoch Ergebnisse bei Bedarf in die Cloud publishen kann. Ähnlich wie bei Tableau und anders als derzeitig bei Power BI, wird für das Editieren von Apps/Dashboards jedoch kein Qlik Sense Desktop benötigt, denn das Erstellen, Bearbeiten und Verwalten von Qlik Sense Reports darf komplett in der Cloud (vom Browser aus) stattfinden.

Der Kunde hat die Wahl zwischen den Lizenzmodellen von Qlik Sense Business (SaaS) und Qlik Sense Enterprise (SaaS oder On Premise). Die Enterprise Variante ist dann noch mal in Enterprise Professional, Enterprise Analyzer und Enterprise Analyzer Capacity eingeteilt, es stehen also insgesamt drei Lizenzen zur Auswahl. Der Preis für Qlik Sense Business beträgt monatlich derzeitig $30 pro Anwender. Das offizielle Preismodell sieht für Enterprise Professionell $70 für einen Benutzer pro Monat vor und für Enterprise Analyzer $40 pro Benutzer pro Monat. Zum Kennenlernen der Business Version gibt eine kostenlose 30-Tage-Testversion.

Die Version Qlik Sense Desktop ist in der Funktionalität an der SaaS Lösung Qlik Sense Enterprise angepasst und steht ihr in nichts Essenziellem nach. Die Desktop Version kann nur auf Windows-Computern ausgeführt werden und die Verwendung mehrerer Bildschirme oder Tablets wird nicht unterstützt. Außerdem werden Sicherheitsfunktionen nicht unterstützt und es gibt keine Funktion zum automatischen Speichern. Mehr zu den Unterschieden hier.

Community & Features von anderen Entwicklern

Wie relevant die Community für Visualisierungstools ist, wurde bereits in den vorherigen Blogartikeln zu Power BI und Tableau beschrieben. Auch Qlik besitzt eine offizielle Community Seite, in der u. a. Diskussionen, Blogs und Support angeboten werden. Auch hier finden sich zu den meisten Problemstellungen eine Menge Lösungsansätze. Zudem bietet Qlik auf den offiziellen Webseiten auch sehr viele Lernvideos an, mit denen sich Neulinge einarbeiten und fortgeschrittene Anwender auch noch einiges erfahren können.

Neben den zahlreichen Visualisierungen können auch weitere Diagramme hinzugefügt werden. Im Qlik Sense Desktop werden bei Arbeitsblatt im Reiter Benutzerdefinierte Objekte zwei Bundles mitgeliefert. Hier können auch Erweiterungen importiert werden. Ein bekanntes Bundle ist die Vizlib, welches hier unterschiedliche Packages zur Verfügung stellt. Diese Erweiterungen können einfach importiert werden, indem die heruntergeladenen Verzeichnisse in den Qlik Sense Extensions Ordner eingefügt werden. Wem auch die Erweiterungen nicht ausreichen, der kann sogenannte Widgets erstellen. Diese werden in HTML und CSS geschrieben, daher ist ein gewisses Grundverständnis vorausgesetzt. Diese Widgets können auf Qlik Sense Funktionalitäten zugreifen und diese per Klick ausführen. So kann bspw. ein Button zum Entfernen aller gesetzten Filter erstellt werden.

Erstellung von Filtern in Qlik Sense

Daten laden & transformieren

Flexibler als die meisten Vergleichstools ist Qlik in der Verknüpfung von Datenquellen. Es werden Hunderte von Datenquellen angeboten, durch die der Anwender Zugriff auf seine Daten erhalten kann. Die von Qlik entwickelte Associate Engine beschleunig die Verarbeitung von verknüpften Daten. Die Anbindung von Cloudanwendungen steht hier im Vordergrund, aber es werden natürlich auch klassische Datenbanken, Textfiles usw. angeboten.

Nachdem die Daten geladen sind, befindet sich im Dateneditor unter dem Reiter auto generated selection eine automatisch generierte Query für den Ladevorgang. Dieses „Datenladeskript“ kann angelegt, bearbeitet und ausgeführt werden. Im Reiter „Main“ befinden sich hier vordefinierte Variableneinstellungen, wie z. B. SET ThousandSep=’.’; wobei auch diese angepasst und erweitert werden können. Zudem gibt es die Möglichkeit, das Datenmodell mit allen Tabellenverbindungen anzeigen zu lassen. Die große Qlik-Community und die Tutorials ermöglicht es jedem Nutzer, die vielen Möglichkeiten mit Qlik Script zügig aus dem Internet zu erlernen.

Daten laden & transformieren: AdventureWorks2017Dataset

Im Reiter Datenmanager werden die empfohlenen Verknüpfungen angezeigt. Diese sind für Einsteiger sehr nützlich. Im Verlauf der Analysen musste jedoch nachjustiert werden. Wenn die ID-Spalten zum Verknüpfen z. B. unterschiedliche Bezeichnungen haben, tut sich der Algorithmus schon mal schwer.

Abbildung eines Datenmodels in Qlik Sense. Zusehen sind die Verbindungen zwischen den Tabellen der Datenbank “AdventureWorks2016”.

Eine vom Tool vordefinierte Detailansicht in Form einer Visualisierung (siehe Screenshot) ermöglicht einen schnellen und einfachen Qualitätscheck der gerade erst geladenen Daten. Hier können die Verbindungen angepasst und neue erstellt werden. Hier können erste Datentransformation durchgeführt werden, z. B. die Ersetzung von Daten oder NULL-Werten.

Datentransformationen mit einfachen Eingabemasken – Hier: Ersetzen von Werten in Tabellen-Spalten.

Zudem können Felder hinzugefügt, also berechnet werden (ähnlich wie in Power BI und Tableau als neues Measure). Z. B. können Textwerte mit dem Operator „&“ verbunden und somit z. B. Vor- und Nachname ganz intuitiv in eine Spalte zusammengefügt werden. Außerdem gibt es mathematische Operatoren für Berechnungen und ein SQL-artiges „like“, um Zeichenfolgen mit Mustern zu vergleichen. Auch an dieser Stelle können Formeln eingegeben werden. Die Formeln umfassen hier: String-, Datums-, numerische, Bedingungs-, mathematische, Verteilungsfunktionen usw. Zu beachten ist hier, dass die Daten neu geladen werden müssen, um die berechneten Spalten zu updaten. Der Umgang mit den Formeln aber erscheint mir einfacher als z. B. mit DAX in Power BI.

Daten visualisieren

Dank einer benutzerfreundlichen Oberfläche sind auch Analysen ohne großes Vorwissen und per Drag and Drop möglich. Individuelle Dashboards sind in wenigen Schritten möglich und erfordern keine besonderen Tricks oder Kniffe um gleich zum Erfolg zu kommen. Die Datenvisualisierung erfolgt in sogenannten Apps, in denen die Dashboards (Seiten in der App) liegen. Diese können von Qlik Sense Desktop nach Qlik Cloud hochgeladen werden und von dort aus mit anderen Usern geteilt werden.

Qlik Sense enthält von Hause aus eine große Anzahl an Visualisierungsmöglichkeiten. „Entdecken Sie neue Einblicke in ihre Daten“ heißt es bei der Funktion namens Einblicke (Insights), denn hier wird der Zugriff auf die Qlik Cognitive Engine gewährt. Dabei kann der Anwender eine Frage an den sogenannten Insight Advisor in natürlicher Sprache formulieren, woraus dann AI-gestützte Dashboard-Vorschläge generiert werden. Auch wenn diese Funktion noch nicht vollkommen ausgereift erscheint, ist dies sicherlich ein Schritt in die Business Intelligence der Zukunft.

Qlik Sense Insights – Einblicke gewinnen mit Stichworten in menschlicher Sprache. Funktioniert mal besser, mal schlechter. Die Titel der Diagramme sind (in Qlik Sense stets per default) die Formeln der Darstellung. Diese lassen sich leicht umbenennen.

Diese Diagrammvorschläge können einen guten ersten Eindruck über verschiedene Dimensionen und Kennzahlen geben und die Diagramme können direkt zu den Arbeitsblättern hinzugefügt werden. Es können auch Fragen gestellt werden, die Berechnungen zur Grundlage haben. So wird im folgenden Beispiel die Korrelation zwischen zwei Kennzahlen ermittelt.

Qlik Sense Insights – Korrelation erstellt mit Anweisung auf Englisch

Den ersten Auftritt hatte die Cognitive Engine im April 2018 und der Insight Advisor im Juni 2018. Über den Insight Adviser werden auch die empfohlenen Verknüpfungen im Datenmanager generiert, diese sollten jedoch vom Anwender (z. B. BI-Developer, Data Analyst oder Data Engineer) jedoch nochmal überblickt werden, da diese nicht unbedingt fehlerfrei abläuft. Gerade in vielen Geschäftsdaten verstecken sich viele “falsche Freunde” unter den ID-Spalten-Benennungen, die einen Zusammenhang herzustellen scheinen – aber es nicht immer tun.

Diagramme können ansonsten auf übliche Weise über eine Paletten ausgewählt werden, um sie dann mit Kennzahlen und Dimensionen zu befüllen. Die Charts können mit vordefinierten Optionen in den Kategorien Daten, Sortieren, Darstellung usw. bearbeitet werden. Unter Darstellung können ggf. verschiedene Designs ausgewählt werden und Beschriftungen, Titel etc. angepasst werden. Die Felder zur Auswahl der Kennzahlen und Dimensionen können nach Tabelle ausgewählt werden, sie sind ansonsten alle in einer Liste und können über eine Suchfunktion schnell gefunden werden, vorausgesetzt die genaue Bezeichnung ist bekannt. Diese Suchfunktion wird auch an anderen Stellen angewandt, immer dann, wenn Felder ausgewählt werden.

Es gibt außerdem die Option „Master-Elemente“, um wieder verwendbare Dimensionen oder Kennzahlen (Measures) zu erstellen.

Hier können Berechnungen für Kennzahlen und Dimensionen hinterlegt und in jedem Arbeitsblatt wiederverwendet werden. Dies gilt auch für Visualisierungen und die damit verbundenen Dateninputs und Einstellungen.

Mit Drag and Drop stößt der Anwender hier schon mal an seine Grenzen, aber dann helfen die Formeln von Qlik Sense Script weiter. Wenn bspw. das Diagramm namens KPI eine Kennzahl mit Filterung nach einer Dimension anzeigen soll, hilft die Formel: Sum({<DimensionName={‘Value’}>} MeasureName. Eine Qlik Sense Formelsammlung ist hier zu finden. Jede Kennzahl und Dimension kann als Formel eingegeben werden. Im Formel bearbeiten – Editor werden auch schon gebräuchliche Berechnungen wie Aggregierungsfunktionen (Sum, Avg, Max usw.) und Distinct, vorgegeben und können auf Knopfdruck und ohne Coding generiert werden, ähnliche wie ein Quick Measure in Power BI.


Das Finanzmodell ist auf jede Unternehmensgröße ausgerichtet. Wenn die Datenbereinigung im Vorfeld stattgefunden hat, sind Visualisierungen in wenigen Schritten möglich. Es gibt dabei die Möglichkeit, die Daten in gewissem Rahmen zu transformieren. Für die gewünschte Darstellung der Kennzahlen ist die Verwendung von Qlik Sense Script oftmals erforderlich, jedoch kommen Anfänger auch lange ohne Coding aus. Insgesamt bewerte ich die Nutzerfreundlichkeit auf Grund der intuitiveren Bedienung subjektiv höher als bei Tableau oder Power BI.

Es können Erweiterungen und Widgets zur tiefgründigen Dashboard Erstellung und Analyse genutzt werden. Es gibt viele Drag and Drop Funktionen, um die Dashboards zusammen zu ziehen. Die Erstellung einfacher Berichte erfordert keinen Entwickler oder einen gut ausgebildeten Data Analyst, dennoch werden Unternehmen bei größeren Vorhaben auf Grund der Komplexität von Unternehmensprozessen, die in der Business Intelligence darzustellen versucht werden, nicht um geschultes Personal herum kommen, wofür es viele Angebote an Trainings auch von Qlik-Partnern gibt. Die Schnelligkeit der Datenverarbeitung liegt dank der Associative Engine im Vergleich zu den anderen beiden Tools vorne. AI-gestützte Vorschläge können bei der Dashboard-Erstellung zusätzliche Unterstützung leisten. Die Kombination beider Komponenten, Schnelligkeit und Ai-gestützte Vorschläge des Insight Advisors, grenzt das Qlik Sense Tool zwar nicht so sehr von den anderen Anbietern ab, wie Qlik gerne hätte…. Dennoch ist Qlik Sense auch heute noch ein Tool, dass für Ad-Hoc-Analytics wie Business Intelligence mit Standard Reporting in Erwägung gezogen werden sollte.

Process Mining mit MEHRWERK – Artikelserie

Dieser Artikel der Artikelserie Process Mining Tools beschäftigt sich mit dem Anbieter MEHRWERK. Das im Jahr 2008 gegründete Unternehmen, heute geführt durch drei Geschäftsführer, bietet Business Intelligence als Beratung und Dienstleistung rund um die Produkte des BI-Software-Anbieters QlikTech an. Rund zehn Jahre später, 2018, stieg das Unternehmen auch als Teil-Software-Anbieter in Process Mining ein. MEHRWERK ProcessMining, kurz MPM, ist einen Process Mining Lösung auf der Basis des weit verbreiteten BI-Tools Qlik Sense.

Lösungspakete: Standard-Lizenz
Zielgruppe:  Für mittel- und große Unternehmen
Datenquellen: Beliebig über Standard-Konnektoren von Qlik Sense
Datenvolumen: Unlimitierte Datenmengen
Architektur: On-Premise, Cloud oder Multi-Cloud

Für den Einsatz von MEHRWERK ProcessMining wird Qlik Sense Enterprise benötigt, welches sowohl On-Premise auf unternehmenseigenen Windows-Servern direkt installiert werden kann, über Kubernetes via Container ebenfalls On-Premise oder in  sowie auch noch einfacher direkt in der Qlik Cloud oder aus Datenschutzgründen in Verbindung mit der Hochskalierbarkeit der Cloud als hybrides Deployment.

Bedienbarkeit und Anpassungsfähigkeit der Analysen

Die Beurteilung der Bedienbarkeit ist nahezu vollständig abhängig von der Einschätzung zur Bedienbarkeit von Qlik Sense, da MPM auf diesem gängigen BI-Tool basiert. Im Wording von Qlik Sense arbeiten Developer in einem Hub und erstellen Apps, die ein oder mehrere Worksheets (Arbeitsblätter) umfassen können, welche horizontal durchgeblättert werden können. Die Qlik-Technologie ermöglicht es dabei übrigens auch, neben Story-Telling-Boards ganze Dashboards oder einzelne Visualisierungen über Mashups in Webseiten einzubetten.

Jede App kann in einem bestimmten Stream veröffentlicht werden. Über die Apps und die Streams wird der Zugriff durch die Nutzer erweitert, beschränkt oder anderweitig organisiert. Die Zugriffe auf Apps können über Security Rules gesteuert und beschränkt werden, was für die Data Governance eines Unternehmens wichtig ist und die Lösung auch mandantenfähig macht.

Figure 1 - Übersicht über die wichtigsten Schaltflächen einer Qlik Sense-App

Figure 1 – Übersicht über die wichtigsten Schaltflächen einer Qlik Sense-App

Wer mit Qlik Sense als BI-Tool bereits vertraut ist, wird sich hier sofort zurechtfinden und kann direkt in Process Mining als Analyseform, die immer mehr zum festen Bestandteil leistungsstarker BI-Systeme wird, einsteigen. Standardmäßig startet jede App im Ansichtsmodus. Die Qlik Sense-User-Role „Analyzer User“ ist nur für diese Ansicht berechtigt und kann Apps nur lesend verwenden. Die App ist jedoch interaktiv nutzbar, so dass alle in der App verfügbaren Dimensionen anklickbar und als Filter nutzbar sind. Die Besonderheit ist hier das assoziative Datenmodell, welches durch Qlik’s inMemory Engine bereitgestellt wird. Diese überwindet die Einschränkungen relationaler Datenbanken und SQL-Abfragen. Bei diesem traditionellen Ansatz müssen Datenquellen mit SQL-Join-Befehlen kombiniert werden, und es müssen im Voraus Annahmen über die Art der Fragen getroffen werden, die die Anwender stellen werden. Wenn ein Benutzer eine Analyse durchführen möchte, die nicht geplant war, müssen die Daten neu aufgebaut werden, was die Ausführung komplexer Abfragen zur Folge hat und eine gewisse Wartezeit verursacht. Die assoziative Engine hingegen ermöglicht “on the fly”-Berechnungen und Aggregationen, die sofortige Erkenntnisse über die betrachteten Prozesse liefern.

Für Anwender, die mit den Filtermöglichkeiten nicht so vertraut sind, bietet Qlik auch die assoziative Suche an. Diese ermöglicht es, Suchbegriffe, ähnlich wie bei Google, einzugeben. Die Assoziative Engine ermittelt dann mögliche Treffer und Verbindungen in den Daten, welche daraufhin entsprechend gefiltert werden.

Die User-Role „Professional User“ kann jede veröffentlichte App zudem im Editier-Modus öffnen und eigene Arbeitsblätter und Analysen auf Basis zentral definierter Masteritems (Kennzahlen und Dimensionen) erstellen. Ebenfalls können bestehende Dashboards dupliziert werden, um diese für den eigenen Bedarf anzupassen, z. B. um Tabellen und Diagrammen anzupassen oder zu löschen. Dabei erfolgt jedoch keine Datenduplizierung, da Qlik Sense einen sogenannten Server Side Authoring Ansatz verfolgt. Durch das Konzept der Master Items wird zusätzlich sichergestellt, dass die Data Governance erhalten bleibt. Die erstellen Arbeitsblätter können durch die Professional User wiederrum veröffentlicht werden. Dabei ist sichergestellt, dass alle anderen Anwender diese „Community Sheets“ nur mit den Daten ihres Berechtigungskontexts sehen.

Figure 2 - Eine QlikSense App im Edit-Modus für "Professional User".

Figure 2 – Eine QlikSense App im Edit-Modus für “Professional User”.

Jede Seite der App kann beliebig gestaltet werden, auch so, dass Read-Only-Nutzer über die Standard-Lizenz viele Möglichkeiten des Ablesens und der Filterung von Daten erhalten.

Figure 3 - Hier eine Seite der App, die nur zur Filterung von Dimensionen gestaltet ist: Die Filterung von Prozessnetzen nach Vorgangsnummern, Produkten und/oder Prozess-Varianten

Figure 3 – Hier eine Seite der App, die nur zur Filterung von Dimensionen gestaltet ist: Die Filterung von Prozessnetzen nach Vorgangsnummern, Produkten und/oder Prozess-Varianten

MEHRWERK ProcessMining liefert Vorlagen als Standard-App, die typische Analyse-Szenarien wie das Prozess-Flussdiagramm und Filter für Durchlaufzeiten, Frequenzen und Varianten bereits vorgeben und somit den Einstieg erleichtern. Die Template App liefert außerdem sehr umfangreiche Process Mining Funktionen wie Conformance Checking, automatisierte Ursachenanalysen, Prozessmusterabfragen oder kontinuierliches Process Monitoring gleich mit aus. Außerdem können u.a. Schichten, Prozesshierarchien oder Sollprozesse konfiguriert werden.

Nur User mit der Qlik Sense „Professional User“ Lizenz können dazu im Editier-Modus auch die Datenmodelle einsehen, erstellen und anpassen. So wie auch in der klassischen Business Intelligence sind im Process Mining Datenmodelle in Form sogenannter Event-Logs entscheidend für die Analyse und die Vorbedingung auch für die MPM App.

Figure 4 - Beispielhaftes Event Log aus der Beispielvorlage-App von MEHRWERK.

Figure 4 – Beispielhaftes Event Log aus der Beispielvorlage-App von MEHRWERK.

Das Event Log kann und sollte neben den drei Must-Haves für Process Mining (Case-ID, Activity Description & Timestamp) noch beliebig viele weitere hilfreiche Informationen in weiteren Spalten aufführen. Denn nur so können Abweichungen, Anomalien oder andere Auffälligkeiten im Prozess in einen Kontext gesetzt werden, um gezielte Maßnahmen treffen zu können.


Die Frage, wie gut und leicht sich MEHRWERK ProcessMining in die Unternehmens-IT einfügen lässt, stellt sich mit der Frage, ob Qlik Sense bereits Teil der IT-Infrastruktur ist oder beispielsweise als Cloud-Lösung eingesetzt wird. Unternehmen, die bisher nicht auf Qlik Sense setzten, müssten hier die grundsätzliche Frage der Voraussetzungen des Tools von QlikTech stellen.  Vollständigerweise sei jedoch angemerkt, dass laut Aussage von MEHRWERK ca. 40% ihrer Kunden vorher kein Qlik Sense im Einsatz hatten und die Installation von Qlik Sense keine große Hürde darstellt.

Ein wesentlicher Aspekt der Integrationsfähigkeit ist jedoch nicht nur die Integration der Software in die IT-Infrastruktur, sondern auch, wie leicht sich Daten in das benötigte Datenformat (Event Log) überführen lässt. Es ist zwar möglich, Qlik Sense mit MPM ausschließlich für die Datenanalyse/-visualisierung zu verwenden, und die Datenmodellierung dann mit anderen Tools (Datenbanken, ETL) durchzuführen. Allerdings bringt Qlik Sense selbst eine Menge an Konnektoren zu vielen Datenquellen mit. Wie mit jedem Process Mining Tool ist gibt es dabei zwei Konzepte der Datenaufbereitung. Die eine Möglichkeit ist das Laden, Konsolidieren und Vorbereiten der Datenbank für ein Data Warehouse (DWH), das die Daten bereits in Event Logs transformiert. In diesem Fall kann MPM die Daten über einen Standard-Konnektor von Qlik Sense importieren, in ein MPM-spezifisches Event Log nachbereiten und dann direkt mit der Analyse starten. Dabei benötigt Qlik Sense keine eigene Datenbank für die Datenhaltung sondern verabeitet die Daten hochkomprimiert in der eigenen, patentierten InMemory-Engine.

Figure 5 - Qlik Sense Standard Connectors

Figure 5 – Qlik Sense Standard Connectors

Das andere Konzept der Datenaufbereitung ist die Nutzung von Qlik Sense auch als Tool für das Datenmanagement. Hierfür werden die Standard-Konnektoren genutzt, um Daten möglichst direkt an Qlik Sense anzubinden. In diesem Fall muss die Bildung des anwendungsfallspezifischen Event Logs als prozessprotokollartiges Datenmodell in Qlik Sense erfolgen. Dies lässt sich in einem prozeduralen Skript mit der Qlik-eigenen Skriptsprache, die an die Sprache DAX von Microsoft sowie an SQL erinnert, umsetzen. Dabei kann das Skript in mehrere Segmente unterteilt und die Ausführung automatisiert und ge-timed werden. MEHRWERK ProcessMining bietet hierfür standardisierte ETL-Best-Practices an, die erlauben mit Hilfe von Regelwerken die Eventloggenerierung stark zu vereinfachen. Ein großer Vorteil ist die Verzahnung von Process Mining Funktionalitäten während des ETL-Prozesses. Dies erlaubt frühzeitiges und visuelles Validieren schon bei der Beladung.

Figure 6 - Das Laden und Modellieren von Daten kann eingeschränkt visuell mit klickbaren Oberflächen erfolgen. Mehr Möglichkeiten bietet jedoch der Qlik Script Editor.

Figure 6 – Das Laden und Modellieren von Daten kann eingeschränkt visuell mit klickbaren Oberflächen erfolgen. Mehr Möglichkeiten bietet jedoch der Qlik Script Editor.


Klassischerweise wurde Qlik Sense Server On-Premise in der eigenen IT-Infrastruktur installiert. Die Software Qlik Sense ist nur als Server-Version verfügbar. Qlik Sense setzt auf eine patentierte In-Memory-Technologie. Technisch ist Qlik Sense in Sachen Performance nur durch die Hardware begrenzt.

Heute kann Qlik Sense Server auch direkt über die Qlik Cloud genutzt oder über Kubernetes auf eigene Server oder in die Multi-Cloud ausgeliefert werden. Ein Betrieb bei typischen Cloud-Anbietern wie von Amazon, Google oder Microsoft ist problemlos möglich und somit technisch auch beliebig skalierbar.


Die Zukunftsfähigkeit von MPM liegt in erster Linie in der Weiterentwicklung von Qlik Sense durch QlikTech. Im Magic Quadrant von Gartner 2020 für BI- und Analytics-Tools zählt Qlik zu den top drei Anführern nach Tableau und Microsoft.

Auf Grund der großen Qlik-Community und der weiten Verbreitung als BI-Tool zählt die Lösung von MEHRWERK vermutlich zu einer sehr zukunftssicheren mit vielen Weiterentwicklungsmöglichkeiten. Aus der Community und von anderen BI-Unternehmen gibt es viele Erweiterungen für Qlik Sense, die den Funktionsumfang von der Konnektivität zu anderen Tools bis hin zur einfacheren oder visuell attraktiveren Analyse verbessern. Für Qlik Sense gibt es viele weitere Anbieter für diverse Erweiterungen sowie Qlik-eigene und kompatible Co-Lösungen für Master Data Management und Data Governance. Auch die Integration von Data Science Tools via Programmiersprachen wie Python oder R ist möglich und erweitert diese Plattform in Richtung Advanced Analytics.

Die Weiterentwicklung der Process Mining Lösung erfolgt unabhängig davon auch durch MEHRWERK selbst, so wird Machine Learning vermehrt dazu eingesetzt, Process Anomalien zu erkennen sowie Durchlaufzeiten von Prozessen zu prognostizieren.


Die Preisgestaltung wird von MEHRWERK nicht transparent kommuniziert und liegt im Vergleich zu anderen Process Mining Tools erfahrungsgemäß im Mittelfeld. Neben den MPM spezifischen Kosten werden darüber hinaus auch User-Lizenzen für Qlik Sense fällig. Weitere mögliche Kosten hängen auch von der Wahl ab, ob die Qlik Cloud, eine andere Cloud-Plattform oder die On-Premise-Installation geplant wird.


MPM ProcessMining ist für Unternehmen, die voll und ganz auf QlikSense als BI-Tool setzen, eine echte Option für den schnellen und leistungsstarken Einstieg in diese spezielle Analysemethodik. Mitarbeiter, die Qlik Sense bereits kennen, finden sich hier beinahe sofort zurecht und können direkt starten, sofern Event-Logs vorliegen. Die Gestaltung von Event-Logs in Qlik Sense bedingt jedoch etwas Erfahrung mit der Datenaufbereitung und -modellierung in Qlik Sense und Kenntnisse in Qlik Script.

Top 10 Python Libraries Of All Time

Python is a very popular and renowned language that has replaced several programming languages in the market. Its amazing collection of libraries makes it a convenient programming language for developers.

Python is an ocean of libraries serving an ample number of purposes and as a developer; you must possess sound knowledge of the 10 libraries. One needs to familiarize themselves with the libraries to go on and work on different projects. For the data scientist, it has been a charmer now.

Here today, for you this is a curated list of 10 Python libraries that can help you along with its significant features, when to use them, and also the benefits.

10 Best Python Libraries of All Times

  1. Pandas: Pandas is an open-source library that offers instant high performance, data analysis, and simple data structures. When can you use it? It can be used for data munging and wrangling. If one is looking for quick data visuals, aggregation, manipulation, and reading, then this library is suitable. You can impute the missing data files, plot the data, and make edits in the data column. Moreover, for renaming and merging, this tool can do wonders. It is a foundation library, and a data scientist should have in-depth knowledge about Pandas before any other library knowledge.
  1. TensorFlow: TensorFlow is developed by Google in collaboration with the Brain Team. Using this tool, you can instantly visualize any part of the graphical representation. It comes with modularity and offers high flexibility in its operations. This library is ideal for running and operating in large scale systems. So, as long as you have good internet connectivity, you can use it because it is an open-source platform. What is the beauty of this library? It comes with an unending list of applications associated with it.
  1. NumPy: NumPy is the most popular Python library used by developers. It is used by various libraries for conducting easy operations. What is the beauty of NumPy? Array Interface is the beauty of NumPy and it is always a highlighted feature. NumPy is interactive and very simple to use. It can instantly solve complicated mathematical problems. With this, you need not worry about daunting phases of coding and offering open-source contributions. This interface is widely used for expressing raw streams, sound waves, and other images. If you are looking to implement this into machine learning, you must possess in-depth knowledge about NumPy.
  1. Keras: Are you looking for a cool Python library? Well, Keras is the coolest machine learning python library. It runs smoothly on both CPU and GPU. Do you want to know where Keras is used? It is used in popular applications like Uber, Swiggy, Netflix, Square, and Yelp. Keras easily supports the fully connected, pooling, convolution, and recurrent neural networks. For any innovative research, it does fine because it is expressive and flexible. Keras is completely based on a framework, which enables easy debugging and exploring. Various large scientific organizations use Keras for innovative research.
  1. Scikit- Learn: If your project deals with complex data, it has to be the Scikit- Learn python library. This Python Machine Learning Library is associated with NumPy and SciPy. After various modifications, one such feather cross-validation is used for enabling more than one metric. It is used for extracting features and data from texts and images. It uses various algorithms to make changes in machine learning. What are its functions? It is used in model selection, classification, clustering, and regression. Various training methods like nearest neighbor and logistics regressions are subjected to minimal modification.
  1. PyTorch: PyTorch is the largest library which conducts various computations and accelerations. Also, it solves complicated application issues that are related to the neural networks. It is completely based on the machine language Torch, which is a free and open-source platform. PyTorch is new but gaining huge popularity and very much a favorite among the developers. Why such popularity? It comes with a hybrid end-user which ensures easy usage and flexibility. For processing natural language applications, this library is used. Do you know what the best part is? It is outperforming and taking the popularity of Tensor Flow in recent times.
  1. MoviePy: The MoviePy is a tool that offers unending functionality related to movies and visuals. It is used for exporting, modifying, and importing various video files. Do you want to add a title to your video or rotate it 90 degrees? Well, MoviePy helps you to do all such tasks related to videos. It is not a tool for manipulating data like Pillow. In any task related to movies and videos in python coding, you can no doubt rely on the functionality of MoviePy. It is designed to conduct all the aspects of a standard task and can get it done instantly. For any common task associated with videos, it has a MoviePy library.
  1. Matplotlib: Matplotlib is no doubt a quintessential python library whose presence can never be forgotten. You can visualize data and create innovative and interesting stories. When can you use it? You can use Matplotlib for embedding different plots into the application as it provides an object-oriented application program interface. Any sort of visualization, be it bar graph, histogram, pie chart, or graphs, Matplotlib can easily depict it. With this library, you can create any type of visualization. Do you want to know what visualizations you can create? You can create a histogram, Bar graph, pie chart, area plot, stem plot, and line plot. It also facilitates the legends, grids, and labels.
  2. Tkinter: Tkinter is a library that can help you create any Python application with the help of a graphical user interface. Tkinter is the most common and easy to use python library for developing apps with GUI. It binds python to the GUI tool kit which can be used in any modern operating system. To create a python GUI, Tkinter is the only best way to start instantly.
  3. Plotly: The Plotly is an essential graph plotting python library for developers. Users can import, copy, paste, export the data that needs to be analyzed and visualized. When can you use it? You can use Plotly to display and create figures and visual images. What is interesting is that it has amazing features for sending data to the various cloud servers.

What are the visual charts prepared with Plotly? You can create line pie, bubble, dot, scatter, and pie. One can also construct financial charts, contours, maps, subplots, carpet, radar, and logs. Do you have anything in your mind which needs to be represented visually? Use Plotly!

Finishing Up

In a nutshell, you have the best python libraries of recent times which contribute hugely to development. If your favorite python library didn’t make it in this list of the top 10 best python libraries, do not take offense.

Python comes with unending library packages, and these 10 are some of its popular and best-used ones. If you are a python developer, these are the best libraries you must have in-depth knowledge of.

Web Scraping Using R..!

In this blog, I’ll show you, How to Web Scrape using R..?

What is R..?

R is a programming language and its environment built for statistical analysis, graphical representation & reporting. R programming is mostly preferred by statisticians, data miners, and software programmers who want to develop statistical software.

R is also available as Free Software under the terms of the Free Software Foundation’s GNU General Public License in source code form.

Reasons to choose R

Reasons to choose R

Let’s begin our topic of Web Scraping using R.

Step 1- Select the website & the data you want to scrape.

I picked this website “https://www.alexa.com/topsites/countries/IN” and want to scrape data of Top 50 sites in India.

Data we want to scrape

Data we want to scrape

Step 2- Get to know the HTML tags using SelectorGadget.

In my previous blog, I already discussed how to inspect & find the proper HTML tags. So, now I’ll explain an easier way to get the HTML tags.

You have to go to Google chrome extension (chrome://extensions) & search SelectorGadget. Add it to your browser, it’s a quite good CSS selector.

Step 3- R Code

Evoking Important Libraries or Packages

I’m using RVEST package to scrape the data from the webpage; it is inspired by libraries like Beautiful Soup. If you didn’t install the package yet, then follow the code in the snippet below.

Step 4- Set the url of the website

Step 5- Find the HTML tags using SelectorGadget

It’s quite easy to find the proper HTML tags in which your data is present.

Firstly, I have to click on data using SelectorGadget which I want to scrape, it automatically selects the data which are similar to selected HTML tags. Before going forward, cross-check the selected values, are they correct or some junk data is also gets selected..? If you noticed our page has only 50 values, but you can see 156 values are selected.

Selection by SelectorGadget

Selection by SelectorGadget

So I need to remove unwanted values who get selected, once you click on them to deselect it, it turns red and others will turn yellow except our primary selection which turn to green. Now you can see only 50 values are selected as per our primary requirement but it’s not enough. I have to again cross-check that some required values are not exchanged with junk values.

If we satisfy with our selection then copy the HTML tag & include it into the code, else repeat this exercise.

Modified Selection by SelectorGadget

Step 6- Include the tag in our Code

After including the tags, our code is like this.

Code Snippet

If I run the code, values in each list object will be 50.

Data Stored in List Objects

Step 7- Creating DataFrame

Now, we create a dataframe with our list-objects. So for creating a dataframe, we always need to remember one thumb rule that is the number of rows (length of all the lists) should be equal, else we get an error.

Error appears when number of rows differs

Finally, Our DataFrame will look like this:

Our Final Data

Step 8- Writing our DataFrame to CSV file

We need our scraped data to be available locally for further analysis & model building or other purposes.

Our final piece of code to write it in CSV file is:

Writing to CSV file

Step 9- Check the CSV file

Data written in CSV file


I tried to explain Web Scraping using R in a simple way, Hope this will help you in understanding it better.

Find full code on


If you have any questions about the code or web scraping in general, reach out to me on LinkedIn!

Okay, we will meet again with the new exposer.

Till then,

Happy Coding..!

In-memory Data Grid vs. Distributed Cache: Which is Best?

Distributed caching has been a boon for IT professionals in the past due to its ability to make data always available even when offline. However, with the growing popularity of the Internet of Things (IoT) and the increasing amounts of data businesses need to process daily, distributed caching is slowly being overshadowed by a newer and more robust technology solution—the in-memory data grid (IMDG).

Distributed caches allow organizations to combine the amount of memory of computers within a network, boosting performance at minimum cost because there’s no need to purchase more disk storage or more high-end computers. Essentially, a data cache is distributed among all networked computers so that applications can use all available memory when needed. Memory is pooled into a single data store or data cache to provide faster access to data. Distributed caches are typically housed in a single physical server kept on site.

The main challenge of distributed caching today is that in-memory data grids can do distributed caching—and much more. What used to be complicated tasks for data analysts and IT professionals has been made simpler and more accessible to the layman. Data analytics, in particular, has become vital for businesses, especially in the areas of marketing and customer service. Nowadays, there are solutions available that present data via graphs and other visualizations to make data mining and analysis less complicated and quicker. The in-memory data grid is one such solution, and is one that’s gradually gaining popularity in the business intelligence (BI) space.

In-memory computing has almost pushed the distributed cache to a realm of obsolescence, so much so, that the remaining organizations that gold onto it as a solution are those that are afraid to embrace digital transformation or those that do not have the resources. However, this doesn’t mean that the distributed cache is less important in the history of computing. In its heyday, distributed caching helped solve a lot of IT infrastructure problems for a number of businesses and industries, and it did all of that at minimal cost.

Distributed Cache for High Availability

The main goal of the distributed cache is to make data always available, which is most useful for companies that require constant access to data, such as mobile applications that store information like user profiles or historical data. Common use cases for distributed caching include payment computations, external web service calls, and dynamic data like number of views or followers. The main draw, however, is how it allows users to access cached data whether the user is online or offline, which, in today’s always-connected world, is a major benefit. Distributed caches take note of frequently accessed data and keep them in process memory so there’s no need to repeatedly access disk storage to get to that data.

Typically, distributed caches offered simplicity through simple “put” and “get” operations through distributed key/value stores. They’re flexible enough, however, to handle more complicated processes through read-through and write-through instances that allow caches to read and write values to and from disk. Depending on the implementation, it can also handle ACID transactions, data replication, and active backups. Ultimately, distributed caching can help handle large, unpredictable amounts of data without sacrificing read consistency.

In-memory Data Grid for High Speed and Much More

The in-memory data grid (IMDG) is not just a storage solution; it’s a powerful computing solution that has the capability to do distributed caching and more. Designed to use RAM and eliminate the need for constant access to disk-based storage, an IMDG is able to process complex data for large-scale implementations at high speeds. Similar to distributed caching, it “distributes” the workload to a multitude of computers within a network, not only combining available RAM but also the computing power of all available computers.

An IMDG runs specialized software on each computer to enable this and to minimize movement of data to and from disk and within the network. Limiting physical disk access eliminates the bottlenecks usually caused by disk-based storage, since using disk in data processing means using an intermediary physical server to move data from one storage system to another. Consistent data synchronicity is also a highlight of the IMDG. This addresses challenges brought about by the complexity of data retrieval and updating, helping to speed up application development. An IMDG also allows both the application and its data to collocate in a single memory space to minimize latency.

Overall, the IMDG is a cost-effective solution because it all but eliminates the complexities and challenges involved in handling disk-based storage. It’s also highly scalable because its architecture is designed to scale horizontally. IMDG implementations can be scaled by simply adding new nodes to an existing cluster of server nodes.

In-memory Computing for Business

Businesses that have adopted in-memory solutions currently enjoy the platform’s relative simplicity and ease of use. Self-service is the ultimate goal of in-memory computing solutions, and this design philosophy is helping typical users transition into “power users” that expect high performance and more sophisticated features and capabilities.

The rise of in-memory computing may be a telltale sign of the distributed cache’s eventual exit, but it still retains its use, especially for organizations that are just looking to address current needs. It might not be an effective solution in the long run, however, as the future leans toward hybrid data and in-memory computing platforms that are more than just data management solutions.