Sentiment Analysis of IMDB reviews

Sentiment Analysis of IMDB reviews

This article shows you how to build a Neural Network from scratch(no libraries) for the purpose of detecting whether a movie review on IMDB is negative or positive.


  • Curating a dataset and developing a "Predictive Theory"

  • Transforming Text to Numbers Creating the Input/Output Data

  • Building our Neural Network

  • Making Learning Faster by Reducing "Neural Noise"

  • Reducing Noise by strategically reducing the vocabulary

Curating the Dataset

In [3]:
def pretty_print_review_and_label(i):
    print(labels[i] + "\t:\t" + reviews[i][:80] + "...")

g = open('reviews.txt','r') # features of our dataset
reviews = list(map(lambda x:x[:-1],g.readlines()))

g = open('labels.txt','r') # labels
labels = list(map(lambda x:x[:-1].upper(),g.readlines()))

Note: The data in reviews.txt we're contains only lower case characters. That's so we treat different variations of the same word, like The, the, and THE, all the same way.

It's always a good idea to get check out your dataset before you proceed.

In [2]:
len(reviews) #No. of reviews
In [3]:
reviews[0] #first review
'bromwell high is a cartoon comedy . it ran at the same time as some other programs about school life  such as  teachers  . my   years in the teaching profession lead me to believe that bromwell high  s satire is much closer to reality than is  teachers  . the scramble to survive financially  the insightful students who can see right through their pathetic teachers  pomp  the pettiness of the whole situation  all remind me of the schools i knew and their students . when i saw the episode in which a student repeatedly tried to burn down the school  i immediately recalled . . . . . . . . . at . . . . . . . . . . high . a classic line inspector i  m here to sack one of your teachers . student welcome to bromwell high . i expect that many adults of my age think that bromwell high is far fetched . what a pity that it isn  t   '
In [4]:
labels[0] #first label

Developing a Predictive Theory

Analysing how you would go about predicting whether its a positive or a negative review.

In [5]:
print("labels.txt \t : \t reviews.txt\n")
labels.txt 	 : 	 reviews.txt

NEGATIVE	:	this movie is terrible but it has some good effects .  ...
POSITIVE	:	adrian pasdar is excellent is this film . he makes a fascinating woman .  ...
NEGATIVE	:	comment this movie is impossible . is terrible  very improbable  bad interpretat...
POSITIVE	:	excellent episode movie ala pulp fiction .  days   suicides . it doesnt get more...
NEGATIVE	:	if you haven  t seen this  it  s terrible . it is pure trash . i saw this about ...
POSITIVE	:	this schiffer guy is a real genius  the movie is of excellent quality and both e...
In [41]:
from collections import Counter
import numpy as np

We'll create three Counter objects, one for words from postive reviews, one for words from negative reviews, and one for all the words.

In [56]:
# Create three Counter objects to store positive, negative and total counts
positive_counts = Counter()
negative_counts = Counter()
total_counts = Counter()

Examine all the reviews. For each word in a positive review, increase the count for that word in both your positive counter and the total words counter; likewise, for each word in a negative review, increase the count for that word in both your negative counter and the total words counter. You should use split(' ') to divide a piece of text (such as a review) into individual words.

In [57]:
# Loop over all the words in all the reviews and increment the counts in the appropriate counter objects
for i in range(len(reviews)):
    if(labels[i] == 'POSITIVE'):
        for word in reviews[i].split(" "):
            positive_counts[word] += 1
            total_counts[word] += 1
        for word in reviews[i].split(" "):
            negative_counts[word] += 1
            total_counts[word] += 1

Most common positive & negative words

In [ ]:

The above statement retrieves alot of words, the top 3 being : ('the', 173324), ('.', 159654), ('and', 89722),

In [ ]:

The above statement retrieves alot of words, the top 3 being : ('', 561462), ('.', 167538), ('the', 163389),

As you can see, common words like "the" appear very often in both positive and negative reviews. Instead of finding the most common words in positive or negative reviews, what you really want are the words found in positive reviews more often than in negative reviews, and vice versa. To accomplish this, you'll need to calculate the ratios of word usage between positive and negative reviews.

The positive-to-negative ratio for a given word can be calculated with positive_counts[word] / float(negative_counts[word]+1). Notice the +1 in the denominator – that ensures we don't divide by zero for words that are only seen in positive reviews.

In [58]:
pos_neg_ratios = Counter()

# Calculate the ratios of positive and negative uses of the most common words
# Consider words to be "common" if they've been used at least 100 times
for term,cnt in list(total_counts.most_common()):
    if(cnt > 100):
        pos_neg_ratio = positive_counts[term] / float(negative_counts[term]+1)
        pos_neg_ratios[term] = pos_neg_ratio

Examine the ratios

In [12]:
print("Pos-to-neg ratio for 'the' = {}".format(pos_neg_ratios["the"]))
print("Pos-to-neg ratio for 'amazing' = {}".format(pos_neg_ratios["amazing"]))
print("Pos-to-neg ratio for 'terrible' = {}".format(pos_neg_ratios["terrible"]))
Pos-to-neg ratio for 'the' = 1.0607993145235326
Pos-to-neg ratio for 'amazing' = 4.022813688212928
Pos-to-neg ratio for 'terrible' = 0.17744252873563218

We see the following:

  • Words that you would expect to see more often in positive reviews – like "amazing" – have a ratio greater than 1. The more skewed a word is toward postive, the farther from 1 its positive-to-negative ratio will be.
  • Words that you would expect to see more often in negative reviews – like "terrible" – have positive values that are less than 1. The more skewed a word is toward negative, the closer to zero its positive-to-negative ratio will be.
  • Neutral words, which don't really convey any sentiment because you would expect to see them in all sorts of reviews – like "the" – have values very close to 1. A perfectly neutral word – one that was used in exactly the same number of positive reviews as negative reviews – would be almost exactly 1.

Ok, the ratios tell us which words are used more often in postive or negative reviews, but the specific values we've calculated are a bit difficult to work with. A very positive word like "amazing" has a value above 4, whereas a very negative word like "terrible" has a value around 0.18. Those values aren't easy to compare for a couple of reasons:

  • Right now, 1 is considered neutral, but the absolute value of the postive-to-negative rations of very postive words is larger than the absolute value of the ratios for the very negative words. So there is no way to directly compare two numbers and see if one word conveys the same magnitude of positive sentiment as another word conveys negative sentiment. So we should center all the values around netural so the absolute value fro neutral of the postive-to-negative ratio for a word would indicate how much sentiment (positive or negative) that word conveys.
  • When comparing absolute values it's easier to do that around zero than one.

To fix these issues, we'll convert all of our ratios to new values using logarithms (i.e. use np.log(ratio))

In the end, extremely positive and extremely negative words will have positive-to-negative ratios with similar magnitudes but opposite signs.

In [59]:
# Convert ratios to logs
for word,ratio in pos_neg_ratios.most_common():
    pos_neg_ratios[word] = np.log(ratio)

Examine the new ratios

In [14]:
print("Pos-to-neg ratio for 'the' = {}".format(pos_neg_ratios["the"]))
print("Pos-to-neg ratio for 'amazing' = {}".format(pos_neg_ratios["amazing"]))
print("Pos-to-neg ratio for 'terrible' = {}".format(pos_neg_ratios["terrible"]))
Pos-to-neg ratio for 'the' = 0.05902269426102881
Pos-to-neg ratio for 'amazing' = 1.3919815802404802
Pos-to-neg ratio for 'terrible' = -1.7291085042663878

If everything worked, now you should see neutral words with values close to zero. In this case, "the" is near zero but slightly positive, so it was probably used in more positive reviews than negative reviews. But look at "amazing"'s ratio - it's above 1, showing it is clearly a word with positive sentiment. And "terrible" has a similar score, but in the opposite direction, so it's below -1. It's now clear that both of these words are associated with specific, opposing sentiments.

Run the below code to see more ratios.

It displays all the words, ordered by how associated they are with postive reviews.

In [ ]:

The top most common words for the above code : ('edie', 4.6913478822291435), ('paulie', 4.0775374439057197), ('felix', 3.1527360223636558), ('polanski', 2.8233610476132043), ('matthau', 2.8067217286092401), ('victoria', 2.6810215287142909), ('mildred', 2.6026896854443837), ('gandhi', 2.5389738710582761), ('flawless', 2.451005098112319), ('superbly', 2.2600254785752498), ('perfection', 2.1594842493533721), ('astaire', 2.1400661634962708), ('captures', 2.0386195471595809), ('voight', 2.0301704926730531), ('wonderfully', 2.0218960560332353), ('powell', 1.9783454248084671), ('brosnan', 1.9547990964725592)

Transforming Text into Numbers

Creating the Input/Output Data

Create a set named vocab that contains every word in the vocabulary.

In [19]:
vocab = set(total_counts.keys())

Check vocabulary size

In [20]:
vocab_size = len(vocab)

Th following image rpresents the layers of the neural network you'll be building throughout this notebook. layer_0 is the input layer, layer_1 is a hidden layer, and layer_2 is the output layer.

In [1]:

TODO: Create a numpy array called layer_0 and initialize it to all zeros. Create layer_0 as a 2-dimensional matrix with 1 row and vocab_size columns.

In [21]:
layer_0 = np.zeros((1,vocab_size))

layer_0 contains one entry for every word in the vocabulary, as shown in the above image. We need to make sure we know the index of each word, so run the following cell to create a lookup table that stores the index of every word.

TODO: Complete the implementation of update_input_layer. It should count how many times each word is used in the given review, and then store those counts at the appropriate indices inside layer_0.

In [ ]:
# Create a dictionary of words in the vocabulary mapped to index positions 
# (to be used in layer_0)
word2index = {}
for i,word in enumerate(vocab):
    word2index[word] = i

It stores the indexes like this: 'antony': 22, 'pinjar': 23, 'helsig': 24, 'dances': 25, 'good': 26, 'willard': 71500, 'faridany': 27, 'foment': 28, 'matts': 12313,

Lets implement some functions for simplifying our inputs to the neural network.

In [25]:
def update_input_layer(review):
    The element at a given index of layer_0 should represent
    how many times the given word occurs in the review.
    global layer_0
    # clear out previous state, reset the layer to be all 0s
    layer_0 *= 0
    # count how many times each word is used in the given review and store the results in layer_0 
    for word in review.split(" "):
        layer_0[0][word2index[word]] += 1

Run the following cell to test updating the input layer with the first review. The indices assigned may not be the same as in the solution, but hopefully you'll see some non-zero values in layer_0.

In [26]:
array([[ 18.,   0.,   0., ...,   0.,   0.,   0.]])

get_target_for_labels should return 0 or 1, depending on whether the given label is NEGATIVE or POSITIVE, respectively.

In [27]:
def get_target_for_label(label):
    if(label == 'POSITIVE'):
        return 1
        return 0

Building a Neural Network

In [32]:
import time
import sys
import numpy as np

# Encapsulate our neural network in a class
class SentimentNetwork:
    def __init__(self, reviews,labels,hidden_nodes = 10, learning_rate = 0.1):
            reviews(list) - List of reviews used for training
            labels(list) - List of POSITIVE/NEGATIVE labels
            hidden_nodes(int) - Number of nodes to create in the hidden layer
            learning_rate(float) - Learning rate to use while training
        # Assign a seed to our random number generator to ensure we get
        # reproducable results

        # process the reviews and their associated labels so that everything
        # is ready for training
        self.pre_process_data(reviews, labels)
        # Build the network to have the number of hidden nodes and the learning rate that
        # were passed into this initializer. Make the same number of input nodes as
        # there are vocabulary words and create a single output node.
        self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate)

    def pre_process_data(self, reviews, labels):
        # populate review_vocab with all of the words in the given reviews
        review_vocab = set()
        for review in reviews:
            for word in review.split(" "):

        # Convert the vocabulary set to a list so we can access words via indices
        self.review_vocab = list(review_vocab)
        # populate label_vocab with all of the words in the given labels.
        label_vocab = set()
        for label in labels:
        # Convert the label vocabulary set to a list so we can access labels via indices
        self.label_vocab = list(label_vocab)
        # Store the sizes of the review and label vocabularies.
        self.review_vocab_size = len(self.review_vocab)
        self.label_vocab_size = len(self.label_vocab)
        # Create a dictionary of words in the vocabulary mapped to index positions
        self.word2index = {}
        for i, word in enumerate(self.review_vocab):
            self.word2index[word] = i
        # Create a dictionary of labels mapped to index positions
        self.label2index = {}
        for i, label in enumerate(self.label_vocab):
            self.label2index[label] = i
    def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
        # Set number of nodes in input, hidden and output layers.
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        # Store the learning rate
        self.learning_rate = learning_rate

        # Initialize weights

        # These are the weights between the input layer and the hidden layer.
        self.weights_0_1 = np.zeros((self.input_nodes,self.hidden_nodes))
        # These are the weights between the hidden layer and the output layer.
        self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, 
                                                (self.hidden_nodes, self.output_nodes))
        # The input layer, a two-dimensional matrix with shape 1 x input_nodes
        self.layer_0 = np.zeros((1,input_nodes))
    def update_input_layer(self,review):

        # clear out previous state, reset the layer to be all 0s
        self.layer_0 *= 0
        for word in review.split(" "):
            if(word in self.word2index.keys()):
                self.layer_0[0][self.word2index[word]] += 1
    def get_target_for_label(self,label):
        if(label == 'POSITIVE'):
            return 1
            return 0
    def sigmoid(self,x):
        return 1 / (1 + np.exp(-x))
    def sigmoid_output_2_derivative(self,output):
        return output * (1 - output)
    def train(self, training_reviews, training_labels):
        # make sure out we have a matching number of reviews and labels
        assert(len(training_reviews) == len(training_labels))
        # Keep track of correct predictions to display accuracy during training 
        correct_so_far = 0

        # Remember when we started for printing time statistics
        start = time.time()
        # loop through all the given reviews and run a forward and backward pass,
        # updating weights for every item
        for i in range(len(training_reviews)):
            # Get the next review and its correct label
            review = training_reviews[i]
            label = training_labels[i]
            ### Forward pass ###

            # Input Layer

            # Hidden layer
            layer_1 =

            # Output layer
            layer_2 = self.sigmoid(
            ### Backward pass ###

            # Output error
            layer_2_error = layer_2 - self.get_target_for_label(label) # Output layer error is the difference between desired target and actual output.
            layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2)

            # Backpropagated error
            layer_1_error = # errors propagated to the hidden layer
            layer_1_delta = layer_1_error # hidden layer gradients - no nonlinearity so it's the same as the error

            # Update the weights
            self.weights_1_2 -= * self.learning_rate # update hidden-to-output weights with gradient descent step
            self.weights_0_1 -= * self.learning_rate # update input-to-hidden weights with gradient descent step

            # Keep track of correct predictions.
            if(layer_2 >= 0.5 and label == 'POSITIVE'):
                correct_so_far += 1
            elif(layer_2 < 0.5 and label == 'NEGATIVE'):
                correct_so_far += 1
            sys.stdout.write(" #Correct:" + str(correct_so_far) + " #Trained:" + str(i+1) \
                             + " Training Accuracy:" + str(correct_so_far * 100 / float(i+1))[:4] + "%")
    def test(self, testing_reviews, testing_labels):
        Attempts to predict the labels for the given testing_reviews,
        and uses the test_labels to calculate the accuracy of those predictions.
        # keep track of how many correct predictions we make
        correct = 0

        # Loop through each of the given reviews and call run to predict
        # its label. 
        for i in range(len(testing_reviews)):
            pred =[i])
            if(pred == testing_labels[i]):
                correct += 1
            sys.stdout.write(" #Correct:" + str(correct) + " #Tested:" + str(i+1) \
                             + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%")
    def run(self, review):
        Returns a POSITIVE or NEGATIVE prediction for the given review.
        # Run a forward pass through the network, like in the "train" function.
        # Input Layer

        # Hidden layer
        layer_1 =

        # Output layer
        layer_2 = self.sigmoid(
        # Return POSITIVE for values above greater-than-or-equal-to 0.5 in the output layer;
        # return NEGATIVE for other values
        if(layer_2[0] >= 0.5):
            return "POSITIVE"
            return "NEGATIVE"

Run the following code to create the network with a small learning rate, 0.001, and then train the new network. Using learning rate larger than this, for example 0.1 or even 0.01 would result in poor performance.

In [ ]:
mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.001)

Running the above code would have given an accuracy around 62.2%

Reducing Noise in Our Input Data

Counting how many times each word occured in our review might not be the most efficient way. Instead just including whether a word was there or not will improve our training time and accuracy. Hence we update our update_input_layer() function.

In [ ]:
def update_input_layer(self,review):
    self.layer_0 *= 0
    for word in review.split(" "):
        if(word in self.word2index.keys()):
            self.layer_0[0][self.word2index[word]] =1

Creating and running our neural network again, even with a higher learning rate of 0.1 gave us a training accuracy of 83.8% and testing accuracy(testing on last 1000 reviews) of 85.7%.

Reducing Noise by Strategically Reducing the Vocabulary

Let us put the pos to neg ratio's that we found were much more effective at detecting a positive or negative label. We could do that by a few change:

  • Modify pre_process_data:
    • Add two additional parameters: min_count and polarity_cutoff
    • Calculate the positive-to-negative ratios of words used in the reviews.
    • Change so words are only added to the vocabulary if they occur in the vocabulary more than min_count times.
    • Change so words are only added to the vocabulary if the absolute value of their postive-to-negative ratio is at least polarity_cutoff
In [ ]:
def pre_process_data(self, reviews, labels, polarity_cutoff, min_count):
        positive_counts = Counter()
        negative_counts = Counter()
        total_counts = Counter()

        for i in range(len(reviews)):
            if(labels[i] == 'POSITIVE'):
                for word in reviews[i].split(" "):
                    positive_counts[word] += 1
                    total_counts[word] += 1
                for word in reviews[i].split(" "):
                    negative_counts[word] += 1
                    total_counts[word] += 1

        pos_neg_ratios = Counter()

        for term,cnt in list(total_counts.most_common()):
            if(cnt >= 50):
                pos_neg_ratio = positive_counts[term] / float(negative_counts[term]+1)
                pos_neg_ratios[term] = pos_neg_ratio

        for word,ratio in pos_neg_ratios.most_common():
            if(ratio > 1):
                pos_neg_ratios[word] = np.log(ratio)
                pos_neg_ratios[word] = -np.log((1 / (ratio + 0.01)))

        # populate review_vocab with all of the words in the given reviews
        review_vocab = set()
        for review in reviews:
            for word in review.split(" "):
                if(total_counts[word] > min_count):
                    if(word in pos_neg_ratios.keys()):
                        if((pos_neg_ratios[word] >= polarity_cutoff) or (pos_neg_ratios[word] <= -polarity_cutoff)):

        # Convert the vocabulary set to a list so we can access words via indices
        self.review_vocab = list(review_vocab)
        # populate label_vocab with all of the words in the given labels.
        label_vocab = set()
        for label in labels:
        # Convert the label vocabulary set to a list so we can access labels via indices
        self.label_vocab = list(label_vocab)
        # Store the sizes of the review and label vocabularies.
        self.review_vocab_size = len(self.review_vocab)
        self.label_vocab_size = len(self.label_vocab)
        # Create a dictionary of words in the vocabulary mapped to index positions
        self.word2index = {}
        for i, word in enumerate(self.review_vocab):
            self.word2index[word] = i
        # Create a dictionary of labels mapped to index positions
        self.label2index = {}
        for i, label in enumerate(self.label_vocab):
            self.label2index[label] = i

Our training accuracy increased to 85.6% after this change. As we can see our accuracy saw a huge jump by making minor changes based on our intuition. We can keep making such changes and increase the accuracy even further.


Download the Data Sources

The data sources used in this article can be downloaded here:

Kiano – visuelle Exploration mit Deep Learning

Kiano – eine iOS-App zur visuellen Exploration und Suche der eigenen Fotos.

Menschen haben kein Problem, komplexe Bilder zu verstehen, es fällt ihnen aber schwer, gezielt Bilder in großen Bildersammlungen (wieder) zu finden. Da die Anzahl von Bildern, insbesondere auch auf Smartphones zusehends zunimmt – mehrere tausend Bilder pro Gerät sind keine Seltenheit, wird die Suche nach bestimmten Bildern immer schwieriger. Ist bei einem gesuchten Foto dessen Aufnahmedatum unbekannt, so kann es sehr lange dauern, bis es gefunden ist. Werden dem Nutzer zu viele Bilder auf einmal präsentiert, so geht der Überblick schnell verloren. Aus diesem Grund besteht eine typische Bildsuche heutzutage meist im endlosen Scrollen über viele Bildschirmseiten mit langen Bilderlisten.

Dieser Artikel stellt das Prinzip und die Funktionsweise der neuen iOS-App “Kiano” vor, die es Nutzern ermöglicht, alle ihre Bilder explorativ mittels visuellem Browsen zu erkunden. Der Name “Kiano” steht hierbei für “Keep Images Arranged & Neatly Organized”. Mit der App ist es außerdem möglich, zu einem Beispielbild gezielt nach ähnlichen Fotos auf dem Gerät zu suchen.

Um Bilder visuell durchsuch- und sortierbar zu machen, werden sogenannte Merkmalsvektoren bzw. Featurevektoren verwendet, die Aussehen und Inhalt von Bildern kompakt repräsentieren können. Zu einem Bild lassen sich ähnliche Bilder finden, indem die Bilder bestimmt werden, deren Featurevektoren eine geringe Distanz zum Featurevektor des Suchbildes haben.

Werden Bilder zweidimensional so angeordnet, dass die Featurevektoren benachbarter Bilder sehr ähnlich sind, so erhält man eine visuell sortierte Bilderlandkarte. Bei einer visuell sortierten Anordnung der Bilder fällt es Menschen deutlich leichter, mehr Bilder gleichzeitig zu erfassen, als dies im unsortierten Fall möglich wäre. Durch die graduelle Veränderung der Bildinhalte wird es möglich, über diese Karte visuell zu navigieren.

Generierung von Featurevektoren zur Bildbeschreibung

Convolutional Neural Networks (CNNs) sind nicht nur in der Lage, Bilder mit hoher Genauigkeit zu klassifizieren, d.h. zu erkennen, welches Objekt – entsprechend einer Menge von gelernten Objektkategorien auf einem Bild zu sehen ist, die Aktivierungen der Netzwerkschichten lassen sich auch als universelle Featurevektoren zur Bildbeschreibung nutzen. Während die vorderen Netzwerkschichten von CNNs einfache visuelle Bildmerkmale wie Farben und einfache Muster detektieren, repräsentieren die Ausgangsschichten des Netzwerks die semantischen Informationen bezüglich der gelernten Objektkategorien. Die Zwischenschichten des Netzwerks sind weniger von den Objektkategorien abhängig und können somit als generelle abstrakte Repräsentationen des Inhalts der Bilder angesehen werden. Hierbei ist es möglich, bereits fertig trainierte Klassifikationsnetzwerke für die Featureextraktion wiederzuverwenden. In der Visual Computing Gruppe der HTW Berlin wurden umfangreiche Evaluierungen durchgeführt, um zu bestimmen, welche Netzwerkschichten von welchen CNNs mit welchen zusätzlichen Transformationen zu verwenden sind, um aus Netzwerkaktivierungen Feature-Vektoren zu erzeugen, die sehr gut für die Suche nach beliebigen Bildern geeignet sind.

Beste Ergebnisse hinsichtlich der Suchgenauigkeit (der Mean Average Precision) wurden mit einem Deep Residual Learning Network (ResNet-200) erzielt. Die 2048 Aktivierungen vor dem vollvernetzten letzten Layer werden als initiale Featurevektoren verwendet, wobei sich die Suchgenauigkeit durch eine L1-Normierung, gefolgt von einer PCA-Transformation (Principal Component Analysis) sogar noch verbessern lässt. Hierdurch ist es möglich, die Featurevektoren auf eine Größe von nur 64 Bytes zu reduzieren. Leider ist die rechnerische Komplexität der Bestimmung dieser hochwertigen Featurevektoren zu groß, um sie auf mobilen Geräten verwenden zu können. Eine gute Alternative stellen die Mobilenets dar, die sich durch eine erheblich reduzierte Komplexität auszeichnen. Als Kompromiss zwischen Klassifikationsgenauigkeit und Komplexität wurde für die Kiano-App das Mobilenet_v2_0.5_128 verwendet. Die mit diesem Netzwerk bestimmten Featurevektoren wurden ebenfalls auf eine Größe von 64 Bytes reduziert.

Die aus CNNs erzeugten Featurevektoren sind gut für die Suche nach Bildern mit ähnlichem Inhalt geeignet. Für die Suche nach Bilder, mit ähnlichen visuellen Eigenschaften (z.B. die auftretenden Farben oder deren örtlichen Verteilung) sind diese Featurevektoren nur bedingt geeignet. Hierfür eignen sich klassische sogenannte “Low-Level”-Featurevektoren besser. Da für eine ansprechende und leicht erfassbare Bildsortierung auch eine Übereinstimmung dieser visuellen Bildattribute wichtig ist, kommt bei Kiano ein weiterer Featurevektor zum Einsatz, mit dem sich diese “primitiven” visuellen Bildattribute beschreiben lassen. Dieser Featurevektor hat eine Größe von 50 Bytes. Bei Kiano kann der Nutzer in den Einstellungen wählen, ob bei der visuellen Sortierung und Bildsuche größerer Wert auf den Bildinhalt oder die visuelle Erscheinung eines Bildes gelegt werden soll.

Visuelle Bildsortierung

Werden Bilder entsprechend ihrer Ähnlichkeiten sortiert angeordnet, so können mehrere hundert Bilder gleichzeitig wahrgenommen bzw. erfasst werden. Dies hilft, Regionen interessanter Bildern leichter zu erkennen und gesuchte Bilder schneller zu entdecken. Die Möglichkeit, viele Bilder gleichzeitig präsentieren zu können, ist neben Bildverwaltungssystemen besonders auch für E-Commerce-Anwendungen interessant.

Herkömmliche Dimensionsreduktionsverfahren, die hochdimensionale Featurevektoren auf zwei Dimensionen projizieren, sind für die Bildsortierung ungeeignet, da sie die Bilder so anordnen, dass Lücken und Bildüberlappungen entstehen. Sollen Bilder sortiert auf einem dichten regelmäßigen 2D-Raster angeordnet werden, kommen als Verfahren nur selbstorganisierende Karten oder selbstsortierende Karten in Frage.

Eine selbstorganisierende Karte (Self Organizing Map / SOM) ist ein künstliches neuronales Netzwerk, das durch unbeaufsichtigtes Lernen trainiert wird, um eine niedrigdimensionale, diskrete Darstellung der Daten des Eingangsraums als sogenannte Karte (Map) zu erzeugen. Im Gegensatz zu anderen künstlichen neuronalen Netzen, werden SOMs nicht durch Fehlerkorrektur, sondern durch ein Wettbewerbsverfahren trainiert, wobei eine Nachbarschaftsfunktion verwendet wird, um die lokalen Ähnlichkeiten der Eingangsdaten zu bewahren.

Eine selbstorganisierende Karte besteht aus Knoten, denen einerseits ein Gewichtsvektor der gleichen Dimensionalität wie die Eingangsdaten und anderseits eine Position auf der 2D-Karte zugeordnet sind. Die SOM-Knoten sind als zweidimensionales Rechteckgitter angeordnet. Das vom der SOM erzeugte Mapping ist diskret, da jeder Eingangsvektor einem bestimmten Knoten zugeordnet wird. Zu Beginn werden die Gewichtsvektoren aller Knoten mit Zufallswerten initialisiert. Wird ein hochdimensionaler Eingangsvektor in das Netz eingespeist, so wird dessen euklidischer Abstand zu allen Gewichtsvektoren berechnet. Der Knoten, dessen Gewichtsvektor dem Eingangsvektor am ähnlichsten ist, wird als Best Matching Unit (BMU) bezeichnet. Die Gewichte des BMU und seiner auf der Karte örtlich benachbarten Knoten werden an den Eingangsvektor angepasst. Dieser Vorgang wird iterativ wiederholt. Das Ausmaß dieser Anpassung nimmt im Laufe der Iterationen und der örtlichen Entfernung zum BMU-Knoten ab.

Um SOMs an die Bildsortierung anzupassen, sind zwei Modifikationen notwendig. Jeder Knoten darf nicht von mehr als einem Featurevektor (der ein Bild repräsentiert) ausgewählt werden. Eine Mehrfachauswahl würde zu einer Überlappung der Bilder führen. Aus diesem Grund muss die Anzahl der SOM-Knoten mindestens so groß wie die Anzahl der Bilder sein. Eine sinnvolle Erweiterung einer SOM verwendet ein Gitter, bei dem gegenüberliegende Kanten verbunden sind. Werden diese Torus-förmigen Karten für große SOMs verwendet, kann der Eindruck einer endlosen Karte erzeugt werden, wie es in Kiano umgesetzt ist. Ein Problem der SOMs ist ihre hohe rechnerische Komplexität, die quadratisch mit der Anzahl der zu sortierenden Bilder wächst, wodurch die maximale Anzahl an zu sortierenden Bildern beschränkt wird. Eine Lösung stellt eine selbstsortierende Karte (Self Sorting Map / SSM) dar, deren Komplexität nur n log(n) beträgt.

Selbstsortierende Karten beginnen mit einer zufälligen Positionierung der Bilder auf der Karte. Diese Karte wird dann in 4×4-Blöcke aufgeteilt und für jeden Block wird der Mittelwert der zugehörigen Featurevektoren bestimmt. Als nächstes werden aus 2×2 benachbarten Blöcken jeweils vier korrespondierende Bild-Featurevektoren untersucht und ihre zugehörigen Bilder gegebenenfalls getauscht. Aus den 4! = 24 Anordnungsmöglichkeiten wird diejenige gewählt, die die Summe der quadrierten Differenzen zwischen den jeweiligen Featurevektoren und den Featuremittelwerten der Blöcke minimiert. Nach mehreren Iterationen wird jeder Block in vier kleinere Blöcke halber Breite und Höhe aufgeteilt und wiederum in der beschriebenen Weise überprüft, wie die Bildpositionen dieser kleineren Blöcke getauscht werden sollten. Dieser Vorgang wird solange wiederholt, bis die Blockgröße auf 1×1 Bild reduziert ist.

In der Visual-Computing Gruppe der HTW Berlin wurde untersucht, wie die Sortierqualität des SSM-Algorithmus verbessert werden kann. Anstatt die Mittelwerte der Featurevektoren als konstanten Durchschnittsvektor für den gesamten Block zu berechnen, verwenden wir gleitende Tiefpassfilter, die sich effizient mittels Integralbildern berechnen lassen. Hierdurch entstehen weichere Übergänge auf der sortierten Bilderkarte. Weiterhin wird die Blockgröße nicht für mehrere Iterationen konstant gehalten, sondern kontinuierlich zusammen mit dem Radius des Filterkernels reduziert. Durch die Verwendung von optimierten Algorithmen von “Linear Assignment” Algorithmen wird es weiterhin möglich, den optimalen Positionstausch nicht nur für jeweils vier Featurevektoren bzw. Bildern sondern für eine deutlich größere Anzahl zu überprüfen. All diese Maßnahmen führen zu einer deutlich verbesserten Sortierungsqualität bei gleicher Komplexität.

Effiziente Umsetzung für iOS

Wie so oft, liegen die softwaretechnischen Herausforderungen an ganz anderen Stellen, als man zunächst vermutet. Für eine effiziente Implementierung der zuvor beschriebenen Algorithmen, insbesondere der SSM, stellte es sich heraus, dass die Programmiersprache Swift, in der iOS Apps normaler Weise entwickelt werden, erheblich mehr Rechenzeit benötigt, als eine Umsetzung in der Sprache C. Im Zuge der stetigen Weiterentwicklung von Swift und dessen Compiler mag sich die Lücke zu C zwar immer weiter schließen, zum Zeitpunkt der Umsetzung war die Implementierung in C aber um einen Faktor vier schneller als in Swift. Hierbei liegt die Vermutung nahe, dass der Zugriff auf und das Umsortieren von Featurevektoren als native C-Arrays deutlich effektiver passiert, als bei der Verwendung von Swift-Arrays. Da Swift-Arrays Value-Type sind, kommt es in Swift vermutlich zu unnötigen Kopieroperationen der Fließkommazahlen in den einzelnen Featurevektoren.

Die Berechnung des Mobilenet-Anteils der Featurevektoren konnte sehr komfortabel mit Apples CoreML Machine Learning Framework umgesetzt werden. Hierbei ist zu beachten, dass es sich wie oben beschrieben, nicht um eine Klassifikation handelt, sondern um das Abgreifen der Aktivierungen einer tieferen Schicht. Für Klassifikationen findet man praktisch sofort nutzbare Beispiele, für den Zugriff auf die Aktivierungen waren jedoch Anpassungen notwendig, die bei der Portierung eines vortrainierten Mobilenet nach CoreML vorgenommen wurden. Das stellte sich als erheblich einfacher heraus, als der Versuch, auf die tieferen Schichten eines Klassifizierungsnetzes in CoreML zuzugreifen.

Für die Verwaltung der Bilder, ihrer Featurevektoren und ihrer Position in der sortieren Karte wird in Kiano eine eigene Datenstruktur verwendet, die es zu persistieren gilt. Es ist dem Nutzer ja nicht zuzumuten, bei jedem Start der App auf die Berechnung aller Featurevektoren zu warten. Die Strategie ist es hierbei, bereits bekannte Bilder zu identifizieren und deren Features nur dann neu zu berechnen, falls sich das Bild verändert hat. Die über Appels Photos Framework zur Verfügung gestellten local Identifier identifizieren dabei die Bilder. Veränderungen werden über das Modifikationsdatum eines Bildes detektiert. Die größte Herausforderung ist hierbei das Zeichnen der Karte. Die Benutzerinteraktion soll schnell und flüssig erscheinen, auf Animationen wie das Nachlaufen der Karte beim Verschieben möchte man nicht verzichten. Die Umsetzung geschieht hierbei nicht in OpenGL ES, welches ab iOS 12 ohnehin als deprecated bezeichnet wird. Auf der anderen Seite wird aber auch nicht der „Standardweg“ des Überschreibens der draw-Methode einer Ableitung von UIView gewählt. Letztes führt bekanntlich zu Performanceeinbußen. Insbesondere deshalb, weil das System sehr oft Backing-Images der Ansichten erstellt. Um die Kontrolle über das Neuzeichnen zu behalten, wird in Kiano ein eigenes Backing-Image implementiert, das auf Ebene des Core Animation Frameworks dem View als Layer zugweisen wird. Diesem Layer kann dann sehr komfortabel eine 3D-Transformation zugewiesen werden und man profitiert von der GPU-Beschleunigung, ohne OpenGL ES direkt verwenden zu müssen.


Trotz der Verwendung eines Core Animation Layers ist das Zeichnen der Karte immer noch sehr zeitaufwendig. Das liegt an der Tatsache, dass je nach Zoomstufe tausende von Bildern darzustellen sind, die alle über das Photos Framework angefordert werden müssen. Das Nadelöhr ist dann weniger das Zeichnen, als die Zeit, die vergeht, bis einem das Bild zur Verfügung gestellt wird. Diese Vorgänge sind praktisch alle nebenläufig. Zur Erinnerung: Ein Foto kann in der iCloud liegen und zum Zeitpunkt der Anfrage noch gar nicht (oder noch nicht in geeigneter Auflösung) heruntergeladen sein. Netzwerkbedingt gibt es keine Vorhersage, wann oder ob überhaupt das Bild zur Verfügung gestellt wird. In Kiano werden zum einen Bilder in sehr kleiner Auflösung gecached, zum anderen wird beim Navigieren auf der Karte im Hintergrund ein neues Kartenteil als Backing-Image vorbereitet, das dem Nutzer nach Fertigstellung angezeigt wird. Die vorberechneten Kartenteile sind dabei drei Mal so breit und drei Mal so hoch wie das Display, so dass man diese „Hintergrundaktivität“ beim Verschieben der Karte in der Regel nicht bemerkt. Nur wenn die Bewegung zu schnell wird oder die Bilder zu langsam „geliefert“ werden, erkennt man schwarze Flächen, die sich dann verzögert mit Bildern füllen.

Vergleichbares passiert beim Hineinzoomen in die Karte. Der Nutzer sieht zunächst eine vergrößerte und damit unscharfe Version des aktuellen Kartenteils, während im Hintergrund ein Kartenteil in höherer Auflösung und mit weniger Bildern vorbereitet wird. In der Summe geht Kiano hier einen Kompromiss ein. Die Pixeldichte der Geräte würde eine schärfere Darstellung der Bilder auf der Karte erlauben. Allerdings müssten dann die Bilder in so höher Auflösung angefordert werden, dass eine flüssige Kartennavigation nicht mehr möglich wäre. So sieht der Nutzer in der Regel eine Karte mit Bildern in halber Auflösung gemessen an den physikalischen Pixeln seines Displays.

Ein anfangs unterschätzter Arbeitsaufwand bei der Umsetzung von Kiano liegt darin begründet, dass sich die Photo Library des Nutzers jederzeit während der Benutzung der App verändern kann. Bilder können durch Synchronisationen mit der iCloud oder mit iTunes verschwinden, sich in andere Alben bewegen, oder neue können auftauchen. Der Nutzer kann Bildschirmfotos machen. Das Photos Framework stellt komfortable Benachrichtigungen für solche Events zur Verfügung. Der Implementierung obliegt es dabei aber herauszubekommen, ob die Karte neu zu sortieren ist oder nicht, ob das gerade anzeigte Bild überhaupt noch existiert und was zu tun ist, wenn es verschwunden ist.

Zusammenfassend kann man feststellen, dass natürlich die Umsetzung der Algorithmen und die Darstellung dessen auf einer Karte zu den spannendsten Teilen der Arbeiten an Kiano zählen, dass aber der Umgang mit einer sich dynamisch ändernden Datenbasis nicht unterschätzt werden sollte.


Prof. Dr. Klaus JungProf. Dr. Klaus Jung studierte Physik an der TU Berlin, wo er im Bereich der Mathematischen Physik promovierte. Bis 2008 arbeitete er als Leiter F&E bei der Firma LuraTech im Bereich der Dokumentenverarbeitung und Langzeitarchivierung. In der JPEG-Gruppe leitete er die deutsche Delegation bei der Standardisierung von JPEG2000. Seit 2008 ist er Professor für Medieninformatik an der HTW Berlin mit dem Schwerpunkt „Visual Computing“.

Prof. Dr. Kai Uwe Barthel

Prof. Dr. Kai Uwe Barthel studierte Elektrotechnik an der TU Berlin, bevor er Assistent am Institut für Nachrichtentechnik wurde und im Bereich Bildkompression promovierte. Seit 2001 ist er Professor der HTW Berlin. Hauptforschungsbereiche sind visuelle Bildsuche und automatisches Bildverstehen. 2009 gründete er die pixolution GmbH, ein Unternehmen, das Technologien für die visuelle Bildsuche anbietet.

I. Einführung in TensorFlow: Einleitung und Inhalt




1. Einleitung und Inhalt

Früher oder später wird jede Person, welche sich mit den Themen Daten, KI, Machine Learning und Deep Learning auseinander setzt, mit TensorFlow in Kontakt geraten. Für diejenigen wird der Zeitpunkt kommen, an dem sie sich damit befassen möchten/müssen/wollen.

Und genau für euch ist diese Artikelserie ausgelegt. Gemeinsam wollen wir die ersten Schritte in die Welt von Deep Learning und neuronalen Netzen mit TensorFlow wagen und unsere eigenen Beispiele realisieren. Dabei möchten wir uns auf das Wesentlichste konzentrieren und die Thematik Schritt für Schritt in 4 Artikeln angehen, welche wie folgt aufgebaut sind:

  1. In diesem und damit ersten Artikel wollen wir uns erst einmal darauf konzentrieren, was TensorFlow ist und wofür es genutzt wird.
  2. Im zweiten Artikel befassen wir uns mit der grundlegenden Handhabung von TensorFlow und gehen den theoretischen Ablauf durch.
  3. Im dritten Artikel wollen wir dann näher auf die Praxis eingehen und ein Perzeptron – ein einfaches künstliches Neuron – entwickeln. Dabei werden wir die Grundlagen anwenden, die wir im zweiten Artikel erschlossen haben.
  4. Im vierten Artikel werden wir dann endlich unser erstes neuronales Netz aufbauen. Auch hier bilden die vorherigen Artikel ein gutes Fundament der Verständlichkeit um die kommende Aufgabe zu meistern.

Wenn ihr die Praxisbeispiele in den Artikeln 3 & 4 aktiv mit bestreiten wollt, dann ist es vorteilhaft, wenn ihr bereits mit Python gearbeitet habt und die Grundlagen dieser Programmiersprache beherrscht. Jedoch werden alle Handlungen und alle Zeilen sehr genau kommentiert, so dass es leicht verständlich bleibt.

Neben den Programmierfähigkeiten ist es hilfreich, wenn ihr euch mit der Funktionsweise von neuronalen Netzen auskennt, da wir im späteren Verlauf diese modellieren wollen. Jedoch gehen wir vor der Programmierung  kurz auf die Theorie ein und werden das Wichtigste nochmal erwähnen.

Zu guter Letzt benötigen wir für unseren Theorie-Teil ein Mindestmaß an Mathematik um die Grundlagen der neuronalen Netze zu verstehen. Aber auch hier sind die Anforderungen nicht hoch und wir sind vollkommen gut  damit bedient, wenn wir unser Wissen aus dem Abitur noch nicht ganz vergessen haben.

2. Ziele dieser Artikelserie

Diese Artikelserie ist speziell an Personen gerichtet, welche einen ersten Schritt in die große und interessante Welt von Deep Learning wagen möchten, die am Anfang nicht mit zu vielen Details überschüttet werden wollen und lieber an kleine und verdaulichen Häppchen testen wollen, ob dies das Richtige für sie ist. Unser Ziel wird sein, dass wir ein Grundverständnis für TensorFlow entwickeln und die Grundlagen zur Nutzung beherrschen, um mit diesen erste Modelle zu erstellen.

3. Was ist TensorFlow?

Viele von euch haben bestimmt von TensorFlow in Verbindung mit Deep Learning bzw. neuronalen Netzen gehört. Allgemein betrachtet ist TensorFlow ein Software-Framework zur numerischen Berechnung von Datenflussgraphen mit dem Fokus maschinelle Lernalgorithmen zu beschreiben. Kurz gesagt: Es ist ein Tool um Deep Learning Modelle zu realisieren.

Zusatz: Python ist eine Programmiersprache in der wir viele Paradigmen (objektorientiert, funktional, etc.) verwenden können. Viele Tutorials im Bereich Data Science nutzen das imperative Paradigma; wir befehlen Python also Was gemacht und Wie es ausgeführt werden soll. TensorFlow ist dahingehend anders, da es eine datenstrom-orientierte Programmierung nutzt. In dieser Form der Programmierung wird ein Datenfluss-Berechnungsgraph (kurz: Datenflussgraph) erzeugt, welcher durch die Zusammensetzung von Kanten und Knoten charakterisiert wird. Die Kanten enthalten Daten und können diese an Knoten weiterleiten. In den Knoten werden Operationen wie z. B. Addition, Multiplikation oder auch verschiedenste Variationen von Funktionen ausgeführt. Bekannte Programme mit datenstrom-orientierten Paradigmen sind Simulink, LabView oder Knime.

Für das Verständnis von TensorFlow verrät uns der Name bereits erste Informationen über die Funktionsweise. In neuronalen Netzen bzw. in Deep-Learning-Netzen können Eingangssignale, Gewichte oder Bias verschiedene Erscheinungsformen haben; von Skalaren, zweidimensionalen Tabellen bis hin zu mehrdimensionalen Matrizen kann alles dabei sein. Diese Erscheinungsformen werden in Deep-Learning-Anwendungen allgemein als Tensoren bezeichnet, welche durch ein Datenflussgraph ‘fließen’. [1]

Abb.1 Namensbedeutung von TensorFlow: Links ein Tensor in Form einer zweidimensionalen Matrix; Rechts ein Beispiel für einen Datenflussgraph


4. Warum TensorFlow?

Wer in die Welt der KI einsteigen und Deep Learning lernen will, hat heutzutage die Qual der Wahl. Neben TensorFlow gibt es eine Vielzahl von Alternativen wie Keras, Theano, Pytorch, Torch, Caffe, Caffe2, Mxnet und vielen anderen. Warum also TensorFlow?

Das wohl wichtigste Argument besteht darin, dass TensorFlow eine der besten Dokumentationen hat. Google – Herausgeber von TensorFlow – hat TensorFlow stets mit neuen Updates beliefert. Sicherlich aus genau diesen Gründen ist es das meistgenutzte Framework. Zumindest erscheint es so, wenn wir die Stars&Forks auf Github betrachten. [3] Das hat zur Folge, dass neben der offiziellen Dokumentation auch viele Tutorials und Bücher existieren, was die Doku nur noch besser macht.

Natürlich haben alle Frameworks ihre Vor- und Nachteile. Gerade Pytorch von Facebook erfreut sich derzeit großer Beliebtheit, da die Berechnungsgraphen dynamischer Natur sind und damit einige Vorteile gegenüber TensorFlow aufweisen.[2] Auch Keras wäre für den Einstieg eine gute Alternative, da diese Bibliothek großen Wert auf eine einsteiger- und nutzerfreundliche Handhabung legt. Keras kann man sich als eine Art Bedienoberfläche über unsere Frameworks vorstellen, welche vorgefertigte neuronale Netze bereitstellt und uns einen Großteil der Arbeit abnimmt.

Möchte man jedoch ein detailreiches und individuelles Modell bauen und die Theorie dahinter nachvollziehen können, dann ist TensorFlow der beste Einstieg in Deep Learning! Es wird einige Schwierigkeiten bei der Gestaltung unserer Modelle geben, aber durch die gute Dokumentation, der großen Community und der Vielzahl an Beispielen, werden wir gewiss eine Lösung für aufkommende Problemstellungen finden.


Abb.2 Beliebtheit von DL-Frameworks basierend auf Github Stars & Forks (10.06.2018)


5. Zusammenfassung und Ausblick

Fassen wir das Ganze nochmal zusammen: TensorFlow ist ein Framework, welches auf der datenstrom-orientierten Programmierung basiert und speziell für die Implementierung von Machine/Deep Learning-Anwendungen ausgelegt ist. Dabei fließen unsere Daten durch eine mehr oder weniger komplexe Anordnung von Berechnungen, welche uns am Ende ein Ergebnis liefert.

Die wichtigsten Argumente zur Wahl von TensorFlow als Einstieg in die Welt des Deep Learnings bestehen darin, dass TensorFlow ausgezeichnet dokumentiert ist, eine große Community besitzt und relativ einfach zu lesen ist. Außerdem hat es eine Schnittstelle zu Python, welches durch die meisten Anwender im Bereich der Datenanalyse bereits genutzt wird.

Wenn ihr es bis hier hin geschafft habt und immer noch motiviert seid den Einstieg mit TensorFlow zu wagen, dann seid gespannt auf den nächsten Artikel. In diesem werden wir dann auf die Funktionsweise von TensorFlow eingehen und einfache Berechnungsgraphen aufbauen, um ein Grundverständnis von TensorFlow zu bekommen. Bleibt also gespannt!






Funktionsweise künstlicher neuronaler Netze

Künstliche neuronale Netze sind ein Spezialbereich des maschinellen Lernens, der sogar einen eigenen Trendbegriff hat: Deep Learning.
Doch wie funktioniert ein künstliches neuronales Netz überhaupt? Und wie wird es in Python realisiert? Dies ist Artikel 2 von 5 der Artikelserie –Einstieg in Deep Learning.

Gleich vorweg, wir beschränken uns hier auf die künstlichen neuronalen Netze des überwachten maschinellen Lernens. Dafür ist es wichtig, dass das Prinzip des Trainings und Testens von überwachten Verfahren verstanden ist. Künstliche neuronale Netze können aber auch zur unüberwachten Dimensionsreduktion und zum Clustering eingesetzt werden. Das bekannteste Verfahren ist das AE-Net (Auto Encoder Network), das hier aus der Betrachtung herausgenommen wird.

Beginnen wir mit einfach künstlichen neuronalen Netzen, die alle auf dem Perzeptron als Kernidee beruhen. Das Vorbild für künstliche neuronale Netze sind natürliche neuronale Netze, wie Sie im menschlichen Gehirn zu finden sind.


Das Perzeptron (engl. Perceptron) ist ein „Klassiker“ unter den künstlichen neuronalen Netzen. Wenn von einem neuronalen Netz gesprochen wird, ist meistens ein Perzeptron oder eine Variation davon gemeint. Perzeptrons sind mehrschichtige Netze ohne Rückkopplung, mit festen Eingabe- und Ausgabeschichten. Es gibt keine absolut einheitliche Definition eines Perzeptrons, in der Regel ist es jedoch ein reines FeedForward-Netz mit einer Input-Schicht (auch Abtast-Schicht oder Retina genannt) mit statisch oder dynamisch gewichteten Verbindungen zur Ausgabe-Schicht, die (als Single-Layer-Perceptron) aus einem einzigen Neuron besteht. Das eine Neuron setzt sich aus zwei mathematischen Funktionen zusammen: Einer Berechnung der Nettoeingabe und einer Aktivierungsfunktion, die darüber entscheidet, ob die berechnete Nettoeingabe im Brutto nun “feuert” oder nicht. Es ist in seiner Ausgabe folglich binär: Man kann es sich auch als kleines Lämpchen vorstellen, so dass abhängig von den Eingabewerten und den Gewichtungen eine Nettoeingabe (Summe) bildet und eine Sprungfunktion darüber entscheidet, ob am Ende das Lämpchen leuchtet oder nicht. Dieses Konzept der Ausgabeerzeugung wird Forward-Propagation genannt.


Auch wenn “Netz” für ein einzelnes Perzeptron mit seinem einen Neuron etwas übertrieben wirken mag, ist es doch die Grundlage für viele größere und mehrschichtige Netze.

Betrachten wir nun die Mathematik der Forward-Propagation.

Wir haben eine Menge an Eingabewerten x_0, x_1 \dots x_n. Wobei für x_0 als Bias-Input stets gilt: x_0 = 1,0. Der Bias-Input ist nur ein Platzhalter für das wichtige Bias-Gewicht.

    \[ x = \begin{bmatrix} x_0\\ x_1\\ x_2\\ x_3\\ \vdots\\ x_n \end{bmatrix} \]

Für jede Eingabevariable wird eine Gewichtsvariable benötigt: w_0, w_1 \dots w_n

    \[ w = \begin{bmatrix} w_0\\ w_1\\ w_2\\ w_3\\ \vdots\\ w_n \end{bmatrix} \]

Jedes Produkt aus Eingabewert und Gewichtung soll in Summe die Nettoeingabe z bilden. Hier zeigt sich z als lineare mathematische Funktion, die zwei-dimensional leicht als z = w_0 + w_1 \cdot x_1 mit w_0 als Y-Achsenschnitt wenn x_1 = 0.

    \[ z = w_0 \cdot x_0 + w_1 \cdot x_1 + \dots + w_n \cdot x_n \]

Die lineare Funktion wird nur durch die Sprungfunktion als sogenannte Aktivierungsfunktion zu einer binären Klasseneinteilung (siehe hierzu: Machine Learning – Regression vs Klassifikation), denn wenn z einen festzulegenden Schwellwert \theta überschreitet, liefert die Sprungfunktion \phi mit der Eingabe z einen anderen Wert als wenn dieser Schwellwert nicht überschritten wird.

(1)   \begin{equation*} \phi(z) = \begin{cases} 1 & \text{wenn } z \le \theta \\ -1 & \text{wenn } z < \theta \\ \end{cases} \end{equation*}

Die Definition dieser Aktivierungsfunktion ist der Kern der Klassifikation und viele erweiterte künstliche neuronale Netze unterscheiden sich im Wesentlichen vom Perzeptron dadurch, dass die Aktivierungsfunktion komplexer ist, als eine reine Sprungfunktion, beispielsweise als Sigmoid-Funktion (basierend auf der logistischen Funktion) oder die Tangens hyperbolicus (tanh) -Funktion. Mehr darüber dann im nächsten Artikel dieser Artikelserie, bleiben wir also bei der einfachen Sprungfunktion.

Künstliche neuronale Netze sind im Grunde nichts anderes als viel-dimensionale, mathematische Funktionen, die durch Schaltung als Neuronen nebeneinander (Neuronen einer Schicht) und hintereinander (mehrere Schichten) eine enorme Komplexität erfassen können. Die Gewichtungen sind dabei die Stellschraube, die die Form der mathematischen Funktion gestaltet, aus Geraden und Kurven, um eine Punktwolke zu beschreiben (Regression) oder um Klassengrenzen zu identifizieren (Klassifikation).

Eine andere Sichtweise auf künstliche neuronale ist die des Filters: Ein künstliches neuronales Netz nimmt alle Eingabe-Variablen entgegen (z. B. alle Pixel eines Bildes) und über ein Training werden die Gewichtungen (die Form des Filters) so gestaltet, dass der Filter immer zu richtigen Klasse (im Kontext der Bildklassifikation: die Objektklasse) führt.

Kommen wir nochmal kurz zurück zu der Berechnung der Nettoeingabe z. Da diese Schreibweise…

    \[ z = w_0 \cdot x_0 + w_1 \cdot x_1 + \dots + w_n \cdot x_n \]

… recht anstrengend ist, schreiben Fortgeschrittene der linearen Algebra lieber z = w^T \cdot x.

    \[ z = w^T \cdot x \]

Das hochgestellte T steht dabei für transponieren. Transponieren bedeutet, dass Spalten zu Zeilen werden – oder umgekehrt.

Beispielsweise befüllen wir zwei Vektoren x und w mit beispielhaften Inhalten:


    \[ x = \begin{bmatrix} 5\\ 12\\ 30\\ 2 \end{bmatrix} \]


    \[ w = \begin{bmatrix} 1\\ 2\\ 5\\ 12 \end{bmatrix} \]

Kann nun die Nettoeingabe z berechnet werden, denn der Gewichtungsvektor wird vom Spaltenvektor zum Zeilenvektor. So kann – mathematisch korrekt dargestellt – jedes Element des einen Vektors mit dem zugehörigen Element des anderen Vektors multipliziert werden, die dabei entstehenden Ergebniswerte werden summiert.

    \[ z = w^T \cdot x = \big[1\text{ }2\text{ }5\text{ }12\big] \cdot \begin{bmatrix} 5\\ 12\\ 30\\ 2 \end{bmatrix} = 1 \cdot 5 + 2 \cdot 12 + 5 \cdot 30 + 12 \cdot 2 = 203 \]

Zurück zur eigentlichen Aufgabe des künstlichen neuronalen Netzes: Klassifikation! (Regression, Clustering und Dimensionsreduktion blenden wir ja in diesem Artikel als Aufgabe aus 🙂

Das Perzeptron soll zwei Klassen trennen. Dafür sollen alle Eingaben richtig gewichtet werden, so dass die entstehende Nettoeingabe z die Sprungfunktion dann aktiviert, wenn der Datensatz nicht für die eine, sondern für die andere Klasse ausweist.

Da wir es mit einer linearen Funktion z zutun haben, ist die Konvergenz (= Passgenauigkeit des Models mit der Realität) eines Single-Layer-Perzeptrons nur für lineare Trennbarkeit möglich!

Training des Perzeptron-Netzes

Die Aufgabe ist nun, die richtigen Gewichte zu finden – und nicht nur irgendwelche richtigen, sondern genau die optimalen. Die Frage, die sich für jedes künstliche neuronale Netz stellt, ist die nach den richtigen Gewichtungen. Das Training eines Perzeptron ist vergleichsweise einfach, gerade weil es binär ist. Denn binär bedeutet auch, dass wenn eine falsche Antwort gegeben wurde, muss das jeweils andere mögliche Ergebnis korrekt sein.

Das Training eines Perzeptrons funktioniert wie folgt:

  1. Setze alle Gewichtungen auf den Wert 0,00
  2. Mit jedem Datensatz des Trainings
    1. Berechne den Ausgabewert \^{y}
    2. Vergleiche den Ausgabewert \^{y} mit dem tatsächlichen Ergebnis y
    3. Aktualisiere die Gewichtungen entgegen des Fehlers: w_i = w_i + \Delta w_i

Wobei die Gewichtsanpassung \Delta w_i entgegen des Fehlers (bzw. hin zur jeweils anderen möglichen Antwort) geschieht:

\Delta w_i = (\^{y}_j - y_j ) \cdot x_i

Anmerkung für die Experten: Die Schrittweite \eta blenden wir hier einfach mal aus. Bitte einfach von \eta = 1.0 ausgehen.

\Delta w_i ist die Differenz aus der Prädiktion und dem tatsächlichen Ergebnis (Klasse). Alle Gewichtungen werden mit jedem Fehler gleichzeitig aktualisiert. Sind alle Gewichtungen aktualisiert, kommt der nächste Durchlauf (erneuter Vergleich zwischen \^{y} und y), nicht zu vergessen ist dabei natürlich die Abhängigkeit von den Eingabewerten x:

\Delta w_0 = (\^{y}_j - y_j ) \cdot x_0

\Delta w_2 = (\^{y}_j - y_j ) \cdot x_1

\Delta w_2 = (\^{y}_j - y_j) \cdot x_2

\Delta w_n = (\^{y}_j - y_j) \cdot x_n

Training eines Perzeptrons

Das Training im überwachten Lernen basiert immer auf der Idee, den Ausgabe-Fehler (die Differenz zwischen Prädiktion und tatsächlich korrektem Ergebnis) zu betrachten und die Klassifikationslogik an den richtigen Stellschrauben (bei neuronalen Netzen sind das die Gewichtungen) entgegen des Fehlers anzupassen.

Richtige Klassifikations-Situationen können True-Positives und True-Negatives darstellen, die zu keiner Gewichtsanpassung führen sollen:

True-Positive -> Klassifikation: 1 | korrekte Klasse: 1

\Delta w_i = (\^{y}_j - y_j) \cdot x_i = (1 - 1) \cdot x_i = 0

True-Negative-> Klassifikation: -1 | korrekte Klasse: -1

\Delta w_i = (\^{y}_j - y_j) \cdot x_i = (-1 - -1) \cdot x_i = 0

Falsche Klassifikationen erzeugen einen Fehler, der zu einer Gewichtsanpassung entgegen des Fehlers führen soll:

False-Positive -> Klassifikation: 1 | korrekte Klasse: -1

\Delta w_i = (\^{y}_j - y_j) \cdot x_i = (1 - -1) \cdot x_i = 2 \cdot x_i

False-Negative -> Klassifikation: -1 | korrekte Klasse: 1

\Delta w_i = (\^{y}_j - y_j) \cdot x_i = (-1 - 1) \cdot x_i = -2 \cdot x_i

Imaginäres Trainingsbeispiel eines Single-Layer-Perzeptrons (SLP)

Nehmen wir an, dass x_1 = 0,5 ist und das SLP irrtümlicherweise die Klasse \^{y_1} = -1 ausgewiesen hat, obwohl die korrekte Klasse y_1 = +1 wäre. (Und die Schrittweite lassen wir bei \eta = 1,0)

Dann passiert folgendes:

\Delta w_1 = (\^{y}_1 - y_1) \cdot x_1 = (-1 - 1) \cdot 0,5 = -2,0 \cdot 0,5 = -1,0

Die Gewichtung w_1 verringert sich entsprechend w_1 = w_1 + \Delta w_1 = w_1 - 1,0 und somit wird die Wahrscheinlichkeit größer, dass wenn bei der nächsten Iteration (j=1) wieder die Klasse +1 korrekt sei,  den Schwellwert \phi(z) zu unterschreiten und auf eben diese korrekte Klasse zu stoßen.

Die Aktualisierung der Gewichtung \Delta w_i ist proportional zu x_i. So würde beispielsweise ein neues x_1=2,0 (bei Iteration j=2) zu einer irrtümlichen Klassifikation \^(y_2) = -1 (y_2 = +1) führen, würde die Entscheidungsgrenze zur korrekten Prädiktion der Klasse beim nächsten Durchlauf (j = 3) an w_1 noch weiter in die gleiche Richtung verschoben werden:

\Delta w_1 = (\^{y}_2 - y_2) \cdot x_1 = (-1 - 1) \cdot 2,0 = -2,0 \cdot 2,0 = -4,0

Mehr zum Training von künstlichen neuronalen Netzen ist im nächsten Artikel dieser Artikelserie zu erfahren.

Single-Layer-Perzeptrons (SLP) – Beispiel mit der boolischen Trennung

Verlassen wir nun das Training des Perzeptrons und gehen einfach mal davon aus, dass die idealen Gewichte schon gefunden wurden und schauen uns nun an, was ein Perzeptron alles (nicht) kann. Denn nicht vergessen, es soll eigentlich Klassen unterscheiden bzw. die dafür nötigen Entscheidungsgrenzen finden.

Boolische Operatoren unterscheiden Fälle nach boolischen Werten. Sie sind ein beliebtes “Hello World” für die Einarbeitung in die lineare Entscheidungslogik eines Perzeptrons. Es gibt drei grundlegende boolische Vergleichsoperatoren: AND, OR und XOR

  x1     x2   AND OR XOR
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Ein Perzeptron zur Lösung dieser Aufgabe bräuchte also zwei Dimensionen (+ Bias): x_1 und x_2
Und es müsste Gewichtungen haben, die dafür sorgen, dass die Vorhersage entsprechend der Logik AND, OR oder XOR mit \^{y} = \phi(z) = \phi (w_0 \cdot 1 + w_1 \cdot x_1 + w_2 \cdot x_2) funktioniert.

Dabei ist es wichtig, dass wir auch phi \phi als Sprungfunktion definieren. Sie könnte beispielsweise so aussehen, dass sie auf den Wert \phi(z) = 1 springt, wenn z > 0 ist, ansonsten aber \phi(z) = 0 bleibt.

Das Netz und die Gewichtungen (w-Setup) könnten für die AND- und die OR-Logik so aussehen:

Die Gewichtungen funktionieren beim SLP problemlos, denn wir haben es mit linear trennbaren Problemen zutun:

Kleiner Test gefällig? So nehmen wir uns erstmal die AND-Logik vor:

  • Wenn x1 = 0 und x2 = 0 ist, gilt: z = -1,5 \cdot 1 + 1 \cdot 0 + 1 \cdot 0 = - 1,5,
    wie erhalten als Prädiktion \phi(z) = \phi(-1,5) = 0
  • Wenn x1 = 1 und x2 = 0 ist, gilt: z = -1,5 \cdot 1 + 1 \cdot 1 + 1 \cdot 0 = - 0,5,
    wie erhalten als Prädiktion \phi(z) = \phi(-0,5) = 0
  • Wenn x1 = 1 und x2 = 1 ist, gilt: z = -1,5 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = + 0,5,
    wie erhalten als Prädiktion \phi(z) = \phi(0,5) = 1

Scheint zu funktionieren!

Und dann die OR-Logik mit

  • Wenn x1 = 0 und x2 = 0 ist, gilt: z = -0,5 \cdot 1 + 1 \cdot 0 + 1 \cdot 0 = - 0,5,
    wie erhalten als Prädiktion \phi(z) = \phi(-0,5) = 0
  • Wenn x1 = 1 und x2 = 0 ist, gilt: z = -0,5 \cdot 1 + 1 \cdot 1 + 1 \cdot 0 = + 0,5,
    wie erhalten als Prädiktion \phi(z) = \phi(0,5) = 1
  • Wenn x1 = 1 und x2 = 1 ist, gilt: z = -0,5 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = + 1,5,
    wie erhalten als Prädiktion \phi(z) = \phi(1,5) = 1

Super! Jedoch stellt sich nun die Frage, wie das XOR-Problem zu lösen ist, denn das bedingt sowohl die Grenzen von AND als auch jene des OR-Operators.

Multi-Layer-Perzeptron (MLP) bzw. (Deep) Feed Forward (FF) Net

Denn ein XOR kann mathematisch auch so korrekt beschrieben werden: x_1 \text{ xor } x_2 = (x_1 \text{ and } \neg x_2) \text{ or } (\neg x_1 \text{ and } x_2)

Testen wir es aus!

  • Wenn x1 = 0 und x2 = 0 ist, gilt:
    z_1 = w_{10} \cdot 1 + w_{11} \cdot x1 + w_{12} \cdot  x2 = -0.5 \cdot 1 + 1,0 \cdot 0 - 1,0 \cdot 0 = -0,5 und somit \phi(z_1) = \phi(-0,5) = 0
    z_2 = w_{20} \cdot 1 + w_{21} \cdot x1 + w_{22} \cdot  x2 = -0.5 \cdot 1 - 1,0 \cdot 0 + 1,0 \cdot 0 = -0,5 und somit \phi(z_2) = \phi(-0,5) = 0
    z_3 = w_{30} \cdot 1 + w_{31} \cdot \phi(z_1) + w_{32} \cdot \phi(z_2) = -0,5 \cdot 1 + 1,0 \cdot 0 + 1,0 \cdot 0 = -0,5 und somit \phi(z_3) = \phi(-0,5) = 0
  • Wenn x1 = 1 und x2 = 0 ist, gilt:
    z_1 = w_{10} \cdot 1 + w_{11} \cdot x1 + w_{12} \cdot  x2 = -0.5 \cdot 1 + 1,0 \cdot 1 - 1,0 \cdot 0 = 0,5 und somit \phi(z_1) = \phi(0,5) = 1
    z_2 = w_{20} \cdot 1 + w_{21} \cdot x1 + w_{22} \cdot  x2 = -0.5 \cdot 1 - 1,0 \cdot 1 + 1,0 \cdot 0 = -1,5 und somit \phi(z_2) = \phi(-1,5) = 0
    z_3 = w_{30} \cdot 1 + w_{31} \cdot \phi(z_1) + w_{32} \cdot \phi(z_2) = -0,5 \cdot 1 + 1,0 \cdot 1 + 1,0 \cdot 0 = 0,5 und somit \phi(z_3) = \phi(0,5) = 1
  • Wenn x1 = 0 und x2 = 1 ist, gilt:
    z_1 = w_{10} \cdot 1 + w_{11} \cdot x1 + w_{12} \cdot  x2 = -0.5 \cdot 1 + 1,0 \cdot 0 - 1,0 \cdot 1 = -1,5 und somit \phi(z_1) = \phi(-1,5) = 0
    z_2 = w_{20} \cdot 1 + w_{21} \cdot x1 + w_{22} \cdot  x2 = -0.5 \cdot 1 - 1,0 \cdot 0 + 1,0 \cdot 1 = 0,5 und somit \phi(z_2) = \phi(0,5) = 1
    z_3 = w_{30} \cdot 1 + w_{31} \cdot \phi(z_1) + w_{32} \cdot \phi(z_2) = -0,5 \cdot 1 + 1,0 \cdot 0 + 1,0 \cdot 1 = 0,5 und somit \phi(z_3) = \phi(0,5) = 1
  • Wenn x1 = 1 und x2 = 1 ist, gilt:
    z_1 = w_{10} \cdot 1 + w_{11} \cdot x1 + w_{12} \cdot  x2 = -0.5 \cdot 1 + 1,0 \cdot 1 - 1,0 \cdot 1 = -1,5 und somit \phi(z_1) = \phi(-0,5) = 0
    z_2 = w_{20} \cdot 1 + w_{21} \cdot x1 + w_{22} \cdot  x2 = -0.5 \cdot 1 - 1,0 \cdot 1 + 1,0 \cdot 1 = 0,5 und somit \phi(z_2) = \phi(-0,5) = 0
    z_3 = w_{30} \cdot 1 + w_{31} \cdot \phi(z_1) + w_{32} \cdot \phi(z_2) = -0,5 \cdot 1 + 1,0 \cdot 0 + 1,0 \cdot 0 = -0,5 und somit \phi(z_3) = \phi(-0,5) = 0

Es funktioniert!

Mehrfachklassifikation mit dem Perzeptron

Ein Perzeptron-Netz klassifiziert binär, die Ausgabe beschränkt sich auf 1 oder -1 bzw. 0 oder 1.

Jedoch wird in der Praxis oftmals eine One-vs-All (OvA) bzw. One-vs-Rest (OvR) Klassifikation implementiert. In diesem Fall steht die 1 für die Erkennung einer konkreten Klasse, während alle anderen übrigen Klassen als negativ betrachtet werden.

Um jede Klasse erkennen zu können, werden n Klassifizierer (= n Perzeptron-Netze) benötigt. Jedes Perzeptron-Netz ist auf die Erkennung einer bestimmten Klasse trainiert.

Adaline – Oder: die Limitation des Perzeptrons

Das Perzeptron wird nur über eine Sprungfunktion aktiviert. Das schränkt die Feinabstimmung des Trainings enorm ein. Besser sind Aktivierungen über stetige Funktionen, die dann nämlich differenzierbar (ableitbar) sind. Das ergibt eine konvexe Fehlerfunktion mit einem eindeutigen Minimum. Der Adaline-Algorithmus (ADAptive Linear NEuron) erweitert die Idee des Perzeptrons um genau diese Idee. Der wesentliche Fortschritt der Adaline-Regel gegenüber der des Perzeptrons ist demnach, dass die Aktualisierung der Gewichtungen nicht wie beim Perzeptron auf einer einfachen Sprungfunktion, sondern auf einer linearen, stetigen Aktivierungsfunktion beruht.


Wie ein künstliches neuronales Netz mit der Kategorie Adaline trainiert werden kann, wird im nächsten Artikel dieser Artikelserie erläutert.

Weiterführende Netz-Konzepte (CNN und RNN)

Wer bereits mit Frameworks wie TensorFlow in das Deep Learning eingestiegen ist, hat möglicherweise schon erweiterte Konzepte der künstlichen neuronalen Netze kennen gelernt. Die CNNs (Convolutional Neuronal Network) sind im Moment die Wahl für die Verarbeitung von hochdimensionalen Aufgaben, beispielsweise die Bilderkennung (Computer Vision) und Texterkennung (NLP). Das CNN erweitert die Möglichkeiten mit neuronalen Netzen deutlich, indem ein Netz zur Dimensionsreduktion vorgeschaltet wird, im Kern steckt jedoch weiterhin die Idee der MLPs. Beim Einsatz in der Bilderkennung funktionieren CNNs vereinfacht gesprochen so, dass der vorgeschaltete Netzbereich die Millionen Bildpixel sektorweise ausliest (Convolution, Faltung durch Auslesen über Sektoren, die sich gegenseitig überlappen), verdichtet (Pooling, beispielsweise über nicht-lineare Funktionen wie max()) und dann – nach diesem Prozedere – ähnlich eim MLP klassifiziert.


Eine andere erweiterte Form sind RNNs (Recurrent Neuronal Network), die ebenfalls auf der Idee des MLPs basieren, dieses Konzept jedoch dank Rückverbindungen (Neuronen senden an vorherige Schichten) und Selbstverbindungen (Neuronen senden an sich selbst) wiederum auf den Kopf stellen.


Dennoch ist es für das tiefere Verständnis von CNNs und RNNs essenziell, dass vorher das Konzept des MLPs verstanden ist. Es ist die einfachste Form der auch heute noch am meisten eingesetzten und sehr mächtigen Netz-Topologien.

Im Jahr 2016 hatte Fjodor van Veen von hatte – dankenswerterweise – mal eine Zusammenstellung von Netz-Topologien erstellt, auf die ich heute noch immer mal wieder einen Blick werfe:

Künstliche neuronale Netze – Topologie-Übersicht von Fjodor van Veen


Die folgenden Bücher nutze ich für mein Selbststudium von Machine Learning und Deep Learning und sind teilweise Gedankenvorlagen auch für diesen Artikel gewesen:


Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional) Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek(mitp Professional)


How To Remotely Send R and Python Execution to SQL Server from Jupyter Notebooks


Did you know that you can execute R and Python code remotely in SQL Server from Jupyter Notebooks or any IDE? Machine Learning Services in SQL Server eliminates the need to move data around. Instead of transferring large and sensitive data over the network or losing accuracy on ML training with sample csv files, you can have your R/Python code execute within your database. You can work in Jupyter Notebooks, RStudio, PyCharm, VSCode, Visual Studio, wherever you want, and then send function execution to SQL Server bringing intelligence to where your data lives.

This tutorial will show you an example of how you can send your python code from Juptyter notebooks to execute within SQL Server. The same principles apply to R and any other IDE as well. If you prefer to learn through videos, this tutorial is also published on YouTube here:


Environment Setup Prerequisites

  1. Install ML Services on SQL Server

In order for R or Python to execute within SQL, you first need the Machine Learning Services feature installed and configured. See this how-to guide.

  1. Install RevoscalePy via Microsoft’s Python Client

In order to send Python execution to SQL from Jupyter Notebooks, you need to use Microsoft’s RevoscalePy package. To get RevoscalePy, download and install Microsoft’s ML Services Python Client. Documentation Page or Direct Download Link (for Windows).

After downloading, open powershell as an administrator and navigate to the download folder. Start the installation with this command (feel free to customize the install folder): .\Install-PyForMLS.ps1 -InstallFolder “C:\Program Files\MicrosoftPythonClient”

Be patient while the installation can take a little while. Once installed navigate to the new path you installed in. Let’s make an empty folder and open Jupyter Notebooks: mkdir JupyterNotebooks; cd JupyterNotebooks; ..\Scripts\jupyter-notebook

Create a new notebook with the Python 3 interpreter:


To test if everything is setup, import revoscalepy in the first cell and execute. If there are no error messages you are ready to move forward.

Database Setup (Required for this tutorial only)

For the rest of the tutorial you can clone this Jupyter Notebook from Github if you don’t want to copy paste all of the code. This database setup is a one time step to ensure you have the same data as this tutorial. You don’t need to perform any of these setup steps to use your own data.

  1. Create a database

Modify the connection string for your server and use pyodbc to create a new database.

  1. Import Iris sample from SkLearn

Iris is a popular dataset for beginner data science tutorials. It is included by default in sklearn package.

  1. Use RecoscalePy APIs to create a table and load the Iris data

(You can also do this with pyodbc, sqlalchemy or other packages)

Define a Function to Send to SQL Server

Write any python code you want to execute in SQL. In this example we are creating a scatter matrix on the iris dataset and only returning the bytestream of the .png back to Jupyter Notebooks to render on our client.

Send execution to SQL

Now that we are finally set up, check out how easy sending remote execution really is! First, import revoscalepy. Create a sql_compute_context, and then send the execution of any function seamlessly to SQL Server with RxExec. No raw data had to be transferred from SQL to the Jupyter Notebook. All computation happened within the database and only the image file was returned to be displayed.

While this example is trivial with the Iris dataset, imagine the additional scale, performance, and security capabilities that you now unlocked. You can use any of the latest open source R/Python packages to build Deep Learning and AI applications on large amounts of data in SQL Server. We also offer leading edge, high-performance algorithms in Microsoft’s RevoScaleR and RevoScalePy APIs. Using these with the latest innovations in the open source world allows you to bring unparalleled selection, performance, and scale to your applications.

Learn More

Check out SQL Machine Learning Services Documentation to learn how you can easily deploy your R/Python code with SQL stored procedures making them accessible in your ETL processes or to any application. Train and store machine learning models in your database bringing intelligence to where your data lives.

Other YouTube Tutorials:

Interview – Die Bedeutung von Machine Learning für das Data Driven Business

Um das Optimum aus ihren Daten zu holen, müssen Unternehmen Data Analytics vorantreiben, um Entscheidungsprozesse für Innovation und Differenzierung stärker zu automatisieren. Die Data Science scheint hier der richtige Ansatz zu sein, ist aber ein neues und schnelllebiges Feld, das viele Sackgassen kennt. Cloudera Fast Forward Labs unterstützt Unternehmen dabei sich umzustrukturieren, Prozesse zu automatisieren und somit neue Innovationen zu schaffen.

Alice Albrecht ist Research Engineer bei Cloudera Fast Forward Labs. Dort widmet sie sich der Weiterentwicklung von Machine Learning und Künstlicher Intelligenz. Die Ergebnisse ihrer Forschungen nutzt sie, um ihren Kunden konkrete Ratschläge und funktionierende Prototypen anzubieten. Bevor sie zu Fast Forward Labs kam, arbeitete sie in Finanz- und Technologieunternehmen als Data Science Expertin und Produkt Managerin. Alice Albrecht konzentriert sich nicht nur darauf, Maschinen “coole Dinge” beizubringen, sondern setzt sich auch als Mentorin für andere Wissenschaftler ein. Während ihrer Promotion der kognitiven Neurowissenschaften in Yale untersuchte Alice, wie Menschen sensorische Informationen aus ihrer Umwelt verarbeiten und zusammenfassen.

english-flagRead this article in English:
“Interview – The Importance of Machine Learning for the Data Driven Business”

Data Science Blog: Frau Albrecht, Sie sind eine bekannte Keynote-Referentin für Data Science und Künstliche Intelligenz. Während Data Science bereits im Alltag vieler Unternehmen angekommen ist, scheint Deep Learning der neueste Trend zu sein. Ist Künstliche Intelligenz für Unternehmen schon normal oder ein überbewerteter Hype?

Ich würde sagen, nichts von beidem stimmt. Data Science ist inzwischen zwar weit verbreitet, aber die Unternehmen haben immer noch Schwierigkeiten, diese neue Disziplin in ihr bestehendes Geschäft zu integrieren. Ich denke nicht, dass Deep Learning mittlerweile Teil des Business as usual ist – und das sollte es auch nicht sein. Wie jedes andere Tool, braucht auch die Integration von Deep Learning Modellen in die Strukturen eines Unternehmens eine klar definierte Vorgehensweise. Alles andere führt ins Chaos.

Data Science Blog: Nur um sicherzugehen, worüber wir reden: Was sind die Unterschiede und Überschneidungen zwischen Data Analytics, Data Science, Machine Learning, Deep Learning und Künstlicher Intelligenz?

Hier bei Cloudera Fast Forward Labs verstehen wir unter Data Analytics das Sammeln und Addieren von Daten – meist für schnelle Diagramme und Berichte. Data Science hingegen löst Geschäftsprobleme, indem sie sie analysiert, Prozesse mit den gesammelten Daten abgleicht und anschließend entsprechende Vorgänge prognostiziert. Beim Machine Learning geht es darum, Probleme mit neuartigen Feedbackschleifen zu lösen, die sich mit der Anzahl der zur Verfügung stehenden Daten noch detaillierter bearbeiten lassen. Deep Learning ist eine besondere Form des Machine Learnings und ist selbst kein eigenständiges Konzept oder Tool. Künstliche Intelligenz zapft etwas Komplizierteres an, als das, was wir heute sehen. Hier geht es um weit mehr als nur darum, Maschinen darauf zu trainieren, immer wieder dasselbe zu tun oder begrenzte Probleme zu lösen.

Data Science Blog: Und wie können wir hier den Kontext zu Big Data herstellen?

Theoretisch gesehen gibt es Data Science ja bereits seit Jahrzehnten. Die Bausteine für modernes Machine Learning, Deep Learning und Künstliche Intelligenz basieren auf mathematischen Theoremen, die bis in die 40er und 50er Jahre zurückreichen. Die Herausforderung bestand damals darin, dass Rechenleistung und Datenspeicherkapazität einfach zu teuer für die zu implementierenden Ansätze waren. Heute ist das anders. Nicht nur die Kosten für die Datenspeicherung sind erheblich gesunken, auch Open-Source-Technologien wie etwa Apache Hadoop haben es möglich gemacht, jedes Datenvolumen zu geringen Kosten zu speichern. Rechenleistung, Cloud-Lösungen und auch hoch spezialisierte Chip-Architekturen, sind jetzt auch auf Anfrage für einen bestimmten Zeitraum verfügbar. Die geringeren Kosten für Datenspeicherung und Rechenleistung sowie eine wachsende Liste von Tools und Ressourcen, die über die Open-Source-Community verfügbar sind, ermöglichen es Unternehmen jeder Größe, von sämtlichen Daten zu profitieren.

Data Science Blog: Was sind die Herausforderungen beim Einstieg in Data Science?

Ich sehe zwei große Herausforderungen: Eine davon ist die Sicherstellung der organisatorischen Ausrichtung auf Ergebnisse, die die Data Scientists liefern werden (und das Timing für diese Projekte).  Die zweite Hürde besteht darin, sicherzustellen, dass sie über die richtigen Daten verfügen, bevor sie mit dem Einstellen von Data Science Experten beginnen. Das kann “tricky” sein, wenn man im Unternehmen nicht bereits über Know-how in diesem Segment verfügt. Daher ist es manchmal besser, im ersten Schritt einen Data Engineer oder Data Strategist einzustellen, bevor man mit dem Aufbau eines Data Science Team beginnt.

Data Science Blog: Es gibt viele Diskussionen darüber, wie man ein datengesteuertes Unternehmen aufbauen kann. Geht es bei Data Science nur darum, am Ende das Kundenverhalten besser zu verstehen?

Nein “Data Driven” bedeutet nicht nur, die Kunden besser zu verstehen – obwohl das eine Möglichkeit ist, wie Data Science einem Unternehmen helfen kann. Abgesehen vom Aufbau einer Organisation, die sich auf Daten und Analysen stützt, um Entscheidungen über das Kundenverhalten oder andere Aspekte zu treffen, bedeutet es, dass Daten das Unternehmen und seine Produkte voranbringen.

Data Science Blog: Die Zahl der Technologien, Tools und Frameworks nimmt zu, was zu mehr Komplexität führt. Müssen Unternehmen immer auf dem Laufenden bleiben oder könnte es ebenso hilfreich sein, zu warten und Pioniere zu imitieren?

Obwohl es generell für Unternehmen nicht ratsam ist, pauschal jede neue Entwicklung zu übernehmen, ist es wichtig, dass sie mit den neuen Rahmenbedingungen Schritt halten. Wenn ein Unternehmen wartet, um zu sehen, was andere tun, und deshalb nicht in neue Entwicklungen investiert, haben sie den Anschluss meist schon verpasst.

Data Science Blog: Global Player verfügen meist über ein großes Budget für Forschung und den Aufbau von Data Labs. Mittelständische Unternehmen stehen immer unter dem Druck, den Break-Even schnell zu erreichen. Wie können wir die Wertschöpfung von Data Science beschleunigen?

Ein Team zu haben, das sich auf ein bestimmtes Set von Projekten konzentriert, die gut durchdacht und auf das Geschäft ausgerichtet sind, macht den Unterschied aus. Data Science und Machine Learning müssen nicht auf Forschung und Innovation verzichten, um Werte zu schaffen. Der größte Unterschied besteht darin, dass sich kleinere Teams stärker bewusst sein müssen, wie sich ihre Projektwahl in neue Rahmenbedingungen und ihre besonderen akuten und kurzfristigen Geschäftsanforderungen einfügt.

Data Science Blog: Wie hilft Cloudera Fast Forward Labs anderen Unternehmen, den Einstieg in Machine Learning zu beschleunigen?

Wir beraten Unternehmen, basierend auf ihren speziellen Bedürfnissen, über die neuesten Trends im Bereich Machine Learning und Data Science. Und wir zeigen ihnen, wie sie ihre Datenteams aufbauen und strukturieren können, um genau die Fähigkeiten zu entwickeln, die sie benötigen, um ihre Ziele zu erreichen.

Data Science Blog: Zum Schluss noch eine Frage an unsere jüngeren Leser, die eine Karriere als Datenexperte anstreben: Was macht einen guten Data Scientist aus? Arbeiten sie lieber mit introvertierten Coding-Nerds oder den Data-loving Business-Experten?

Ein guter Data Scientist sollte sehr neugierig sein und eine Liebe für die Art und Weise haben, wie Daten zu neuen Entdeckungen und Innovationen führen und die nächste Generation von Produkten antreiben können.  Menschen, die im Data Science Umfeld erfolgreich sind, kommen nicht nur aus der IT. Sie können aus allen möglichen Bereichen kommen und über die unterschiedlichsten Backgrounds verfügen.

Interview – The Importance of Machine Learning for the Data Driven Business

To become more data-driven, organizations must mature their analytics and automate more of their decision making processes for innovation and differentiation. Data science seems like the right approach, yet is a new and fast moving field that seems to have as many dead ends as it has high ways to value. Cloudera Fast Forward Labs, led by Hilary Mason, shows companies the way.

Alice Albrecht is a research engineer at Cloudera Fast Forward Labs.  She spends her days researching the latest and greatest in machine learning and artificial intelligence and bringing that knowledge to working prototypes and delivering concrete advice for clients.  Prior to joining Fast Forward Labs, Alice worked in both finance and technology companies as a practicing data scientist, data science leader, and – most recently – a data product manager.  In addition to teaching machines to do cool things, Alice is passionate about mentoring and helping others grow in their careers.  Alice holds a PhD from Yale in cognitive neuroscience where she studied how humans summarize sensory information from the world around them and the neural substrates that underlie those summaries.

Read this article in German:
“Interview – Die Bedeutung von Machine Learning für das Data Driven Business“

Data Science Blog: Ms. Albrecht, you are a well-known keynote speaker for data science and artificial intelligence. While data science has arrived business already, deep learning seems to be the new trend. Is artificial intelligence for business already normal business or is it an overrated hype?

I’d say it isn’t either of those two options.  Data science is now widely adopted but companies still struggle to integrate this new discipline into their existing businesses.  As for deep learning, it really depends on the company that’s looking into using this technique.  I wouldn’t say that deep learning is by any means part of business as usual- nor should it be.  It’s a tool like any other and building a capacity for using a tool without clearly defined business needs is a recipe for disaster.

Data Science Blog: Just to make sure what we are talking about: What are the differences and overlaps between data analytics, data science, machine learning, deep learning and artificial intelligence?

Here at Cloudera Fast Forward Labs, we like to think of data analytics as collecting data and counting things (mostly for quick charts and reports).  Data science solves business problems by counting cleverly and predicting things with the data that’s collected.  Machine learning is about solving problems with new kinds of feedback loops that improve with more data.  Deep learning is a particular type of machine learning and is not itself a separate concept or type of tool.  Artificial intelligence taps into something more complicated than what we’re seeing today – it’s much broader than training machines to repetitively do very specialized tasks or solve very narrow problems.

Data Science Blog: And how can we add the context to big data?

From a theoretical perspective, data science has been around for decades. The building blocks for modern day machine learning, deep learning and artificial intelligence are based on mathematical theorems  that go back to the 1940’s and 1950’s. The challenge was that at the time, compute power and data storage capacity were simply too expensive for the approaches to be implemented. Today that’s all changed.. Not only has the cost of data storage dropped considerably, open source technology like Apache Hadoop has made it possible to store any volume of data at costs approaching zero. Compute power, even highly specialised chip architectures, are now also available on demand and only for the time organisations need them through public and private cloud solutions. The decreased cost of both data storage and compute power, together with a growing list of tools and resources readily available via the open source community allows companies of any size to benefit from data (no matter that size of that data).

Data Science Blog: What are the challenges for organizations in getting started with data science?

I see two big challenges when getting started with data science.  One is ensuring that you have organizational alignment around exactly what type of work data scientists will deliver (and timing for those projects).  The second hurdle is around ensuring that you have the right data in place before you start hiring data scientists. This can be tricky if you don’t have in-house expertise in this area, so sometimes it’s better to hire a data engineer or a data strategist (or director of data science) before you ever get started building out a data science team.

Data Science Blog: There are many discussions about how to build a data-driven business. Is it just about using data science to get a better understanding of customer behavior?

No, being data driven doesn’t just mean better understanding your customers (though that is one way that data science can help in an organization).  Aside from building an organization that relies on data and analytics to help them make decisions (about customer behavior or otherwise), being a data-driven business means that data is powering your core products.

Data Science Blog: The number of technologies, tools and frameworks is increasing. For organizations this also means increasing complexity. Do companies need to stay always up-to-date or could it be an advice to wait and imitate pioneers later?

While it’s not critical (or advisable) for organizations to adopt every new advancement that comes along, it is critical for them to stay abreast of emerging frameworks.  If a business waits to see what others are doing, and therefore don’t invest in understanding how new advancements can affect their particular business, they’ve likely already missed the boat.

Data Science Blog: Global players have big budgets just for doing research and setting up data labs. Middle-sized companies need to see the break even point soon. How can we accelerate the value generation of data science?

Having a team that is highly focused on a specific set of projects that are well-scoped and aligned to the business makes all the difference.  Data science and machine learning don’t have to sacrifice doing research and being innovative in order to produce value.  The biggest difference is that smaller teams will have to be more aware of how their choice of project fits into emerging frameworks and their particular acute and near term business needs.

Data Science Blog: How does Cloudera Fast Forward Labs help other organizations to accelerate their start with machine learning?

We advise organizations, based on their particular needs, on what the latest advancements are in machine learning and data science, how to build and structure their data teams to develop the capabilities they need to meet their goals, and how to quickly implement custom forward-looking solutions using their own data and in-house expertise.

Data Science Blog: Finally, a question for our younger readers who are looking for a career as a data expert: What makes a good data scientist? Do you like to work with introverted coding nerds or the data loving business experts?

A good data scientists should be deeply curious and have a love for the ways in which data can lead to new discoveries and power the next generation of products.  We expect the people who thrive in this field to come from a variety of backgrounds and experiences.

Deep Learning and Human Intelligence – Part 1 of 2

Many people are under the impression that the new wave of data science, machine learning and/or digitalization is new, that it did not exist before. But its history is as long as the history of humanity and/or science itself.  The scientific discovery could hardly take place without the necessary data. Even the process of discovering the numbers included elements of machine learning: pattern recognition, comparison between different groups (ranking), clustering, etc. So what differentiates mathematical formulas from machine learning and how does it relate to artificial intelligence?

There is no difference between the two if seen from the perspective of formulas however, such a perspective limits the type of data to which they can be applied. Data stored via tables consist of structured data and are stored in so-called relational databases. The reason for such a data storage is the connection between different fields that assume a well-established structure in advance, such as a company’s sales or balance sheet. However, with the emergence of personal computers, many of the daily activities have been digitalized: music, pictures, movies, and so on. All this information is stored unrelated to other data and therefore called unstructured data.

IEEE International Conference on Computer Vision (ICCV), 2015, DOI: 10.1109/ICCV.2015.428

Copyright: IEEE International Conference on Computer Vision (ICCV), 2015, DOI: 10.1109/ICCV.2015.428

The essence of scientific discoveries was and will be structure. Not surprisingly, the mathematical formulas revolve around relations between variables – information, in general. For example, Galileo derived the law of falling balls from measuring the successive hight of a falling ball. The main difficulty was to obtain measurements at regular time intervals. What about if the data is not structured, which mathematical formula should be applied then? There is a distribution of people’s height, but no distribution for the pictures taken in all holidays for the last year, there is an amplitude for acoustic signals, but no function that detects the similarity between two songs. This is one of the reasons why machine learning focuses heavily on clustering and classification.

Roughly speaking, these simple examples are enough to categorize the difference between scientific discovery and machine learning. Science is about discovering relationships between different variables, Machine Learning tries to automatize processes. Every technical improvement is part of the automation, so why is everything different in this case? Because the current automation deals with human intelligence. The car automates the walking, the kitchen stove the fire, but Machine Learning parts of the human intelligence. There is a difference between the previous automation steps and those of human intelligence. All the previous ones are either outside the human body – such as Fire – or unconsciously executed (once learned) – walking, spinning, etc. The automation induced by Machine Learning affects a part of the human intelligence that we consciously perceive. Of course, today’s machine learning tools are unable to automate all human intelligence, but it is a fascinating step in that direction.

A breakthrough in Machine Learning tasks was achieved in 2012 when the first Deep Learning algorithm for detecting types of images, reached near-human accuracy. It could appreciate the likelihood that the image is a human face, a train, a ball or a fish without having “seen” the picture before. Such an algorithm can be used in various areas:  personally – facial recognition in pictures and/or social media – as tagging of images or videos, medicine – cancer detection, etc. For understanding such cutting-edge issues of classification, one cannot avoid understanding how Deep Learning works. To see the beauty of such algorithms and, at the same time, to be able to comprehend the difficulty of working with them, an example will be the best guide.

The building blocks of Deep Learning are neurons, operational units, which perform mathematical operations or logical operations like AND, OR, etc., and are modelled after the neurons in the brain. Already in the 1950’s two neuroscientist, Hubel and Wiesel, observed that not all neurons in the brain are responding in the same fashion to visual stimuli. Some responded only to horizontal lines, whereas others to vertical lines, with other words, the brain is constructed with specialized neurons. Groups of such neurons are called, in the Machine Learning community, layers. Like in the brain, neurons with different properties are clustered in different layers. This implies that layers have also specific properties and have to be arranged in a specific way, called architecture. It is this architecture which differentiates Deep Learning from Artificial Neuronal Networks (ANN are similar to a layer).

Unfortunately, scientists still haven’t figured out how the brain works, thus to discover how to train Deep Learning from data was not an easy task, and is also the reason why another example is used to explain the training of Deep Learning: the eye. One has always to remember: once it is known how Deep Learning works, it is simple to find example which illustrates the working mechanism.  For such an analogy, it is sufficient for someone without any knowledge about Deep Learning, to keep in mind only the elements that compose such architectures: input data, different layers of neurons, output layers, ReLu’s.

Input data are any type of information, in our example it is light. Of course, that Deep Learning is not limited only to images or videos, but also to sound and/or time series, which would imply that the example would be the ear and sound waves, or the brain and numbers.

Layers can be seen as cells in the eye. It is well known that the eye is formed of different layers connected to each other with each of them having different properties, functionalities. The same is true also for the layers of a Deep Learning architecture: one can see the neurons as cells of the layer as the tissue. While, mathematically, the neurons are nothing more than simple operations, usually linear weight functions, they can be seen as the properties of individual cells. Each layer has one weight matrix, which gives the neuron (and layer) specific properties depending on the data and the task at hand.

It is here that the architecture becomes very important. What Deep Learning offers is a default setting of the layers with unknown weights. One can see this as trying to build an eye knowing that there are different types of cells and different ways how tissues of such cells can be arranged, but not which cell exactly is needed (with what properties) and which arrangement of layers works best. Such an approach has the advantage that one is capable of building any type of organ desired, but the disadvantage is also very obvious: it is time consuming to find the appropriate cell properties and layers arrangements.

Still, the strategy of Deep Learning is a significant departure from the Machine Learning approaches. The performance of Machine Learning methods is as good as the features engineering performed by Data Scientists, and thus depending on the creativity of the Data Scientist. In the case of Deep Learning the engineers of the features is performed automatically as part of the model building. This is a huge improvement, as the only difficult task is to have enough data and computer power to find the right weights matrices. Such an endeavor was performed also by nature for the eye — and is also the reason why one can choose it as an example for Deep Learning — evolution. It is not surprising that Deep Learning is one of the best direction scientists have of Artificial Intelligence today.

The evolution of the eye can be seen, from the perspective of Data Scientists, as the continuous training of a Deep Learning architecture which enables to recognize and track one or more objects. The performance of the evolutional process can be summed up as the fine tuning of the cells which are getting more and more susceptible to light and the adaptation of layers to enable a better vision. Different animals in different environments and different targets — as the hawk and the fly — developed different eyes than humans, but they all work according to the same principle. The tasks that Deep Learning is performing today are similar, for example it can be used to drive cars but there is still a difference:  there is no connection to other organs. Deep Learning is not the approximation of an Artificial Organism, like an android, but a simplified Artificial Organ that can work on its own.

Returning to the working mechanism of the Deep Learning architecture, we can already follow the analogy of what happens if a ray of light is hitting the eye. Once the eye is fully adapted to the task, one can followed how the information enters the Deep Learning architecture (Artificial Eye) by penetrating the input layer. already here arises the question, what kind of eye is the best? One where a small source of light can reach as many neurons as possible, or the one where the light sources reaches only few neurons? In order to take such a decision, a last piece of the puzzle is required: ReLu. One can see them as synapses between neurons (cells) and/or similarly for tissue. By using continuous functions, such as the shape of the latter ‘S’ (called sigmoid), the information from one neuron will be distributed over a large number of other neurons. If one uses the maximum function, then only few neurons are updated with processed information from earlier layers.

Such sparse structures between neurons, was a major improvement in the development of the technique of training Deep Learning architectures. Again, it has a strong evolutionary analogy: energy efficiency. By needing less neurons, the tissues and architecture are both kept to a minimal size which enables flexibility in development and less energy. As the information is process by the different layers, the Artificial Eye is gathering more and more complex (non-linear) structures — the adapted features –, which help to decide, from past experience, what kind of object is detected.

This was part 1 of 2 of the article series. Continue with Part 2.

Interview mit Prof. Carsten Felden über Artificial Intelligence und Cognitive Computing

Wird Artificial Intelligence oder Cognitive Computing oder beides zusammen der Standard, den alle haben müssen?

Prof. Dr. Carsten Felden ist Vorsitzender des Vorstandes des TDWI e.V., der größten Community für Analytics und Buisness Intelligence.. Er ist selbst Experte und Consultant für Business Intelligence und für diesen Fachbereich Lehrstuhlinhaber an der TU Bergakademie Freiberg.

Data Science Blog: Herr Prof. Felden, welcher Weg hat Sie bis an die Spitze des erfolgreichsten deutschen Verbandes für Analytics und Business Intelligence geführt?

Ich möchte die Beantwortung gerne umdrehen: Der TDWI ist ein Verein, in dem sich jeder als Mitglied engagieren darf und soll. Und da die Themen mir Freude bereiten und immer wieder neue Facetten zeigen, bin ich auch mit Begeisterung dabei und trage dies gerne in den Verein. Zu diesen Themen bin ich über mein Studium der Wirtschaftswissenschaft gelangt, in dem ich Wirtschaftsinformatik und Logistik vertiefte. Bei Professor Chamoni bot sich mir 2002 die Gelegenheit zur Promotion, in der ich mittels Text Mining ein Analysesystem in Python entwickelte, um Energiemarktentwicklungen zu erklären. Schon während dieser Zeit ergaben sich aber immer wieder Fragestellungen, welche die Entscheidungsfindung an sich betrafen. Dies interessierte mich in den vielen Facetten, so dass ich eine Habilitationsschrift anschloss, um den Entscheidungsprozess näher von der theoretischen Seite zu beleuchten. Dabei nahm ich Datenanalyseprozesse als Grundlage, um deren Wirkung auf menschliche Entscheidungsträger zu betrachten. Mit der Übernahme meiner Professur in 2006 baute ich einen kompetenzcenterorientierten Lehrstuhl auf, der sich zum Ziel setzte zu untersuchen, wie man realistisch mit Daten arbeiten kann, was man mit Daten tun kann. Dies in unterschiedlichen Welten: dem internationalen High-Tech-Konzern, dem Mittelständler als Hidden Champion oder dem kleineren Unternehmen. Insbesondere die Verbindung von Theorie und Praxis hat immer wieder die universitäre Lehre befruchtet und diese wollte ich auch in den Verein tragen. Im Rahmen der Veranstaltungen des TDWI habe ich immer viele neue Dinge oder realistische Einschätzungen aktuell diskutierter Dinge erhalten und wollte letztlich diese auch aus meinen Projekterfahrungen in die dortigen Diskussionen in unterschiedlichen Veranstaltungen zurückbringen. Das ich nun Vorsitzender dieses Vereins sein darf ist aber den Mitgliedern zu verdanken, die Vertrauen in mich setzten, den Weg des Vereins weiter voran zu treiben und meinen Vorstandskollegen, ohne deren Arbeit und Unterstützung meine Tätigkeit nichts wert wäre. Es ist der Verein als Ganzes, der den Mehrwert bietet und nicht einzelne Personen.

Data Science Blog: Wie weit ist die Industrie mittlerweile beim Einsatz von AI, also künstlicher Intelligenz?

Eine eindeutige Antwort ist hier gar nicht möglich. Allein schon die Deutung des Begriffs in der Praxis, macht es manchmal schwer, zwischen echten und unechten AI-Projekten zu unterscheiden. Letztlich kann man aber abgrenzend sagen, dass AI die automatisierte Entscheidung ermöglicht und nicht bei der Entscheidungsunterstützung für einen menschlichen Aufgabenträger endet. Egal, ob es nun ein echte oder ein unechtes AI-Projekt ist, es gilt, dass Daten entsprechend zu identifizieren, zu extrahieren und ggf. zu transformieren und final bereitzustellen sind. Nun soll aber nicht der Manager mit seinem fachlichem Know How (=Bauchgefühl) diese Informationen zur Entscheidung nutzen, sondern die Maschine übernimmt auch diesen Part (ohne Bauchgefühl) basierend auf Algorithmen. Man darf den Begriff der Entscheidung nicht immer mit einer besonderen Tragweite verbinden, da schon das einfache Signal einer Maschine: „Ich bin frei, ich habe Zeit, ich kann das jetzt tun!“ ist eine Entscheidung.
Um auch noch kurz auf die Abgrenzung zu den unechten Projekten einzugehen: hier erlebe ich immer wieder, dass AI mit künstlichen neuronalen Netzen gleichgesetzt wird. Natürlich kann man solche Netze hier nutzen, aber letztlich geht es nur darum, den Entscheidungsprozess in unterschiedlichen Situationen zu automatisieren. Zu diesem Zweck muss man prüfen, wo das sinnhaft möglich ist, da es nicht das Ziel sein kann, alles ohne Wenn und Aber zu automatisieren. In technisch-affinen Unternehmen sehen wir schon einige Umsetzungen, die über den Pilot-Status hinaus sind. Beispielhaft zu nennen sind da vollautomatisierte Fertigungen, insofern der Herstellungsprozess reihenfolgeunabhängig ist oder aber Controllingprozesse. Im Kern sind es aktuell noch Tätigkeiten, die keinen ausgeprägten kreativen Kern beinhalten, aber ein hohes Maß an Kommunikation zwischen den Beteiligten Systemelementen erfordern. In Summe gibt es ein breites Interesse und schon viele Orientierungsbeispiele, die dazu führen werden, dass diese Projekte intensiver zunehmen werden.

Data Science Blog: Wie grenzen Sie eigentlich Artificial Intelligence und Cognitive Computing voneinander ab? Wo liegen die Unterschiede?

Letztlich kann ich hier zum vorherigen ergänzen: beim Cognitive Computing handelt es sich um die Fortführung der wissensbasierten Systeme beziehungsweise der Expertensysteme. Der enorme und damit auch beeindruckende Unterschied zu den Vorläufern ist die Fähigkeit des Lernens im Sinne einer inhaltlichen Weiterentwicklung der vorhandenen Wissensbasis, die nun wesentlich ausgeprägter ist und auch automatisiert in entsprechenden Wissensdomänen stattfinden kann. AI kann einerseits zum Lernen des Systems beitragen, andererseits das gelernte für die automatisierte Entscheidung anwenden. Beide Ansätze nutzen und befruchten sich also gegenseitig.

Data Science Blog: Welche Trends im Bereich Machine Learning bzw. Deep Learning werden Ihrer Meinung nach in den Jahren 2018 und 2019 von Bedeutung werden?

Da möchte ich direkt zu unserer diesjährigen Konferenz in München herüber schwenken. Traditionell finden wir dort die Trends der nächsten Jahre schon in Vorträgen und Diskussionen.
Insgesamt beobachten wir eine starke Entwicklung hin zur Analyse unstrukturierter Daten. Machine Learning wird zunehmend intensiv in textuellen Analysen genutzt, um zum Beispiel eine E-Mail-Kategorisierung beziehungsweise Reaktion auf eine E-Mail zu automatisieren. Darüber hinaus ist die Verarbeitung von Bildern mit Ansätzen des Deep Learning ein zunehmender Trend. Dies in Szenarios wie die Fehlererkennung in der Herstellung oder dem Erkennen des Anwenders und dahingehend automatischen Anpassung seiner vorliegenden Systemlösung mit den passenden Inhalten. Sie sehen also, dass alle Facetten der algorithmischen Datenanalyse bedeutend werden. Dabei stellen wir aber auch fest, dass der klassischen Hausaufgaben, wie Datenintegration, Datenqualitätssicherung, Datenbereitstellung etc. nicht vom Tisch sind, sondern auch immer wieder neu diskutiert werden. Hier kommt aktuell hinzu, Verfahren der künstlichen Intelligenz zu nutzen, um eine dynamische Schemaerzeugung in Zeiten von Data Lakes automatisiert auszuführen, um den Anwendern für die jeweilige Entscheidungssituation Daten bedarfs- und verarbeitungsgerecht zur Verfügung zu stellen. Wir sehen also, dass die Übernahme von Tätigkeiten durch maschinellen Aufgabenträger der treibende Faktor ist, was dann mittels Machine Learning bzw. Deep Learning umsetzbar ist.

Data Science Blog: In wie weit wird der Begriff „Business Intelligence“ Ihrer Meinung nach zukünftig erhalten bleiben? Wie nahtlos ließen sich die neuen Möglichkeiten mit künstlicher Intelligenz in BI-Systeme integrieren?

Nun ja, aktuell werden wir mit Schlagworten überflutet, die darüber hinaus noch oftmals mit unterschiedlichen Verständnissen belegt sind, so dass es mehr Verwirrung als Erkenntnis gibt. Wissenschaftlich betrachtet ist Business Intelligence ein allumfassender Begriff, da er lediglich benennt, dass Daten zu sammeln und zu Entscheidungszwecken aufzubereiten sind. Dies subsummiert also auch AI.
In der Praxis ist BI aber eher das alte, starre Berichtswesen und passt dann so gar nicht zu den dynamischen Analyticsansätzen. Hier muss man aber sagen, dass Self Service Ansätze und die zunehmende Flexibilisierung der Architekturen dabei unterstützt, beide Welten zusammenzubringen. Aktuell ist man noch auf dem Niveau, über Schnittstellen bewusst Code auszutauschen. Beispielsweise lässt sich R-Code in vielen BI-Werkzeugen ausführen. Letztlich erleben wir aber alle, dass Geräte immer einfacher zu steuern sind und dadurch Welten auch zusammenfließen und das wird auch hier geschehen, weil es die Anwender einfach so gewohnt sind.

Data Science Blog: Manchmal hört man, dass Data Scientists gerade an ihrer eigenen Arbeitslosigkeit arbeiten, da zukünftige Verfahren des maschinellen Lernens Data Mining selbstständig durchführen können. Werden Tools Data Scientists bald ersetzen?

Die Wirtschaftsinformatik hat das Postulat der sinnhaften Vollautomation. Daher sehe ich es auch hier so, dass man die Punkte beziehungsweise Stellen im Prozess identifizieren muss, wo die Anwendung der Data Science Sinn macht. Darüber hinaus sehe ich den Data Scientist eigentlich nicht als eine Person, sondern als ein Konglomerat an Fähigkeiten, oftmals verteilt über mehrere Abteilungen und damit auch mehrere Personen, die zusammenarbeiten müssen. Die geforderten Fähigkeiten werden sich sicherlich wandeln, jedoch wird Kommunikationsfähigkeit immer der Schlüssel sein und Tools werden dahingehend das Data Science Team nicht ersetzen, sondern immer Mittel zum Zweck im Rahmen der sinnhaften Vollautomation sein.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik oder Wirtschaftswissenschaften, abgeschlossen haben, was würden sie diesen jungen Damen und Herren raten, wie sie gute Data Scientists werden können?

Kommunizieren können und neugierig sein. Sie werden alle viel im Rahmen ihrer Ausbildung an fundamentalen Fähigkeiten gelernt haben, aber lassen sie sich auf die Partner im Projekt ein, interessieren sie sich für all das, was auf der fachlichen Ebene geschieht und wie der technische Fortschritt aussieht. Ich kann immer nur wiederholen, dass offene Kommunikation eine wichtige Fähigkeit in Projekten ist, die nicht hoch genug bewertet werden kann. Die TDWI-Konferenz oder all die anderen Formate des Vereins bieten die Möglichkeit, Wissen aufzunehmen, auszutauschen und sich selber mit anderen zu vernetzen. Ich denke wirklich, dass gute Data Scientist derartiges nutzen, um die eigenen Themen bestmöglich angehen zu können, denn das ist der Schlüssel zum Erfolg!

Prof. Felden wird am 25. Juni die TDWI Konferenz in München eröffnen, die unter dem Slogan „Business Intelligence meets Artificial Intelligence“ die neuen Möglichkeiten unter Einsatz künstlicher Intelligenz in den Fokus stellen wird.

Machine Learning vs Deep Learning – Wo liegt der Unterschied?

Machine Learning gehört zu den Industrie-Trends dieser Jahre, da besteht kein Zweifel. Oder war es Deep Learning? Oder Artificial Intelligence? Worin liegt da eigentlich der Unterschied? Dies ist Artikel 1 von 5 der Artikelserie –Einstieg in Deep Learning.

Machine Learning

Maschinelles Lernen (ML) ist eine Sammlung von mathematischen Methoden der Mustererkennung. Diese Methoden erkennen Muster beispielsweise durch bestmögliche, auf eine bestmögliche Entropie gerichtete, Zerlegung von Datenbeständen in hierarchische Strukturen (Entscheidungsbäume). Oder über Vektoren werden Ähnlichkeiten zwischen Datensätzen ermittelt und daraus trainiert (z. B. k-nearest-Neighbour, nachfolgend einfach kurz: k-nN) oder untrainiert (z.B. k-Means) Muster erschlossen.

Algorithmen des maschinellen Lernens sind tatsächlich dazu in der Lage, viele alltägliche oder auch sehr spezielle Probleme zu lösen. In der Praxis eines Entwicklers für Machine Learning stellen sich jedoch häufig Probleme, wenn es entweder zu wenige Daten gibt oder wenn es zu viele Dimensionen der Daten gibt. Entropie-getriebene Lern-Algorithmen wie Entscheidungsbäume werden bei vielen Dimensionen zu komplex, und auf Vektorräumen basierende Algorithmen wie der k-nächste-Nachbarn-Algorithmus sind durch den Fluch der Dimensionalität in ihrer Leistung eingeschränkt.

Der Fluch der Dimensionalität

Datenpunkte sind in einem zwei-dimensionalen Raum gut vorstellbar und auch ist es vorstellbar, das wir einen solchen Raum (z. B. ein DIN-A5-Papierblatt) mit vielen Datenpunkten vollschreiben. Belassen wir es bei der Anzahl an Datenpunkten, nehmen jedoch weitere Dimensionen hinzu (zumindest die 3. Dimension können wir uns noch gut vorstellen), werden die Abstände zwischen den Punkten größer. n-dimensionale Räume können gewaltig groß sein, so dass Algorithmen wie der k-nN nicht mehr gut funktionieren (der n-dimensionale Raum ist einfach zu leer).

Auch wenn es einige Konzepte zum besseren Umgang mit vielen Dimensionen gibt (z. B. einige Ideen des Ensemble Learnings)

Feature Engineering

Um die Anzahl an Dimensionen zu reduzieren, bedienen sich Machine Learning Entwickler statistischer Methoden, um viele Dimensionen auf die (wahrscheinlich) nützlichsten zu reduzieren: sogenannte Features. Dieser Auswahlprozess nennt sich Feature Engineering und bedingt den sicheren Umgang mit Statistik sowie idealerweise auch etwas Fachkenntnisse des zu untersuchenden Fachgebiets.
Bei der Entwicklung von Machine Learning für den produktiven Einsatz arbeiten Data Scientists den Großteil ihrer Arbeitszeit nicht an der Feinjustierung ihrer Algorithmen des maschinellen Lernens, sondern mit der Auswahl passender Features.

Deep Learning

Deep Learning (DL) ist eine Disziplin des maschinellen Lernes unter Einsatz von künstlichen neuronalen Netzen. Während die Ideen für Entscheidungsbäume, k-nN oder k-Means aus einer gewissen mathematischen Logik heraus entwickelt wurden, gibt es für künstliche neuronale Netze ein Vorbild aus der Natur: Biologische neuronale Netze.

Prinzip-Darstellung eines künstlichen neuronalen Netzes mit zwei Hidden-Layern zwischen einer Eingabe- und Ausgabe-Schicht.

Wie künstliche neuronale Netze im Detail funktionieren, erläutern wir in den nächsten zwei Artikeln dieser Artikelserie, jedoch vorab schon mal so viel: Ein Eingabe-Vektor (eine Reihe von Dimensionen) stellt eine erste Schicht dar, die über weitere Schichten mit sogenannten Neuronen erweitert oder reduziert und über Gewichtungen abstrahiert wird, bis eine Ausgabeschicht erreicht wird, die einen Ausgabe-Vektor erzeugt (im Grunde ein Ergebnis-Schlüssel, der beispielsweise eine bestimmte Klasse ausweist: z. B. Katze oder Hund). Durch ein Training werden die Gewichte zwischen den Neuronen so angepasst, dass bestimmte Eingabe-Muster (z. B. Fotos von Haustieren) immer zu einem bestimmten Ausgabe-Muster führen (z. B. “Das Foto zeigt eine Katze”).

Der Vorteil von künstlichen neuronalen Netzen ist die sehr tiefgehende Abstraktion von Zusammenhängen zwischen Eingabe-Daten und zwischen den abstrahierten Neuronen-Werten mit den Ausgabe-Daten. Dies geschieht über mehrere Schichten (Layer) der Netze, die sehr spezielle Probleme lösen können. Aus diesen Tatsachen leitet sich der übergeordnete Name ab: Deep Learning

Deep Learning kommt dann zum Einsatz, wenn andere maschinelle Lernverfahren an Grenzen stoßen und auch dann, wenn auf ein separates Feature Engineering verzichtet werden muss, denn neuronale Netze können über mehrere Schichten viele Eingabe-Dimensionen von selbst auf die Features reduzieren, die für die korrekte Bestimmung der Ausgabe notwendig sind.

Convolutional Neuronal Network

Convolutional Neuronal Networks (CNN) sind neuronale Netze, die vor allem für die Klassifikation von Bilddaten verwendet werden. Sie sind im Kern klassische neuronale Netze, die jedoch eine Faltungs- und eine Pooling-Schicht vorgeschaltet haben. Die Faltungsschicht ließt den Daten-Input (z. B. ein Foto) mehrfach hintereinander, doch jeweils immer nur einen Ausschnitt daraus (bei Fotos dann einen Sektor des Fotos), die Pooling-Schicht reduzierte die Ausschnittsdaten (bei Fotos: Pixel) auf reduzierte Informationen. Daraufhin folgt das eigentliche neuronale Netz.

CNNs sind im Grunde eine spezialisierte Form von künstlichen neuronalen Netzen, die das Feature-Engineering noch geschickter handhaben.

Deep Autoencoder

Gegenwärtig sind die meisten künstlichen neuronalen Netze ein Algorithmen-Modell für das überwachte maschinelle Lernen (Klassifikation oder Regression), jedoch kommen sie auch zum unüberwachten Lernen (Clustering oder Dimensionsreduktion) zum Einsatz, die sogenannten Deep Autoencoder.

Deep Autoencoder sind neuronale Netze, die im ersten Schritt eine große Menge an Eingabe-Dimensionen auf vergleichsweise wenige Dimensionen reduzieren. Die Reduktion (Encoder) erfolgt nicht abrupt, sondern schrittweise über mehrere Schichten, die reduzierten Dimensionen werden zum Feature-Vektor. Daraufhin kommt der zweite Teil des neuronalen Netzes zum Einsatz: Die reduzierten Dimensionen werden über weitere Schichten wieder erweitert, die ursprünglichen Dimensionen als abstrakteres Modell wieder rekonstruiert (Decoder). Der Sinn von Deep Autoencodern sind abstrakte Ähnlichkeitsmodelle zu erstellen. Ein häufiges Einsatzgebiet sind beispielsweise das maschinelle Identifizieren von ähnlichen Bildern, Texten oder akkustischen Signalmustern.

Artificial Intelligence

Artificial Intelligence (AI) oder künstliche Intelligenz (KI) ist ein wissenschaftlicher Bereich, der das maschinelle Lernen beinhaltet, jedoch noch weitere Bereiche kennt, die für den Aufbau einer KI von Nöten sind. Eine künstliche Intelligenz muss nicht nur Lernen, sie muss auch Wissen effizient abspeichern, einordnen bzw. sortieren und abrufen können. Sie muss ferner über eine Logik verfügen, wie sie das Wissen und das Gelernte einsetzen muss. Denken wir an biologische Intelligenzen, ist es etwa nicht so, dass jegliche Fähigkeiten erlernt wurden, einige sind mit der Geburt bereits ausgebildet oder liegen als sogenannter Instinkt vor.

Ein einzelner Machine Learning Algorithmus würde wohl kaum einen Turing-Test bestehen oder einen Roboter komplexe Aufgaben bewältigen lassen. Daher muss eine künstliche Intelligenz weit mehr können, als bestimmte Dinge zu erlernen. Zum wissenschaftlichen Gebiet der künstlichen Intelligenz gehören zumindest:

  • Machine Learning (inkl. Deep Learning und Ensemble Learning)
  • Mathematische Logik
    • Aussagenlogik
    • Prädikatenlogik
    • Default-Logik
    • Modal-Logik
  • Wissensbasierte Systeme
    • relationale Algebra
    • Graphentheorie
  • Such- und Optimierungsverfahren:
    • Gradientenverfahren
    • Breitensuche & Tiefensuche



Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung (Computational Intelligence) Praxiseinstieg Deep Learning: Mit Python, Caffe, TensorFlow und Spark eigene Deep-Learning-Anwendungen erstellen