Neural Nets: Time Series Prediction

Artificial neural networks are very strong universal approximators. Google recently defeated the worlds strongest Go (“chinese chess”) player with two neural nets, which captured the game board as a picture. Aside from these classification tasks, neural nets can be used to predict future values, behaviors or patterns solely based on learned history. In the machine learning literature, this is often referred to as time series prediction, because, you know, values over time need to be predicted. Hah! To illustrate the concept, we will train a neural net to learn the shape of a sinusoidal wave, so it can continue to draw the shape without any help. We will do this with Scala. Scala is a great lang, because it is strongly typed but feels easy like Python. Throughout this article, I will use the library NeuroFlow, which is a simple, lightweight library I wrote to build and train nets. Because Open Source is the way to go, feel free to check (and contribute to? :-)) the code on GitHub.

Introduction of the shape

If we, as humans, want to predict the future based on historic observations, we would have no other chance but to be guided by the shape drawn so far. Let’s study the plot below, asking ourselves: How would a human continue the plot?

sinuspredictdr
f(x) = sin(10*x)

Intuitively, we would keep on oscillating up and down, just like the grey dotted line tries to rough out. To us, the continuation of the shape is reasonably easy to understand, but a machine does not have a gut feeling to ask for a good guess. However, we can summon a Frankenstein, which will be able to learn and continue the shape based on numbers. In order to do so, let’s have a look at the raw, discrete data of our sinusoidal wave:

x f(x)
0.0 0.0
0.05 0.479425538604203
0.10 0.8414709848078965
0.15 0.9974949866040544
0.20 0.9092974268256817
0.25 0.5984721441039564
0.30 0.1411200080598672
0.35 -0.35078322768961984
0.75 0.9379999767747389

Ranging from 0.0 until 0.75, these discrete values drawn from our function with step size 0.05 will be the basis for training. Now, one could come up with the idea to just memorize all values, so a sufficiently reasonable value can be picked based on comparison. For instance, to continue at the point 0.75 in our plot, we could simply examine the area close to 0.15, noticing a similar value close to 1, and hence go downwards. Well, of course this is cheating, but if a good cheat is a superior solution, why not cheat? Being hackers, we wouldn’t care. What’s really limiting here is the fact that the whole data set needs to be kept in memory, which can be infeasible for large sets, plus for more complex shapes, this approach would quickly result in a lot of weird rules and exceptions to be made in order to find comprehensible predictions.

Net to the rescue

Let’s go back to our table and see if a neural net can learn the shape, instead of simply memorizing it. Here, we want our net architecture to be of kind [3, 5, 3, 1]. Three input neurons, two hidden layers with five and three neurons respectively, as well as one neuron for the output layer will capture the data shown in the table.

sinuspredictnet

A supervised training mode means, that we want to train our net with three discrete steps as input and the fourth step as the supervised training element. So we will train a, b, c -> d and e, f, g -> h et cetera, hoping that this way our net will capture the slope pattern of our sinusoidal wave. Let’s code this in Scala:

First, we want a Tanh activation function, because the domain of our sinusoidal wave is [-1, 1], just like the hyperbolic tangent. This way we can be sure that we are not comparing apples with oranges. Further, we want a dynamic network (adaptive learning rate) and random initial weights. Let’s put this down:

No surprises here. After some experiments, we can pick values for the settings instance, which will promise good convergence during training. Now, let’s prepare our discrete steps drawn from the sinus function:

We will draw samples from the range with step size 0.05. After this, we will construct our training values xs as well as our supervised output values ys. Here, a group consists of 4 steps, with 3 steps as input and the last step as the supervised value.

After a pretty short time, we will see good news. Now, how can we check if our net can successfully predict the sinusoidal wave? We can’t simply call our net like a sinus function to map from one input value to one output value, e. g. something like net(0.75) == sin(0.75). Our net does not care about any x values, because it was trained purely based on the function values f(x), or the slope pattern in general. We need to feed our net with a three-dimensional input vector holding the first three, original function values to predict the fourth step, then drop the first original step and append the recently predicted step to predict the fifth step, et cetera. In other words, we need to traverse the net. Let’s code this:

with

So, basically we don’t just continue to draw the sinusoidal shape at the point 0.75, we draw the entire shape right from the start until 4.0 – solely based on our trained net! Now, let’s see how our Frankenstein will complete the sinusoidal shape from 0.75 on:

sinuspredictfintwo

I’d say, pretty neat? Keep in mind, here, the discrete predictions are connected through splines. Another interesting property of our trained net is its prediction compared to the original sinus function when taking the limit towards 4.0. Let’s plot both:

sinuspredictfin

The purple line is the original sinusoidal wave, whereas the green line is the prediction of our net. The first steps show great consistency, but slowly the curves diverge a little over time, as uncertainties will add up. To keep this divergence rather low, one could fine tune settings, for instance numeric precision. However, if one is taking the limit towards infinity, a perfect fit is illusory.

Final thoughts

That’s it! We have trained our net to learn and continue the sinusoidal shape. Now, I know that this is a rather academic example, but to train a neural net to learn more complex shapes is straightforward from here.

Thanks for reading!

Wie lernen Maschinen?

Im dritten Teil meiner Reihe Wie lernen Maschinen? wollen wir die bisher kennengelernten Methoden anhand eines der bekanntesten Verfahren des Maschinellen Lernens – der Linearen Regression – einmal gegenüberstellen. Die Lineare Regression dient uns hier als Prototyp eines Verfahrens aus dem Gebiet der Regression, in weiteren Artikeln werden die Logistische Regression als Prototyp eines Verfahrens aus dem Gebiet der Klassifikation und eine Collaborative-Filtering- bzw. Matrix-Faktorisierungs-Methode als Prototyp eines Recommender-Systems behandelt.

Read more

KNN: Vorwärtspass

Wenn die Gewichte eines künstlichen neuronalen Netzwerkes trainiert sind, kann es verwendet werden, um Vorhersagen über eine am Eingang angelegte Beobachtung zu treffen. Hierzu werden Schicht für Schicht, in einem sogenannten Vorwärtspass (Forward-Pass), die Aktivierungen der einzelnen Neuronen ermittelt, bis ein Ergebnis an der Ausgabeschicht anliegt. Der ganze Prozess hat zwar einen eigenen Namen (Vorwärtspass), ist aber im Endeffekt nur ein iteratives durchführen von mehreren logistischen Regressionen und entspricht dem Vorgehen aus dem Artikel „KNN: künstliche Neuronen“.

Anwendungsbeispiel

Im folgenden Beispiel verwenden wir die Wahrheitstabelle von einem X-OR Logikgatter (siehe Abbildungen unten links) als Ground Truth Data. Ziel ist es, den Ausgangwert Y, für einen beliebig anliegenden Eingangsvektor [X1, X2] vorherzusagen. Die Aufgabe ist recht komplex, so dass eine einfache lineare oder logistische Regression keine zufriedenstellende Lösung finden wird. Die zum Einsatz kommende  Netzwerkstruktur ist ein 2-schichtiges Feedforward Netzwerk mit zwei Eingangsneuronen, einer verborgenen Schicht und einem Ausgangsneuron.

XOR Wahrheitstabelle

X1 X2 Y = X1 ⊻ X2
0 0 0
0 1 1
1 0 1
1 1 0

 

Da das Netzwerk wie anfänglich erwähnt, bereits trainiert ist, gebe ich die Gewichte (Theta) vor. Werden die Werte als Matrix dargestellt, können mit Hilfe der linearen Algebra die Aktivierungswahrscheinlichkeiten aller Neuronen einer Schicht auf einmal ausgerechnet werden.

Theta 1

θ11 =  2,7 θ12 =   3,1
θ13 =  5,6 θ14 = -6
θ15 = -5,4 θ16 =  6,2
Theta 2

θ21 =  9,6
θ22 = -6,6
θ23 = -6,5

Programmcode

Für die eigentlichen Berechnungen verwenden wir die Programmiersprache Octave oder MATLAB. Octave ist eine kostenlose alternative zu MATLAB. Wobei es nicht notwendig ist irgendetwas zu installieren, da es auch eine Online Variante von MATLAB/Octave gibt:
http://www.tutorialspoint.com/execute_matlab_online.php

Ein paar Sätze zu den verwendeten Befehlen. Der Punkt vor manchen Operationen gibt an, dass die Operation Elementweise durchzuführen ist (wichtig bei der Sigmoid Funktion). Die Methode ones(M,N) erzeugt eine MxN große Matrix gefüllt mit den Werten 1. Wir erzeugen damit einen Spaltenvektor der unseren Bias Units entspricht und den wir anschließend an eine vorhandene Matrix horizontal anfügen.

Wird das Programm ausgeführt schreibt es unter anderem die Werte von der Ausgabeschicht O (Output Layer) auf die Konsole. Da wir alle XOR Variationen auf einmal ausgerechnet haben, erhalten wir auch vier Vorhersagen. Verglichen mit der Zielvorgaben Y sind die Werte von O sehr vielversprechend (ähnlich).

X1 X2 Y O
0 0 0 0.057099
0 1 1 0.936134
1 0 1 0.934786
1 1 0 0.050952

 

Komplexe Netzwerke

Hätte das Netzwerk noch weitere verborgene Schichten, müssen Teile des Programmcodes wiederholt ausgeführt werden. Grundsätzlich sind drei Befehle pro Schicht notwendig:

Im nächsten Artikel schauen wir uns das Training solcher Netzwerke an.

A quick primer on TensorFlow – Google’s machine learning workhorse

Introducing Google Brains‘ TensorFlow™

This week started with major news for the machine learning and data science community: the Google Brain Team announced the open sourcing of TensorFlow, their numerical library for tensor network computations. This software is actively developed (and used!) within Google and builds on many of Google’s large scale neural network applications such as automatic image labeling and captioning as well as the speech recognition in Google’s apps.

TensorFlow in bullet points

Here are the main features:

  • Supports deep neural networks – and much more machine learning approaches
  • Highly scalable across many machines and huge data sets
  • Runs on desktops, servers, in cloud and even mobile devices
  • Computation can run on CPUs, GPUs or both
  • All this flexibility is covered by a single API making the execution very streamlined
  • Available interfaces: C++ and Python. More will follow (Java, R, Lua, Go…)
  • Comes with many tools helping to build and visualize the data flow networks
  • Includes a powerful gradient based optimizer with auto-differentiation
  • Extensible with C++
  • Usable for commercial applications – released under Apache Software Licence 2.0

Tensor, what? Tensor, why?

„Numerical library for tensor network computations“ maybe doesn’t sound too exciting, but let’s  consider the implications.

Application of tensors and their networks is a relatively new (but fast evolving) approach in machine learning. Tensors, if you recall your algebra classes, are simply n-dimensional data arrays (so a scalar is a 0th order tensor, a vector is 1st order, and a matrix a 2nd order matrix).

A simple practical example of is color image’s RGB layers (essentially three 2D matrices combined into a 3rd order tensor). Or a more business minded example – if your data source generates a table (a 2D array) every hour, you can look at the full data set as a 3rd order tensor – time being the extra dimension.

Tensor networks then represent “data flow graphs”, where the edges are your multi-dimensional data sets and nodes are the mathematical operations on this data.

Example of of a data flow graph with multiple nodes (data operations). Notice how the execution of nodes is asynchronous. This allows incredible scalability across many machines. Image Source.

Looking at your data through the tensor formalism gives you a lot of powerful tools that were already developed for tensor algebra, allowing fast, complex computations.  

Tensor networks are also a natural fit for computations done on graphical processing units (GPUs) as they are built exactly for the purpose of very fast numerical operations on such a data – speeding up your calculations significantly compared to standard CPU execution!

The importance of flexible architecture & scaling

The data flow graph approach has also further advantages. Most notably, you can split the design of your data flows (i.e. data cleaning, processing, transformations, model building etc.) from its execution. You first build up the graph of your data flow and then you send it to for execution: either on the CPUs of your machines (and it can be your laptop just as well as cluster) or GPUs or a combination. This happens through a single interface that hides all the complexities from you.

Since the execution is asynchronous it scales across many machines and can deal with huge amounts of data.

You can count on the Google guys to build tools not only for academic use, but also heavy-duty operations in the industry!

Is this just another deep learning library?

TensorFlow is of course not the first library to embrace the tensor formalism and GPU execution. The nearest comparisons (and competitors) are Theano, Torch and CGT (Caffe to a limited degree).

While there are significant overlaps between the libraries, TensorFlow tries to provide a broader framework. It is not only a deep learning library – the Data Flow Graphs can incorporate any data processing/analysis applications. It also comes with a very powerful gradient based optimizer with automatic calculations of derivatives offering huge flexibility.

Given this broad vision the closest competitor is probably Theano (while Caffe and the existing Theano wrappers have a narrower focus on deep learning). TensorFlow’s distinguishing feature is that by design its focus is on large, scalable architectures with a complete flexibility in the hardware, best suited for industry/operational use, whereas the other libraries have more academic pedigrees.

Initial analyses also indicate that TensorFlow should bring also performance improvements compared to Theano, although no comprehensive benchmarks have yet been published.

As the other packages are out already for a while, they have large, active communities and often additional supporting software (examples are the very useful wrappers around Theano like Lasagne, Keras and Blocks that provider higher level abstractions to its engine).

Of course, with Google’s gravitas, one can expect that TensorFlow’s open source community will grow very fast and the contributors will quickly add a lot of additional features (and find hidden bugs).

Finally, keep in mind, that while Google provided us with this great data processing framework and some of its machine learning capabilities, it is likely that the most powerful machine learning algorithms still remain Google’s proprietary secret.

Nonetheless, TensorFlow is a huge and very welcome contribution to the open source machine learning world!

Where to go next?

You can find Google’s getting started guide here. The TensorFlow white paper is worth a read too. Source code can be found at the Github page. There is also a Vagrant virtual machine with TensorFlow pre-installed available here.

Wie lernen Maschinen?

Im zweiten Teil wollen wir das mit Abstand am häufigsten verwendete Optimierungsverfahren – das Gradientenverfahren oder Verfahren des steilsten Abstiegs – anhand einiger Beispiele näher kennen lernen. Insbesondere werden wir sehen, dass die Suchrichtung, die bei der Benennung der Verfahren meist ausschlaggebend ist, gar nicht unbedingt die wichtigste Zutat ist.

Read more

Wie lernen Maschinen?

Machine Learning ist eines der am häufigsten verwendeten Buzzwords im Data-Science- und Big-Data-Bereich. Aber lernen Maschinen eigentlich und wenn ja, wie? In den meisten Fällen lautet die Antwort: Maschinen lernen nicht, sie optimieren. Fällt der Begriff Machine Learning oder Maschinelles Lernen, so denken viele sicherlich zuerst an bekannte “Lern”-Algorithmen wie Lineare Regression, Logistische Regression, Neuronale Netze oder Support Vector Machines. Die meisten dieser Algorithmen – wir beschränken uns hier vorerst auf den Bereich des Supervised Learning – sind aber nur Anwendungen einer anderen, grundlegenderen Theorie – der mathematischen Optimierung. Alle hier angesprochenen Algorithmen stellen dem Anwender eine bestimmte Ziel- oder Kostenfunktion zur Verfügung, aus der sich i.a. der Name der Methode ableitet und für die im Rahmen des Lernens ein Minimum oder Optimum gefunden werden soll. Ein großer Teil des Geheimnisses und die eigentliche Stärke der Machine-Learning-Algorithmen liegt nun darin, dass dieser Minimierungsprozess effizient durchgeführt werden kann. Wir wollen im Folgenden kurz erklären, wie dies in etwa funktioniert. In einem späteren Blogpost gehen wir dann genauer auf das Thema der Effizienz eingehen. Read more

Text-Mining mit dem Aika Algorithmus

In diesem Beitrag möchte ich das Open Source Projekt Aika vorstellen. Ziel des Projektes ist es einen Text-Mining Algorithmus zu entwickeln, der ein künstliches Neuronales Netz (kNN) mit einem Pattern Mining Algorithmus kombiniert. Dabei dient die Silbentrennung von Wörtern als initiale Aufgabe, anhand derer der Algorithmus weiterentwickelt wird. Für diese Aufgabe soll allerdings kein vordefiniertes Wörterbuch verwendet werden. Stattdessen sollen die Silben in ihrer Eigenschaft als häufig auftretende Muster in rohem Text erkannt werden. Hier reicht es allerdings nicht einen Mining Algorithmus nach häufig auftretenden Strings suchen zu lassen, da sich viele der Strings überlappen oder schlicht keinen Sinn ergeben würden. Es ist also wichtig, dass sich die erkannten Silben gegenseitig unterdrücken können und dass der Algorithmus in der Lage ist, die so entstehenden unterschiedlichen Interpretationen eines Wortes miteinander zu vergleichen und die am höchsten gewichtete auszuwählen. Beispielsweise taucht die Silbe ‘der’ zu Beginn des Wortes ‘de-re-gu-lie-ren’ auf. In diesem Fall muss der Algorithmus erkennen, dass die erste Silbe des Wortes nicht ‘der’ sondern nur ‘de’ ist.

Wenn nun nach häufig auftretenden Mustern in Text gesucht werden soll, warum verwenden wir nicht einen reinen Pattern Mining Algorithmus? Der Grund für die Kombination mit einem kNN liegt darin, dass die erkannten Muster innerhalb einer kNN Topologie aufeinander aufsetzen können. Wenn z. B. das Wort “hausboot” als Muster erkannt werden soll, dann entstünden in der Datenstruktur des Mining Algorithmus sehr viele Teilmuster, die alle evaluiert werden müssten. Viel leichter wäre es für den Algorithmus, wenn die Muster “haus” und “boot” bereits erkannt worden wären und nun als Eingaben für die Erkennung des Wortes “hausboot” dienen könnten. So ist der Algorithmus zum einen in der Lage komplexere Muster zu erkennen und muss gleichzeitig weniger Teilmuster untersuchen. Ausserdem erlaubt es ein kNN ‘weiche’ Muster zu erlernen, also Muster bei denen einzelne Eingänge optional sind, die aber trotzdem noch sicher erkannt werden. Dadurch kann eine höhere Toleranz gegenüber Fehlern erreicht werden.

Im Gegensatz zu einem klassischen kNN nutzt Aika einen eher mit Googles Pagerank vergleichbaren Ansatz um Gewichte zwischen den einzelnen Neuronen des Netzwerks zu propagieren. Der Grutext-pattern-knnndgedanke dabei ist es, dass Neuronen entsprechend höher gewichtet werden sollten, wenn sie mit anderen hoch gewichteten Neuronen in Beziehung stehen. Wenn also beispielsweise eine Silbe in vielen hoch gewichteten Worten auftaucht, wird sie selbst entsprechend höher gewichtet.

Neuronen eines kNN erlauben es aber nicht nur Konjunktionen wie etwa bei Mustern zu erlernen, sondern auch Disjunktionen. Disjunktionen sind insbesondere beim Erlernen von Grammatikregeln wichtig, wenn z. B. einzelne Worte als Nomen erkannt werden sollen. Wenn nun solche Disjunktionen erlernt werden sollen, können auch hier häufige Muster behilflich sein. Angenommen, es wurden durch den Mining Algorithmus bereits die folgenden häufigen Muster gefunden: “der Baum” (f=4), “der Hammer” (f=3) und “der Nagel” (f=6). Dann können diese Muster so umgeformt werden, dass ein neues, deutlich häufigeres Muster “der <NOMEN>” (f=13) und eine Disjunktion <NOMEN> = “Baum” oder “Hammer” oder “Nagel”, entsteht.

KNN: Natur als Vorbild – Biologische Neuronen

Bisher ist die genaue Funktionsweise des Gehirns bei der Verarbeitung sensorischer Informationen nicht bekannt. Neue Erkenntnisse im Bereich der Neurowissenschaften liefern jedoch einen Einblick über grundlegende Prinzipien wie das Gehirn von Säugetieren sensorische Informationen repräsentiert. Einer der wichtigsten Punkte ist dabei die Erkenntnis, dass der Neocortex, einem ankommenden Signal erlaubt ein komplexes Netzwerk von Neuronen zu durchlaufen, wodurch es zu einer abstrakten Repräsentation des ursprünglichen Eingabesignals kommt. Auch ist das Gehirn in der Lage die Leitfähigkeit der Verbindungen zwischen den Neuronen zu modifizieren, was sich auf eine Änderung der Abbildungsvorschrift auswirkt. Beobachtungen können dadurch noch besser getrennt und effizienter repräsentiert werden. Die Entdeckung dieses Verhaltens motivierte die Entstehung des Forschungszweiges Deep Machine Learning, welcher sich darauf fokussiert Modelle zu entwickeln, die ähnliche Charakteristiken wie der Neocortex aufweisen.

Das Eingabesignal durchläuft das Netzwerk bis zu einer Ausgabeschicht. Das Resultat dieser nicht linearen Transformation lässt sich dann beispielsweise mit einem Klassifizierungsalgorithmus auswerten. Die praktischen Anwendungen solcher Algorithmen sind sehr vielfältig. Deep Machine Learning Algorithmen liefern zurzeit die besten Ergebnisse zu vielen Problemen in Anwendungsdomänen wie Bilderkennung, Spracherkennung und der Verarbeitung natürlicher Sprache. Mit Hilfe dieser Algorithmen wurden beispielsweise neue elementare Teilchen gefunden, entdeckte Galaxien noch besser klassifiziert und Auswirkungen von Mutationen innerhalb von DNA vorhergesagt.

Das Neuron

Das Neuron ist die Basis-Recheneinheit des Gehirns. Ungefähr 86 Milliarden solcher Neuronen befinden sich im menschlichen Nervensystem, welche durch ca. 10^15 Synapsen miteinander vermascht sind. In Abbildung unten links wird eine Schemazeichnung eines biologischen Neurons dargestellt. Dieses besteht unter Anderem aus Dendriten, dem Zellkörper, der den Zellkern beinhaltet und einem Axon. Die Dendriten gehen aus dem Zellkörper hervor und sind über Synapsen mit sensorischen Zellen oder Axonen anderer Neuronen verbunden. Ihre Aufgabe ist die Aufnahme von ankommenden Signalen in Form von elektrischen Spannungsänderungen und der Transport dieser in den Zellkörper des Neurons, der Recheneinheit einer Nervenzelle. Dort angekommen entscheiden bestimmte Faktoren, ob ein Aktionspotential anhand einer Schwellwertfunktion ausgelöst wird oder nicht. Ist dies der Fall leitet das Neuron elektrische Energie über sein Axon an weitere angeschlossene Dendriten anderer Neuronen weiter.

Neuronen
Das biologische Neuron diente als Inspiration für das Software-Neuron. Beim mathematischen Modell eines Software-Neurons (Künstliches Neuron eines KNN) wird davon ausgegangen, dass die verschiedenen Dendriten unterschiedlich stark ausgeprägt sind und ein Signal daher auch verschieden stark gewichtet in den Zellkörper übertragen wird. Jedes Dendrit enthält demnach einen Faktor(θi), der das Signal(xi) vor dem Eintreffen in den Zellkörper skaliert (θixi). Diese Faktoren werden auch als Gewichte bezeichnet. Im Zellkörper selbst werden die Signale die von unterschiedlichen Neuronen stammen aufsummiert bis schließlich ein fester Bias-Wert(b) auf das Ergebnis der Summation aufaddiert wird. Anschließend bestimmt eine nicht-lineare Aktivierungsfunktion über den finalen Ausgangswert des Neurons.

Bildquelle: Wikipedia

Ähnliche Artikel:

KNN: Künstliche Neuronen

Es gibt sehr ausführliche Definitionen und Abbildungen für ein künstliches Neuron, die in diesem Artikel aber nicht behandelt werden. Der Grund dafür ist pragmatischer Natur. Es soll eine gewisse Konsistenz zu den anderen KNN-Beiträgen dieser Reihe bestehen und das Thema soll nicht zu einer wissenschaftlichen Abhandlung mutieren.

In dem Beitrag  KNN: Was sind künstliche neuronale Netze  geht es um den grundsätzlichen Aufbau von künstlichen neuronalen Netzwerken. Zusammengesetzt werden die Strukturen aus einer oftmals großen Anzahl von künstlichen Neuronen. Die nachfolgende Abbildung zeigt auf der Linken Seite einen extrahierten Ausschnitt aus einem Netzwerk. Es kann auch als einfaches allein stehendes Netzwerk betrachtet werden. Auf der rechten Seite ist eine allgemeingültigere Form zu sehen. Die Bias Unit (VB) wird üblicherweise als X0 bezeichnet und hat immer den Wert 1.

 

neuronen-netzwerk1 neuronen-netzwerk2

 


Um den Ausgangswert Y zu berechnen wird zunächst jeder Eingangswert X mit seinem dazugehörigen Gewicht \theta (Theta) multipliziert und die Ergebnisse aufsummiert. Das Zwischenergebnis ist die Aktivierungsstärke z:

    \[ z = X_0 \cdot \theta_0 + X_1 \cdot \theta_1 + X_2 \cdot \theta_2 \]

Im nächsten Schritt wird der eigentliche Ausgangswert Y errechnet, indem die Aktivierungsstärke z an eine Aktivierungsfunktion angelegt wird. Es gibt zwar verschiedene Funktionen, häufig wird aber die Logistische bzw. Sigmoid-Funktion verwendet. Sie ist nicht-linear und hat einen Ausgangswertebereich zwischen 0 und 1.

sigmoid-funktion

    \[ sigmoid(z) = \frac{1}{1+e^{-z}} \]

Wird das Bias Neuron und sein Gewicht nicht beachtet, bestimmen die eingehenden Daten die Aktivierungsstärke und damit den Ausgang der Funktion. Unter Verwendung der Bias Unit verschiebt sich die Funktion entlang der Y-Achse, was einer Verschiebung von einem Schwellwert gleich kommt.

Die endgültige Formel für die Aktivierung eines Neurons sieht sehr ähnlich zu der Logistischen Regression aus. Werden die Werte von X und Theta zu Vektoren zusammengefasst, lässt sich die Berechnung stark vereinfachen:

    \[ Y = sigmoid(X\theta) \]

Als Programmcode müsste diese Berechnung dennoch mit einer Schleife realisiert werden oder noch besser mit einer Bibliothek für lineare Algebra.

Ähnliche Artikel:
KNN: Was sind künstliche neuronale Netze
KNN: Vorteile und Nachteile

KNN: Vorteile und Nacheile

Wie jedes Verfahren haben auch künstliche Neuronale Netzwerke (KNN) ihre Vor- und Nachteile. Im Folgenden sollen einige benannt werden.

Vorteile

  • KNN können bessere Ergebnisse liefern als existierende statistische Ansätze, wenn das Problem ausreichend komplex ist. Das heißt, wenn das Problem nicht linear ist und es viele Eingabedaten mit vielen Variablen gibt.
  • Es gibt zwar sogenannte Hyperparameter, die je nach Einstellung das Netzwerk besser oder schlechter trainieren lassen, diese müssen aber nur manuell geändert werden, wenn neue Rekordwerte erreicht werden sollen. Ansonsten gibt es verhältnismäßig wenige Parameter.
  • Auch für stark nicht lineare Probleme, werden gute Lösungen gefunden. Dazu zählen fast alle Probleme die aus einer Datenbasis stammen, wo menschliche oder andere unvorhersehbare Einflüsse wirken.
  • Für große Datenmengen und viele Datendimensionen (Einflussfaktoren) können sinnvolle Ergebnisse ermittelt werden.

Nachteile

  • Künstliche Neuronale Netzwerke sind oftmals wie eine Blackbox. Dadurch ist es nicht möglich nachzuverfolgen wieso ein Netzwerk eine bestimmte Entscheidung getroffen hat.
  • Damit ein allgemeingültiges gutes Ergebnis berechnet werden kann, bedarf es vieler Beispiel-/Trainingsdaten.
  • Aufgrund der hohen Datenmenge, ist es sinnvoll die Berechnungen auf einer Grafikkarte durchzuführen.
  • Während des Trainings finden sehr viele Gewichtsänderungen in kurzer Zeit statt. Daher ist ein Aufteilen der Arbeit in ein verteiltes System wie Apache Hadoop oder Apache Spark nur schwer möglich und führt oftmals zu drastischen Performanz Einbußen.
  • Ist das Problem mathematisch beschreibbar sind KNNs oftmals schlechter oder maximal genauso gut.
  • Es ist zu keinen Zeitpunkt bekannt ob die gefundene Lösung das globale Optimum ist oder ob es noch bessere Lösungen gibt.

In der Forschung gibt es viele Ansätze um einige der Nachteile aufzuheben.