Zertifikatsstudium – Data Science & Big Data

Anzeige

Datenanalyse, Datenmanagement und die zielgerichtete Darstellung der Ergebnisse – darum geht es im berufsbegleitenden Zertifikatsstudium ‚Data Science & Big Data‘ der TU Dortmund.

Technische Universität Dortmund: Anmeldungen für das Zertifikatsstudium ‚Data Science & Big Data‘ (Start: Februar 2023) möglich.

Datenanalyse, Datenmanagement und die zielgerichtete Darstellung der Ergebnisse – darum geht es im berufsbegleitenden Zertifikatsstudium ‚Data Science & Big Data‘ der TU Dortmund.

Der Kurs richtet sich an alle Berufsgruppen, die sich mit dem Management und der Analyse von Daten beschäftigen, wie z. B. Data Scientists, Business Analysten, Softwareentwickler, Consultants, wissenschaftliche Mitarbeitende (universitär oder außeruniversitär) o.ä.

Ziel ist der Erwerb moderner Kenntnisse in Theorie und Praxis von Data Science- und Big Data-Projekten. Die Übungen mit realen Datensätzen sowie die Option, die Abschlussarbeit auf Basis von eigenen Daten (‚bring your own data‘) zu verfassen, unterstützen den Transfer des Gelernten in die berufliche Praxis. Das Zertifikatsstudium umfasst zehn Termine und dauert neun Monate. Nach erfolgreicher Abschlussprüfung vergibt die Technische Universität Dortmund ein Zertifikat, mit dem der Kompetenzausbau nachgewiesen werden kann.

Näheres finden Sie unter: https://wb.zhb.tu-dortmund.de/datascience

Bei frühzeitiger Anmeldung oder wenn mehrere Personen aus Ihrem Unternehmen am Kurs teilnehmen, profitieren Sie zudem von unseren Rabattangeboten:

  • Early Bird: Sie erhalten 5% Preisnachlass auf das Teilnahmeentgelt bei Anmeldung bis zum 30. September 2022.
  • Weitersagen lohnt sich: Wenn Sie gemeinsam mit einer/einem Kollegin/Kollegen oder mehreren Personen aus Ihrem Unternehmen am Kurs teilnehmen, reduziert sich das Teilnahmeentgelt bei bis zu zwei angemeldeten Personen um 5 % pro Person, darüber hinausgehend zahlt jede weitere Person 10 % weniger.

Bei Fragen können Sie sich an Daniel Neubauer (daniel.neubauer@tu-dortmund.de; 0231 755 6632) wenden.

AI Role Analysis in Cybersecurity Sector

Cybersecurity as the name suggests is the process of safeguarding networks and programs from digital attacks. In today’s times, the world sustains on internet-connected systems that carry humungous data that is highly sensitive. Cyberthreats are on the rise with unscrupulous hackers taking over the entire industry by storm, with their unethical practices. This not only calls for more intense cyber security laws, but also the vigilance policies of the corporates, big and small, government as well as non-government; needs to be revisited.

With such huge responsibility being leveraged over the cyber-industry, more and more cyber-security enthusiasts are showing keen interest in the industry and its practices. In order to further the process of secured internet systems for all, unlike data sciences and other industries; the Cybersecurity industry has seen a workforce rattling its grey muscle with every surge they experience in cyber threats. Talking of AI impressions in Cybersecurity is still in its nascent stages of deployment as humans are capable of more; when assisted with the right set of tools.

Automatically detecting unknown workstations, servers, code repositories, and other hardware and software on the network are some of the tasks that could be easily managed by AI professionals, which were conducted manually by Cybersecurity folks. This leaves room for cybersecurity officials to focus on more urgent and critical tasks that need their urgent attention. Artificial intelligence can definitely do the leg work of processing and analyzing data in order to help inform human decision-making.

AI in cyber security is a powerful security tool for businesses. It is rapidly gaining its due share of trust among businesses for scaling cybersecurity. Statista, in a recent post, listed that in 2019, approximately 83% of organizations based in the US consider that without AI, their organization fails to deal with cyberattacks. AI-cyber security solutions can react faster to cyber security threats with more accuracy than any human. It can also free up cyber security professionals to focus on more critical tasks in the organization.

CHALLENGES FACED BY AI IN CYBER SECURITY

As it is said, “It takes a thief to catch a thief”. Being in its experimental stages, its cost could be an uninviting factor for many businesses. To counter the threats posed by cybercriminals, organizations ought to level up their internet security battle. Attacks backed by the organized crime syndicate with intentions to dismantle the online operations and damage the economy are the major threats this industry face today. AI is still mostly experimental and, in its infancy, hackers will find it much easy to carry out speedier, more advanced attacks. New-age automation-driven practices are sure to safeguard the crumbling internet security scenarios.

AI IN CYBER SECURITY AS A BOON

There are several advantageous reasons to embrace AI in cybersecurity. Some notable pros are listed below:

  •  Ability to process large volumes of data
    AI automates the creation of ML algorithms that can detect a wide range of cybersecurity threats emerging from spam emails, malicious websites, or shared files.
  • Greater adaptability
    Artificial intelligence is easily adaptable to contemporary IT trends with the ever-changing dynamics of the data available to businesses across sectors.
  • Early detection of novel cybersecurity risks
    AI-powered cybersecurity solutions can eliminate or mitigate the advanced hacking techniques to more extraordinary lengths.
  • Offers complete, real-time cybersecurity solutions
    Due to AI’s adaptive quality, artificial intelligence-driven cyber solutions can help businesses eliminate the added expenses of IT security professionals.
  • Wards off spam, phishing, and redundant computing procedures
    AI easily identifies suspicious and malicious emails to alert and protect your enterprise.

AI IN CYBERSECURITY AS A BANE

Alongside the advantages listed above, AI-powered cybersecurity solutions present a few drawbacks and challenges, such as:

  • AI benefits hackers
    Hackers can easily sneak into the data networks that are rendered vulnerable to exploitation.
  • Breach of privacy
    Stealing log-in details of the users and using them to commit cybercrimes, are deemed sensitive issues to the privacy of an entire organization.
  • Higher cost for talents
    The cost of creating an efficient talent pool is very high as AI-based technologies are in the nascent stage.
  • More data, more problems
    Entrusting our sensitive data to a third-party enterprise may lead to privacy violations.

AI-HUMAN MERGER IS THE SOLUTION

AI professionals backed with the best AI certifications in the world assist corporations of all sizes to leverage the maximum benefits of the AI skills that they bring along, for the larger benefit of the organization. Cybersecurity teams and AI systems cannot work in isolation. This communion is a huge step forward to leveraging maximum benefits for secured cybersecurity applications for organizations. Hence, this makes AI in cybersecurity a much-coveted aspect to render its offerings in the long run.

6 Best Podcasts On Big Data To Check Out

Podcasts are one of the best ways to learn about big data, as you can listen and absorb knowledge whether you’re on the move, doing the dishes, or just relaxing at home. If you want to know more about big data, then here are some of the best podcasts you’ll want to be listening to right now (Headlines of all entries are linked to each mentioned podcast!)

1. Freakonomics

 You may well know about the book Freakonomics by Stephen Dubner. In it, he uncovered the world of data science for the average reader, and showed them just how it affected their everyday lives. In this podcast, he carries on the work he started in the book to help you understand the world of big data.

There are several episodes that you’ll want to make sure you listen to, such as The Health of Nations, which looks at how health is measured across the world. Everybody Gossips is another good episode, as it covers how our Google search histories expose our true selves to those who are evaluating that data.

2. Data Framed

This podcast is a must listen if you’re looking to learn more about big data. Trends are changing all the time in this field, so you want to make sure you’re on top of the game. “Each episode brings on an expert in their field, so you can learn from the best” says tech writer Adrian Bowman, from Boom Essays and OXEssays. “You’ll get a real insight into how they use data, and what that means for you.”

Recent episodes have covered things like Salesforce was created to be a mature data organization, and how to build a data science team from scratch. They’re all fascinating to listen to, so you’ll want to make sure that you tune in.

3. Data Skeptic

 With so many episodes in the archive, you can go back and listen to this show for days on end. Every episode covers a different concept in data science, so it’s really helpful to anyone that’s learning about it for the first time. Even if you’re an expert though, you’ll find some new perspectives in here.

You don’t have to start at the beginning to listen, though. Instead, you can catch up with the latest episodes that cover everything new in data. For example, they’ve recently released episodes on the user perceptions of ‘bad ads’ online, and political digital advertising analysis.

4. Data Crunch

This podcast is very much aimed at people who are already working with big data in some way. As such, it won’t be as accessible to newcomers to the field. However, if you are someone in the field then you’ll want to subscribe to this show.

You’ll find lots of episodes on how machine learning is changing industries across the board, as well as some showing where it hasn’t been the success that companies were looking for. You’ll see a lot about what works and what doesn’t here, so you can see what will make your business thrive in the future.

5. Not So Standard Deviations

 On the other hand, this is the podcast you’ll want to be listening to, if you’re new to data science and want to learn more. “The chemistry between the hosts makes it a very easy listen” says Dean Simmons, a big data blogger at State Of Writing and Paper Fellows. “That makes it a lot more accessible for those who are beginning to learn about the subject.”

You’ll get all the basics on things like social media algorithms, deprecated packages, app testing, and much more here. You’ll learn a lot and enjoy listening, too.

6. Making Data Simple

 Finally we have this podcast, which looks at bringing you the very latest news in big data, in a way that’s easy to understand. It’s another show that’s worth listening to if you’re already working in data, as it looks at the news from the viewpoint of those in industries where data is vital.

Host Al Martin talks to experts every episode, so you’ll be able to get the news from the people who know about it, and see how it will affect you.

All these shows can give you a lot of info about big data, so give them a listen and see which one is right for you.

6 Steps of Process Mining – Infographic

Many Process Mining projects mainly revolve around the selection and introduction of the right Process Mining tools. Relying on the right tool is of course an important aspect in the Process Mining project. Depending on whether the process analysis project is a one-time affair or daily process monitoring, different tools are pre-selected. Whether, for example, a BI system has already been established and whether a sophisticated authorization concept is required for the process analyzes also play a role in the selection, as do many other factors.

Nevertheless, it should not be forgotten that process mining is not primarily a tool, but an analysis method, in which the first part is about the reconstruction of the processes from operational IT systems in a resulting process log (event log), the second step is about a (core) graph analysis to visualize the process flows with additional analysis/reporting elements. If this perspective on process mining is not lost sight of, companies can save a lot of costs because it allows them to concentrate on solution-oriented concepts.

However, completely independent of the tools, there is a very general procedure in this data-driven process analysis you should understand and which we would like to describe with the following infographic:

DATANOMIQ Process Mining - 6 Steps of Doing Process Mining Analysis

6 Steps of Process Mining – Infographic PDF Download.

Interested in introducing Process Mining to your organization? Do not hesitate to get in touch with us!

DATANOMIQ is the independent consulting and service partner for business intelligence, process mining and data science. We are opening up the diverse possibilities offered by big data and artificial intelligence in all areas of the value chain. We rely on the best minds and the most comprehensive method and technology portfolio for the use of data for business optimization.

Training of Deep Learning AI models

Alles dreht sich um Daten: die Trainingsmethoden des Deep Learning

Im Deep Learning gibt es unterschiedliche Trainingsmethoden. Welche wir in einem KI Projekt anwenden, hängt von den zur Verfügung gestellten Daten des Kunden ab: wieviele Daten gibt es, sind diese gelabelt oder ungelabelt? Oder gibt es sowohl gelabelte als auch ungelabelte Daten?

Nehmen wir einmal an, unser Kunde benötigt für sein Tourismusportal strukturierte, gelabelte Bilder. Die Aufgabe für unser KI Modell ist es also, zu erkennen, ob es sich um ein Bild des Schlafzimmers, Badezimmers, des Spa-Bereichs, des Restaurants etc. handelt. Sehen wir uns die möglichen Trainingsmethoden einmal an.

1. Supervised Learning

Hat unser Kunde viele Bilder und sind diese alle gelabelt, so ist das ein seltener Glücksfall. Wir können dann das Supervised Learning anwenden. Dabei lernt das KI Modell die verschiedenen Bildkategorien anhand der gelabelten Bilder. Es bekommt für das Training von uns also die Trainingsdaten mit den gewünschten Ergebnissen geliefert.
Während des Trainings sucht das Modell nach Mustern in den Bildern, die mit den gewünschten Ergebnissen zusammenpassen. So erlernt es Merkmale der Kategorien. Das Gelernte kann das Modell dann auf neue, ungesehene Daten übertragen und auf diese Weise eine Vorhersage für ungelabelte Bilder liefern, also etwa “Badezimmer 98%”.

2. Unsupervised learning

Wenn unser Kunde viele Bilder als Trainingsdaten liefern kann, diese jedoch alle nicht gelabelt sind, müssen wir auf Unsupervised Learning zurückgreifen. Das bedeutet, dass wir dem Modell nicht sagen können, was es lernen soll (die Zuordnung zu Kategorien), sondern es muss selbst Regelmäßigkeiten in den Daten finden.

Eine aktuell gängige Methode des Unsupervised Learning ist Contrastive Learning. Dabei generieren wir jeweils aus einem Bild mehrere Ausschnitte. Das Modell soll lernen, dass die Ausschnitte des selben Bildes ähnlicher zueinander sind als zu denen anderer Bilder. Oder kurz gesagt, das Modell lernt zwischen ähnlichen und unähnlichen Bildern zu unterscheiden.

Über diese Methode können wir zwar Vorhersagen erzielen, jedoch können diese niemals
die Ergebnisgüte von Supervised Learning erreichen.

3. Semi-supervised Learning

Kann uns unser Kunde eine kleine Menge an gelabelten Daten und eine große Menge an nicht gelabelten Daten zur Verfügung stellen, wenden wir Semi-supervised Learning an. Diese Datenlage begegnet uns in der Praxis tatsächlich am häufigsten. Bei fast allen KI Projekten stehen einer kleinen Menge an gelabelten Daten ein Großteil an unstrukturierten
Daten gegenüber.

Mit Semi-supervised Learning können wir beide Datensätze für das Training verwenden. Das gelingt zum Beispiel durch die Kombination von Contrastive Learning und Supervised Learning. Dabei trainieren wir ein KI Modell mit den gelabelten Daten, um Vorhersagen für Raumkategorien zu erhalten. Gleichzeitig lassen wir es Ähnlichkeiten und Unähnlichkeiten in den ungelabelten Daten erlernen und sich daraufhin selbst optimieren. Auf diese Weise können wir letztendlich auch gute Label-Vorhersagen für neue, ungesehene Bilder erzielen.

Fazit: Supervised vs. Unsupervised vs. Semi-supervised

Supervised Learning wünscht sich jeder, der mit einem KI Projekt betraut ist. In der Praxis ist das kaum anwendbar, da selten sämtliche Trainingsdaten gut strukturiert und gelabelt vorliegen.

Wenn nur unstrukturierte und ungelabelte Daten vorhanden sind, dann können wir mit Unsupervised Learning immerhin Informationen aus den Daten gewinnen, die unser Kunde so nicht hätte. Im Vergleich zu Supervised Learning ist aber die Ergebnisqualität deutlich schlechter.

Mit Semi-Supervised Learning versuchen wir das Datendilemma, also kleiner Teil gelabelte, großer Teil ungelabelte Daten, aufzulösen. Wir verwenden beide Datensätze und können gute Vorhersage-Ergebnisse erzielen, deren Qualität dem Supervised Learning oft ebenbürtig sind.

Dieser Artikel entstand in Zusammenarbeit zwischen DATANOMIQ, einem Unternehmen für Beratung und Services rund um Business Intelligence, Process Mining und Data Science. und pixolution, einem Unternehmen für AI Solutions im Bereich Computer Vision (Visuelle Bildsuche und individuelle KI Lösungen).

Haufe Akademie Data Science Buzzword Bingo

Buzzword Bingo: Data Science – Teil III

Im ersten Teil unserer Serie „Buzzword Bingo: Data Science“ widmeten wir uns den Begriffen Künstliche Intelligenz, Algorithmen und Maschinelles Lernen, im zweiten Teil den Begriffen Big Data, Predictive Analytics und Internet of Things. Nun geht es hier im dritten und letzten Teil weiter mit der Begriffsklärung dreier weiterer Begriffe aus dem Data Science-Umfeld.

Buzzword Bingo: Data Science – Teil III: Künstliche neuronale Netze & Deep Learning

Im dritten Teil unserer dreiteiligen Reihe „Buzzword Bingo Data Science“ beschäftigen wir uns mit den Begriffen „künstliche neuronale Netze“ und „Deep Learning“.

Künstliche neuronale Netze

Künstliche neuronale Netze beschreiben eine besondere Form des überwachten maschinellen Lernens. Das Besondere hier ist, dass mit künstlichen neuronalen Netzen versucht wird, die Funktionsweise des menschlichen Gehirns nachzuahmen. Dort können biologische Nervenzellen durch elektrische Impulse von benachbarten Neuronen erregt werden. Nach bestimmten Regeln leiten Neuronen diese elektrischen Impulse dann wiederum an benachbarte Neuronen weiter. Häufig benutzte Signalwege werden dabei verstärkt, wenig benutzte Verbindungen werden gleichzeitig im Laufe der Zeit abgeschwächt. Dies wird beim Menschen üblicherweise dann als Lernen bezeichnet.

Dasselbe geschieht auch bei künstlichen neuronalen Netzen: Künstliche Neuronen werden hier hinter- und nebeneinander geschaltet. Diese Neuronen nehmen dann Informationen auf, modifizieren und verarbeiten diese nach bestimmten Regeln und geben dann Informationen wiederum an andere Neuronen ab. Üblicherweise werden bei künstlichen neuronalen Netzen mindestens drei Schichten von Neuronen unterschieden.

  • Die Eingabeschicht nimmt Informationen aus der Umwelt auf und speist diese in das neuronale Netz ein.
  • Die verborgene(n) Schichte(n) liegen zwischen der Eingabe- und der Ausgabeschicht. Hier werden wie beschrieben die eingegebenen Informationen von den einzelnen Neuronen verarbeitet und anschließend weitergegeben. Der Name „verborgene“ Schicht betont dabei, dass für Anwender meist nicht erkennbar ist, in welcher Form ein neuronales Netz die Eingabeinformationen in den verborgenen Schichten verarbeitet.
  • Die letzte Schicht eines neuronalen Netzes ist die Ausgabeschicht. Diese beinhaltet die Ausgabeneuronen, welche die eigentliche Entscheidung, auf die das neuronale Netz trainiert wurde, als Information ausgeben.

Das besondere an neuronalen Netzen: Wie die Neuronen die Informationen zwischen den verborgenen Schichten verarbeiten und an die nächste Schicht weitergeben, erlernt ein künstliches neuronales Netz selbstständig. Hierfür werden – einfach ausgedrückt – die verschiedenen Pfade durch ein neuronales Netz, die verschiedene Entscheidungen beinhalten, häufig hintereinander ausprobiert. Führt ein bestimmter Pfad während des Trainings des neuronalen Netzes nicht zu dem vordefinierten korrekten Ergebnis, wird dieser Pfad verändert und in dieser Form zukünftig eher nicht mehr verwendet. Führt ein Pfad stattdessen erfolgreich zu dem vordefinierten Ergebnis, dann wird dieser Pfad bestärkt. Schlussendlich kann, wie bei jedem überwachten Lernprozess, ein erfolgreich trainiertes künstliches neuronales Netz auf unbekannte Eingangsdaten angewandt werden.

Auch wenn diese Funktionsweise auf den ersten Blick nicht sehr leicht verständlich ist: Am Ende handelt es sich auch hier bloß um einen Algorithmus, dessen Ziel es ist, Muster in Daten zu erkennen. Zwei Eigenschaften teilen sich künstliche neuronale Netze aber tatsächlich mit den natürlichen Vorbildern: Sie können sich besonders gut an viele verschiedene Aufgaben anpassen, benötigen dafür aber auch meistens mehr Beispiele (Daten) und Zeit als die klassischen maschinellen Lernverfahren.

Sonderform: Deep Learning

Deep Learning ist eine besondere Form von künstlichen neuronalen Netzen. Hierbei werden viele verdeckte Schichten hintereinander verwendet, wodurch ein tiefes (also „deep“) neuronales Netz entsteht.

Je tiefer ein neuronales Netz ist, umso komplexere Zusammenhänge kann es abbilden. Aber es benötigt auch deutlich mehr Rechenleistung als ein flaches neuronales Netz. Seit einigen Jahren steht diese Leistung günstig zur Verfügung, weshalb diese Form des maschinellen Lernens an Bedeutung gewonnen hat.

Die 6 Schritte des Process Mining – Infografik

Viele Process Mining Projekte drehen sich vor allem um die Auswahl und die Einführung der richtigen Process Mining Tools. Egal ob mit Celonis, Signavio, UiPath oder einem anderem Software-Anbieten, Process Mining ist nicht irgendein Tool, sondern eine Methodik der Aufbereitung und Analyse der Daten. Im Kern von Process Mining steckt eigentlich eine Graphenanalyse, die Prozessschritte als Knoten (Event) und Kanten (Zeiten) darstellt. Hinzu kommen weitere Darstellungen mit einem fließenden Übergang in die Business Intelligence, so bieten andere Tool-Anbieter auch Plugins für Power BI, Tableau, Qlik Sense und andere BI-Tools, um Process Mining zu visualisieren.

Unternehmen können Event Logs selbst herstellen und in ein Data Warehouse speisen, die dann alle Process Mining Tools mit Prozessdaten versorgen können. Die investierten Aufwände in Process Mining würden somit nachhaltiger (weil länger nutzbar) werden und die Abhängigkeit von bestimmter Software würde sich auf ein Minimum reduzieren, wir riskieren keinen neuen Aufwand für Migration von einem Anbieter zum nächsten. Übrigens können die Event Logs dann auch in andere Tools z. B. für Business Intelligence (BI) geladen und anderweitig analysiert werden.

Jedoch ganz unabhängig von den Tools, gibt es eine ganz generelle Vorgehensweise in dieser datengetriebenen Prozessanalyse, die wir mit der folgenden Infografik beschreiben möchten.

DATANOMIQ Process Mining - 6 Steps of Doing Process Mining Analysis

6 Steps of Process Mining – Infographic PDF Download.

DATANOMIQ ist der herstellerunabhängige Beratungs- und Service-Partner für Business Intelligence, Process Mining und Data Science. Wir erschließen die vielfältigen Möglichkeiten durch Big Data und künstliche Intelligenz erstmalig in allen Bereichen der Wertschöpfungskette. Dabei setzen wir auf die besten Köpfe und das umfassendste Methoden- und Technologieportfolio für die Nutzung von Daten zur Geschäftsoptimierung.