Tag Archive for: Artificial Intelligence

Benjamin Aunkofer im Interview mit Atreus Interim Management über Daten & KI in Unternehmen

Video Interview – Interim Management für Daten & KI

Data & AI im Unternehmen zu etablieren ist ein Prozess, der eine fachlich kompetente Führung benötigt. Hier kann Interim Management die Lösung sein.

Unternehmer stehen dabei vor großen Herausforderungen und stellen sich oft diese oder ähnliche Fragen:

  • Welche Top-Level Strategie brauche ich?
  • Wo und wie finde ich die ersten Show Cases im Unternehmen?
  • Habe ich aktuell den richtigen Daten back-bone?

Diese Fragen beantwortet Benjamin Aunkofer (Gründer von DATANOMIQ und AUDAVIS) im Interview mit Atreus Interim Management. Er erläutert, wie Unternehmen die Disziplinen Data Science, Business Intelligence, Process Mining und KI zusammenführen können, und warum Interim Management dazu eine gute Idee sein kann.

Video Interview “Meet the Manager” auf Youtube mit Franz Kubbillum von Atreus Interim Management und Benjamin Aunkofer von DATANOMIQ.

Über Benjamin Aunkofer

Benjamin Aunkofer - Interim Manager für Data & AI, Gründer von DATANOMIQ und AUDAVIS.

Benjamin Aunkofer – Interim Manager für Data & AI, Gründer von DATANOMIQ und AUDAVIS.

Benjamin Aunkofer ist Gründer des Beratungs- und Implementierungspartners für Daten- und KI-Lösungen namens DATANOMIQ sowie Co-Gründer der AUDAVIS, einem AI as a Service für die Wirtschaftsprüfung.

Nach seiner Ausbildung zum Software-Entwickler (FI-AE IHK) und seinem Einstieg als Consultant bei Deloitte, gründete er 2015 die DATANOMIQ GmbH in Berlin und unterstütze mit mehreren kleinen Teams Unternehmen aus unterschiedlichen Branchen wie Handel, eCommerce, Finanzdienstleistungen und der produzierenden Industrie (Pharma, Automobilzulieferer, Maschinenbau). Er partnert mit anderen Unternehmensberatungen und unterstütze als externer Dienstleister auch Wirtschaftsprüfungsgesellschaften.

Der Projekteinstieg in Unternehmen erfolgte entweder rein projekt-basiert (Projektangebot) oder über ein Interim Management z. B. als Head of Data & AI, Chief Data Scientist oder Head of Process Mining.

Im Jahr 2023 gründete Benjamin Aunkofer mit zwei Mitgründern die AUDAVIS GmbH, die eine Software as a Service Cloud-Plattform bietet für Wirtschaftsprüfungsgesellschaften, Interne Revisionen von Konzernen oder für staatliche Prüfung von Finanztransaktionen.

 

Benjamin Aunkofer - Podcast - KI in der Wirtschaftsprüfung

Podcast – KI in der Wirtschaftsprüfung

Die Verwendung von Künstlicher Intelligenz (KI) in der Wirtschaftsprüfung, wie Sie es beschreiben, klingt in der Tat revolutionär. Die Integration von KI in diesem Bereich könnte enorme Vorteile mit sich bringen, insbesondere in Bezug auf Effizienzsteigerung und Genauigkeit.

Benjamin Aunkofer - KI in der WirtschaftsprüfungDie verschiedenen von Ihnen genannten Lernmethoden wie (Un-)Supervised Learning, Reinforcement Learning und Federated Learning bieten unterschiedliche Ansätze, um KI-Systeme für spezifische Anforderungen der Wirtschaftsprüfung zu trainieren. Diese Methoden ermöglichen es, aus großen Datenmengen Muster zu erkennen, Vorhersagen zu treffen und Entscheidungen zu optimieren.

Der Artificial Auditor von AUDAVIS, der auf einer Kombination von verschiedenen KI-Verfahren basiert, könnte beispielsweise in der Lage sein, 100% der Buchungsdaten zu analysieren, was mit herkömmlichen Methoden praktisch unmöglich wäre. Dies würde nicht nur die Genauigkeit der Prüfung verbessern, sondern auch Betrug und Fehler effektiver aufdecken.

Der Punkt, den Sie über den Podcast Unf*ck Your Datavon Dr. Christian Krug und die Aussagen von Benjamin Aunkofer ansprechen, ist ebenfalls interessant. Es scheint, dass die Diskussion darüber, wie Datenautomatisierung und KI die Wirtschaftsprüfung effizienter gestalten können, bereits im Gange ist und dabei hilft, das Bewusstsein für diese Technologien zu schärfen und ihre Akzeptanz in der Branche zu fördern.

Es wird dabei im Podcast betont, dass die Rolle des menschlichen Prüfers durch KI nicht ersetzt, sondern ergänzt wird. KI kann nämlich dabei helfen, Routineaufgaben zu automatisieren und komplexe Datenanalysen durchzuführen, während menschliche Experten weiterhin für ihre Fachkenntnisse, ihr Urteilsvermögen und ihre Fähigkeit, den Kontext zu verstehen, unverzichtbar bleiben.

Insgesamt spricht Benjamin Aunkofer darüber, dass die Integration von KI in die Wirtschaftsprüfung bzw. konkret in der Jahresabschlussprüfung ein aufregender Schritt in Richtung einer effizienteren und effektiveren Zukunft sei, der sowohl Unternehmen als auch die gesamte Volkswirtschaft positiv beeinflussen wird.

Benjamin Aunkofer - Podcast - KI in der Wirtschaftsprüfung

Benjamin Aunkofer – Podcast – KI in der Wirtschaftsprüfung

Data Literacy Day 2023

Data Literacy Day 2023 by StackFuel

Der Data Literacy Day 2023 findet am 7. November 2023 in Berlin oder bequem von zu Hause aus statt. Eine hybride Veranstaltung zum Thema Datenkompetenz.

Darum geht es bei der hybriden Daten-Konferenz.

Data Literacy ist heutzutage ein Must-have – beruflich wie privat. Seit 2021 wird Datenkompetenz von der Bundesregierung als unverzichtbares Grundwissen eingestuft. Doch der Umgang mit Daten will gelernt sein. Wie man Data Literacy in der deutschen Bevölkerung verankert und wie Bürger:innen zu Data Citizens werden, kannst Du am 7. November 2023 mit den wichtigsten Köpfen der Branche am #DLD23 im Basecamp Berlin oder online von zu Hause aus diskutieren.

Lerne von den Besten der Branche.

Am Data Literacy Day 2023 kommen führende Expert:innen aus den Bereichen Politik, Wirtschaft und Forschung zusammen.
In Diskussionen, Vorträgen und Roundtables sprechen wir über Initiativen, mit dessen Hilfe Datenkompetenzen flächendeckend über alle Berufs- und Gesellschaftsbereiche hinweg in Deutschland verankert werden. 

Data Literacy Day 2023 - Benjamin Aunkofer

Unser Data Science Blog Author, Gründer der DATANOMIQ und AUDAVIS, und Interim Head of Data, Benjamin Aunkofer, nimmt ebenfalls an diesem Event teil.

6 weitere Gründe, warum Du Dir jetzt ein Freiticket schnappen solltest.

  1. Hybrid-Teilnahme: Vor Ort in Berlin-Mitte oder online.
  2. Thematischer Fokus auf Deutschlands Datenzukunft.
  3. Expert:innen aus Politik, Wirtschaft und Wissenschaft sprechen über Data Literacy.
  4. Diskussion über Top-Initiativen in Deutschland, die bereits realisiert werden.
  5. Interaktiver Austausch mit Professionals in Roundtables und Netzwerkveranstaltungen.
  6. Der Eintritt zur Konferenz ist komplett kostenfrei.”

Das volle Programm kann hier direkt abgerufen werden: https://stackfuel.com/de/events/data-literacy-day-2023/

Über den Organisator, StackFuel:

stackfuel_logo

StackFuel garantiert den Schulungserfolg mit bewährtem Trainingskonzept dank der Online-Lernumgebung.  Ob im Data Science Onlinekurs oder Python-Weiterbildung, mit StackFuel lernen Studenten und Arbeitskräfte, wie mit Daten in der Wirklichkeit nutzbringend umgegangen und das volle Potenzial herrausgeholt werden kann.

Was ist eine Vektor-Datenbank? Und warum spielt sie für AI eine so große Rolle?

Wie können Unternehmen und andere Organisationen sicherstellen, dass kein Wissen verloren geht? Intranet, ERP, CRM, DMS oder letztendlich einfach Datenbanken mögen die erste Antwort darauf sein. Doch Datenbanken sind nicht gleich Datenbanken, ganz besonders, da operative IT-Systeme meistens auf relationalen Datenbanken aufsetzen. In diesen geht nur leider dann doch irgendwann das Wissen verloren… Und das auch dann, wenn es nie aus ihnen herausgelöscht wird!

Die meisten Datenbanken sind darauf ausgelegt, Daten zu speichern und wieder abrufbar zu machen. Neben den relationalen Datenbanken (SQL) gibt es auch die NoSQL-Datenbanken wie den Key-Value-Store, Dokumenten- und Graph-Datenbanken mit recht speziellen Anwendungsgebieten. Vektor-Datenbanken sind ein weiterer Typ von Datenbank, die unter Einsatz von AI (Deep Learning, n-grams, …) Wissen in Vektoren übersetzen und damit vergleichbarer und wieder auffindbarer machen. Diese Funktion der Datenbank spielt seinen Vorteil insbesondere bei vielen Dimensionen aus, wie sie Text- und Bild-Daten haben.

Databases Types: Vector Database, Graph Database, Key-Value-Database, Document Database, Relational Database with Row or Column oriented table structures

Datenbank-Typen in grobkörniger Darstellung. Es gibt in der Realität jedoch viele Feinheiten, Übergänge und Überbrückungen zwischen den Datenbanktypen, z. B. zwischen emulierter und nativer Graph-Datenbank. Manche Dokumenten- Vektor-Datenbanken können auch relationale Datenmodellierung. Und eigentlich relationale Datenbanken wie z. B. PostgreSQL können mit Zusatzmodulen auch Vektoren verarbeiten.

Vektor-Datenbanken speichern Daten grundsätzlich nicht relational oder in einer anderen Form menschlich konstruierter Verbindungen. Dennoch sichert die Datenbank gewissermaßen Verbindungen indirekt, die von Menschen jedoch – in einem hochdimensionalen Raum – nicht mehr hergeleitet werden können und sich auf bestimmte Kontexte beziehen, die sich aus den Daten selbst ergeben. Maschinelles Lernen kommt mit der nummerischen Auflösung von Text- und Bild-Daten (und natürlich auch bei ganz anderen Daten, z. B. Sound) am besten zurecht und genau dafür sind Vektor-Datenbanken unschlagbar.

Was ist eine Vektor-Datenbank?

Eine Vektordatenbank speichert Vektoren neben den traditionellen Datenformaten (Annotation) ab. Ein Vektor ist eine mathematische Struktur, ein Element in einem Vektorraum, der eine Reihe von Dimensionen hat (oder zumindest dann interessant wird, genaugenommen starten wir beim Null-Vektor). Jede Dimension in einem Vektor repräsentiert eine Art von Information oder Merkmal. Ein gutes Beispiel ist ein Vektor, der ein Bild repräsentiert: jede Dimension könnte die Intensität eines bestimmten Pixels in dem Bild repräsentieren.
Auf dieseVektor Datenbank Illustration (vereinfacht, symbolisch) Weise kann eine ganze Sammlung von Bildern als eine Sammlung von Vektoren dargestellt werden. Noch gängiger jedoch sind Vektorräume, die Texte z. B. über die Häufigkeit des Auftretens von Textbausteinen (Wörter, Silben, Buchstaben) in sich einbetten (Embeddings). Embeddings sind folglich Vektoren, die durch die Projektion des Textes auf einen Vektorraum entstehen.

Vektor-Datenbanken sind besonders nützlich, wenn man Ähnlichkeiten zwischen Vektoren finden muss, z. B. ähnliche Bilder in einer Sammlung oder die Wörter “Hund” und “Katze”, die zwar in ihren Buchstaben keine Ähnlichkeit haben, jedoch in ihrem Kontext als Haustiere. Mit Vektor-Algorithmen können diese Ähnlichkeiten schnell und effizient aufgespürt werden, was sich mit traditionellen relationalen Datenbanken sehr viel schwieriger und vor allem ineffizienter darstellt.

Vektordatenbanken können auch hochdimensionale Daten effizient verarbeiten, was in vielen modernen Anwendungen, wie zum Beispiel Deep Learning, wichtig ist. Einige Beispiele für Vektordatenbanken sind Elasticsearch / Vector Search, Weaviate, Faiss von Facebook und Annoy von Spotify.

Viele Lernalgorithmen des maschinellen Lernens basieren auf Vektor-basierter Ähnlichkeitsmessung, z. B. der k-Nächste-Nachbarn-Prädiktionsalgorithmus (Regression/Klassifikation) oder K-Means-Clustering. Die Ähnlichkeitsbetrachtung erfolgt mit Distanzmessung im Vektorraum. Die dafür bekannteste Methode, die Euklidische Distanz zwischen zwei Punkten, basiert auf dem Satz des Pythagoras (Hypotenuse ist gleich der Quadratwurzel aus den beiden Dimensions-Katheten im Quadrat, im zwei-dimensionalen Raum). Es kann jedoch sinnvoll sein, aus Gründen der Effizienz oder besserer Konvergenz des maschinellen Lernens andere als die Euklidische Distanz in Betracht zu ziehen.

Vectore-based distance measuring methods: Euclidean Distance L2-Norm, Manhatten Distance L1-Norm, Chebyshev Distance and Cosine Distance

Vectore-based distance measuring methods: Euclidean Distance L2-Norm, Manhatten Distance L1-Norm, Chebyshev Distance and Cosine Distance

Vektor-Datenbanken für Deep Learning

Der Aufbau von künstlichen Neuronalen Netzen im Deep Learning sieht nicht vor, dass ganze Sätze in ihren textlichen Bestandteilen in das jeweilige Netz eingelesen werden, denn sie funktionieren am besten mit rein nummerischen Input. Die Texte müssen in diese transformiert werden, eventuell auch nach diesen in Cluster eingeteilt und für verschiedene Trainingsszenarien separiert werden.

Vektordatenbanken werden für die Datenvorbereitung (Annotation) und als Trainingsdatenbank für Deep Learning zur effizienten Speicherung, Organisation und Manipulation der Texte genutzt. Für Natural Language Processing (NLP) benötigen Modelle des Deep Learnings die zuvor genannten Word Embedding, also hochdimensionale Vektoren, die Informationen über Worte, Sätze oder Dokumente repräsentieren. Nur eine Vektordatenbank macht diese effizient abrufbar.

Vektor-Datenbank und Large Language Modells (LLM)

Ohne Vektor-Datenbanken wären die Erfolge von OpenAI und anderen Anbietern von LLMs nicht möglich geworden. Aber fernab der Entwicklung in San Francisco kann jedes Unternehmen unter Einsatz von Vektor-Datenbanken und den APIs von Google, OpenAI / Microsoft oder mit echten Open Source LLMs (Self-Hosting) ein wahres Orakel über die eigenen Unternehmensdaten herstellen. Dazu werden über APIs die Embedding-Engines z. B. von OpenAI genutzt. Wir von DATANOMIQ nutzen diese Architektur, um Unternehmen und andere Organisationen dazu zu befähigen, dass kein Wissen mehr verloren geht.
Vektor-Datenbank für KI-Applikation (z. B. OpenAI ChatGPT)

Mit der DATANOMIQ Enterprise AI Architektur, die auf jeder Cloud ausrollfähig ist, verfügen Unternehmen über einen intelligenten Unternehmens-Repräsentanten als KI, der für Mitarbeiter relevante Dokumente und Antworten auf Fragen liefert. Sollte irgendein Mitarbeiter im Unternehmen bereits einen bestimmten Vorgang, Vorfall oder z. B. eine technische Konstruktion oder einen rechtlichen Vertrag bearbeitet haben, der einem aktuellen Fall ähnlich ist, wird die AI dies aufspüren und sinnvollen Kontext, Querverweise oder Vorschläge oder lückenauffüllende Daten liefern.

Die AI lernt permanent mit, Unternehmenswissen geht nicht verloren. Das ist Wissensmanagement auf einem neuen Level, dank Vektor-Datenbanken und KI.

Benjamin Aunkofer - Interview über AI as a Service

Interview – Daten vermarkten, nicht verkaufen!

Das Format Business Talk am Kudamm in Berlin führte ein Interview mit Benjamin Aunkofer zu den Themen “Daten vermarkten, nicht verkaufen!”.

In dem Interview erklärt Benjamin Aunkofer, warum der Datenschutz für die meisten Anwendungsfälle keine Rolle spielt und wie Unternehmen mit Data as a Service oder AI as a Service Ihre Daten zu Geld machen, selbst dann, wenn diese Daten nicht herausgegeben werden können.

Nachfolgend das Interview auf Youtube sowie die schriftliche Form zum Nachlesen:


Nachfolgend das Transkript zum Interview:

1 – Herr Aunkofer, Daten gelten als der wichtigste Rohstoff des 22. Jahrhunderts. Bei der Vermarktung datengestützter Dienstleistung tun sich deutsche Unternehmen im Vergleich zur Konkurrenz aus den USA oder Asien aber deutlich schwerer. Woran liegt das?

Ach da will ich keinen Hehl draus machen. Die Unterschiede liegen in den verschiedenen Kulturen begründet. In den USA herrscht in der Gesellschaft ein sehr freiheitlicher Gedanke, der wohl eher darauf hinausläuft, dass wer Daten sammelt, über diese dann eben auch weitgehend verfügt.

In Asien ist die Kultur eher kollektiv ausgerichtet, um den Einzelnen geht es dort ja eher nicht so.

In Deutschland herrscht auch ein freiheitlicher Gedanke – Gott sei Dank – jedoch eher um den Schutz der personenbezogenen Daten.

Das muss nun aber gar nicht schlimm sein. Zwar mag es in Deutschland etwas umständlicher und so einen Hauch langsamer sein, Daten nutzen zu dürfen. Bei vielen Anwendungsfällen kann man jedoch sehr gut mit korrekt anonymisierten Massendaten arbeiten und bei gesellschaftsfördernen Anwendungsfällen, man denke z. B. an medizinische Vorhersagen von Diagnosen oder Behandlungserfolgen oder aber auch bei der Optimierung des öffentlichen Verkehrs, sind ja viele Menschen durchaus bereit, ihre Daten zu teilen.

 Gesellschaftlichen Nutzen haben wir aber auch im B2B Geschäft, bei dem wir in Unternehmen und Institutionen die Prozesse kundenorientierter und schneller machen, Maschinen ausfallsicherer machen usw.. Da haben wir meistens sogar mit gar keinen personenbezogenen Daten zu tun.

2 – Sind die Bedenken im Zusammenhang mit Datenschutz und dem Schutz von Geschäftsgeheimnissen nicht berechtigt?

Also mit Datenschutz ist ja der gesetzliche Datenschutz gemeint, der sich nur auf personenbezogene Daten bezieht. Für Anwendungsfälle z. B. im Customer Analytics, also da, wo man Kundendaten analysieren möchte, geht das nur über die direkte Einwilligung oder eben durch anonymisierte Massendaten. Bei betrieblicher Prozessoptimierung, Anlagenoptimierung hat man mit personenbezogenen Daten aber fast nicht zu tun bzw. kann diese einfach vorher wegfiltern.

Ein ganz anderes Thema ist die Datensicherheit. Diese schließt die Sicherheit von personenbezogenen Daten mit ein, betrifft aber auch interne betriebliche Angelegenheiten, so wie etwas Lieferanten, Verträge, Preise… vielleicht Produktions- und Maschinendaten, natürlich auch Konstruktionsdaten in der Industrie.

Dieser Schutz ist jedoch einfach zu gewährleisten, wenn man einige Prinzipien der Datensicherheit verfolgt. Wir haben dafür Checklisten, quasi wie in der Luftfahrt. Bevor der Flieger abhebt, gehen wir die Checks durch… da stehen so Sachen drauf wie Passwortsicherheit, Identity Management, Zero Trust, Hybrid Cloud usw.

3 – Das Rückgrat der deutschen Wirtschaft sind die vielen hochspezialisierten KMU. Warum sollte sich beispielsweise ein Maschinenbauer darüber Gedanken machen, datengestützte Geschäftsmodelle zu entwickeln?

Nun da möchte ich dringend betonen, dass das nicht nur für Maschinenbauer gilt, aber es stimmt schon, dass Unternehmen im Maschinenbau, in der Automatisierungstechnik und natürlich der Werkzeugmaschinen richtig viel Potenzial haben, ihre Geschäftsmodelle mit Daten auszubauen oder sogar Datenbestände aufzubauen, die dann auch vermarktet werden können, und das so, dass diese Daten das Unternehmen gar nicht verlassen und dabei geheim bleiben.

4 – Daten verkaufen, ohne diese quasi zu verkaufen? Wie kann das funktionieren?

Das verrate ich gleich, aber reden wir vielleicht kurz einmal über das Verkaufen von Daten, die man sogar gerne verkauft. Das Verkaufen von Daten ist nämlich gerade so ein Trend. Das Konzept dafür heißt Data as a Service und bezieht sich dabei auf öffentliche Daten aus Quellen der Kategorie Open Data und Public Data. Diese Daten können aus dem Internet quasi gesammelt, als Datenbasis dann im Unternehmen aufgebaut werden und haben durch die Zusammenführung, Bereinigung und Aufbereitung einen Wert, der in die Millionen gehen kann. Denn andere Unternehmen brauchen vielleicht auch diese Daten, wollen aber nicht mehr warten, bis sie diese selbst aufbauen. Beispiele dafür sind Daten über den öffentlichen Verkehr, Infrastruktur, Marktpreise oder wir erheben z. B. für einen Industriekonzern Wasserqualitätsdaten beinahe weltweit aus den vielen vielen regionalen Veröffentlichungen der Daten über das Trinkwasser. Das sind zwar hohe Aufwände, aber der Wert der zusammengetragenen Daten ist ebenfalls enorm und kann an andere Unternehmen weiterverkauft werden. Und nur an jene Unternehmen, an die man das eben zu tun bereit ist.

5 – Okay, das sind öffentliche Daten, die von Unternehmen nutzbar gemacht werden. Aber wie ist es nun mit Daten aus internen Prozessen?

Interne Daten sind Geschäftsgeheimnisse und dürfen keinesfalls an Dritte weitergegeben werden. Dazu gehören beispielsweise im Handel die Umsatzkurven für bestimmte Produktkategorien sowie aber auch die Retouren und andere Muster des Kundenverhaltens, z. B. die Reaktion auf die Konfiguration von Online-Marketingkampagnen. Die Unternehmen möchten daraus jedoch Vorhersagemodelle oder auch komplexere Anomalie-Erkennung auf diese Daten trainieren, um sie für sich in ihren operativen Prozessen nutzbar zu machen. Machine Learning, übrigens ein Teilgebiet der KI (Künstlichen Intelligenz), funktioniert ja so, dass man zwei Algorithmen hat. Der erste Algorithmus ist ein Lern-Algorithmus. Diesen muss man richtig parametrisieren und überhaupt erstmal den richtigen auswählen, es gibt nämlich viele zur Auswahl und ja, die sind auch miteinander kombinierbar, um gegenseitige Schwächen auszugleichen und in eine Stärke zu verwandeln. Der Lernalgorithmus erstellt dann, über das Training mit den Daten, ein Vorhersagemodell, im Grunde eine Formel. Das ist dann der zweite Algorithmus. Dieser Algorithmus entstand aus den Daten und reflektiert auch das in den Daten eingelagerte Wissen, kanalisiert als Vorhersagemodell. Und dieses kann dann nicht nur intern genutzt werden, sondern auch anderen Unternehmen zur Nutzung zur Verfügung gestellt werden.

6 – Welche Arten von Problemen sind denn geeignet, um aus Daten ein neues Geschäftsmodell entwickeln zu können?

Alle operativen Geschäftsprozesse und deren Unterformen, also z. B. Handels-, Finanz-, Produktions- oder Logistikprozesse generieren haufenweise Daten. Das Problem für ein Unternehmen wie meines ist ja, dass wir zwar Analysemethodik kennen, aber keine Daten. Die Daten sind quasi wie der Inhalt einer Flasche oder eines Ballons, und der Inhalt bestimmt die Form mit. Unternehmen mit vielen operativen Prozessen haben genau diese Datenmengen.Ein Anwendungsfallgebiet sind z. B. Diagnosen. Das können neben medizinischen Diagnosen für Menschen auch ganz andere Diagnosen sein, z. B. über den Zustand einer Maschine, eines Prozesses oder eines ganzen Unternehmens. Die Einsatzgebiete reichen von der medizinischen Diagnose bis hin zu der Diagnose einer Prozesseffizienz oder eines Zustandes in der Wirtschaftsprüfung.Eine andere Kategorie von Anwendungsfällen sind die Prädiktionen durch Text- oder Bild-Erkennung. In der Versicherungsindustrie oder in der Immobilienbranche B. gibt es das Geschäftsmodell, dass KI-Modelle mit Dokumenten trainiert werden, so dass diese automatisiert, maschinell ausgelesen werden können. Die KI lernt dadurch, welche Textstellen im Dokument oder welche Objekte im Bild eine Rolle spielen und verwandelt diese in klare Aussagen.

Die Industrie benutzt KI zur generellen Objekterkennung z. B. in der Qualitätsprüfung. Hersteller von landwirtschaftlichen Maschinen trainieren KI, um Unkraut über auf Videobildern zu erkennen. Oder ein Algorithmus, der gelernt hat, wie Ultraschalldaten von Mirkochips zu interpretieren sind, um daraus Beschädigungen zu erkennen, so als Beispiel, den kann man weiterverkaufen.

Das Verkaufen erfolgt dabei idealerweise hinter einer technischen Wand, abgeschirmt über eine API. Eine API ist eine Schnittstelle, über die man die KI verwenden kann. Daraus wird dann AI as a Service, also KI als ein Service, den man Dritten gegen Bezahlung nutzen lassen kann.

7 – Gehen wir mal in die Praxis: Wie lassen sich aus erhobenen Daten Modelle entwickeln, die intern genutzt oder als Datenmodell an Kunden verkauft werden können?

Zuerst müssen wir die Idee natürlich richtig auseinander nehmen. Nach einer kurzen Euphorie-Phase, wie toll die Idee ist, kommt ja dann oft die Ernüchterung. Oft überwinden wir aber eben diese Ernüchterung und können starten. Der einzige Knackpunkt sind meistens fehlende Daten, denn ja, wir reden hier von großen Datenhistorien, die zum Einen überhaupt erstmal vorliegen müssen, zum anderen aber auch fast immer aufbereitet werden müssen.Wenn das erledigt ist, können wir den Algorithmus trainieren, ihn damit auf eine bestimmte Problemlösung sozusagen abrichten.Übrigens können Kunden oder Partner die KI selbst nachtrainieren, um sie für eigene besondere Zwecke besser vorzubereiten. Nehmen wir das einfache Beispiel mit der Unkrauterkennung via Bilddaten für landwirtschaftliche Maschinen. Nun sieht Unkraut in fernen Ländern sicherlich ähnlich, aber doch eben anders aus als hier in Mitteleuropa. Der Algorithmus kann jedoch nachtrainiert werden und sich der neuen Situation damit anpassen. Hierfür sind sehr viel weniger Daten nötig als es für das erstmalige Anlernen der Fall war.

8 – Viele Unternehmen haben Bedenken wegen des Zeitaufwands und der hohen Kosten für Spezialisten. Wie hoch ist denn der Zeit- und Kostenaufwand für die Implementierung solcher KI-Modelle in der Realität?

Das hängt sehr stark von der eigentlichen Aufgabenstellung ab, ob die Daten dafür bereits vorliegen oder erst noch generiert werden müssen und wie schnell das alles passieren soll. So ein Projekt dauert pauschal geschätzt gerne mal 5 bis 8 Monate bis zur ersten nutzbaren Version.

Sehen Sie die zwei anderen Video-Interviews von Benjamin Aunkofer:

 

 

 

 

 

 


 

Experten-Training: Angewandte Künstliche Intelligenz

Anzeige

Im Rahmen dieses praxisorientierten Kurses wird anhand eines konkreten Beispiels ein gesamter Prozess zur Mustererkennung nachvollzogen und selbst programmiert. Dabei werden die möglichen Methoden beleuchtet und angewandt.

Aufbaukurs: Angewandte Künstliche Intelligenz

Am 18.1. + 19.1.2023 in Gotha.

Ziele:

–        Datenvorverarbeitung zur Nutzung von KI

–        Einsatz von Künstlichen Neuronalen Netzen für spezielle Anwendungen (Lernen mit Lehrer)

–        Nutzung von Anaconda, Tensorflow und Keras an konkreten Beispielen

–        Erarbeitung und Einsatz von KI-Methoden zur Datenverarbeitung

–        KI zur Mustererkennung (z. B. k-MEANS, Lernen ohne Lehrer)

 

Zielgruppe:

–        Erfahrene aus den Bereichen Programmierung, Entwicklung, Anwendung

 

Voraussetzungen:

–        Grundlegende Programmierkenntnisse empfehlenswert (aber nicht erforderlich)

 

Inhalte:

–        Datenverarbeitungsmethoden kennenlernen und nutzen

–        Programmierung und Nutzung von Klassifizierungsmethoden

–        Anwendung vom bestärkenden Lernen (Reinforcement Learning)

–        Einsatz kostenloser und kostenpflichtiger Tools zur Datenauswertung

–        Umfangreiche Darstellung der Ergebnisse

 

Ein Schulungstag umfasst 6 Lehrveranstaltungsstunden am 18.1. + 19.1.2023 in Gotha (9.30 Uhr – 15.30 Uhr) und findet großenteils am PC statt. Die Verpflegung ist jeweils inklusive.

 

Preis pro Kurs (2 Tage): 980 Euro (netto)

Die Teilnehmerzahl pro Modul ist auf 6 begrenzt.

Rückfragen sowie Anmeldungen: schulung@cc-online.eu

Ansprechpartner: Prof. Dr.-Ing. Christian Döbel (Leiter Steinbeis Transferzentrum „Integrierte Systeme und Digitale Transformation“, ISD)

 

Anbieter-Informationen:
Steinbeis-Transferzentrum ISD (Zentrale: Steinbeis Transfer GmbH) – Ausfeldstr. 21 – 99880 Waltershausen – Tel. 03622 208334
E-Mail SU2209@stw.de
USt.-Ident-Nr. DE814628518 – Registergericht Stuttgart HRB 25312

Geschäftsführer: Dipl.-Ing. (FH) M. Eng. Erik Burchardt

How to speed up claims processing with automated car damage detection

AI drives automation, not only in industrial production or for autonomous driving, but above all in dealing with bureaucracy. It is an realy enabler for lean management!

One example is the use of Deep Learning (as part of Artificial Intelligence) for image object detection. A car insurance company checks the amount of the damage by a damage report after car accidents. This process is actually performed by human professionals. With AI, we can partially automate this process using image data (photos of car damages). After an AI training with millions of photos in relation to real costs for repair or replacement, the cost estimation gets suprising accurate and supports the process in speed and quality.

AI drives automation and DATANOMIQ drives this automation with you! You can download the Infographic as PDF.

How to speed up claims processing with automated car damage detection

How to speed up claims processing
with automated car damage detection

Download this Infographic as PDF now by clicking here!

We wrote this article in cooperation with pixolution, a company for computer vision and AI-bases visual search. Interested in introducing AI / Deep Learning to your organization? Do not hesitate to get in touch with us!

DATANOMIQ is the independent consulting and service partner for business intelligence, process mining and data science. We are opening up the diverse possibilities offered by big data and artificial intelligence in all areas of the value chain. We rely on the best minds and the most comprehensive method and technology portfolio for the use of data for business optimization.

Experten-Training: Angewandte Künstliche Intelligenz

Anzeige

Im Rahmen dieses praxisorientierten Kurses wird anhand eines konkreten Beispiels ein gesamter Prozess zur Mustererkennung nachvollzogen und selbst programmiert. Dabei werden die möglichen Methoden beleuchtet und angewandt.

Aufbaukurs: Angewandte Künstliche Intelligenz

Am 2.11. – 3.11.2022 oder 18.1. + 19.1.2023 in Gotha

Ziele:

–        Datenvorverarbeitung zur Nutzung von KI

–        Einsatz von Künstlichen Neuronalen Netzen für spezielle Anwendungen (Lernen mit Lehrer)

–        Nutzung von Anaconda, Tensorflow und Keras an konkreten Beispielen

–        Erarbeitung und Einsatz von KI-Methoden zur Datenverarbeitung

–        KI zur Mustererkennung (z. B. k-MEANS, Lernen ohne Lehrer)

 

Zielgruppe:

–        Erfahrene aus den Bereichen Programmierung, Entwicklung, Anwendung

 

Voraussetzungen:

–        Grundlegende Programmierkenntnisse empfehlenswert (aber nicht erforderlich)

 

Inhalte:

–        Datenverarbeitungsmethoden kennenlernen und nutzen

–        Programmierung und Nutzung von Klassifizierungsmethoden

–        Anwendung vom bestärkenden Lernen (Reinforcement Learning)

–        Einsatz kostenloser und kostenpflichtiger Tools zur Datenauswertung

–        Umfangreiche Darstellung der Ergebnisse

 

Ausweichtermin:

–        18.1. + 19.1.2023 in Gotha

 

Ein Schulungstag umfasst 6 Lehrveranstaltungsstunden (9.30 Uhr – 15.30 Uhr) und findet großenteils am PC statt. Die Verpflegung ist jeweils inklusive.

 

Preis pro Kurs (2 Tage): 980 Euro (netto)

Die Teilnehmerzahl pro Modul ist auf 6 begrenzt.

Rückfragen sowie Anmeldungen: schulung@cc-online.eu

Ansprechpartner: Prof. Dr.-Ing. Christian Döbel (Leiter Steinbeis Transferzentrum „Integrierte Systeme und Digitale Transformation“, ISD)

 

Anbieter-Informationen:
Steinbeis-Transferzentrum ISD (Zentrale: Steinbeis Transfer GmbH) – Ausfeldstr. 21 – 99880 Waltershausen – Tel. 03622 208334
E-Mail SU2209@stw.de
USt.-Ident-Nr. DE814628518 – Registergericht Stuttgart HRB 25312

Geschäftsführer: Dipl.-Ing. (FH) M. Eng. Erik Burchardt

AI for games, games for AI

1, Who is playing or being played?

Since playing Japanese video games named “Demon’s Souls” and “Dark Souls” when they were released by From Software, I had played almost no video games for many years. During the period, From Software established one genre named soul-like games. Soul-like games are called  死にゲー in Japanese, which means “dying games,” and they are also called マゾゲー, which means “masochistic games.”  As the words imply, you have to be almost masochistic to play such video games because you have to die numerous times in them. And I think recently it has been one of the most remarkable times for From Software because in November of 2021 “Dark Souls” was selected the best video game ever by Golden Joystick Awards. And in the end of last February a new video game by From Software called “Elden Ring” was finally released. After it proved that Miyazaki Hidetaka, the director of Soul series, collaborated with George RR Martin, the author of the original of “Game of Thrones,” “Elden Ring” had been one of the most anticipated video games. In spite of its notorious difficulty as well as other soul-like games so far, “Elden Ring” became a big hit, and I think Miyazak Hidetaka is now the second most famous Miyazaki in the world.  A lot of people have been playing it, raging, and screaming. I was no exception, and it took me around 90 hours to finish the video game, breaking a game controller by the end of it. It was a long time since I had been so childishly emotional last time, and I was almost addicted to trial and errors the video game provides. At the same time, one question crossed my mind: is it the video game or us that is being played?

The childhood nightmare strikes back. Left: the iconic and notorious boss duo Ornstein and Smough in Dark Souls (2011), right: Godskin Duo in Elden Ring (2022).

Miyazaki Hidetaka entered From Software in 2004 and in the beginning worked as a programmer of game AI, which controls video games in various ways. In the same year an AI researcher Miyake Youichiro also joined From Software, and I studied a little about game AI by his book after playing “Elden Ring.” I found that he also joined “Demon’s Souls,” in which enemies with merciless game AI were arranged, and I had to conquer them to reach the demon in the end at every dungeon. Every time I died, even in the terminal place with the boss fight, I had to restart from the start, with all enemies reviving. That requires a lot of trial and errors, and that was the beginning of soul-like video games today.  In the book by the game AI researcher who was creating my tense and almost traumatizing childhood experiences, I found that very sophisticated techniques have been developed to force players to do trial and errors. They were sophisticated even at a level of controlling players at a more emotional level. Even though I am familiar with both of video games and AI at least more than average, it was not until this year that I took care about this field. After technical breakthroughs mainly made Western countries, video game industry showed rapid progress, and industry is now a huge entertainment industry, whose scale is now bigger that those of movies and music combined. Also the news that Facebook changed its named to Meta and that Microsoft announced to buy Activision Blizzard were sensational recently. However media coverage about those events would just give you impressions that those giant tech companies are making uses of the new virtual media as metaverse or new subscription services. At least I suspect these are juts limited sides of investments on the video game industry.

The book on game AI also made me rethink AI technologies also because I am currently writing an article series on reinforcement learning (RL) as a kind of my study note. RL is a type of training of an AI agent through trial-and-error-like processes. Rather than a labeled dataset, RL needs an environment. Such environment receives an action from an agent and gives the consequent state and next reward. From a view point of the agent, it give an action and gets the consequent next state and a corresponding reward, which looks like playing a video game. RL mainly considers a more simplified version of video-game-like environments called a Markov decision processes (MDPs), and in an MDP at a time step t an RL agents takes an action A_t, and gets the next state S_t and a corresponding reward R_t. An MDP is often displayed as a graph at the left side below or the graphical model at the right side.

Compared to a normal labeled dataset used for other machine learning, such environment is something hard to prepare. The video game industry has been a successful manufacturer of such environments, and as a matter of fact video games of Atari or Nintendo Entertainment System (NES) are used as benchmarks of theoretical papers on RL. Such video games might be too primitive for considering practical uses, but researches on RL are little by little tackling more and more complicated video games or simulations. But also I am sure creating AI that plays video games better than us would not be their goals. The situation seems like they are cultivating a form of more general intelligence inside computer simulations which is also effective to the real world. Someday, experiences or intelligence grown in such virtual reality might be dragged to our real world.

Testing systems in simulations has been a fascinating idea, and that is also true of AI research. As I mentioned, video games are frequently used to evaluate RL performances, and there are some tools for making RL environments with modern video game engines. Providing a variety of such sophisticated computer simulations will be indispensable for researches on AI. RL models need to be trained in simulations before being applied on physical devices because most real machines would not endure numerous trial and errors RL often requires. And I believe the video game industry has a potential of developing such experimental fields of AI fueled by commercial success in entertainment. I think the ideas of testing systems or training AI in simulations is getting a bit more realistic due to recent development of transfer learning.

Transfer learning is a subfield of machine learning which apply intelligence or experiences accumulated in datasets or tasks to other datasets or tasks. This is not only applicable to RL but also to more general machine learning tasks like regression or classification. Or rather it is said that transfer learning in general machine learning would show greater progress at a commercial level than RL for the time being. And transfer learning techniques like using pre-trained CNN or BERT is already attracting a lot of attentions. But I would say this is only about a limited type of transfer learning. According to Matsui Kota in RIKEN AIP Data Driven Biomedical Science Team, transfer learning has progressed rapidly after the advent of deep learning, but many types of tasks and approaches are scattered in the field of transfer learning. As he says, the term transfer learning should be more carefully used. I would like to say the type of transfer learning discussed these days are a family of approaches for tackling lack of labels. At the same time some of current researches on transfer learning is also showing possibilities that experiences or intelligence in computer simulations are transferable to the real world. But I think we need to wait for more progress in RL before such things are enabled.

Source: https://ruder.io/transfer-learning/

In this article I would like to explain how video games or computer simulations can provide experiences to the real world in two ways. I am first going to briefly explain how video game industry in the first place has been making game AI to provide game users with tense experiences. And next I will explain how RL has become a promising technique to beat such games which were originally invented to moderately harass human players. And in the end, I am going to briefly introduce ideas of transfer learning applicable to video games or computer simulations. What I can talk in this article is very limited for these huge study areas or industries. But I hope you would see the video game industry and transfer learning in different ways after reading this article, and that might give you some hints about how those industries interact to each other in the future. And also please keep it in mind that I am not going to talk so much about growing video game markets, computer graphics, or metaverse. Here I focus on aspects of interweaving knowledge and experiences generated in simulation or real physical worlds.

2, Game AI

The fact that “Dark Souls” was selected the best game ever at least implies that current video game industry makes much of experiences of discoveries and accomplishments while playing video games, rather than cinematic and realistic computer graphics or iconic and world widely popular characters. That is a kind of returning to the origin of video games. Video games used to be just hard because the more easily players fail, the more money they would drop in arcade games. But I guess this aspect of video games tend to be missed when you talk about video games as a video game fan. What you see in advertisements of video games are more of beautiful graphics, a new world, characters there, and new gadgets. And it has been actually said that qualities of computer graphics have a big correlation with video game sales. In the third article of my series on recurrent neural networks (RNN), I explained how video game industry laid a foundation of the third AI boom during the second AI winter in 1990s. To be more concrete, graphic cards developed rapidly to realize more photo realistic graphics in PC games, and the graphic card used in Xbox was one of the first programmable GPU for commercial uses. But actually video games developed side by side with computer science also outside graphics. Thus in this section I am going to how video games have developed by focusing on game AI, which creates intelligence in video games in several ways. And my explanations on game AI is going to be a rough introduction to a huge and great educational works by Miyake Youichiro.

Playing video games is made up by decision makings, and such decision makings are made in react to game AI. In other words, a display is input into your eyes or sight nerves, and sequential decision makings, that is how you have been moving fingers are outputs. Complication of the experiences, namely hardness of video games, highly depend on game AI.  Game AI is mainly used to design enemies in video games to hunt down players. Ideally game AI has to be both rational and human. Rational game AI implemented in enemies frustrate or sometimes despair users by ruining users’ efforts to attack them, to dodge their attacks, or to use items. At the same time enemies have to retain some room for irrationality, that is they have to be imperfect. If enemies can perfectly conquer players’ efforts by instantly recognizing their commands, such video games would be theoretically impossible to beat. Trying to defeat such enemies is nothing but frustrating. Ideal enemies let down their guard and give some timings for attacking and trying to conquer them. Sophisticated game AI is inevitable to make grownups all over the world childishly emotional while playing video games.

These behaviors of game AI are mainly functions of character AI, which is a part of game AI. In order to explain game AI, I also have to explain a more general idea of AI, which is not the one often called “AI” these days. Artificial intelligence (AI) is in short a family of technologies to create intelligence, with computers. And AI can be divided into two types, symbolism AI and connectionism AI. Roughly speaking, the former is manual and the latter is automatic. Symbolism AI is described with a lot of rules, mainly “if” or “else” statements in code. For example very simply “If the score is greater than 5, the speed of the enemy is 10.” Or rather many people just call it “programming.”

*Note that in contexts of RL, “game AI” often means AI which plays video games or board games. But “game AI” in video games is a more comprehensive idea orchestrating video games.

This meme describes symbolism AI well.

What people usually call “AI” in this 3rd AI boom is the latter, connictionism AI. Connectionism AI basically means neural networks, which is said to be inspired by connections of neurons. But the more you study neural networks, the more you would see such AI just as “functions capable of universal approximation based on data.” That means, a function f, which you would have learned in school such as y = f(x) = ax + b is replaced with a complicated black box, and such black box f is automatically learned with many combinations of (x, y). And such black boxes are called neural networks, and the combinations of (x, y) datasets. Connectionism AI might sound more ideal, but in practice it would be hard to design characters in AI based on such training with datasets.

*Connectionism, or deep learning is of course also programming. But in deep learning we largely depend on libraries, and a lot of parameters of AI models are updated automatically as long as we properly set datasets. In that sense, I would connectionism is more automatic. As I am going to explain, game AI largely depends on symbolism AI, namely manual adjustment of lesser parameters, but such symbolism AI would behave much more like humans than so called “AI” these days when you play video games.

Digital game AI today is application of the both types of AI in video games. It initially started mainly with symbolism AI till around 2010, and as video games get more and more complicated connectionism AI are also introduced in game AI. Video game AI can be classified to mainly navigation AI, character AI, meta AI, procedural AI, and AI outside video games. The figure below shows relations of general AI and types of game AI.

Very simply putting, video game AI traced a history like this: the initial video games were mainly composed of navigation AI showing levels, maps, and objects which move deterministically based on programming.  Players used to just move around such navigation AI. Sooner or later, enemies got certain “intelligence” and learned to chase or hunt down players, and that is the advent of character AI. But of course such “intelligence” is nothing but just manual programs. After rapid progress of video games and their industry, meta AI was invented to control difficulties of video games, thereby controlling players’ emotions. Procedural AI automatically generates contents of video games, so video games are these days becoming more and more massive. And as modern video games are too huge and complicated to debug or maintain manually, AI technologies including deep learning are used. The figure below is a chronicle of development of video games and AI technologies covered in this article. Let’s see a brief history of video games and game AI by taking a closer look at each type of game AI a little more precisely.

Navigation AI

Navigation AI is the most basic type of game AI, and that allows character AI to recognize the world in video games. Even though I think character AI, which enables characters in video games to behave like humans, would be the most famous type of game AI, it is said navigation AI has an older history. One important function of navigation AI is to control objects in video games, such as lifts, item blocks, including attacks by such objects. The next aspect of navigation AI is that it provides character AI with recognition of worlds. Unlike humans, who can almost instantly roughly recognize circumstances, character AI cannot do that as we do. Even if you feel as if the character you are controlling are moving around mountains, cities, or battle fields, sometimes escaping from attacks by other AI, for character AI that is just moving on certain graphs. The figure below are some examples of world representations adopted in some popular video games. There are a variety of such representations, and please let me skip explaining the details of them. An important point is, relatively wide and global recognition of worlds by characters in video games depend on how navigation AI is designed.

Source: Youichiro Miyake, “AI Technologies in Game Industry”, (2020)

The next important feature of navigation AI is path finding. If you have learned engineering or programming, you should be already familiar with pathfiniding algorithms. They had been known since a long time ago, but it was not until “Counter-Strike” in 2000 the techniques were implemented at an satisfying level for navigating characters in a 3d world. Improvements of pathfinding in video games released game AI from fixed places and enabled them to be more dynamic.

*According to Miyake Youichiro, the advent of pathfinding in video games released character AI from staying in a narrow space and enable much more dynamic and human-like movements of them. And that changed game AI from just static objects to more intelligent entity.

Navigation meshes in “Counter-Strike (2000).” Thanks to these meshes, continuous 3d world can be processed as discrete nodes of graphs. Source: https://news.denfaminicogamer.jp/interview/gameai_miyake/3

Character AI

Character AI is something you would first imagine from the term AI. It controls characters’ actions in video games. And differences between navigation AI and character AI can be ambiguous. It is said Pac-Man is one of the very first character AI. Compared to aliens in Space Invader deterministically moved horizontally, enemies in Pac-Man chase a player, and this is the most straightforward difference between navigation AI and character AI.

Source: https://en.wikipedia.org/wiki/Space_Invaders https://en.wikipedia.org/wiki/Pac-Man

Character AI is a bunch of sophisticated planning algorithms, so I can introduce only a limited part of it just like navigation AI. In this article I would like to take an example of “F.E.A.R.” released in 2005. It is said goal-oriented action planning (GOAP) adopted in this video game was a breakthrough in character AI. GOAP is classified to backward planning, and if there exists backward ones, there is also forward ones. Using a game tree is an examples of forward planning. The figure below is an example of a tree game of tic-tac-toe. There are only 9 possible actions at maximum at each phase, so the number of possible states is relatively limited.

https://en.wikipedia.org/wiki/Game_tree

But with more options of actions like most of video games, forward plannings have to deal much larger sizes of future action combinations. GOAP enables realistic behaviors of character AI with a heuristic idea of planning backward. To borrow Miyake Youichiro’s expression, GOAP processes actions like sticky notes. On each sticky note, there is a combination of symbols like “whether a target is dead,” “whether a weapon is armed,” or “whether the weapon is loaded.” A sticky note composed of such symbols form an action, and each action comprises a prerequisite, an action, and an effect. And behaviors of character AI is conducted with planning like pasting the sticky notes.

Based on: Youichiro Miyake, “AI Technologies in Game Industry”, (2020)

More practically sticky notes, namely actions are stored in actions pools. For a decision making, as displayed in the left side of the figure below, actions are connected as a chain. First an action of a goal is first set, and an action can be connected to the prerequisite of the goal via its effect. Just as well corresponding former actions are selected until the initial state.  In the example of chaining below, the goal is “kSymbol_TargetIsDead,” and actions are chained via “kSymbol_TargetIsDead,” “kSymbol_WeaponLoaded,” “kSymbol_WeaponArmed,” and “None.” And there are several combinations of actions to reach a certain goal, so more practically each action has a cost, and the most ideal behavior of character AI is chosen by pathfinding on a graph like the right side of the figure below. And the best planning is chosen by a pathfinding algorithm.

Based on: Youichiro Miyake, “AI Technologies in Game Industry”, (2020)

Even though many of highly intelligent behaviors of character AI are implemented as backward plannings as I explained, planning forward can be very effective in some situations. Board game AI is a good example. A searching algorithm named Monte Carlo tree search is said to be one breakthroughs in board game AI. The searching algorithm randomly plays a game until the end, which is called playout. Numerous times of playouts enables evaluations of possibilities of winning. Monte Carlo Tree search also enables more efficient searches of games trees.

Meta AI

Meta AI is a type of AI such that controls a whole video game to enhance player’s experiences. To be more concrete, it adjusts difficulties of video games by for example dynamically arranging enemies. I think differences between meta AI and navigation AI or character AI can be also ambiguous. As I explained, the earliest video games were composed mainly with navigation AI, or rather just objects. Even if there are aliens or monsters, they can be just part of interactive objects as long as they move deterministically. I said character AI gave some diversities to their behaviors, but how challenging a video game is depends on dynamic arrangements of such objects or enemies. And some of classical video games like “Xevious,” as a matter of fact implemented such adjustments of difficulties of game plays. That is an advent of meta AI, but I think they were not so much distinguished from other types of AI, and I guess meta AI has been unconsciously just a part of programming.

It is said a turning point of modern meta AI is a shooting game “Left 4 Dead” released in 2008, where zombies are dynamically arranged. As well as many masterpiece thriller films, realistic and tense terrors are made by combinations of intensities and relaxations. Tons of monsters or zombies coming up one after another and just shooting them look stupid or almost like comedies. .And analyzing the success of “Counter-Strike,” they realized that users liked rhythms of intensity and relaxation, so they implemented that explicitly in “Left 4 Dead.” The graphs below concisely shows how meta AI works in the video game. When the survivor intensity, namely players’ intensity is low, the meta AI arrange some enemies. Survivor intensity increases as players fight with zombies or something, and then meta AI places fewer enemies so that players can relax. While players re relatively relaxing, desired population of enemies increases when they actually show up in video games, again the phase of intensity comes.

Source: Michael Booth, “Replayable Cooperative Game Design: Left 4 Dead”, (2009), Valve

*Soul series video games do not seem to use meta AI so much. Characters in the games are rearranged in more or less the same ways every time players fail. Soul-like games make much of experiences that players find solutions by themselves, which means that manual but very careful arrangements of enemies and interactive objects are also very effective.

Meta AI can be used to make video games more addictive using data analysis. Recent social network games can record logs of game plays. Therefore if you can observe a trend that more users unsubscribe when they get less rewards in certain online events, operating companies of the game can adjust chances of getting “rare” items.

Procedural AI and AI outside video games

How clearly you can have an image of what I am going to explain in this subsection would depend how recently you have played video games. If your memories of playing video games stops with good old days of playing side-scrolling ones like Super Mario Brothers, you should at first look up some videos of playing open world games. Open world means a use of a virtual reality in which players can move an behave with a high degree of freedom. The term open world is often used as opposed to the linear games, where players have process games in the order they are given. Once you are immersed in photorealistic computer graphic worlds in such open world games, you would soon understand why metaverse is attracting attentions these days. Open world games for example like “Fallout 4” are astonishing in that you can even talk to almost everyone in them. Just as “Elden Ring” changed former soul series video games into an open world one, it seems providing open world games is one way to keep competitive in the video game industry. And such massive world can be made also with a help of procedural AI. Procedural AI can be seen as a part of meta AI, and it generates components of games such as buildings, roads, plants, and even stories. Thanks to procedural AI, video game companies with relatively small domestic markets like Poland can make a top-level open world game such as “The Witcher 3: Wild Hunt.”

An example of technique of procedural AI adopted in “The Witcher 3: Wild Hunt” for automatically creating the massive open world. Source: Marcin Gollent, “Landscape creation and rendering in REDengine 3”, (2014), Game Developers Conference

Creating a massive world also means needs of tons of debugging and quality assurance (QA). Combining works by programmers, designers, and procedural AI will cause a lot of unexpected troubles when it is actually played. AI outside game can be used to find these problems for quality assurance. Debugging and and QA have been basically done manually, and especially when it comes to QA, video game manufacturer have to employ a lot of gamer to let them just play prototype of their products. However as video games get bigger and bigger, their products are not something that can be maintained manually anymore. If you have played even one open world game, that would be easy to imagine, so automatic QA would remain indispensable in the video game industry. For example an open world game “Horizon Zero Dawn” is a video game where a player can very freely move around a massive world like a jungle. The QA team of this video game prepared bug maps so that they can visualize errors in video games. And they also adopted a system named “Apollo-Autonomous Automated Autobots” to let game AI automatically play the video game and record bugs.

As most video games both in consoles or PCs are connected to the internet these days, these bugs can be fixed soon with updates. In addition, logs of data of how players played video games or how they failed can be stored to adjust difficulties of video games or train game AI. As you can see, video games are not something manufacturers just release. They are now something develop interactively between users and developers, and players’ data is all exploited just as your browsing history on the Internet.

I have briefly explained AI used for video games over four topics. In the next two sections, I am going to explain how board games and video games can be used for AI research.

3, Reinforcement learning: we might be a sort of well-made game AI models

Machine learning, especially RL is replacing humans with computers, however with incredible computation resources. Invention of game AI, in this context including computers playing board games, has been milestones of development of AI for decades. As Western countries had been leading researches on AI, defeating humans in chess, a symbol of intelligence, had been one of goals. Even Alan Turing, one of the fathers of computers, programmed game AI to play chess with one of the earliest calculators. Searching algorithms with game trees were mainly studied in the beginning. Game trees are a type of tree graphs to show how games proceed, by expressing future possibilities with diverging tree structures. And searching algorithms are often used on tree graphs to ignore future steps which are not likely to be effective, which often looks like cutting off branches of trees. As a matter of fact, chess was so “simple” that searching algorithms alone were enough to defeat Garry Kasparov, the world chess champion at that time in 1997. That is, growing trees and trimming them was enough for the “simplicity” of chess as long as a super computer of IBM was available. After that computer defeated one of the top players of shogi, a Japanese version of chess, in 2013. And remarkably, in 2016 AlphaGo of DeepMind under Google defeated the world go champion. Game AI has been gradually mastering board games in order of increasing search space size.

Source: https://www.livescience.com/59068-deep-blue-beats-kasparov-progress-of-ai.html https://fortune.com/2016/03/21/google-alphago-win-artificial-intelligence/

We can say combinations of techniques which developed in different streams converged into game AI today, like I display in the figure below. In AlphaGo or maybe also general game AI, neural networks enable “intuition” on phases of board games, searching algorithms enables “foreseeing,” and RL “experiences.” And as almost no one can defeat computers in board games anymore, the next step of game AI is how to conquer other video games.  Since progress of convolutional neural network (CNN) in this 3rd AI boom, computers got “eyes” like we do, and the invention of ResNet in 2015 is remarkable. Thus we can now use displays of video games as inputs to neural networks. And combinations of reinforcement learning and neural networks like (CNN) is called deep reinforcement learning. Since the advent of deep reinforcement learning, many people are trying to apply it on various video games, and they show impressive results. But in general that is successful in bird’s-eye view games. Even if some of researches can be competitive or outperform human players, even in first person shooting video games, they require too much computational resources and heuristic techniques. And usually they take too much time and computer resource to achieve the level.

*Even though CNN is mainly used as “eyes” of computers, it is also used to process a phase of a board game. That means each phase of is processed like an arrangement of pixels of an image. This is what I mean by “intuition” of deep learning. Just as neural networks can recognize objects, depending on training methods they can recognize boards at a high level.

Now I would like you to think about what “smartness” means. Competency in board games tend to have correlations with mathematical skills. And actually in many cases people proficient in mathematics are also competent in board games. Even though AI can defeat incredibly smart top board game players to the best of my knowledge game AI has yet to play complicated video games with more realistic computer graphics. As I explained, behaviors of character AI is in practice implemented as simpler graphs, and tactics taken in such graphs will not be as complicated as game trees of competitive board games. And the idea of game AI playing video games itself not new, and it is also used in debugging of video games. Thus the difficulties of computers playing video games would come more from how to associate what they see on displays with more long-term and more abstract plannings. And currently, kids would more flexibly switch to other video games and play them more professionally in no time. I would say the difference is due to frames of tasks. A frame roughly means a domain or a range which is related to a task. When you play a board game, its frame is relatively small because everything you can do is limited in the rule of the game which can be expressed as simple data structure. But playing video games has a wider frame in that you have to recognize only the necessary parts important for playing video games from its constantly changing displays, namely sequences of RGB images. And in the real world, even a trivial action like putting a class on a table is selected from countless frames like what your room looks like, how soft the floor is, or what the temperature is. Human brains are great in that they can pick up only necessary frames instantly.

As many researchers would already realize, making smaller models with lower resources which can learn more variety of tasks is going to be needed, and it is a main topic these days not only in RL but also in other machine learning. And to be honest, I am skeptical about industrial or academic benefits of inventing specialized AI models for beating human players with gigantic computation resources. That would be sensational and might be effective for gathering attentions and funds. But as many AI researchers would already realize, inventing a more general intelligence which would more flexibly adjust to various tasks is more important. Among various topics of researches on the problem, I am going to pick up transfer learning in the next section, but in a more futuristic and dreamy sense.

4, Transfer learning and game for AI

In an event with some young shogi players, to a question “What would you like to request to a god?” Fujii Sota, the youngest top shogi player ever, answered “If he exists, I would like to ask him to play a game with me.” People there were stunned by the answer. The young genius, contrary to his sleepy face, has an ambition which only the most intrepid figures in mythology would have had. But instead of playing with gods, he is training himself with game AI of shogi. His hobby is assembling computers with high end CPUs, whose performance is monstrous for personal home uses. But in my opinion such situation comes from a fact that humans are already a kind of well-made machine learning models and that highly intelligent games for humans have very limited frames for computers.

*It seems it is not only computers that need huge energy consumption to play board games. Japanese media often show how gorgeous and high caloric shogi players’ meals are during breaks. And more often than not, how fancy their feasts are is the only thing most normal spectators like me in front of TVs can understand, albeit highly intellectual tactics made beneath the wooden boards.

As I have explained, the video game industry has been providing complicated simulational worlds with sophisticated ensemble of game AI in both symbolism and connectionism ways. And such simulations, initially invented to hunt down players, are these days being conquered especially by RL models, and the trend showed conspicuous progress after the advent of deep learning, that is after computers getting “eyes.” The next problem is how to transfer the intelligence or experiences cultivated in such simulations to the real world. Only humans can successfully train themselves with computer simulations today as far as I know, but more practically it is desired to transfer experiences with wider frames to more inflexible entities like robots. Such technologies would be ideal especially for RL because physical devices cannot make numerous trial and errors in the real world. They should be trained in advance in computer simulations. And transfer learning could be one way to take advantages of experiences in computer simulations to the real world. But before talking about such transfer learning, we need to be careful about the term “transfer learning.” Transfer learning is a family of machine learning technologies to makes uses of knowledge learned in a dataset, which is usually relatively huge, to another task with another dataset. Even though I have been emphasizing transferring experiences in computer simulations, transfer learning is a more general idea applicable to more general use cases, also outside computer simulations. Or rather, transfer learning is attracting a lot of attentions as a promising technique for tackling lack of data in general machine learning. And another problem is even though transfer learning has been rapidly developing recently, various research topics are scattered in the field called “transfer learning.” And arranging these topics would need extra articles or something. Thus in the rest of this article,  I would like to especially focus on uses of video games or computer simulations in transfer learning. When it comes to already popular and practical transfer learning techniques like fine tuning with pre-trained backbone CNN or BERT, I am planning to cover them with more practical introduction in one of my upcoming articles. Thus in this article, after simply introducing ideas of domains and transfer learning, I am going to briefly introduce transfer learning and explain domain adaptation/randomization.

Domain and transfer learning

There is a more strict definition of a domain in machine learning, but all you have to know is it means in short a type of dataset used for a machine learning task. And different domains have a domain shift, which in short means differences in the domains. A text dataset and an image dataset have a domain shift. An image dataset of real objects and one with cartoon images also have a smaller domain shift. Even differences in lighting or angles of cameras would cause a domain  shift. In general, even if a machine learning model is successful in tasks in a domain, even a domain shift which is trivial to humans declines performances of the model. In other words, intelligence learned in one domain is not straightforwardly applicable to another domain as humans can do. That is, even if you can recognize objects both a real and cartoon cars as a car, that is not necessarily true of machine learning models. As a family of techniques for tackling this problem, transfer learning makes a use of knowledge in a source domain (the dots in blue below), and apply the knowledge to a target domain. And usually, a source domain is assumed to be large and labeled, and on the other hand a target domain is assumed to be relatively small or even unlabeled. And tasks in a source or a target domain can be different. For example, CNN models trained on classification of ImageNet can be effectively used for object detection. Or BERT is trained on a huge corpus in a self-supervised way, but it is applicable to a variety of tasks in natural language processing (NLP).

*To people in computer vision fields, an explanation that BERT is a NLP version of pre-trained CNN would make the most sense. Just as a pre-trained CNN maps an image, arrangements of RGB pixels values, to a vector representing more of “meaning” of the image, BERT maps a text,  a sequence of one-hot encodings, into a vector or a sequence of vectors in a semantic field useful for NLP.

Transfer learning is a very popular topic, and it is hard to arrange and explain types of existing techniques. I think that is because many people are tackling more or less the similar problems with slightly different approaches. For now I would like you to keep it in mind that there are roughly three points below to consider in transfer learning

  1. What to transfer
  2. When to transfer
  3. How to transfer

The answer of the second point above “When to transfer” is simply “when domains are more or less alike.” Transfer learning assume similarities between target and source domains to some extent. “How to transfer” is very task-specific, so this is not something I can explain briefly here. I think the first point “what to transfer” is the most important for now to avoid confusions about what “transfer learning” means. “What to transfer” in transfer learning is also classified to the three types below.

  • Instance transfer (transferring datasets themselves)
  • Feature transfer (transferring extracted features)
  • Parameter transfer (transferring pre-trained models)

In fact, when you talk about already practical transfer learning techniques like using pre-trained CNN or BERT, they refer to only parameter transfer above. And please let me skip introducing it in this article. I am going to focus only on techniques related to video games in this article.

*I would like to give more practical introduction on for example BERT in one of my upcoming articles.

Domain adaptation or randomization

I first got interested in relations of video games and AI research because I was studying domain adaptation, which tackles declines of machine learning performance caused by a domain shift. Domain adaptation is sometimes used as a synonym to transfer learning. But compared to that general transfer learning also assume different tasks in different domains, domain adaptation assume the same task. Thus I would say domain adaptation is a subfield of transfer learning. There are several techniques for domain adaptation, and in this article I would like to take feature alignment as an example of frequently used approaches. Input datasets have a certain domain shift like blue and circle dots in the figure below. This domain shift cannot be changed if datasets themselves are not directly converted. Feature alignment make the domain shift smaller in a feature space after data being processed by the feature extractor. The features expressed as square dots in the figure are passed to task-specific networks just as normal machine learning. With sufficient labels in the source domain and with fewer or no labels in the target one, the task-specific networks are supervised. On the other hand, the features are also passed to the domain discriminator, and the discriminator predicts which domain the feature comes from. The domain discriminator is normally trained with supervision by classification loss, but the feature supervision is reversed when it trains the feature extractor. Due to the reversed supervision the feature extractor learns mix up features because that is worse for discriminating distinguishing the source or target domains. In this way, the feature extractor learns extract domain invariant features, that is more general features both domains have in common.

*The feature extractor and the domain discriminator is in a sense composing generative adversarial networks (GAN), which is often used in data generation. To know more about GAN, you could check for example this article.

One of motivations behind domain adaptation is that it enables training AI tasks with synthetic datasets made by for example computer graphics because they are very easy to annotate and prepare labels necessary for machine learning tasks. In such cases, domain invariant features like curves or silhouettes are expected to learn. And learning computer vision tasks from GTA5 dataset which are applicable to Cityscapes dataset is counted as one of challenging tasks in papers on domain adaptation. GTA of course stands for “Grand Theft Auto,” the video open-world video game series. If this research continues successfully developing, that would imply possibilities of capability of teaching AI models to “see” only with video games. Imagine that a baby first learns to play Grand Theft Auto 5 above all and learns what cars, roads, and pedestrians are.  And when you bring the baby outside, even they have not seen any real cars, they point to a real cars and people and say “car” and “pedestrians,” rather than “mama” or “dada.”

In order to enable more effective domain adaptation, Cycle GAN is often used. Cycle GAN is a technique to map texture in one domain to another domain. The figure below is an example of applying Cycle GAN on GTA5 dataset and Cityspaces Dataset, and by doing so shiny views from a car in Los Santos can be converted to dark and depressing scenes in Germany in winter. This instance transfer is often used in researches on domain adaptation.

Source: https://junyanz.github.io/CycleGAN/

Even if you mainly train depth estimation with data converted like above, the model can predict depth data of the real world domain without correct depth data. In the figure below, A is the target real data, B is the target domain converted like a source domain, and C is depth estimation on A.

Source: Abarghouei et al., “Real-Time Monocular Depth Estimation using Synthetic Data with Domain Adaptation via Image Style Transfer”, (2018), Computer Vision and Pattern Recognition Conference

Crowd counting is another field where making a labeled dataset with video games is very effective. A MOD for making a crowd arbitrarily is released, and you can make labeled datasets like below.

Source: https://gjy3035.github.io/GCC-CL/

*Introducing GTA mod into research is hilarious. You first need to buy PC software of Grand Theft Auto 5 and gaming PC at first. And after finishing the first tutorial in the video game, you need to find a place to place a camera, which looks nothing but just playing video games with public money.

Domain adaptation problems I mentioned are more of matters of how to let computers “see” the world with computer simulations. But the gap between the simulational worlds and the real world does not exist only in visual ways like in CV. How robots or vehicles are parametrized in computers also have some gaps from the real world, so even if you replace only observations with simulations, it would be hard to train AI. But surprisingly, some researches have already succeeded in training robot arms only with computer simulations. An approach named domain randomization seems to be more or less successful in training robot arms only with computer simulations and apply the learned experience to the real world. Compared to domain adaptation aligned source domain to the target domain, domain randomization is more of expanding the source domain by changing various parameters of the source domain. And the target domain, namely robot arms in the real world is in the end included in the expanded source domain. And such expansions are relatively easy with computer simulations.

For example a paper “Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience” proposes a technique to reflect real world feed back to simulations in domain randomization, and this pipeline enables a robot arm to do real world tasks in a few iteration of real world trainings.

Based on: Chebotar et al. , “Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience”, (2019), International Conference on Robotics and Automation

As the video shows, the ideas of training a robot with computer simulations is becoming more realistic.

The future of games for AI

I have been emphasizing how useful video games are in AI researches, but I am not sure if how much the field purely rely on video games like it is doing especially on RL. Autonomous driving is a huge research field, and modern video games like Grand Thef Auto are already good driving simulations in urban areas. But other realistic simulations like CARLA have been developed independent of video games. And in a paper “Exploring the Limitations of Behavior Cloning for Autonomous Driving,” some limitations of training self-driving cars in the simulation are reported. And some companies like Waymo switched to recurrent neural networks (RNN) for self-driving cars. It is natural that fields like self-driving, where errors of controls can be fatal, are not so optimistic about adopting RL for now.

But at the same time, Microsoft bought a Project Bonsai, which is aiming at applying RL to real world tasks. Also Microsoft has Project Malmo or AirSim, which respectively use Minecraft or Unreal Engine for AI reseraches. Also recently the news that Microsoft bought Activision Blizzard was a sensation last year, and media’s interests were mainly about metaverse or subscription service of video games. But Microsoft also bouth Zenimax Media, is famous for open world like Fallout or Skyrim series. Given that these are under Microsoft, it seems the company has been keen on merging AI reserach and developing video games.

As I briefly explained, video games can be expanded with procedural AI technologies. In the future AI might be trained in video game worlds, which are augmented with another form of AI. Combinations of transfer learning and game AI might possibly be a family of self-supervising technologies, like an octopus growing by eating its own feet. At least the biggest advantage of the video game industry is, even technologies themselves do not make immediate profits, researches on them are fueled by increasing video game fans all over the world. This is a kind of my sci-fi imagination of the world. Though I am not sure which is more efficient to manually design controls of robots or training AI in such indirect ways. And I prefer to enhance physical world to metaverse. People should learn to put their controllers someday and to enhance the real world. Highly motivated by “Elden Ring” I wrote this article. Some readers might got interested in the idea of transferring experiences in computer simulations to the real world. I am also going to write about transfer learning in general that is helpful in practice.

[1]三宅 陽一郎, 「ゲームAI技術入門 – 広大な人工知能の世界を体系的に学ぶ」, (2019), 技術評論社
Miyake Youichiro, “An Introduction to Game AI – Systematically Learning the Wide World of Artificial Intelligence”, (2019), Gijutsu-hyoron-sya

[2]三宅 陽一郎, 「21世紀に“洋ゲー”でゲームAIが遂げた驚異の進化史。その「敗戦」から日本のゲーム業界が再び立ち上がるには?【AI開発者・三宅陽一郎氏インタビュー】」, (2017), 電ファミニコゲーマー
Miyake Youichiro, ”The history of Astonishing Game AI which Western Video Games in 21st Century Traced. What Should the Japanese Video Game Industry Do to Recover from the ‘Defeat in War’? [An Interview with an AI Developer Miyake Yoichiro]”

[3]Rob Leane, “Dark Souls named greatest game of all time at Golden Joysticks”, (2021), RadioTimes.com

[4] Matsui Kota, “Recent Advances on Transfer Learning and Related Topics (ver.2)”, (2019), RIKEN AIP Data Driven Biomedical Science Team

[3] Sebastian Ruder, “Transfer Learning – Machine Learning’s Next Frontier”, (2017)
https://ruder.io/transfer-learning/

[4] Matsui Kota, “Recent Advances on Transfer Learning and Related Topics (ver.2)”, (2019), RIKEN AIP Data Driven Biomedical Science Team

[5] Youichiro Miyake, “AI Technologies in Game Industry”, (2020)
https://www.slideshare.net/youichiromiyake/ai-technologies-in-game-industry-english

[6] Michael Booth, “Replayable Cooperative Game Design: Left 4 Dead”, (2009), Valve

[7] Marcin Gollent, “Landscape creation and rendering in REDengine 3”, (2014), Game Developers Conference
https://www.gdcvault.com/play/1020197/Landscape-Creation-and-Rendering-in

* I make study materials on machine learning, sponsored by DATANOMIQ. I do my best to make my content as straightforward but as precise as possible. I include all of my reference sources. If you notice any mistakes in my materials, including grammatical errors, please let me know (email: yasuto.tamura@datanomiq.de). And if you have any advice for making my materials more understandable to learners, I would appreciate hearing it.

Training of Deep Learning AI models

Alles dreht sich um Daten: die Trainingsmethoden des Deep Learning

Im Deep Learning gibt es unterschiedliche Trainingsmethoden. Welche wir in einem KI Projekt anwenden, hängt von den zur Verfügung gestellten Daten des Kunden ab: wieviele Daten gibt es, sind diese gelabelt oder ungelabelt? Oder gibt es sowohl gelabelte als auch ungelabelte Daten?

Nehmen wir einmal an, unser Kunde benötigt für sein Tourismusportal strukturierte, gelabelte Bilder. Die Aufgabe für unser KI Modell ist es also, zu erkennen, ob es sich um ein Bild des Schlafzimmers, Badezimmers, des Spa-Bereichs, des Restaurants etc. handelt. Sehen wir uns die möglichen Trainingsmethoden einmal an.

1. Supervised Learning

Hat unser Kunde viele Bilder und sind diese alle gelabelt, so ist das ein seltener Glücksfall. Wir können dann das Supervised Learning anwenden. Dabei lernt das KI Modell die verschiedenen Bildkategorien anhand der gelabelten Bilder. Es bekommt für das Training von uns also die Trainingsdaten mit den gewünschten Ergebnissen geliefert.
Während des Trainings sucht das Modell nach Mustern in den Bildern, die mit den gewünschten Ergebnissen zusammenpassen. So erlernt es Merkmale der Kategorien. Das Gelernte kann das Modell dann auf neue, ungesehene Daten übertragen und auf diese Weise eine Vorhersage für ungelabelte Bilder liefern, also etwa “Badezimmer 98%”.

2. Unsupervised learning

Wenn unser Kunde viele Bilder als Trainingsdaten liefern kann, diese jedoch alle nicht gelabelt sind, müssen wir auf Unsupervised Learning zurückgreifen. Das bedeutet, dass wir dem Modell nicht sagen können, was es lernen soll (die Zuordnung zu Kategorien), sondern es muss selbst Regelmäßigkeiten in den Daten finden.

Eine aktuell gängige Methode des Unsupervised Learning ist Contrastive Learning. Dabei generieren wir jeweils aus einem Bild mehrere Ausschnitte. Das Modell soll lernen, dass die Ausschnitte des selben Bildes ähnlicher zueinander sind als zu denen anderer Bilder. Oder kurz gesagt, das Modell lernt zwischen ähnlichen und unähnlichen Bildern zu unterscheiden.

Über diese Methode können wir zwar Vorhersagen erzielen, jedoch können diese niemals
die Ergebnisgüte von Supervised Learning erreichen.

3. Semi-supervised Learning

Kann uns unser Kunde eine kleine Menge an gelabelten Daten und eine große Menge an nicht gelabelten Daten zur Verfügung stellen, wenden wir Semi-supervised Learning an. Diese Datenlage begegnet uns in der Praxis tatsächlich am häufigsten. Bei fast allen KI Projekten stehen einer kleinen Menge an gelabelten Daten ein Großteil an unstrukturierten
Daten gegenüber.

Mit Semi-supervised Learning können wir beide Datensätze für das Training verwenden. Das gelingt zum Beispiel durch die Kombination von Contrastive Learning und Supervised Learning. Dabei trainieren wir ein KI Modell mit den gelabelten Daten, um Vorhersagen für Raumkategorien zu erhalten. Gleichzeitig lassen wir es Ähnlichkeiten und Unähnlichkeiten in den ungelabelten Daten erlernen und sich daraufhin selbst optimieren. Auf diese Weise können wir letztendlich auch gute Label-Vorhersagen für neue, ungesehene Bilder erzielen.

Fazit: Supervised vs. Unsupervised vs. Semi-supervised

Supervised Learning wünscht sich jeder, der mit einem KI Projekt betraut ist. In der Praxis ist das kaum anwendbar, da selten sämtliche Trainingsdaten gut strukturiert und gelabelt vorliegen.

Wenn nur unstrukturierte und ungelabelte Daten vorhanden sind, dann können wir mit Unsupervised Learning immerhin Informationen aus den Daten gewinnen, die unser Kunde so nicht hätte. Im Vergleich zu Supervised Learning ist aber die Ergebnisqualität deutlich schlechter.

Mit Semi-Supervised Learning versuchen wir das Datendilemma, also kleiner Teil gelabelte, großer Teil ungelabelte Daten, aufzulösen. Wir verwenden beide Datensätze und können gute Vorhersage-Ergebnisse erzielen, deren Qualität dem Supervised Learning oft ebenbürtig sind.

Dieser Artikel entstand in Zusammenarbeit zwischen DATANOMIQ, einem Unternehmen für Beratung und Services rund um Business Intelligence, Process Mining und Data Science. und pixolution, einem Unternehmen für AI Solutions im Bereich Computer Vision (Visuelle Bildsuche und individuelle KI Lösungen).