Endspurt Bewerbungsphase: Zertifikatsstudium „Data Science and Big Data“ 2019

Anzeige

Bewerben Sie sich noch bis zum 12. November 2018 für das berufsbegleitende Zertifikatsstudium „Data Science and Big Data“. Die 3. Studiengruppe startet im Februar 2019 an der Technischen Universität Dortmund.

Renommierte Wissenschaftlerinnen und Wissenschaftler vermitteln den Teilnehmerinnen und Teilnehmern die neuesten datenwissenschaftlichen Erkenntnisse und zeigen, wie dieses Wissen praxisnah im eigenen Big-Data Projekt umgesetzt werden kann.

Von der Analyse über das Management bis zur zielgerichteten Darstellung der Ergebnisse lernen die Teilnehmenden dabei Methoden der Disziplinen Statistik, Informatik und Journalistik kennen.

Nähere Informationen finden Sie unter: http://www.zhb.tu-dortmund.de/datascience

Bei Fragen oder für weitere Informationen können Sie sich gerne an Frau Maier wenden: simona.maier@tu-dortmund.de

 

Freier Eintritt für Young Professionals zu den Data Leader Days 2018

Jetzt bewerben und kostenfrei beim Spitzenevent der Datenwirtschaft am 14. oder 15. November in Berlin dabei sein!
Die Data Leader Days senden regelmäßig wichtige Impulse in die Big Data und KI-Welt aus und sind ein führendes Forum für Wissens-, Ideen- und Informationsaustausch. Die Spitzen von Anwenderunternehmen zeigen exklusiv in einem innovativen Programm mit Keynote, Präsentationen sowie Use & Business Cases auf, wie Digitalisierung und Künstliche Intelligenz umgesetzt und zum neuen Wettbewerbsvorteil werden.

Zu den Speakern gehören die Data Leader von E.ON, Pro7Sat1, Deutscher Sparkassen- und Giroverband, Airbus, Wittenstein, BASF, Merck, Heidelberger Druckmaschinen, Vodafone, FTI und von weiteren Unternehmen.

Bewerbe Dich bis zum 02.11.2018 mit einem kurzen Statement, warum Du dabei sein möchtest! Schicke mir Dein Statement an linhchi.nguyen@datanomiq.de und überzeuge uns.
Ist dein Statement aussagekräftig und überzeugend, laden wir Dich kostenlos zu einem der beiden Veranstaltungstage ein.

Einstieg in Natural Language Processing – Teil 2: Preprocessing von Rohtext mit Python

Dies ist der zweite Artikel der Artikelserie Einstieg in Natural Language Processing.

In diesem Artikel wird das so genannte Preprocessing von Texten behandelt, also Schritte die im Bereich des NLP in der Regel vor eigentlichen Textanalyse durchgeführt werden.

Tokenizing

Um eingelesenen Rohtext in ein Format zu überführen, welches in der späteren Analyse einfacher ausgewertet werden kann, sind eine ganze Reihe von Schritten notwendig. Ganz allgemein besteht der erste Schritt darin, den auszuwertenden Text in einzelne kurze Abschnitte – so genannte Tokens – zu zerlegen (außer man bastelt sich völlig eigene Analyseansätze, wie zum Beispiel eine Spracherkennung anhand von Buchstabenhäufigkeiten ect.).

Was genau ein Token ist, hängt vom verwendeten Tokenizer ab. So bringt NLTK bereits standardmäßig unter anderem BlankLine-, Line-, Sentence-, Word-, Wordpunkt- und SpaceTokenizer mit, welche Text entsprechend in Paragraphen, Zeilen, Sätze, Worte usw. aufsplitten. Weiterhin ist mit dem RegexTokenizer ein Tool vorhanden, mit welchem durch Wahl eines entsprechenden Regulären Ausdrucks beliebig komplexe eigene Tokenizer erstellt werden können.

Üblicherweise wird ein Text (evtl. nach vorherigem Aufsplitten in Paragraphen oder Sätze) schließlich in einzelne Worte und Interpunktionen (Satzzeichen) aufgeteilt. Hierfür kann, wie im folgenden Beispiel z. B. der WordTokenizer oder die diesem entsprechende Funktion word_tokenize() verwendet werden.

Stemming & Lemmatizing

Andere häufig durchgeführte Schritte sind Stemming sowie Lemmatizing. Hierbei werden die Suffixe der einzelnen Tokens des Textes mit Hilfe eines Stemmers in eine Form überführt, welche nur den Wortstamm zurücklässt. Dies hat den Zweck verschiedene grammatikalische Formen des selben Wortes (welche sich oft in ihrer Endung unterscheiden (ich gehe, du gehst, er geht, wir gehen, …) ununterscheidbar zu machen. Diese würden sonst als mehrere unabhängige Worte in die darauf folgende Analyse eingehen.

Neben bereits fertigen Stemmern bietet NLTK auch für diesen Schritt die Möglichkeit sich eigene Stemmer zu programmieren. Da verschiedene Stemmer Suffixe nach unterschiedlichen Regeln entfernen, sind nur die Wortstämme miteinander vergleichbar, welche mit dem selben Stemmer generiert wurden!

Im forlgenden Beispiel werden verschiedene vordefinierte Stemmer aus dem Paket NLTK auf den bereits oben verwendeten Beispielsatz angewendet und die Ergebnisse der gestemmten Tokens in einer Art einfachen Tabelle ausgegeben:

Sehr ähnlich den Stemmern arbeiten Lemmatizer: Auch ihre Aufgabe ist es aus verschiedenen Formen eines Wortes die jeweilige Grundform zu bilden. Im Unterschied zu den Stemmern ist das Lemma eines Wortes jedoch klar als dessen Grundform definiert.

Vokabular

Auch das Vokabular, also die Menge aller verschiedenen Worte eines Textes, ist eine informative Kennzahl. Bezieht man die Größe des Vokabulars eines Textes auf seine gesamte Anzahl verwendeter Worte, so lassen sich hiermit Aussagen zu der Diversität des Textes machen.

Außerdem kann das auftreten bestimmter Worte später bei der automatischen Einordnung in Kategorien wichtig werden: Will man beispielsweise Nachrichtenmeldungen nach Themen kategorisieren und in einem Text tritt das Wort „DAX“ auf, so ist es deutlich wahrscheinlicher, dass es sich bei diesem Text um eine Meldung aus dem Finanzbereich handelt, als z. B. um das „Kochrezept des Tages“.

Dies mag auf den ersten Blick trivial erscheinen, allerdings können auch mit einfachen Modellen, wie dem so genannten „Bag-of-Words-Modell“, welches nur die Anzahl des Auftretens von Worten prüft, bereits eine Vielzahl von Informationen aus Texten gewonnen werden.

Das reine Vokabular eines Textes, welcher in der Variable “rawtext” gespeichert ist, kann wie folgt in der Variable “vocab” gespeichert werden. Auf die Ausgabe wurde in diesem Fall verzichtet, da diese im Falle des oben als Beispiel gewählten Satzes den einzelnen Tokens entspricht, da kein Wort öfter als ein Mal vorkommt.

Stopwords

Unter Stopwords werden Worte verstanden, welche zwar sehr häufig vorkommen, jedoch nur wenig Information zu einem Text beitragen. Beispiele in der beutschen Sprache sind: der, und, aber, mit, …

Sowohl NLTK als auch cpaCy bringen vorgefertigte Stopwordsets mit. 

Vorsicht: NLTK besitzt eine Stopwordliste, welche erst in ein Set umgewandelt werden sollte um die lookup-Zeiten kurz zu halten – schließlich muss jedes einzelne Token des Textes auf das vorhanden sein in der Stopworditerable getestet werden!

POS-Tagging

POS-Tagging steht für „Part of Speech Tagging“ und entspricht ungefähr den Aufgaben, die man noch aus dem Deutschunterricht kennt: „Unterstreiche alle Subjekte rot, alle Objekte blau…“. Wichtig ist diese Art von Tagging insbesondere, wenn man später tatsächlich strukturiert Informationen aus dem Text extrahieren möchte, da man hierfür wissen muss wer oder was als Subjekt mit wem oder was als Objekt interagiert.

Obwohl genau die selben Worte vorkommen, bedeutet der Satz „Die Katze frisst die Maus.“ etwas anderes als „Die Maus frisst die Katze.“, da hier Subjekt und Objekt aufgrund ihrer Reihenfolge vertauscht sind (Stichwort: Subjekt – Prädikat – Objekt ).

Weniger wichtig ist dieser Schritt bei der Kategorisierung von Dokumenten. Insbesondere bei dem bereits oben erwähnten Bag-of-Words-Modell, fließen POS-Tags überhaupt nicht mit ein.

Und weil es so schön einfach ist: Die obigen Schritte mit spaCy

Die obigen Methoden und Arbeitsschritte, welche Texte die in natürlicher Sprache geschrieben sind, allgemein computerzugänglicher und einfacher auswertbar machen, können beliebig genau den eigenen Wünschen angepasst, einzeln mit dem Paket NLTK durchgeführt werden. Dies zumindest einmal gemacht zu haben, erweitert das Verständnis für die funktionsweise einzelnen Schritte und insbesondere deren manchmal etwas versteckten Komplexität. (Wie muss beispielsweise ein Tokenizer funktionieren der den Satz “Schwierig ist z. B. dieser Satz.” korrekt in nur einen Satz aufspaltet, anstatt ihn an jedem Punkt welcher an einem Wortende auftritt in insgesamt vier Sätze aufzuspalten, von denen einer nur aus einem Leerzeichen besteht?) Hier soll nun aber, weil es so schön einfach ist, auch das analoge Vorgehen mit dem Paket spaCy beschrieben werden:

Dieser kurze Codeabschnitt liest den an spaCy übergebenen Rohtext in ein spaCy Doc-Object ein und führt dabei automatisch bereits alle oben beschriebenen sowie noch eine Reihe weitere Operationen aus. So stehen neben dem immer noch vollständig gespeicherten Originaltext, die einzelnen Sätze, Worte, Lemmas, Noun-Chunks, Named Entities, Part-of-Speech-Tags, ect. direkt zur Verfügung und können.über die Methoden des Doc-Objektes erreicht werden. Des weiteren liegen auch verschiedene weitere Objekte wie beispielsweise Vektoren zur Bestimmung von Dokumentenähnlichkeiten bereits fertig vor.

Die Folgende Übersicht soll eine kurze (aber noch lange nicht vollständige) Übersicht über die automatisch von spaCy generierten Objekte und Methoden zur Textanalyse geben:

Diese „Vollautomatisierung“ der Vorabschritte zur Textanalyse hat jedoch auch seinen Preis: spaCy geht nicht gerade sparsam mit Ressourcen wie Rechenleistung und Arbeitsspeicher um. Will man einen oder einige Texte untersuchen so ist spaCy oft die einfachste und schnellste Lösung für das Preprocessing. Anders sieht es aber beispielsweise aus, wenn eine bestimmte Analyse wie zum Beispiel die Einteilung in verschiedene Textkategorien auf eine sehr große Anzahl von Texten angewendet werden soll. In diesem Fall, sollte man in Erwägung ziehen auf ressourcenschonendere Alternativen wie zum Beispiel gensim auszuweichen.

Wer beim lesen genau aufgepasst hat, wird festgestellt haben, dass ich im Abschnitt POS-Tagging im Gegensatz zu den anderen Abschnitten auf ein kurzes Codebeispiel verzichtet habe. Dies möchte ich an dieser Stelle nachholen und dabei gleich eine Erweiterung des Pakets spaCy vorstellen: displaCy.

Displacy bietet die Möglichkeit, sich Zusammenhänge und Eigenschaften von Texten wie Named Entities oder eben POS-Tagging graphisch im Browser anzeigen zu lassen.

Nach ausführen des obigen Codes erhält man eine Ausgabe die wie folgt aussieht:

Nun öffnet man einen Browser und ruft die URL ‘http://127.0.0.1:5000’ auf (Achtung: localhost anstatt der IP funktioniert – warum auch immer – mit displacy nicht). Im Browser sollte nun eine Seite mit einem SVG-Bild geladen werden, welches wie folgt aussieht

Die Abbildung macht deutlich was POS-Tagging genau ist und warum es von Nutzen sein kann wenn man Informationen aus einem Text extrahieren will. Jedem Word (Token) ist eine Wortart zugeordnet und die Beziehung der einzelnen Worte durch Pfeile dargestellt. Dies ermöglicht es dem Computer zum Beispiel in dem Satzteil “der grüne Apfel”, das Adjektiv “grün” auf das Nomen “Apfel” zu beziehen und diesem somit als Eigenschaft zuzuordnen.

Nachdem dieser Artikel wichtige Schritte des Preprocessing von Texten beschrieben hat, geht es im nächsten Artikel darum was man an Texten eigentlich analysieren kann und welche Analysemöglichkeiten die verschiedenen für Python vorhandenen Module bieten.

II. Einführung in TensorFlow: Grundverständnis für TensorFlow

o. Installation von TensorFlow

Bevor wir richtig durchstarten können, müssen wir natürlich TensorFlow erstmal installieren. Auf dieser Seite findet ihr eine ausführliche Anleitung, wie man TensorFlow auf allen möglichen Systemen installiert. Die nächsten Schritte beschränken sich auf die Installation auf Windows.

o.1.  Installation mit pip

Um TensorFlow zu nutzen, müssen wir diesen Framework auch erstmal installieren. Am einfachsten ist die Installation, wenn ihr Python in reiner Form auf euren Rechner habt. Dann ist es vollkommen ausreichend, wenn ihr folgenden Befehl in eure Eingabeaufforderung(Windows: cmd) eingebt:

Stellt bei dieser Installation sicher, dass ihr keine ältere Version von Python habt als 3.5.x. Außerdem ist es erforderlich, dass ihr pip installiert habt und Python bei euch in der PATH-Umgebung eingetragen ist.Besitzt ihr eine NVIDIA® Grafikkarte so könnt ihr TensorFlow mit GPU Support nutzen. Dazu gebt ihr statt des oben gezeigten Befehls folgendes ein:

o.2. Installation mit Anaconda

Ein wenig aufwendiger wird es, wenn ihr die beliebte Anaconda Distribution nutzt, weil wir da eine Anaconda Umgebung einrichten müssen. Auch hier müssen wir wieder in den Terminal bzw. in die Eingabeaufforderung und folgenden Befehl eingeben:

Tauscht das mit eurer genutzten Version aus.(= 5, 6) Danach aktiviert ihr die erstellte Umgebung:

Nun installieren wir TensorFlow in unsere erstellte Umgebung. Ohne GPU Support

mit GPU Support

Es sei erwähnt, dass das Conda package nur von der Community unterstützt wird, jedoch nicht offiziell seitens Google.

o.3.  Validierung der Installation

Der einfachste Weg um zu überprüfen ob unsere Installation gefruchtet hat und funktioniert können wir anhand eines einfachen Beispiels testen. Dazu gehen wir wieder in den/die Terminal/Eingabeaufforderung und rufen python auf, indem wir python eingeben.


 

1. Grundverständnis für TensorFlow

1.1. Datenstrom-orientierte Programmierung

In diesem Artikel wollen wir näher auf die Funktionsweise von TensorFlow eingehen. Wie wir aus dem ersten Artikel dieser Serie wissen, nutzt TensorFlow das datenstrom-orientierte Paradigma. In diesem wird ein Datenfluss-Berechnungsgraph erstellt, welcher aus Knoten und Kanten besteht. Ein  Datenfluss-Berechnungsgraph, Datenflussgraph oder auch Berechnungsgraph kann mehrere Knoten haben, die wiederum durch die Kanten verbunden sind. In TensorFlow steht jeder Knoten für eine Operation, die Auswirkungen auf eingehende Daten haben.

Abb.1: Knoten und Kanten: Das Eingangssignal wird durch Kanten in den Knoten eingespeist, verändert und ausgegeben

Abb. 1.5: Achterbahn mit fehlender Verbindung [Quelle]

Analogie-Beispiel: Stellt euch vor ihr seid in einem Freizeitpark und habt Lust eine Achterbahn zu fahren. Am Anfang seid ihr vielleicht ein wenig nervös, aber euch geht es noch sehr gut. Wie jeder von euch weiß, hat eine Achterbahn verschiedene Fahrelemente eingebaut, die unsere Emotionen triggern und bei manchen vielleicht sogar auf den Magen schlagen. Diese Elemente sind äquivalent unsere Knoten. Natürlich müssen diese Elemente auch verbunden sein, sonst wäre eine Fahrt mit dieser Achterbahn in meinen Augen nicht empfehlenswert. Diese Verbindungsstücke sind unsere Kanten und somit sind wir die Daten/Signale, die von Knoten zu Knoten durch die Kanten weitergeleitet werden. Schauen wir uns Abb. 2 an, in der eine schematische Darstellung einer fiktiven Achterbahn zu sehen ist, welche mit 4 Fahrelementen dienen kann.

Abb. 2: Oben: Schematische Darstellung eines Datenflussgraphen anhand unserer fiktiven Achterbahn Unten: Unsere fiktive Achterbahn

  1. Airtime-Hügel: Ein Airtime-Hügel erzeugt bei der Überfahrt Schwerelosigkeit und in manchen Fällen ein Abheben aus dem Sitz. Ein guter Einstieg für die Mitfahrer, wie ich finde.
  2. Klassischer Looping: Wir kennen ihn alle, den Looping. Mit hoher Geschwindigkeit geht es in einen vertikalen Kreis hinein und man sich am höchsten Punkt kopfüber befindet.  Für Leute mit nicht so starken Nerven fragen sich spätestens jetzt, warum sie überhaupt mitgefahren sind.
  3. Korkenzieher/Schraube: Der Korkenzieher kann als auseinander gezogener Looping beschrieben werden.
  4. Schraubel-Looping : Und zu guter Letzt kombinieren wir  einen Looping mit einer Schraube! Ein Teil unserer Mitfahrer sucht den nächsten Busch auf, ein anderer Teil will am liebsten nochmal fahren und der Rest wird jetzt einen Pause brauchen.

Fakt ist, dass die Fahrelemente/Knoten unsere anfänglichen Emotionen/Eingangsdatensignale geändert haben.

1.2. Genereller Ablauf in TensorFlow

Anhand unser fiktiven Achterbahn haben wir das Prinzip der datenstrom-orientierten Programmierung eingefangen. Damit wir aber erst einmal Achterbahn fahren können, müssen wir diese konstruieren. Das gilt auch in TensorFlow und können die Arbeit in zwei wesentliche Phasen unterteilen:

  1. Erstellen eines Berechnungsgraphen: Wie auch bei einer Achterbahn müssen wir unser Modell erst einmal modellieren. Je nachdem welche Ressourcen uns zur Verfügung gestellt werden, welche Bedingungen wir folgen müssen, können wir unser Modell darauf aufbauen und gestalten.
  2. Ausführung des Berechnungsgraphen: Nachdem wir das Modell/den Graph fertig konstruiert haben, führen wir diese nun aus, d.h. für unsere Achterbahn, dass wir den Strom anschalten und losfahren können.

2. Erstellung eines Graphen

2.1. TensorFlow-Operatoren

Wie bereits erwähnt können Knoten verschiedene Operationen in sich tragen. Das können z.B. Addition, Substraktion oder aber auch mathematische Hyperbelfunktionen  à la Tangens Hyperbolicus Operatoren sein. Damit TensorFlow mit den Operatoren arbeiten kann, müssen wir diese mit den zur Verfügung gestellten Operatoren von TensorFlow auskommen. Eine vollständige Dokumentation findet ihr hier.

2.2. Platzhalter

Wenn in TensorFlow Daten aus externen Quellen in den Berechnungsgraph integriert werden sollen, dann wird eine eigens dafür entwickelte Struktur genutzt um die Daten einzulesen; dem Platzhalter. Ihr könnt euch den Platzhalter als Wagon unserer Achterbahn vorstellen, der die Mitfahrer (Daten bzw. Tensoren) durch die Achterbahn (Berechnungsgraph) jagt.

Es ist bei der Modellierung eines Berechnungsgraphen nicht notwendig, die Daten am Anfang einzuspeisen. Wie der Name schon sagt, setzt TensorFlow eine ‘leere Größe’ ein, die in der zweiten Phase gefüllt wird.

Eine Frage, die ich mir damals gestellt habe war, warum man einen Platzhalter braucht? Dazu können wir uns wieder unsere Achterbahn nehmen. Bei 2-3 Fahrgästen besteht kein Problem; wir hätten genug Platz/Ressourcen um diese unterzubringen. Aber was machen wir, wenn wir 10.000 Gäste haben, wie es auch in der Realität ist ? Das ist auch bei neuronalen Netzen der Fall, wenn wir zu viele Daten haben, dann stoßen wir irgendwann an unser Leistungslimit. Wir teilen unsere Daten/Gäste so auf, dass wir damit arbeiten können.

2.3. Variable

Stellen wir uns folgendes Szenario vor: Wir haben eine Achterbahn fertig konstruiert – wahrscheinlich die beste und verrückteste Achterbahn, die es jemals gegeben hat. Je nachdem welchen Effekt wir mit unserer Achterbahn erzielen wollen; z.B. ein einfacher Adrenalinschub, ein flaues Gefühl im Magen oder den vollständigen Verlust jeglicher Emotionen aus purer Angst um das eigene Leben, reicht es nicht nur ein schönes Modell zu bauen. Wir müssen zusätzlich verschiedene Größen anpassen um das Erlebnis zu maximieren. Eine wichtige Größe für unsere Achterbahn wäre die Geschwindigkeit (in neuronalen Netzen sind es die Gewichte), die über den Fahrspaß entscheidet. Um die optimale Geschwindigkeit zu ermitteln, müssen viele Versuche gemacht werden (sei es in der Realität oder in der Simulation) und nach jedem Test wird die Geschwindigkeit nach jedem Test angepasst. Zu diesem Zweck sind die Variablen da. Sie passen sich nach jedem Versuch an.

2.4. Optimierung

Damit die Variablen angepasst werden können, müssen wir TensorFlow Anweisungen geben, wie er die Variablen optimiert werden soll. Dafür müssen wir eine Formel an TensoFlow übermitteln, die dann optimiert wird. Auch hat man die Auswahl von verschiedenen Optimierer, die die Aufgabe anders optimieren. Die Wahl der richtigen Formel und des passenden Optimierer ist jedoch eine Sache, die ohne weiteres nicht zu beantworten ist. Wir wollen ein anderes Mal Bezug auf diese Frage nehmen.

3. Ausführung eines Graphen

Wie die Ausführung des Graphen von statten läuft, schauen wir uns im nächsten Abschnitt genauer an. Es sei so viel gesagt, dass um eine Ausführung einzuleiten wir den Befehl tf.Session() benötigen. Die Session wird mit tf.Session().run()gestartet und am Ende mit tf.Session().close() geschlossen. In der Methode .run()müssen die ausgeführten Größen stehen und außerdem der Befehl feed_dict= zum Befüllen der Platzhalter.

4. Beispiel: Achterbahn des Grauens – Nichts für schwache Nerven

4.1 Erklärung des Beispiels

Wir haben jetzt von so vielen Analogien gesprochen, dass es alles ein wenig verwirrend sein kann. Daher nochmal eine Übersicht zu den wesentlichen Punkten:

TensorFlow Neuronales Netz Achterbahn
Knoten Neuron Fahrelement
Variable Gewichte, Bias Geschwindigkeit
Kanten Signale Zustand der Fahrer
Platzhalter Wagon
Tab.1: Analogie unser fiktiven Achterbahn

 

Nun haben wir so viel Theorie gehört, jetzt müssen auch Taten folgen! Weshalb wir unsere Achterbahn modellieren wollen. Zu unserem Beispiel: Wir wollen eine Achterbahn bauen, welche ängstlichen Mitfahrer noch ängstlicher machen soll und diese sollen am Ende der Fahrt sich wünschen nie mitgefahren zu sein. (Es wird natürlich eine stark vereinfachte Variante werden, die aber auf all unsere Punkte eingehen soll, die wir im oberen Teil angesprochen haben.)

Wie im bereits beschrieben, unterteilt sich die Arbeit in TensorFlow in zwei Phasen:

  1. Erstellung des Graphen: In unserem Falle wäre das die Konstruktion unserer Achterbahn.
  2. Ausführung des Graphen: In dieser Phase lassen wir unsere Insassen einfach los und schauen mal was passiert.

Um die Zahlen zu verstehen, möchte ich euch zudem erklären, was überhaupt das Ziel unseres Modells ist. Wir haben 8 Probanden mit verschiedenen Angstzuständen. Der Angstzustand ist in unserem Beispiel ein quantitativer Wert, Menge der ganzen Zahlen  und je größer dieser Wert ist, desto ängstlicher sind unsere Probanden. Unser Ziel ist es alle Probanden in Angst und Schrecken zu versetzen, die einen Angstzustand >5 haben und sich nach der Fahrt wünschen unserer Achterbahn nie mitgefahren zu sein! Die Größe die wir dabei optimieren wollen, ist die Geschwindigkeit. Wenn die Geschwindigkeit zu schnell ist, dann fürchten sich zu viele, wenn wir zu langsam fahren, dann fürchtet sich womöglich niemand. Außerdem benötigen wir noch eine Starthöhe, die wir dem Modell zugeben müssen.

Wir haben somit eine Klassifikationsaufgabe mit dem Ziel die Geschwindigkeit und die Starthöhe zu optimieren, damit sich Fahrgäste mit einem Angstzustand > 5 so eine schlechte Erfahrung machen, dass sie am liebsten nie mitgefahren wären.

Wir benötigen außerdem für unser Beispiel folgende Module:

4.2. Eingangssignale: Zustände der Gäste

Wir sehen hier zwei Vektoren bzw. Tensoren die Informationen über unsere Gäste haben.

  • x_input ist der Angstzustand unserer Gäste
  • y_input ist unser gewünschtes Ausgangsssignal: 0  normal, 1  Wunsch nicht mitgefahren zu sein

4.3. Erstellung unseres Graphen: Konstruktion der Achterbahn

Nun konstruieren wir unsere Achterbahn des Grauens:

Eine Gleichrichter-Aktivierungsfunktion (engl. rectifier) mit einer Matrizenmultiplikation aus einem Vektor und einem Skalar mit anschließender Fehleroptimierung! MuhahahahaHAHAHAHA!

Auf den ersten Blick vielleicht ein wenig verwirrend, weshalb wir alles Schritt für Schritt durchgehen:

  • wag = tf.placeholder(tf.float32, shape = [8, 1]) ist unser Wagon, welcher die Achterbahn auf und ab fährt. Gefüllt mit unseren Probanden. Die Daten der Probanden (x_input)sind externe Daten und damit geeignet für einen Platzhalter.
    • Wichtig bei Platzhalter ist, dass ihr den Datentyp angeben müsst!
    • Optional könnt ihr auch die Form angeben. Bei einem so überschaubaren Beispiel machen wir das auch. (Form unseres Vektors: 8×1)
  • y_true = tf.placeholder(tf.float32, shape = [8, 1]) ist der gewünschte Endzustand unserer Gäste, den wir uns für die Probanden erhoffen, d.h. es ist unser y_input. Auch hier kommen die Daten von außerhalb und daher wird der Platzhalter genutzt.
  • v, h sind Geschwindigkeit und Starthöhe, die optimiert werden müssen; perfekt für eine Variable!
    • Variablen brauchen am Anfang immer einen Initialisierungswert. Für v soll es 1 sein und für h soll es -2 sein. Außerdem liegen diese Größen als Skalare (1×1) vor.

Abb.2: Schematische Darstellung unseres Berechnungsgraphen

Nun zum zweiten Teil der Modellierung in dem wir ein klein wenig Mathematik benötigen. Schauen wir uns folgende Gleichung an:

  • z = tf.matmul(wag, v) + h: ist unsere Matrizenmultiplikation -> Da unsere Größen in Vektoren/Tensoren vorliegen, können wir diese nicht einfach multiplizieren, wie z.B. 2*2 = 4. Bei der Multiplikation von Matrizen oder Vektoren müssen bestimmte Bedingungen herrschen, damit diese überhaupt multipliziert werden können. Eine ausführlichere Erklärungen soll demnächst folgen.
  • y_pred = tf.nn.relu(z): Für all diejenigen, die sich bereits mit neuronalen Netzen beschäftigt haben; relu ist in unserem Fall die Aktivierungsfunktion. Für alle anderen, die mit der Aktivierungsfunktion noch nichts anfangen können: Die Kombination (Matrizenmultiplikation) aus dem Angstzustand und der Geschwindigkeit ist der Wert Z. Je nachdem welche Aktivierungsfunktion genutzt wird, triggert der Wert unsere Emotionen, so dass wir den Wunsch verspüren, die Bahn nie gefahren zu sein.
  • err = tf.square(y_true - y_pred):Quadriert die Differenz der tatsächlichen und der ermittelten Werte. -> die zu optimierende Funktion
  • opt = tf.train.AdamOptimizer(learning_rate=0.01).minimize(err)Unser gewählter Optimierer mit der Lernrate 0.01.
  • init = tf.global_variables_initializer() Initialisierung der Variablen

Abb. 3: Aktivierungsfunktion ReLu

4.4. Ausführung des Graphen: Test der Achterbahn

Wenn wir den unten stehenden Code mal grob betrachten, dann fällt vor allem die Zeile mit dem with-(Python)Operator und dem tf.Session()-(TensorFlow)Operator auf. Der tf.Session()-Operator leitet unsere Ausführung ein. Warum wir with nutzen hat den Grund, dass dieser Operator uns das Leben einfacher macht, da dieser die nachfolgenden Befehle wieder schließt und damit wieder Leistungsressourcen frei werden. Werden zum Beispiel Daten aus externen Quellen benötigt – sei es eine Excel- oder eine SQL-Tabelle – dann schließt uns der with Operator die geöffneten Dateien, nachdem er alle unsere Befehle durchgeführt hat.

Durch die Methode .run() werden dann die in der Klammer befindenden Größen bearbeitet. Mit dem Parameter feed_dict= füllen wir den Graphen mit unseren gewünschten Dateien.

Wir lassen das Ganze 100 mal Testfahren um die optimalen Variablen zu finden. In Abb. 4 sehen wir die Verläufe der Fehlerfunktion, der Geschwindigkeit und der Höhe.

 

In Tab.2 sind nun zwei Fahrgäste zu sehen, die sich wünschen, die Bahn nie gefahren zu sein! Deren Angstlevel () ist über 0 und damit wird der Wunsch getriggert wurde; so wie wir es auch beabsichtigt haben!

Angstlvl berechnet: Fehler: Geschwindigkeit: Starthöhe:
 [0.       ] [0.        ] [0.4536] [-2.5187]
 [0.       ]  [0.        ]
 [0.       ]  [0.        ]
 [0.       ]  [0.        ]
 [0.       ]  [0.        ]
 [0.       ]  [0.        ]
 [0.2060 ] -> Wunsch getriggert  [0.6304]
 [1.5685] -> Wunsch getriggert  [0.3231]
Tab.2: Endergebnisse der letzten Runde

Abb.4: Verläufe der Fehler-, Geschwindigkeits- und Höhenfunktion durch Optimierung

5. Zusammenfassung und Ausblick

Zugegeben ist dieser ganze Aufwand für ein mehr oder weniger linearen Zusammenhang etwas übertrieben und bestimmt ist dem einen oder anderen aufgefallen, dass unser Beispiel mit der Achterbahn an manchen Stellen hinkt. Dennoch hoffe ich, dass ich mit der Analogie das Verständnis von TensorFlow rüberbringen konnte. Lasst uns daher nochmal die wichtigsten Punkte zusammenfassen:

Die Arbeit mit TensorFlow unterteilt sich in folgende Phasen:

  1. Erstellung des Graphen: In dieser Phase konzentrieren wir uns darauf einen Berechnungsgraphen zu erstellen, welcher  so konzipiert wird, dass er uns am Ende das Ergebnis ausgibt, welches wir uns wünschen.
    • Platzhalter: Eine der wichtigsten Sturkturen in TensorFlow ist der Platzhalter. Er ist dafür zuständig, wenn es darum geht externe Daten in unseren Graph einfließen zu lassen. Bei der Erstellung eines Platzhalters müssen wir zumindest den Datentypen angeben.
    • Variable: Wenn es darum geht Größen für ein Modell zu optimieren, stellt TensorFlow Variablen zur Verfügung. Diese benötigen eine Angabe, wie die Form des Tensors aussehen soll.
  2. Ausführung des Graphen: Nachdem wir unseren Graphen entwickelt haben, ist der nächste Schritt diesen auszuführen.
    • Dies machen wir mit dem Befehl tf.Session() und führen diesen dann mit der Methode .run() aus
    • Ebenfalls hat die Optimierung einen wichtigen Bestand in dieser Phase
    • Um unseren Graphen mit den Daten zu füllen, nutzen wir den wird den Parameter feed_dict=

Um diesen Artikel nicht in die Länge zu ziehen, wurden die Themen der Matrizenmultiplikation, Aktivierungsfunktion und Optimierung erstmal nur angerissen. Wir wollen in einem separaten Artikel näher darauf eingehen. Für den Anfang genügen wir uns damit, dass wir von diesen Elementen wissen und dass sie einen wichtigen Bestandteil haben, wenn wir neuronale Netze aufbauen wollen.

In nächsten Artikel werden wir dann ein Perzeptron erstellen und gehen auch näher auf die Themen ein, die wir in diesem Teil nur angerissen haben. Bleibt gespannt!

6. Bonus-Material

Mit Tensorboard ist es möglich unseren entwickelten Graphen auch plotten und auszugeben zu lassen. So sieht unser Graph aus:

Abb.5.: Tensorboard Berechnungsgraphausgabe

Den Programmiercode könnt ihr in diesem Link auch als Ganzes betrachten.

Deep Learning and Human Intelligence – Part 2 of 2

Data dependency is one of the biggest problem of Deep Learning Architectures. This difficulty lies not so much in the algorithm of Deep Learning as in the invisible structure of the data itself.

This is part 2 of 2 of the Article Series: Deep Learning and Human Intelligence.

We saw that the process of discovering numbers was accompanied with many aspects of what are today basic ideas of Machine Learning. But let us go back, a little before that time, when humankind did not fully discovered the concept of numbers. How would a person, at such a time, perceive quantity and the count of things? Some structures are easily recognizable as patterns of objects, that is numbers, like one sun, 2 trees, 3 children, 4 clouds and so on. Sets of objects are much simpler to count if all the objects of the set are present. In such a case it is sufficient to keep a one-to-one relationship between two different set, without the need for numbers, to make a judgement of crucial importance. One could consider the case of two enemies that go to war and wish to know which has a larger army. It is enough to associate a small stone to every enemy soldier and do the same with his one soldier to be able to decide, depending if stones are left or not, if his army is larger or not, without ever needing to know the exact number soldier of any of the armies.

But also does things can be counted which are not directly visible, and do not allow a direct association with direct observable objects that can be seen, like stones. Would a person, at that time, be able to observe easily the 4-th day since today, 5 weeks from now, when even the concept of week is already composite? Counting in this case is only possible if numbers are already developed through direct observation, and we use something similar with stones in our mind, i.e. a cognitive association, a number. Only then, one can think of the concept of measuring at equidistant moments in time at all. This is the reason why such measurements where still cutting edge in the time of Galileo Galilei as we seen before. It is easily to assume that even in the time when humans started to count, such indirect concepts of numbers were not considered to be in relation with numbers. This implies that many concepts with which we are today accustomed to regard as a number, were considered as belonging to different groups, cluster which are not related. Such an hypothesis is not even that much farfetched. Evidence for such a time are still present in some languages, like Japanese.

When we think of numbers, we associate them with the Indo-Arabic numbers, but in Japanese numbers have no decimal structure and counting depends not only on the length of the set (which is usually considered as the number), but also on the objects that make up the set. In Japanese one can speak of meeting roku people, visiting muttsu cities and seeing ropa birds, but referring each time to the same number: six. Additional, many regular or irregular suffixes make the whole system quite complicated. The division of counting into so many clusters seems unnecessarily complicated today, but can easily be understood from a point of view where language and numbers still form and, the numbers, were not yet a uniform concept. What one can learn from this is that the lack of a unifying concept implies an overly complex dependence on data, which is the present case for Deep Learning and AI in general.

Although Deep Learning was a breakthrough in the development of Artificial Intelligence, the task such algorithms can perform were and remained very narrow. It may identify birds or cancer cells, but it will miss the song of the birds or the cry of the patient with cancer. When Watson, a Deep Learning Architecture played the famous Jeopardy game against two former Champions and won, it still made several simple mistakes, like going for the same wrong answer like the player before. If it could listen to the answer of the candidate, it could delete the top answer it had, and gibe the second which was the right one. With other words, Deep Learning Architecture are not multi-tasking and it is for this reason that some experts in AI are calling them intelligent idiots.

Imagine spending time learning to play a game for years and years, and then, when mastering it and wish to play a different game, to be unable to use any of the past experience (of gaming) for the new one and needing to learn everything from scratch. That could be quite depressing and would make life needlessly difficult. This is the reason why people involved in developing Deep Learning worked from early on in the development of multi-tasking Deep Learning Architectures. On the way a different method of using Deep Learning was discovered: transfer learning. Because the time it takes for a Deep Learning Architecture to learn is very long, transfer learning uses already learned Deep Learning Architectures but for slightly different task. It is similar to the use of past experiences in solving new problems, but, the advantage of transfer learning is, it allow the using of past experiences (what it already learned) which reduces dramatically the amount of new data needed in performing a new task. Still, transfer learning is far away from permitting Deep Learning Architectures to perform any kind of task learning only from one master data set.

The management of a unique master data set which includes all the needed data to enable human accuracy for any human activity, is not enough. One needs another ingredient, the so called cost function which translates, in this case, to the human brain. There are all our experiences and knowledge. How long does it takes to collect sufficient of both to handle a normal human life? How much to achieve our highest potential? If not a lifetime, at least decades. And this also applies to our job: as a IT-developer, a Data Scientist or a professor at the university. We will always have to learn new things, how to use them, and how to expand the limits of our perceptions. The vast amount of information that science has gathered over the last four centuries makes it impossible for any human being to become an expert in all of it. Thus, one has to specialized. After the university, anyone has to choose o subject which is appealing enough to study it for decades. Here is the first sign of what can be understood as data segmentation and dependency. Such improvements can come in various forms: an algorithm in the IT, a theorem in mathematics, a new way to look at particles in physics or a new method to scan for diseases in biology, and so on. But there is a price to pay for specialization: the inability to be an expert in another field or subfield. (Subfields induces limitation!)

Lets take the Deep Learning algorithm itself as an example. For IT and much of everyday life, this is a real breakthrough, but it lacks any scientific, that is mathematical, foundation. There are no theorems which proofs that it will find (converge, to use a mathematical term) the global optimum. This does not appear to be of any great consequences if it can be so efficient, except that, when adding new data and let the algorithm learn the same architecture again, there is no guaranty what so ever that it will be as good as the old model, or even better. On the contrary, it is as real as the efficiency of the first model, that chances are that the new model with the new data will perform worse than the old model, and one has to invest again time in finding a better model, or even a different architecture. On the other hand, with a mathematical proof of convergence, it would be always possible to know in what condition such a convergence can be achieved. In other words, without deep knowledge in mathematics, any proof of a consistent Deep Learning Algorithm is impossible.

Such a situation is true for any other corssover between fields. A mathematical genius will make a lousy biologist, a great chemist will make a average economist, and a top economist will be a poor physicist. Knowledge is difficult to transfer and this is true also for everyday experiences. We learn from very small to play a game like football, but are unable to use the reflexes to play basketball, or tennis better than a normal beginner. We learn a new language after years and years of practice, but are unable to use the way we learned to learn faster other languages. We are trapped within the knowledge we developed from the data we used. It is for this reason why we cannot transfer the knowledge a mathematician has developed over decades to use it in biology or psychology, even if the knowledge is very advanced. Instead of thinking in knowledge, we thing in data. This is similar to the people which were unaware of numbers, and used sets (data) to work with them. Numbers could be very difficult to transmit from one person to another in former times.

Only think on all the great achievements that our society managed, like relativity, quantum mechanics, DNA, machines, etc. Such discoveries are the essences of human knowledge and took millennia to form and centuries to crystalize. Still, all this knowledge is captive in the data, in the special frame in which it was discovered and never had the chance to escape. Imagine the possibility to use thoughts/causalities like the one in relativity or quantum mechanics in biology, or history, or of the concept of DNA in mathematics or art. Imagine a music composition where the law of the notes allows a “tunnel effect” like in quantum mechanics, lower notes to warp the music scales like in relativity and/or to twist two music scale in a helix-like play. How many way to experience life awaits us. Or think of the knowledge hidden in mathematics which could help develop new medicine, but can not be transmitted.

Another example of the connection we experience between knowledge and the data through which we obtain it, are children. They are classical example when it come determine if one is up to explain to them something. Take as an explain something simple they can observe often, like lightning and thunder. Normal concepts like particles, charge, waves, propagation, medium of propagation, etc. become so complicated to expose by other means then the one through which they were discovered, that it becomes nearly impossible to explain to children how it works and that they do not need to fear it. Still, one can use analogy (i.e., transfer) to enable an explanation. Instead of particles, one can use balls, for charge one can use hardness, waves can be shown with strings by keeping one end fix and waving the other, propagation is the movement of the waves from one end of the string to the other end, medium of propagation is the difference between walking in air and water, etc. Although difficult, analogies can be found which enables us to explain even to children how complex phenomena works.

The same is true also for Deep Learning. The model, the knowledge it can extract from the data can be expressed only by such data alone. There is no transformation of the knowledge from one type of data to another. If such a transformation would exists, then Deep Learning would be able to learn any human task by only a set of data, a master data set. Without such a master data set and a corresponding cost function it will be nearly impossible to develop AI that mimics human behavior. With other words, without the realization how our mind works, and how to crystalize by this the data needed, AI will still need to look at all the activities separately. It also implies that AI are restricted to the human understanding of reality and themselves. Only with such a characteristic of a living being, thus also AI, can development of its on occur.