Posts

Visual Question Answering with Keras – Part 2: Making Computers Intelligent to answer from images

Making Computers Intelligent to answer from images

This is my second blog on Visual Question Answering, in the last blog, I have introduced to VQA, available datasets and some of the real-life applications of VQA. If you have not gone through then I would highly recommend you to go through it. Click here for more details about it.

In this blog post, I will walk through the implementation of VQA in Keras.

You can download the dataset from here: https://visualqa.org/index.html. All my experiments were performed with VQA v2 and I have used a very tiny subset of entire dataset i.e all samples for training and testing from the validation set.

Table of contents:

  1. Preprocessing Data
  2. Process overview for VQA
  3. Data Preprocessing – Images
  4. Data Preprocessing through the spaCy library- Questions
  5. Model Architecture
  6. Defining model parameters
  7. Evaluating the model
  8. Final Thought
  9. References

NOTE: The purpose of this blog is not to get the state-of-art performance on VQA. But the idea is to get familiar with the concept. All my experiments were performed with the validation set only.

Full code on my Github here.


1. Preprocessing Data:

If you have downloaded the dataset then the question and answers (called as annotations) are in JSON format. I have provided the code to extract the questions, annotations and other useful information in my Github repository. All extracted information is stored in .txt file format. After executing code the preprocessing directory will have the following structure.

All text files will be used for training.

 

2. Process overview for VQA:

As we have discussed in previous post visual question answering is broken down into 2 broad-spectrum i.e. vision and text.  I will represent the Neural Network approach to this problem using the Convolutional Neural Network (for image data) and Recurrent Neural Network(for text data). 

If you are not familiar with RNN (more precisely LSTM) then I would highly recommend you to go through Colah’s blog and Andrej Karpathy blog. The concepts discussed in this blogs are extensively used in my post.

The main idea is to get features for images from CNN and features for the text from RNN and finally combine them to generate the answer by passing them through some fully connected layers. The below figure shows the same idea.

 

I have used VGG-16 to extract the features from the image and LSTM layers to extract the features from questions and combining them to get the answer.

3. Data Preprocessing – Images:

Images are nothing but one of the input to our model. But as you already may know that before feeding images to the model we need to convert into the fixed-size vector.

So we need to convert every image into a fixed-size vector then it can be fed to the neural network. For this, we will use the VGG-16 pretrained model. VGG-16 model architecture is trained on millions on the Imagenet dataset to classify the image into one of 1000 classes. Here our task is not to classify the image but to get the bottleneck features from the second last layer.

Hence after removing the softmax layer, we get a 4096-dimensional vector representation (bottleneck features) for each image.

Image Source: https://www.cs.toronto.edu/~frossard/post/vgg16/

 

For the VQA dataset, the images are from the COCO dataset and each image has unique id associated with it. All these images are passed through the VGG-16 architecture and their vector representation is stored in the “.mat” file along with id. So in actual, we need not have to implement VGG-16 architecture instead we just do look up into file with the id of the image at hand and we will get a 4096-dimensional vector representation for the image.

4. Data Preprocessing through the spaCy library- Questions:

spaCy is a free, open-source library for advanced Natural Language Processing (NLP) in Python. As we have converted images into a fixed 4096-dimensional vector we also need to convert questions into a fixed-size vector representation. For installing spaCy click here

You might know that for training word embeddings in Keras we have a layer called an Embedding layer which takes a word and embeds it into a higher dimensional vector representation. But by using the spaCy library we do not have to train the get the vector representation in higher dimensions.

 

This model is actually trained on billions of tokens of the large corpus. So we just need to call the vector method of spaCy class and will get vector representation for word.

After fitting, the vector method on tokens of each question will get the 300-dimensional fixed representation for each word.

5. Model Architecture:

In our problem the input consists of two parts i.e an image vector, and a question, we cannot use the Sequential API of the Keras library. For this reason, we use the Functional API which allows us to create multiple models and finally merge models.

The below picture shows the high-level architecture idea of submodules of neural network.

After concatenating the 2 different models the summary will look like the following.

The below plot helps us to visualize neural network architecture and to understand the two types of input:

 

6. Defining model parameters:

The hyperparameters that we are going to use for our model is defined as follows:

If you know what this parameter means then you can play around it and can get better results.

Time Taken: I used the GPU on https://colab.research.google.com and hence it took me approximately 2 hours to train the model for 5 epochs. However, if you train it on a PC without GPU, it could take more time depending on the configuration of your machine.

7. Evaluating the model:

Since I have used the very small dataset for performing these experiments I am not able to get very good accuracy. The below code will calculate the accuracy of the model.

 

Since I have trained a model multiple times with different parameters you will not get the same accuracy as me. If you want you can directly download mode.h5 file from my google drive.

 

8. Final Thoughts:

One of the interesting thing about VQA is that it a completely new field. So there is absolutely no end to what you can do to solve this problem. Below are some tips while replicating the code.

  1. Start with a very small subset of data: When you start implementing I suggest you start with a very small amount of data. Because once you are ready with the whole setup then you can scale it any time.
  2. Understand the code: Understanding code line by line is very much helpful to match your theoretical knowledge. So for that, I suggest you can take very few samples(maybe 20 or less) and run a small chunk (2 to 3 lines) of code to get the functionality of each part.
  3. Be patient: One of the mistakes that I did while starting with this project was to do everything at one go. If you get some error while replicating code spend 4 to 5 days harder on that. Even after that if you won’t able to solve, I would suggest you resume after a break of 1 or 2 days. 

VQA is the intersection of NLP and CV and hopefully, this project will give you a better understanding (more precisely practically) with most of the deep learning concepts.

If you want to improve the performance of the model below are few tips you can try:

  1. Use larger datasets
  2. Try Building more complex models like Attention, etc
  3. Try using other pre-trained word embeddings like Glove 
  4. Try using a different architecture 
  5. Do more hyperparameter tuning

The list is endless and it goes on.

In the blog, I have not provided the complete code you can get it from my Github repository.

9. References:

  1. https://blog.floydhub.com/asking-questions-to-images-with-deep-learning/
  2. https://tryolabs.com/blog/2018/03/01/introduction-to-visual-question-answering/
  3. https://github.com/sominwadhwa/vqamd_floyd

Accelerate your AI Skills Today: A Million Dollar Job!

The skyrocketing salaries ($1m per year) of AI engineers is not a hype. It is the fact of current corporate world, where you will witness a shift that is inevitable.

We’ve already set our feet at the edge of the technological revolution. A revolution that is at the verge of altering the way we live and work. As the fact suggests, humanity has fundamentally developed human production in three revolutions, and we’re now entering the fourth revolution. In its scope, the fourth revolution projects a transformation that is unlike anything we humans have ever experienced.

  • The first revolution had the world transformed from rural to urban
  • the emergence of mass production in the second revolution
  • third introduced the digital revolution
  • The fourth industrial revolution is anxious to integrate technologies into our lives.

And all thanks to artificial intelligence (AI). An advanced technology that surrounds us, from virtual assistants to software that translates to self-driving cars.

The rise of AI at an exponential rate has disrupted almost every industry. So much so that AI is being rated as one-million-dollar profession.

Did this grab your attention? It did?

Now, what if we were to tell you that the salary compensation for AI experts has grown dramatically. AI and machine learning are fields that have a mountain of demand in the tech industry today but has sparse supply.

AI field is growing at a quicker pace and salaries are skyrocketing! Read it for yourself to know what AI experts, AI researchers and any other AI talent are commanding today.

  • A top-class AI research laboratory, OpenAI says that techies in the AI field are projected to earn a salary compensation ranging between $300 to $500k for fresh graduates. However, expert professionals could earn anywhere up to $1m.
  • Whopping salary package of above 100 million yen that amounts to $1m is being offered to AI geniuses by a Japanese firm, Start Today. A firm that operates a fashion shopping website named Zozotown.

Does this leave you with a question – Is this a right opportunity for you to jump in the field and make hay while the sun is shining? 

And the answer to this question is – yes, it is the right opportunity for any developer seeking a role in the AI industry. It can be your chance to bridge the skill shortage in the AI field either by upskilling or reskilling yourself in the field of AI.

There are a wide varieties of roles available for an AI enthusiast like you. And certain areas are like AI Engineers and AI Researchers are high in demand, as there are not many professionals who have robust AI knowledge.

According to a job report, “The Future of Jobs 2018,” a prediction was made suggesting that machines and algorithms will create around 133 million new job roles by 2022.

AI and machine learning will dominate the tech world. The World Economic Forum says that several sectors have started embracing AI and machine learning to tackle challenges in certain fields such as advertising, supply chain, manufacturing, smart cities, drones, and cybersecurity.

Unraveling the AI realm

From chatbots to financial planners, AI is impacting the way businesses function on a day-today basis. AI makes the work simpler, as it provides variables, which makes the work more streamlined.

Alright! You know that

  • the demand for AI professionals is rising exponentially and that there is just a trickle of supply
  • the AI professionals are demanding skyrocketing salaries

However, beyond that how much more do you know about AI?

Considering the fact that our lives have already been touched by AI (think Alexa, and Siri), it is just a matter of time when AI will become an indispensable part of our lives.

As Gartner predicts that 2020 will be an important year for business growth in AI. Thus, it is possible to witness significant sparks for employment growth. Though AI predicts to diminish 1.8 million jobs, it is also said to replace it with 2.3 million jobs that will be created. As we look forward to stepping into 2020, AI-related job roles are set to make positive progress of achieving 2 million net-new employments by 2025.

With AI promising to score fat paychecks that would reach millions, AI experts are struggling to find new ways to pick up nouveau skills. However, one of the biggest impacts that affect the job market today is the scarcity of talent in this field.

The best way to stay relevant and employable in AI is probably by “reskilling,” and “upskilling.” And  AI certifications is considered ideal for those in the current workforce.

Looking to upskill yourself – here’s how you can become an AI engineer today.

Top three ways to enhance your artificial intelligence career:

  1. Acquire skills in Statistics and Machine Learning: If you’re getting into the field of machine learning, it is crucial that you have in-depth knowledge of statistics. Statistics is considered a prerequisite to the ML field. Both the fields are tightly related. Machine learning models are created to make accurate predictions while statistical models do the job of interpreting the relationship between variables. Many ML techniques heavily rely on the theory obtained through statistics. Thus, having extensive knowledge in statistics help initiate the first step towards an AI career.
  2. Online certification programs in AI skills: Opting for AI certifications will boost your credibility amongst potential employers. Certifications will also enhance your earning potential and increase your marketability. If you’re looking for a change and to be a part of something impactful; join the AI bandwagon. The IT industry is growing at breakneck speed; it is now that businesses are realizing how important it is to hire professionals with certain skillsets. Specifically, those who are certified in AI are becoming sought after in the job market.
  3. Hands-on experience: There’s a vast difference in theory and practical knowledge. One needs to familiarize themselves with the latest tools and technologies used by the industry. This is possible only if the individual is willing to work on projects and build things from scratch.

Despite all the promises, AI does prove to be a threat to job holders, if they don’t upskill or reskill themselves. The upcoming AI revolution will definitely disrupt the way we work, however, it will leave room for humans to perform more creative jobs in the future corporate world.

So a word of advice is to be prepared and stay future ready.

Visual Question Answering with Keras – Part 1

This is Part I of II of the Article Series Visual Question Answering with Keras

Making Computers Intelligent to answer from images

If we look closer in the history of Artificial Intelligence (AI), the Deep Learning has gained more popularity in the recent years and has achieved the human-level performance in the tasks such as Speech Recognition, Image Classification, Object Detection, Machine Translation and so on. However, as humans, not only we but also a five-year child can normally perform these tasks without much inconvenience. But the development of such systems with these capabilities has always considered an ambitious goal for the researchers as well as for developers.

In this series of blog posts, I will cover an introduction to something called VQA (Visual Question Answering), its available datasets, the Neural Network approach for VQA and its implementation in Keras and the applications of this challenging problem in real life. 

Table of Contents:

1 Introduction

2 What is exactly Visual Question Answering?

3 Prerequisites

4 Datasets available for VQA

4.1 DAQUAR Dataset

4.2 CLEVR Dataset

4.3 FigureQA Dataset

4.4 VQA Dataset

5 Real-life applications of VQA

6 Conclusion

 

  1. Introduction:

Let’s say you are given a below picture along with one question. Can you answer it?

I expect confidently you all say it is the Kitchen without much inconvenience which is also the right answer. Even a five-year child who just started to learn things might answer this question correctly.

Alright, but can you write a computer program for such type of task that takes image and question about the image as an input and gives us answer as output?

Before the development of the Deep Neural Network, this problem was considered as one of the difficult, inconceivable and challenging problem for the AI researcher’s community. However, due to the recent advancement of Deep Learning the systems are capable of answering these questions with the promising result if we have a required dataset.

Now I hope you have got at least some intuition of a problem that we are going to discuss in this series of blog posts. Let’s try to formalize the problem in the below section.

  1. What is exactly Visual Question Answering?:

We can define, “Visual Question Answering(VQA) is a system that takes an image and natural language question about the image as an input and generates natural language answer as an output.”

VQA is a research area that requires an understanding of vision(Computer Vision)  as well as text(NLP). The main beauty of VQA is that the reasoning part is performed in the context of the image. So if we have an image with the corresponding question then the system must able to understand the image well in order to generate an appropriate answer. For example, if the question is the number of persons then the system must able to detect faces of the persons. To answer the color of the horse the system need to detect the objects in the image. Many of these common problems such as face detection, object detection, binary object classification(yes or no), etc. have been solved in the field of Computer Vision with good results.

To summarize a good VQA system must be able to address the typical problems of CV as well as NLP.

To get a better feel of VQA you can try online VQA demo by CloudCV. You just go to this link and try uploading the picture you want and ask the related question to the picture, the system will generate the answer to it.

 

  1. Prerequisites:

In the next post, I will walk you through the code for this problem using Keras. So I assume that you are familiar with:

  1. Fundamental concepts of Machine Learning
  2. Multi-Layered Perceptron
  3. Convolutional Neural Network
  4. Recurrent Neural Network (especially LSTM)
  5. Gradient Descent and Backpropagation
  6. Transfer Learning
  7. Hyperparameter Optimization
  8. Python and Keras syntax
  1. Datasets available for VQA:

As you know problems related to the CV or NLP the availability of the dataset is the key to solve the problem. The complex problems like VQA, the dataset must cover all possibilities of questions answers in real-world scenarios. In this section, I will cover some of the datasets available for VQA.

4.1 DAQUAR Dataset:

The DAQUAR dataset is the first dataset for VQA that contains only indoor scenes. It shows the accuracy of 50.2% on the human baseline. It contains images from the NYU_Depth dataset.

Example of DAQUAR dataset

Example of DAQUAR dataset

The main disadvantage of DAQUAR is the size of the dataset is very small to capture all possible indoor scenes.

4.2 CLEVR Dataset:

The CLEVR Dataset from Stanford contains the questions about the object of a different type, colors, shapes, sizes, and material.

It has

  • A training set of 70,000 images and 699,989 questions
  • A validation set of 15,000 images and 149,991 questions
  • A test set of 15,000 images and 14,988 questions

Image Source: https://cs.stanford.edu/people/jcjohns/clevr/?source=post_page

 

4.3 FigureQA Dataset:

FigureQA Dataset contains questions about the bar graphs, line plots, and pie charts. It has 1,327,368 questions for 100,000 images in the training set.

4.4 VQA Dataset:

As comapred to all datasets that we have seen so far VQA dataset is relatively larger. The VQA dataset contains open ended as well as multiple choice questions. VQA v2 dataset contains:

  • 82,783 training images from COCO (common objects in context) dataset
  • 40, 504 validation images and 81,434 validation images
  • 443,757 question-answer pairs for training images
  • 214,354 question-answer pairs for validation images.

As you might expect this dataset is very huge and contains 12.6 GB of training images only. I have used this dataset in the next post but a very small subset of it.

This dataset also contains abstract cartoon images. Each image has 3 questions and each question has 10 multiple choice answers.

  1. Real-life applications of VQA:

There are many applications of VQA. One of the famous applications is to help visually impaired people and blind peoples. In 2016, Microsoft has released the “Seeing AI” app for visually impaired people to describe the surrounding environment around them. You can watch this video for the prototype of the Seeing AI app.

Another application could be on social media or e-commerce sites. VQA can be also used for educational purposes.

  1. Conclusion:

I hope this explanation will give you a good idea of Visual Question Answering. In the next blog post, I will walk you through the code in Keras.

If you like my explanations, do provide some feedback, comments, etc. and stay tuned for the next post.

Understanding Dropout and implementing it on MNIST dataset

Over-fitting is a major problem in deep learning and a plethora of techniques have been introduced to prevent it. One of the most effective one is called “dropout”.  Let’s use the analogy of a person going to gym for understanding this. Let’s say the person going to gym mostly uses his dominant arm, say his right arm to pick up weights. After some time, he notices that his dominant arm is developing a large muscle, but not the other arm. So, what can he do? Obviously, he needs to involve both his arms while training. Sometimes he should stop using his right arm, and use the left arm to lift weights and vice versa.

Something like this happens commonly in neural networks. Sometime one part of the network has very large weights and ends up dominating the training. While other part of the network remains weak and does not really play a role in the training. So, what dropout does to solve this problem, is it randomly shuts off some nodes and stop the gradients flowing through it. So, our forward and back propagation happen without those nodes. In that case the rest of the nodes need to pick up the slack and be more active in the training. We define a probability of the nodes getting dropped. For example, P=0.5 means there is a 50% chance a node will be dropped.

Figure 1 demonstrates the dropout technique, taken from the original research paper.

Dropout in a neuronal Net

Our network can never rely on any given node because it can be squashed at any given time. Hence the network is forced to learn redundant representation for everything to make sure at least some of the information remains. Redundant representation leads our network to be more robust. It also acts as ensemble of many networks, since at every epoch random nodes are dropped, each time our network will be different. Ensemble of different networks perform better than a single network since they capture more randomness. Please note, only non-output nodes are dropped.

Let’s, look at the python code to implement dropout in a neural network:

 

Fehler-Rückführung mit der Backpropagation

Dies ist Artikel 4 von 6 der Artikelserie –Einstieg in Deep Learning.

Das Gradienten(abstiegs)verfahren ist der Schlüssel zum Training einzelner Neuronen bzw. deren Gewichtungen zu den Neuronen der vorherigen Schicht. Wer dieses Prinzip verstanden hat, hat bereits die halbe Miete zum Verständnis des Trainings von künstlichen neuronalen Netzen.

Der Gradientenabstieg wird häufig fälschlicherweise mit der Backpropagation gleichgesetzt, jedoch ist das nicht ganz richtig, denn die Backpropagation ist mehr als die Anwendung des Gradientenabstiegs.

Bevor wir die Backpropagation erläutern, nochmal kurz zurück zur Forward-Propagation, die die eigentliche Prädiktion über ein künstliches neuronales Netz darstellt:

Forward-Propagation

Abbildung 1: Ein simples kleines künstliches neuronales Netz mit zwei Schichten (+ Eingabeschicht) und zwei Neuronen pro Schicht.

In einem kleinen künstlichen neuronalen Netz, wie es in der Abbildung 1 dargestellt ist, und das alle Neuronen über die Sigmoid-Funktion aktiviert, wird jedes Neuron eine Nettoeingabe z berechnen…

z = w^{T} \cdot x

… und diese Nettoeingabe in die Sigmoid-Funktion einspeisen…

\phi(z) = sigmoid(z) = \frac{1}{1 + e^{-z}}

… die dann das einzelne Neuron aktiviert. Die Aktivierung erfolgt also in der mittleren Schicht (N-Schicht) wie folgt:

N_{j} = \frac{1}{1 + e^{- \sum (w_{ij} \cdot x_{i}) }}

Die beiden Aktivierungsausgaben N werden dann als Berechnungsgrundlage für die Ausgaben der Ausgabeschicht o verwendet. Auch die Ausgabe-Neuronen berechnen ihre jeweilige Nettoeingabe z und aktivieren über Sigmoid(z).

Ausgabe eines Ausgabeknotens als Funktion der Eingänge und der Verknüpfungsgewichte für ein dreischichtiges neuronales Netz, mit nur zwei Knoten je Schicht, kann also wie folgt zusammen gefasst werden:

O_{k} = \frac{1}{1 + e^{- \sum (w_{jk} \cdot \frac{1}{1 + e^{- \sum (w_{ij} \cdot x_{i}) }}) }}

Abbildung 2: Forward-Propagation. Aktivierung via Sigmoid-Funktion.

Sollte dies die erste Forward-Propagation gewesen sein, wird der Output noch nicht auf den Input abgestimmt sein. Diese Abstimmung erfolgt in Form der Gewichtsanpassung im Training des neuronalen Netzes, über die zuvor erwähnte Gradientenmethode. Die Gradientenmethode ist jedoch von einem Fehler abhängig. Diesen Fehler zu bestimmen und durch das Netz zurück zu führen, das ist die Backpropagation.

Back-Propagation

Um die Gewichte entgegen des Fehlers anpassen zu können, benötigen wir einen möglichst exakten Fehler als Eingabe. Der Fehler berechnet sich an der Ausgabeschicht über eine Fehlerfunktion (Loss Function), beispielsweise über den MSE (Mean Squared Error) oder über die sogenannte Kreuzentropie (Cross Entropy). Lassen wir es in diesem Beispiel einfach bei einem simplen Vergleich zwischen dem realen Wert (Sollwert o_{real}) und der Prädiktion (Ausgabe o) bleiben:

e_{o} = o_{real} - o

Der Fehler e ist also einfach der Unterschied zwischen dem Ziel-Wert und der Prädiktion. Jedes Training ist eine Wiederholung von Prädiktion (Forward) und Gewichtsanpassung (Back). Im ersten Schritt werden üblicherweise die Gewichtungen zufällig gesetzt, jede Gewichtung unterschiedlich nach Zufallszahl. So ist die Wahrscheinlichkeit, gleich zu Beginn die “richtigen” Gewichtungen gefunden zu haben auch bei kleinen neuronalen Netzen verschwindend gering. Der Fehler wird also groß sein und kann über den Gradientenabstieg durch Gewichtsanpassung verkleinert werden.

In diesem Beispiel berechnen wir die Fehler e_{1} und e_{2} und passen danach die Gewichte w_{j,k} (w_{1,1} & w_{2,1} und w_{1,2} & w_{2,2}) der Schicht zwischen dem Hidden-Layer N und dem Output-Layer o an.

Abbildung 3: Anpassung der Gewichtungen basierend auf dem Fehler in der Ausgabe-Schicht.

Die Frage ist nun, wie die Gewichte zwischen dem Input-Layer X und dem Hidden-Layer N anzupassen sind. Es stellt sich die Frage, welchen Einfluss diese auf die Fehler in der Ausgabe-Schicht haben?

Um diese Gewichtungen anpassen zu können, benötigen wir den Fehler-Anteil der beiden Neuronen N_{1} und N_{2}. Dieser Anteil am Fehler der jeweiligen Neuronen ergibt sich direkt aus den Gewichtungen w_{j,k} zum Output-Layer:

e_{N_{1}} = e_{o1} \cdot \frac{w_{1,1}}{w_{1,1} + w_{1,2}} + e_{o2} \cdot \frac{w_{1,2}}{w_{1,1} + w_{1,2}}

e_{N_{2}} = e_{o1} \cdot \frac{w_{2,1}}{w_{2,1} + w_{2,2}} + e_{o2} \cdot \frac{w_{2,2}}{w_{2,1} + w_{2,2}}

Wenn man das nun generalisiert:

    \[ e_{N} = \left(\begin{array}{rr} \frac{w_{1,1}}{w_{1,1} + w_{1,2}} & \frac{w_{1,2}}{w_{1,1} + w_{1,2}} \\ \frac{w_{2,1}}{w_{2,1} + w_{2,2}} & \frac{w_{2,2}}{w_{2,1} + w_{2,2}} \end{array}\right) \cdot \left(\begin{array}{c} e_{1} \\ e_{2} \end{array}\right) \qquad \]

Dabei ist es recht aufwändig, die Gewichtungen stets ins Verhältnis zu setzen. Diese Berechnung können wir verkürzen, indem ganz einfach direkt nur die Gewichtungen ohne Relativierung zur Kalkulation des Fehleranteils benutzt werden. Die Relationen bleiben dabei erhalten!

    \[ e_{N} = \left(\begin{array}{rr} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \end{array}\right) \cdot \left(\begin{array}{c} e_{1} \\ e_{2} \end{array}\right) \qquad \]

Oder folglich in Kurzform: e_{N} = w^{T} \cdot e_{o}

Abbildung 4: Vollständige Gewichtsanpassung auf Basis der Fehler in der Ausgabeschicht und der Fehleranteile in der verborgenden Schicht.

Und nun können, basierend auf den Fehleranteilen der verborgenden Schicht N, die Gewichtungen w_{i,j} zwischen der Eingabe-Schicht I und der verborgenden Schicht N angepasst werden, entgegen dieser Fehler e_{N}.

Die Backpropagation besteht demnach aus zwei Schritten:

  1. Fehler-Berechnung durch Abgleich der Soll-Werte mit den Prädiktionen in der Ausgabeschicht und durch Fehler-Rückführung zu den Neuronen der verborgenden Schichten (Hidden-Layer)
  2. Anpassung der Gewichte entgegen des Gradientenanstiegs der Fehlerfunktion (Loss Function)

Buchempfehlungen

Die folgenden zwei Bücher haben mir sehr beim Verständnis und beim Verständlichmachen der Backpropagation in künstlichen neuronalen Netzen geholfen.

Neuronale Netze selbst programmieren: Ein verständlicher Einstieg mit Python Deep Learning. Das umfassende Handbuch: Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze (mitp Professional)

Training eines Neurons mit dem Gradientenverfahren

Dies ist Artikel 3 von 6 der Artikelserie –Einstieg in Deep Learning.

Das Training von neuronalen Netzen erfolgt nach der Forward-Propagation über zwei Schritte:

  1. Fehler-Rückführung über aller aktiver Neuronen aller Netz-Schichten, so dass jedes Neuron “seinen” Einfluss auf den Ausgabefehler kennt.
  2. Anpassung der Gewichte entgegen den Gradienten der Fehlerfunktion

Beide Schritte werden in der Regel zusammen als Backpropagation bezeichnet. Machen wir erstmal einen Schritt vor und betrachten wir, wie ein Neuron seine Gewichtsverbindungen zu seinen Vorgängern anpasst.

Gradientenabstiegsverfahren

Der Gradientenabstieg ist ein generalisierbarer Algorithmus zur Optimierung, der in vielen Verfahren des maschinellen Lernens zur Anwendung kommt, jedoch ganz besonders als sogenannte Backpropagation im Deep Learning den Erfolg der künstlichen neuronalen Netze erst möglich machen konnte.

Der Gradientenabstieg lässt sich vom Prinzip her leicht erklären: Angenommen, man stünde im Gebirge im dichten Nebel. Das Tal, und somit der Weg nach Hause, ist vom Nebel verdeckt. Wohin laufen wir? Wir können das Ziel zwar nicht sehen, tasten uns jedoch so heran, dass unser Gehirn den Gradienten (den Unterschied der Höhen beider Füße) berechnet, somit die Steigung des Bodens kennt und sich entgegen dieser Steigung unser Weg fortsetzt.

Konkret funktioniert der Gradientenabstieg so: Wir starten bei einem zufälligen Theta \theta (Random Initialization). Wir berechnen die Ausgabe (Forwardpropogation) und vergleichen sie über eine Verlustfunktion (z. B. über die Funktion Mean Squared Error) mit dem tatsächlich korrekten Wert. Auf Grund der zufälligen Initialisierung haben wir eine nahe zu garantierte Falschheit der Ergebnisse und somit einen Verlust. Für die Verlustfunktion berechnen wir den Gradienten für gegebene Eingabewerte. Voraussetzung dafür ist, dass die Funktion ableitbar ist. Wir bewegen uns entgegen des Gradienten in Richtung Minimum der Verlustfunktion. Ist dieses Minimum (fast) gefunden, spricht man auch davon, dass der Lernalgorithmus konvergiert.

Das Gradientenabstiegsverfahren ist eine Möglichkeit der Gradientenverfahren, denn wollten wir maximieren, würden wir uns entlang des Gradienten bewegen, was in anderen Anwendungen sinnvoll ist.

Ob als “Cost Function” oder als “Loss Function” bezeichnet, in jedem Fall ist es eine “Error Function”, aber auf die Benennung kommen wir später zu sprechen. Jedenfalls versuchen wir die Fehlerrate zu senken! Leider sind diese Funktionen in der Praxis selten so einfach konvex (zwei Berge mit einem Tal dazwischen).

 

Aber Achtung: Denn befinden wir uns nur zwischen zwei Bergen, finden wir das Tal mit Sicherheit über den Gradienten. Befinden wir uns jedoch in einem richtigen Gebirge mit vielen Bergen und Tälern, gilt es, das richtige Tal zu finden. Bei der Optimierung der Gewichtungen von künstlichen neuronalen Netzen wollen wir die besten Gewichtungen finden, die uns zu den geringsten Ausgaben der Verlustfunktion führen. Wir suchen also das globale Minimum unter den vielen (lokalen) Minima.

Programmier-Beispiel in Python

Nachfolgend ein Beispiel des Gradientenverfahrens zur Berechnung einer Regression. Wir importieren numpy und matplotlib.pyplot und erzeugen uns künstliche Datenpunkte:

Nun wollen wir einen Lernalgorithmus über das Gradientenverfahren erstellen. Im Grunde haben wir hier es bereits mit einem linear aktivierten Neuron zutun:

Bei der linearen Regression, die wir durchführen wollen, nehmen wir zwei-dimensionale Daten (wobei wir die Regression prinzipiell auch mit x-Dimensionen durchführen können, dann hätte unser Neuron weitere Eingänge). Wir empfangen einen Bias (w_0) der stets mit einer Eingangskonstante multipliziert und somit als Wert erhalten bleibt. Der Bias ist das Alpha \alpha in einer Schulmathe-tauglichen Formel wie y = \beta \cdot x + \alpha.

Beta \beta ist die Steigung, der Gradient, der Funktion.

Sowohl \alpha als auch \beta sind uns unbekannt, versuchen wir jedoch über die Betrachtung unserer Prädiktion durch Berechnung der Formel \^y = \beta \cdot x + \alpha und den darauffolgenden Abgleich mit dem tatsächlichen y herauszufinden. Anfangs behaupten wir beispielsweise einfach, sowohl \beta als auch \alpha seien 0.00. Folglich wird \^y = \beta \cdot x + \alpha ebenfalls gleich 0.00 sein und die Fehlerfunktion (Loss Function) wird maximal sein. Dies war der erste Durchlauf des Trainings, die sogenannte erste Epoche!

Die Epochen (Durchläufe) und dazugehörige Fehlergrößen. Wenn die Fehler sinken und mit weiteren Epochen nicht mehr wesentlich besser werden, heißt es, das der Lernalogorithmus konvergiert.

Als Fehlerfunktion verwenden wir bei der Regression die MSE-Funktion (Mean Squared Error):

MSE = \sum(\^y_i - y_i)^2

Um diese Funktion wird sich nun alles drehen, denn diese beschreibt den Fehler und gibt uns auch die Auskunft darüber, ob wie stark und in welche Richtung sie ansteigt, so dass wir uns entgegen der Steigung bewegen können. Wer die Regeln der Ableitung im Kopf hat, weiß, dass die Ableitung der Formel leichter wird, wenn wir sie vorher auf halbe Werte runterskalieren. Da die Proportionen dabei erhalten bleiben und uns quadrierte Fehlerwerte unserem menschlichen Verstand sowieso nicht so viel sagen (unser Gehirn denkt nunmal nicht exponential), stört das nicht:

MSE = \frac{\frac{1}{2} \cdot \sum(\^y_i - y_i)^2}{n}

MSE = \frac{\frac{1}{2} \cdot \sum(w^T \cdot x_i - y_i)^2}{n}

Wenn die Mathematik der partiellen Ableitung (Ableitung einer Funktion nach jedem Gradienten) abhanden gekommen ist, bitte nochmal folgende Regeln nachschlagen, um die nachfolgende Ableitung verstehen zu können:

  • Allgemeine partielle Ableitung
  • Kettenregel

Ableitung der MSD-Funktion nach dem einen Gewicht w bzw. partiell nach jedem vorhandenen w_j:

\frac{\partial}{\partial w_j}MSE = \frac{\partial}{\partial w} \frac{1}{2} \cdot \sum(\^y - y_i)^2

\frac{\partial}{\partial w_j}MSE = \frac{\partial}{\partial w} \frac{1}{2} \cdot \sum(w^T \cdot x_i - y_i)^2

\frac{\partial}{\partial w_j}MSE = \frac{2}{n} \cdot \sum(w^T \cdot x_i - y_i) \cdot x_{ij}

Woher wir das x_{ij} am Ende her haben? Das ergibt sie aus der Kettenregel: Die äußere Funktion wurde abgeleitet, so wurde aus \frac{1}{2} \cdot \sum(w^T \cdot x_i - y_i)^2 dann \frac{2}{n} \cdot \sum(w^T \cdot x_i - y_i). Jedoch muss im Sinne eben dieser Kettenregel auch die innere Funktion abgeleitet werden. Da wir nach w_j ableiten, bleibt nur x_ij erhalten.

Damit können wir arbeiten! So kompliziert ist die Formel nun auch wieder nicht: \frac{2}{n} \cdot \sum(w^T \cdot x_i - y_i) \cdot x_{ij}

Mit dieser Formel können wir unsere Gewichte an den Fehler anpassen: (f\nabla ist der Gradient der Funktion!)

w_j = w_j - \nabla MSE(w_j)

Initialisieren der Gewichtungen

Die Gewichtungen \alpha und \beta müssen anfänglich mit Werten initialisiert werden. In der Regression bietet es sich an, die Gewichte anfänglich mit 0.00 zu initialisieren.

Bei vielen neuronalen Netzen, mit nicht-linearen Aktivierungsfunktionen, ist das jedoch eher ungünstig und zufällige Werte sind initial besser. Gut erprobt sind normal-verteilte Zufallswerte.

Lernrate

Nur eine Kleinigkeit haben wir bisher vergessen: Wir brauchen einen Faktor, mit dem wir anpassen. Hier wäre der Faktor 1. Das ist in der Regel viel zu groß. Dieser Faktor wird geläufig als Lernrate (Learning Rate) \eta (eta) bezeichnet:

w_j = w_j - \eta \cdot \nabla MSE(w_j)

Die Lernrate \eta ist ein Knackpunkt und der erste Parameter des Lernalgorithmus, den es anzupassen gilt, wenn das Training nicht konvergiert.

Die Lernrate \eta darf nicht zu groß klein gewählt werden, da das Training sonst zu viele Epochen benötigt. Ungeduldige erhöhen die Lernrate möglicherweise aber so sehr, dass der Lernalgorithmus im Minimum der Fehlerfunktion vorbeiläuft und diesen stets überspringt. Hier würde der Algorithmus also sozusagen konvergieren, weil nicht mehr besser werden, aber das resultierende Modell wäre weit vom Optimum entfernt.

Beginnen wir mit der Implementierung als Python-Klasse:

Die Klasse sollte so funktionieren, bevor wir sie verwenden, sollten wir die Input-Werte standardisieren:

Bei diesem Beispiel mit künstlich erzeugten Werten ist das Standardisieren bzw. das Fehlen des Standardisierens zwar nicht kritisch, aber man sollte es sich zur Gewohnheit machen. Testweise es einfach mal weglassen 🙂

Kommen wir nun zum Einsatz der Klasse, die die Regression via Gradientenabstieg absolvieren soll:

Was tut diese Instanz der Klasse LinearRegressionGD nun eigentlich?

Bildlich gesprochen, legt sie eine Gerade auf den Boden des Koordinatensystems, denn die Gewichtungen werden mit 0.00 initialisiert, y ist also gleich 0.00, egal welche Werte in x enthalten sind. Der Fehler ist dann aber sehr groß (sollte maximal sein, im Vergleich zu zukünftigen Epochen). Die Gewichte werden also angepasst, die Gerade somit besser in die Punktwolke platziert. Mit jeder Epoche wird die Gerade erneut in die Punktwolke gelegt, der Gesamtfehler (über alle x, da wir es hier mit dem Batch-Verfahren zutun haben) berechnet, die Werte angepasst… bis die vorgegebene Zahl an Epochen abgelaufen ist.

Schauen wir uns das Ergebnis des Trainings an:

Die Linie sieht passend aus, oder? Da wir hier nicht zu sehr in die Theorie der Regressionsanalyse abdriften möchten, lassen wir das testen und prüfen der Akkuratesse mal aus, hier möchte ich auf meinen Artikel Regressionsanalyse in Python mit Scikit-Learn verweisen.

Prüfen sollten wir hingegen mal, wie schnell der Lernalgorithmus mit der vorgegebenen Lernrate eta konvergiert:

Hier die Verlaufskurve der Cost Function:

Die Kurve zeigt uns, dass spätestens nach 40 Epochen kaum noch Verbesserung (im Sinne der Gesamtfehler-Minimierung) erreicht wird.

Wichtige Hinweise

Natürlich war das nun nur ein erster kleiner Einstieg und wer es verstanden hat, hat viel gewonnen. Denn erst dann kann man sich vorstellen, wie ein einzelnen Neuron eines künstlichen neuronalen Netzes grundsätzlich trainiert werden kann.

Folgendes sollte noch beachtet werden:

  • Lernrate \eta:
    Die Lernrate ist ein wichtiger Parameter. Wer das Programmier-Beispiel bei sich zum Laufen gebracht hat, einfach mal die Lernrate auf Werte zwischen 10.00 und 0.00000001 setzen, schauen was passiert 🙂
  • Globale Minima vs lokale Minima:
    Diese lineare zwei-dimensionale Regression ist ziemlich einfach. Neuronale Netze sind hingegen komplexer und haben nicht einfach nur eine simple konvexe Fehlerfunktion. Hier gibt es mehrere Hügel und Täler in der Fehlerfunktion und die Gefahr ist groß, in einem lokalen, nicht aber in einem globalen Minimum zu landen.
  • Stochastisches Gradientenverfahren:
    Wir haben hier das sogenannte Batch-Verfahren verwendet. Dieses ist grundsätzlich besser als die stochastische Methode. Denn beim Batch verwenden wir den gesamten Stapel an x-Werten für die Fehlerbestimmung. Allerdings ist dies bei großen Daten zu rechen- und speicherintensiv. Dann werden kleinere Unter-Stapel (Sub-Batches) zufällig aus den x-Werten ausgewählt, der Fehler daraus bestimmt (was nicht ganz so akkurat ist, wie als würden wir den Fehler über alle x berechnen) und der Gradient bestimmt. Dies ist schon Rechen- und Speicherkapazität, erfordert aber meistens mehr Epochen.

Buchempfehlung

Die folgenden zwei Bücher haben mir bei der Erstellung dieses Beispiels geholfen und kann ich als hilfreiche und deutlich weiterführende Lektüre empfehlen:

 

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional) Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques for Building Intelligent Systems

 

Künstliche Intelligenz und Vorurteil

Kaum ein anderes technologisches Thema heutzutage wird hinsichtlich gesellschaftlicher Auswirkungen so kontrovers diskutiert wie das der Künstlichen Intelligenz (KI). Während das Wörtchen „KI“ bei den einen Zukunftsvisionen hervorruft, in welchen technologischer Fortschritt menschliche Probleme wie Hunger, Krankheit und Klimawandel reduziert hat, zeichnen andere düstere Bilder von Orwell‘schen Überwachungsstaaten und technologischen Apokalypsen.

Starke, schwache KI

Es ist die Unschärfe des Begriffes „KI“, welcher eine derart große Bandbreite an Zukunftsszenarien ermöglicht. Für diejenigen, welche sich an solch spekulativen Debatten beteiligen, beutet KI „starke KI“ – eine künstliche Intelligenz, deren intellektuellen Fähigkeiten die eines Menschen erreichen oder gar übertreffen. Und so spannend die Diskussion über starke KI auch ist – sie ist reine Spekulation. Heute existierende KI ist weit, sehr weit von starker KI entfernt. Worüber wir heutzutage verfügen ist die sogenannte „schwache KI“ – Algorithmen, die spezifische Anwendungsprobleme (z.B. Bilderkennung, Spracherkennung, Übersetzung, Go spielen) lösen können. Und das mitunter sehr viel besser als Menschen.

Wo heutzutage „KI“ draufsteht, sind innen überwiegend Algorithmen aus dem Bereich des maschinellen Lernens (allen voran Deep Learning) am Werk. Diese Algorithmen können selbständig die Vorgehensweise erlernen, die zum Beispiel nötig ist, um einen gegebenen Input (z.B. ein Bild) auf einen gegebenen Output (z.B. eine Kategorie, welche den Bildinhalt beschreibt) abzubilden. Aber selbst diese „schwache KI“ birgt beträchtliches Potential – denken wir an mögliche Verbesserungen z.B. im Bereich der Medizin, Logistik, Verkehrssicherheit oder Energie- und Ressourcennutzung! Angesichts der Chancen, heutige Prozesse und Anwendungen zu verbessern, haben wir allen Grund, dem Einsatz von KI aufgeschlossen gegenüber zu stehen. Vorausgesetzt natürlich, dass KI verantwortungsvoll, „ethisch“ und sicher eingesetzt wird.

KI auf Abwegen

Ethische Herausforderungen von KI ergeben sich dabei zum einen durch die Zielsetzung. Wie ein Hammer für den Nagel an der Wand oder für den Hinterkopf eines Gegners verwendet werden kann, kann auch KI für böse Ziele missbraucht werden. Nur, dass KI im Zweifel deutlich größeren Schaden anrichten kann als ein einfacher Hammer. Und so sollten wir angesichts der Risiken dringend international diskutieren, wie wir uns hinsichtlich militärischer Anwendungen von KI verhalten wollen.

Zum anderen dringen besonders aus den USA, in denen KI Algorithmen schon heute in deutlich größerem Ausmaß eingesetzt werden als in Deutschland, immer wieder beunruhigende Nachrichten über voreingenommene KI Algorithmen. Zum ersten fand eine Studie kürzlich heraus, dass kommerziell erhältliche Gesichtserkennungsalgorithmen für Frauen bzw. dunkelhäutige Menschen schlechter funktionieren als für Männer bzw. hellhäutige Menschen. Mit der unschönen Konsequenz, dass es z.B. bei einem Abgleich mit Verbrecherfotos bei Menschen mit dunkler Hautfarbe deutlich häufiger zu falschen Übereinstimmungen kommen kann als bei Menschen heller Hautfarbe. Zum zweiten wurde vor kurzem bekannt, dass eine experimentell von einem großen Technologiekonzern zur Bewertung von Bewerbungen verwendete KI von Frauen stammende Bewerbungen systematisch schlechter bewertete als von Männern stammende Bewerbungen.

Wie KI zu Vorurteilen kommt

Um die Ursachen für vorurteilsbehaftete KI besser zu verstehen, lohnt es sich, einen Blick hinter die Kulissen zu werfen. Denn wie jede Technologie existiert auch KI nicht im luftleeren Raum. Dies lässt sich leicht anhand der Faktoren verdeutlichen, welche zum Erfolg heutiger KI beigetragen haben: bessere Hardware, cleverere Algorithmen und größere Datenmengen. Und gerade diese Daten sind es, durch welche Vorurteile in KI Einzug halten können.

Die Vorstellung von „neutralen Daten“ ist nämlich eine Wunschvorstellung. Im besten Fall spiegeln Daten die Welt wider, in der wir leben.       Eine Welt zum Beispiel, in der in Technologiekonzernen typischerweise deutlich mehr Männer beschäftigt sind als Frauen – was eine auf dem Personalbestand eines Technologiekonzerns trainierte KI dazu veranlassen kann, zu „schlussfolgern“, dass männliche Bewerber im Auswahlverfahren zu bevorzugen sind. Oder eine Welt, in der Länder bzw. gesellschaftliche Schichten innerhalb eines Landes unterschiedlichen Zugang zu modernen Technologien oder auch Bildung haben. Eine Ungleichheit, die sich als Dominanz westlicher Industrienationen in der geografischen Zusammensetzung von zum Training von KI-Algorithmen verwendeter Datensätze auswirken kann. Eine Dominanz, die wiederum zur Folge haben kann, dass derart trainierte KI-Algorithmen besonders gut für Menschen aus westlichen Industrienationen funktionieren. Ganz zu schweigen von der Voreingenommenheit der menschlichen Wahrnehmung, welche die Zusammensetzung von Daten beeinflusst – denken wir an das begrenzte Spektrum der Bilder, welche uns zuerst zu dem Begriff „Genie“ in den Sinn kommen.

Aber nicht nur die verwendeten Trainingsdaten, sondern auch bei der Entwicklung von KI getroffenen Design-Entscheidungen können negative Auswirkungen haben. Wenn bei einem nicht perfekt funktionierenden Bilderkennungsalgorithmus potentiell abwertende Kategorien zur Klassifikation zur Verfügung stehen, kann dies dazu führen, dass – wie in der Vergangenheit geschehen – dunkelhäutige Menschen als Gorillas klassifiziert werden. Wenn bei der Evaluation eines z.B. für die Gesichtserkennung eingesetzten KI-Algorithmus nur die Genauigkeit über alle Bevölkerungsgruppen hinweg berücksichtigt wird, können Ungleichheiten in der Genauigkeit nicht entdeckt werden, was zu Problemen bei der Anwendung führen kann. Denn Nutzer von KI-Algorithmen vermuten zumeist, dass die Algorithmen für alle denkbaren Anwendungszwecke geeignet sind.

Werte statt Wegsehen

Entgegen der verbreiteten Auffassung sind KI Algorithmen also nicht notwendigerweise vorurteilsfrei – sie können menschliche Voreingenommenheit bzw. gesellschaftliche Ungleichheit widerspiegeln. Da Algorithmen anders und in anderem Maß als Menschen eingesetzt werden, kann das bei blauäugiger Verwendung dazu führen, dass bestehende Ungleichheiten nicht nur bestärkt, sondern sogar vergrößert werden. Richtig angewendet können Algorithmen jedoch helfen, implizite und explizite Vorurteile menschlicher Entscheider zu mindern. Denn wie wir durch viele Studien wissen, ist die Liste der kognitiven Verzerrungen, die wir Menschen aufweisen, lang.

Es ist für den verantwortlichen Einsatz von KI in einem sensiblen Kontext somit essenziell, zu wissen, welche „ethischen“ Kriterien KI für den konkreten Anwendungsfall erfüllen muss. So kann sichergestellt werden, dass die KI den Anforderungen entspricht, bevor sie angewendet wird – oder aber, dass sie solange nicht angewendet wird, wie sie den Anforderungen nicht entspricht. Und mittels Transparenz, Überwachung und Feedback-Möglichkeiten lässt sich vermeiden, dass ein selbst-verbessernder KI-Algorithmus im Laufe der Zeit das ihm gesteckte Ziel verfehlt.

Für viele Anwendungsfälle sind derartige ethische Fragen jedoch vernachlässigbar, denken wir zum Beispiel an die Vorhersage von Maschinenausfällen oder die Extraktion strukturierter Daten aus unstrukturierten Dokumenten. Aber es ist nichtsdestotrotz gut und wichtig, Ethik und KI zusammen zu denken. Denn dies ermöglicht es uns, sicherzustellen, dass wir KI auf die bestmögliche Weise einsetzen. Denn das enorme Potential von KI gibt uns die Chance, den Status quo nachhaltig positiv zu verändern – technologisch wie ethisch.

Cloudera beschleunigt die KI-Industrialisierung mit Cloud nativer Machine-Learning-Plattform

Neues Cloudera-Angebot vereinfacht Machine-Learning-Workflows mit einer einheitlichen Erfahrung für Data Engineering und Data Science auf Kubernetes.

München, Palo Alto (Kalifornien), 5. Dezember 2018 – Cloudera, Inc. (NYSE: CLDR) hat eine Vorschau auf eine neue, Cloud-basierte Machine-Learning-Plattform der nächsten Generation auf Basis von Kubernetes veröffentlicht. Das kommende Cloudera Machine Learning erweitert das Angebot von Cloudera für Self-Service Data Science im Unternehmen. Es bietet eine schnelle Bereitstellung und automatische Skalierung sowie eine containerisierte, verteilte Verarbeitung auf heterogenen Rechnern. Cloudera Machine Learning gewährleistet auch einen sicheren Datenzugriff mit einem einheitlichen Erlebnis in lokalen, Public-Cloud- und hybriden Umgebungen.

Im Gegensatz zu Data-Science-Tools, die nur Teile des Machine-Learning-Workflows adressieren oder nur für die Public Cloud verfügbar sind, kombiniert Cloudera Machine Learning Data Engineering und Data Science, auf beliebigen Daten und überall. Darüber hinaus werden Datensilos aufgelöst, um den kompletten Machine-Learning-Workflow zu vereinfachen und zu beschleunigen. Unternehmen können ab sofort hier Zugang zu einer Vorabversion von Cloudera Machine Learning anfragen.

Container und das Kubernetes-Ökosystem ermöglichen die Agilität der Cloud in verschiedenen Umgebungen mit einer konsistenten Erfahrung und ermöglichen die Bereitstellung skalierbarer Services für die IT in hybriden und Multi-Cloud-Implementierungen. Gleichzeitig sind Unternehmen bestrebt, komplette Machine-Learning-Workflows zu operationalisieren und zu skalieren. Mit Cloudera Machine Learning können Unternehmen Machine Learning von der Forschung bis zur Produktion beschleunigen. Benutzer sind in der Lage, Umgebungen einfach bereitzustellen und Ressourcen zu skalieren und müssen so weniger Zeit für die Infrastruktur und können mehr Zeit für Innovationen aufwenden.

Zu den Fähigkeiten gehören:

  • Nahtlose Portierbarkeit über Private Cloud, Public Cloud und Hybrid Cloud auf Basis von Kubernetes.

  • Schnelle Cloud-Bereitstellung und automatische Skalierung.

  • Skalierbares Data Engineering und Machine Learning mit nahtloser Abhängigkeitsverwaltung durch containerisiertes Python, R und Spark-on-Kubernetes.

  • Hochgeschwindigkeits-Deep-Learning mit verteiltem GPU-Scheduling und Training.

  • Sicherer Datenzugriff über HDFS, Cloud Object Stores und externe Datenbanken hinweg.

„Teams produktiver zu machen, ist entscheidend für die Skalierung von Machine Learning im Unternehmen. Modelle konsistent über eine hochskalierbare, transparente Infrastruktur zu erstellen und einzusetzen und dabei überall auf Daten zuzugreifen, erfordert aber eine neuartige Plattform”, sagt Hilary Mason, General Manager, Machine Learning bei Cloudera. „Cloudera Machine Learning vereint die kritischen Funktionen von Data Engineering, kollaborativer Exploration, Modelltraining und -bereitstellung in einer Cloud-basierten Plattform, die dort läuft, wo Sie sie benötigen – mit den integrierten Sicherheits-, Governance- und Managementfunktionen, die unsere Kunden nachfragen.”

„Bei Akamai haben wir ausgereifte Web-Sicherheitssysteme auf der Grundlage einer umfassenden Datenanalyse und -verarbeitung aufgebaut. Dabei ist uns bewusst geworden, dass Geschwindigkeit und Skalierbarkeit entscheidend für die Erkennung von Anomalien im Internet sind”, sagt Oren Marmor, DevOps Manager, Web Security bei Akamai. „Die Agilität, die Docker und Kubernetes Apache Spark verleihen, ist für uns ein wichtiger Baustein, sowohl für Data Science als auch für Data Engineering. Wir freuen uns sehr über die Einführung der kommenden Cloudera Machine Learning Plattform. Die Möglichkeit, mit der Plattform das Abhängigkeitsmanagement von Betriebssystemen und Bibliotheken zu vereinfachen, ist eine vielversprechende Entwicklung.”


Matt Brandwein, Senior Director of Products bei Cloudera, erläutert im Video, wie die neue Cloudera Plattform Teams in die Lage versetzt, Machine Learning im Unternehmen zu entwickeln und einzusetzen.

Mit Cloudera Machine Learning sowie der Forschung und fachkundigen Beratung durch die Cloudera Fast Forward Labs bietet Cloudera einen umfassenden Ansatz zur Beschleunigung der Industrialisierung von KI.

Um Kunden dabei zu unterstützen, KI überall zu nutzen, hat das Applied Research Team von Cloudera kürzlich Federated Learning eingeführt, um Machine-Learning-Modelle von der Cloud bis zum Edge einzusetzen, gleichzeitig den Datenschutz zu gewährleisten und den Aufwand für die Netzwerkkommunikation zu reduzieren. Der Bericht bietet eine detaillierte, technische Erläuterung des Ansatzes sowie praktische technische Empfehlungen, die sich mit Anwendungsfällen in den Bereichen Mobilfunk, Gesundheitswesen und Fertigung befassen, einschließlich IoT-gesteuerter Predictive Maintenance.

„Federated Learning beseitigt Hindernisse für die Anwendung von Machine Learning in stark regulierten und wettbewerbsorientierten Branchen. Wir freuen uns sehr, unseren Kunden helfen zu können, damit Starthilfe für die Industrialisierung der KI zu erhalten”, so Mike Lee Williams, Forschungsingenieur bei Cloudera Fast Forward Labs.


Mike Lee Williams, Research Engineer bei den Cloudera Fast Forward Labs, erklärt im Video, wie Machine-Learning-Systeme mit Hilfe von Federated Learning ohne direkten Zugriff auf Trainingsdaten aufgebaut werden können. 

Über Cloudera

Bei Cloudera glauben wir, dass Daten morgen Dinge ermöglichen werden, die heute noch unmöglich sind. Wir versetzen Menschen in die Lage, komplexe Daten in klare, umsetzbare Erkenntnisse zu transformieren. Wir sind die moderne Plattform für Machine Learning und Analysen, optimiert für die Cloud. Die größten Unternehmen der Welt vertrauen Cloudera bei der Lösung ihrer herausforderndsten, geschäftlichen Probleme. Weitere Informationen finden Sie unter de.cloudera.com/.


Warning: file_get_contents(https://nbviewer.jupyter.org/url/github.com/sarthakbabbar3/Sentiment_Analysis_IMDB/blob/master/Sentiment%20analysis%20imdb.ipynb): failed to open stream: HTTP request failed! HTTP/1.1 404 Not Found in /var/www/datasciencehack/wp-content/plugins/nbconvert-master/nbconvert.php on line 87

Warning: DOMDocument::loadHTML(): Empty string supplied as input in /var/www/datasciencehack/wp-content/plugins/nbconvert-master/nbconvert.php on line 121

Warning: file_get_contents(https://api.github.com/repos/sarthakbabbar3/Sentiment_Analysis_IMDB/commits/master?path=Sentiment%20analysis%20imdb.ipynb&page=1): failed to open stream: HTTP request failed! HTTP/1.1 404 Not Found in /var/www/datasciencehack/wp-content/plugins/nbconvert-master/nbconvert.php on line 38

Sentiment Analysis of IMDB reviews

 

Download the Data Sources

The data sources used in this article can be downloaded here:

Dem Wettbewerb voraus mit Künstlicher Intelligenz

Was KI schon heute kann und was bis 2020 auf deutsche Unternehmen zukommt

Künstliche Intelligenz ist für die Menschheit wichtiger als die Erfindung von Elektrizität oder die Beherrschung des Feuers – davon sind der Google-CEO Sundar Pichai und viele weitere Experten überzeugt. Doch was steckt wirklich dahinter? Welche Anwendungsfälle funktionieren schon heute? Und was kommt bis 2020 auf deutsche Unternehmen zu?

Big Data war das Buzzword der vergangenen Jahre und war – trotz mittlerweile etablierter Tools wie SAP Hana, Hadoop und weitere – betriebswirtschaftlich zum Scheitern verurteilt. Denn Big Data ist ein passiver Begriff und löst keinesfalls alltägliche Probleme in den Unternehmen.

Dabei wird völlig verkannt, dass Big Data die Vorstufe für den eigentlichen Problemlöser ist, der gemeinhin als Künstliche Intelligenz (KI) bezeichnet wird. KI ist ein Buzzword, dessen langfristiger Erfolg und Aktivismus selbst von skeptischen Experten nicht infrage gestellt wird. Daten-Ingenieure sprechen im Kontext von KI hier aktuell bevorzugt von Deep Learning; wissenschaftlich betrachtet ein Teilgebiet der KI.

Was KI schon heute kann

Deep Learning Algorithmen laufen bereits heute in Nischen-Anwendungen produktiv, beispielsweise im Bereich der Chatbots oder bei der Suche nach Informationen. Sie übernehmen ferner das Rating für die Kreditwürdigkeit und sperren Finanzkonten, wenn sie erlernte Betrugsmuster erkennen. Im Handel findet Deep Learning bereits die optimalen Einkaufsparameter sowie den besten Verkaufspreis.

Getrieben wird Deep Learning insbesondere durch prestigeträchtige Vorhaben wie das autonome Fahren, dabei werden die vielfältigen Anwendungen im Geschäftsbereich oft vergessen.

Die Grenzen von Deep Learning

Und Big Data ist das Futter für Deep Learning. Daraus resultiert auch die Grenze des Möglichen, denn für strategische Entscheidungen eignet sich KI bestenfalls für das Vorbereitung einer Datengrundlage, aus denen menschliche Entscheider eine Strategie entwickeln. KI wird zumindest in dieser Dekade nur auf operativer Ebene Entscheidungen treffen können, insbesondere in der Disposition, Instandhaltung, Logistik und im Handel auch im Vertrieb – anfänglich jeweils vor allem als Assistenzsystem für die Menschen.

Genau wie das autonome Fahren mit Assistenzsystemen beginnt, wird auch im Unternehmen immer mehr die KI das Steuer übernehmen.

Was sich hinsichtlich KI bis 2020 tun wird

Derzeit stehen wir erst am Anfang der Möglichkeiten, die Künstliche Intelligenz uns bietet. Das Markt-Wachstum für KI-Systeme und auch die Anwendungen erfolgt exponentiell. Entsprechend wird sich auch die Arbeitsweise für KI-Entwickler ändern müssen. Mit etablierten Deep Learning Frameworks, die mehrheitlich aus dem Silicon Valley stammen, zeichnet sich der Trend ab, der für die Zukunft noch weiter professionalisiert werden wird: KI-Frameworks werden Enterprise-fähig und Distributionen dieser Plattformen werden es ermöglichen, dass KI-Anwendungen als universelle Kernintelligenz für das operative Geschäft für fast alle Unternehmen binnen weniger Monate implementierbar sein werden.

Wir können bis 2020 also mit einer Alexa oder Cortana für das Unternehmen rechnen, die Unternehmensprozesse optimiert, Risiken berichtet und alle alltäglichen Fragen des Geschäftsführers beantwortet – in menschlich-verbal formulierten Sätzen.

Der Einsatz von Künstlicher Intelligenz zur Auswertung von Geschäfts- oder Maschinendaten ist auch das Leit-Thema der zweitägigen Data Leader Days 2018 in Berlin. Am 14. November 2018 sprechen renommierte Data Leader über Anwendungsfälle, Erfolge und Chancen mit Geschäfts- und Finanzdaten. Der 15. November 2018 konzentriert sich auf Automotive- und Maschinendaten mit hochrangigen Anwendern aus der produzierenden Industrie und der Automobilzuliefererindustrie. Seien Sie dabei und nutzen Sie die Chance, sich mit führenden KI-Anwendern auszutauschen.