Tag Archive for: Training

Machine Learning in Data Science (berufsbegleitendes, weiterbildendes Studium der TU Dortmund)

Anzeige

Die Technische Universität Dortmund bietet im Herbst 2024 das neue weiterbildende Studium ‚Machine Learning in Data Science‘ an. Der Kurs findet berufsbegleitend statt. Angesprochen sind Fach- und Führungskräfte, die in ihrem beruflichen Alltag mit Datenmengen zu tun haben und die ihre Kompetenzen im Bereich statistische Methoden und maschinellem Lernen ausbauen möchten (z. B. Data- und Business-Analyst*innen, Wissenschaftler*innen, Softwareentwickler*innen, Berater*innen, Data Scientists, Ingenieur*innen und andere interessierte Berufsbilder).

 

Zahlen – Daten – Fakten

Start: 26.09.2024

Anmeldeschluss: 23.08.2024

Ende: ca. September 2025

Zeitlicher Umfang: 10 Seminartage und 1 Prüfungstag sowie Anwendungsaufgaben

Abschluss: Universitätszertifikat (nach §62 Hochschulgesetz NRW) mit einem Umfang von 10 ECTS

Kosten: 4.900 € (zahlbar in 3 Raten)

 

Machine Learning in Data Science @ TU Dortmund

Machine Learning in Data Science @ TU Dortmund

 

Ziel ist des Kurses…

…ist der Erwerb von Wissen und Fertigkeiten zu Datenmanagement und –exploration, maschinellem Lernen und statistischen Methoden, im diese im Berufsalltag zur Analyse und Interpretation von Daten anwenden zu können.

 

Warum lohnt sich eine Teilnahme am Kurs für Teilnehmende aus Wirtschaft, Industrie, Wissenschaft und öffentlichem Dienst?

  • Nachweisbarer Kompetenzuwachs: Erwerb eines Universitätszertifikats
  • ‚bring your own data‘: eine konkrete Fragestellung aus dem Berufsalltag kann im Rahmen der Abschlussarbeit bearbeitet werden – so wird Gelerntes direkt in der Praxis angewendet und kann einen Mehrwert für das Unternehmen haben
  • Strukturierter Wissenserwerb in 2 Stufen: Verstehen und Erklären von Methoden in der ersten Stufe, praktische Anwendung in der zweiten Stufe (durch z. B. Analyse von realen Datensätzen)

Weitersagen lohnt sich!

Wenn Sie gemeinsam mit einer/einem Kollegin/Kollegen oder mehreren Personen aus Ihrem Unternehmen am Kurs teilnehmen, reduziert sich das Teilnahmeentgelt bei bis zu zwei angemeldeten Personen um 5 % pro Person, darüber hinausgehend zahlt jede weitere Person 10 % weniger.

Vertiefende Informationen zum Kurs finden Sie unter: https://wb.zhb.tu-dortmund.de/mlds

Ansprechpartner für Rückfragen: Daniel Neubauer, daniel.neubauer@tu-dortmund.de, 0231 755 6632

Folgen Sie gerne die LinkedIn-Seite der Weiterbildung für Data Science und Machine Learning der TU Dortmund: https://www.linkedin.com/company/tu-do-mlds/

Data Science – Weiterbildungen mit Coursera

Anzeige

Data Science und AI sind aufstrebende Arbeitsfelder, die sich mit der Gewinnung von Wissen aus Daten beschäftigen. Die Nachfrage nach Fähigkeiten im Bereich Data Science, aber auch in angrenzenden Bereichen wie Data Engineering oder Data Analytics, ist in den letzten Jahren explodiert, da Unternehmen versuchen, die Vorteile von Big Data und künstlicher Intelligenz (KI) zu nutzen. Es lohnt sich sehr, sich in diesen Bereich weiter zu entwickeln. Dafür eignen sich die Kurse von Coursera.org.

Online-Kurse lohnen sich dann, wenn eine Karriere im Bereich der Datenanalyse oder des maschinellen Lernens angestrebt oder einfach nur ihr Wissen in diesem Bereich erweitert werden soll.

Spezialisierungskurs – Google Data Analytics

Data Science hilft dabei, Entscheidungen auf Basis von Daten zu treffen, komplexe Probleme effektiver zu lösen und Karrierechancen zu verbessern. Die Tools von Google Cloud und Jupyter Notebook sind dafür geeignet, da sie eine leistungsstarke und skalierbare Infrastruktur sowie eine interaktive Entwicklungsplattform bieten.

Google Data Analytics Zertifikatskurs

Das Google Zertifikat für Datenanalyse behandelt neben dem Handwerkszeug für jeden Data Analyst – wie etwa SQL – auch die notwendige Datenbereinigung und Datenvisualisierung mit den Tools von Google. Es werden weder Erfahrung noch Vorkenntnisse vorausgsetzt.

Spezialisierungskurs – Google Advanced Data Analytics

Der Zertifikatskurs der erweiterten Datenanalyse von Google baut auf dem zuvorgenannten Data Analytics Kurs auf, kann jedoch auch direkt besucht werden. Hier werden grundlegende Fähigkeiten wie SQL vorausgesetzt und vertiefende Fähigkeiten vermittelt, die für einen Data Analysten nützlich sind und auch in die Data Science eintauchen.

Google Advanced Data Analytics
Dieses Kursangebot zum Aufbau erweiterter Datenanalyse-Fähigkeiten von Coursera wird ebenfalls von Google angeboten. Hier werden die Tools der Datenanalyse sowie der statistischen Handwerkzeuge für Data Science eingeführt, bis hin zum ersten Einstieg in Machine Learning.


Spezialisierungskurs – SQL für Data Science (Generalistisch)

SQL ist wichtig für etablierte und angehende Data Scientists, da es eine grundlegende Technologie für die Arbeit mit Datenbanken und relationalen Datenbankmanagementsystemen ist. SQL für Data Science ermöglicht, Daten effektiv zu organisieren und schnell Abfragen zu erstellen, um Antworten auf komplexe Fragen zu finden. Es ist auch relevant für die Arbeit mit nicht-relationalen Datenbanken und hilft Data Scientists, wertvolle Erkenntnisse aus großen Datenmengen zu gewinnen.

Auch wenn Python als Skill für einen Data Scientist ganz vorne steht, ist eine Karriere als Data Scientist ohne SQL-Kenntnisse nicht vorstellbar und dieser Kurs daher der richtige, wenn Nachbolbedarf besteht.

Spezialisierungskurs – Data Analyst Zertifikat (IBM)

Eine Karriere als Data Analyst ist attraktiv, da ihr eine hohe Nachfrage am Arbeitsmarkt gegenüber steht, die Arbeit vielfältig und herausfordernd ist, viele Weiterentwicklungsmöglichkeiten (z. B. zum Data Scientist) bietet und oft flexibel ist.

Der Online-Kurs von IBM bietet die Ausbildung der beruflichen Qualifikation zum Data Analyst. Ein weiterer Vorteil dieses Kurses ist, dass er für alle geeignet ist – unabhängig von ihrem Hintergrund oder der Vorbildung. Es sind keine Abschlüsse oder Vorkenntnisse erforderlich, was bedeutet, dass jeder, der sich für das Thema interessiert, am Kurs teilnehmen und von ihm profitieren kann.

Spezialisierungskurs – Datenverarbeitung mit Python & SQL (IBM)

Dieser Kurs bietet den Teilnehmern die Möglichkeit, ihre Kenntnisse in der Datenverarbeitung zu verbessern, eine Programmiersprache wie Python zu erlernen und grundlegende Kenntnisse in SQL zu erwerben. Diese Fähigkeiten sind für die Arbeit mit Daten unerlässlich und in der heutigen Arbeitswelt sehr gefragt. Darüber hinaus bietet der Kurs für Datenverarbeitung mit Python und SQL auch Schulungen zur Analyse und Visualisierung von Daten sowie zur Erstellung von Modellen für Maschinelles Lernen. Diese Fähigkeiten sind besonders wertvoll für die Entwicklung von Anwendungen und Systemen im Bereich der KI.

Dieser Kurs ist eine großartige Möglichkeit für alle, die ihre Kenntnisse im Bereich der Datenverarbeitung und des maschinellen Lernens verbessern möchten. Zwar werden auch hier keine Vorkenntnisse vorausgesetzt, jedoch geht der Kurs inhaltlich mehr in die Richtung Data Science als der zuvorgenannte Kurs zum Data Analyst und bietet ein umfassendes Training und Schulungen zu grundlegenden Fähigkeiten, die in der heutigen Arbeitswelt gefragt sind, und ist für jeden zugänglich, unabhängig von Hintergrund oder Erfahrung.

Spezialisierungskurs – Maschinelles Lernen (DeepLearning.AI)

Das Erlernen der Grundlagen des maschinellen Lernens (Machine Learning) ist von großer Bedeutung, da es eine der am schnellsten wachsenden und wichtigsten Technologien in der heutigen Zeit ist. Maschinelles Lernen ermöglicht es Computern, aus Erfahrung zu lernen, ohne explizit programmiert zu werden. Die Teilnehmer lernen, dem Computer das lernen zu ermöglichen.

Machinelles Lernen ist der Schlüssel zur Entwicklung von Anwendungen und Systemen im Bereich der künstlichen Intelligenz (KI) und hat Anwendungen in vielen Bereichen, von der Gesundheitsversorgung und der Finanzindustrie bis hin zur Unterhaltungsbranche und der Automobilindustrie.

Der Kurs für Maschinelles Lernen ist nicht nur ein sinnvoller Einstieg in diese Materie, sondern kann darauf aufbauend mit dem Thema Deep Learning in der Qualifikation erweitert werden.

Spezialisierungskurs – Deep Learning (DeepLearning.AI)

Das Verständnis von Deep Learning ist wichtig, da es eine Unterkategorie des maschinellen Lernens ist und viele noch mächtigere Anwendungen in verschiedenen Bereichen hat. Die populäre Applikation ChatGPT ist ein Produkt des Deep Learning. Deep Learning kann mit AI gleichgesetzt werden. Es ist eine gefragte Fähigkeit auf dem Arbeitsmarkt mit Job-Garantie.

Der Spezialisierungskurs für Deep Learning steht unabhängig für sich und erfordert keine speziellen Vorkenntnisse, darf jedoch auch als sinnvolle Ergänzung zum vorgenannten Einführungskurs in Machine Learning betrachtet werden.

Weitere Kursangebote für Data & AI auf Coursera

Die Entscheidung für ein bestimmtes Thema eines Kurses in den Bereichen Data Analytics, Data Science und AI ist eine persönliche und abhängig von den eigenen Vorkenntnissen und Vorlieben, sowie den eigenen Karrierezielen. Für die Karriere des Data Analyst sind SQL sowie allgemeine Kenntnisse rund um Data Analytics bzw. Datenverarbeitung wichtig. Von einem Data Scientist wird ferner erwartet, die theoretischen Grundlagen sowie die praktische Anwendung von Machine Learning und Deep Learning als trainierte Fähigkeit abrufbar zu haben.

Weitere Kurse von Coursera zum Thema Data & AI (link).

Dieser Artikel wurde gesponsored von Coursera.

Experten-Training: Angewandte Künstliche Intelligenz

Anzeige

Im Rahmen dieses praxisorientierten Kurses wird anhand eines konkreten Beispiels ein gesamter Prozess zur Mustererkennung nachvollzogen und selbst programmiert. Dabei werden die möglichen Methoden beleuchtet und angewandt.

Aufbaukurs: Angewandte Künstliche Intelligenz

Am 18.1. + 19.1.2023 in Gotha.

Ziele:

–        Datenvorverarbeitung zur Nutzung von KI

–        Einsatz von Künstlichen Neuronalen Netzen für spezielle Anwendungen (Lernen mit Lehrer)

–        Nutzung von Anaconda, Tensorflow und Keras an konkreten Beispielen

–        Erarbeitung und Einsatz von KI-Methoden zur Datenverarbeitung

–        KI zur Mustererkennung (z. B. k-MEANS, Lernen ohne Lehrer)

 

Zielgruppe:

–        Erfahrene aus den Bereichen Programmierung, Entwicklung, Anwendung

 

Voraussetzungen:

–        Grundlegende Programmierkenntnisse empfehlenswert (aber nicht erforderlich)

 

Inhalte:

–        Datenverarbeitungsmethoden kennenlernen und nutzen

–        Programmierung und Nutzung von Klassifizierungsmethoden

–        Anwendung vom bestärkenden Lernen (Reinforcement Learning)

–        Einsatz kostenloser und kostenpflichtiger Tools zur Datenauswertung

–        Umfangreiche Darstellung der Ergebnisse

 

Ein Schulungstag umfasst 6 Lehrveranstaltungsstunden am 18.1. + 19.1.2023 in Gotha (9.30 Uhr – 15.30 Uhr) und findet großenteils am PC statt. Die Verpflegung ist jeweils inklusive.

 

Preis pro Kurs (2 Tage): 980 Euro (netto)

Die Teilnehmerzahl pro Modul ist auf 6 begrenzt.

Rückfragen sowie Anmeldungen: schulung@cc-online.eu

Ansprechpartner: Prof. Dr.-Ing. Christian Döbel (Leiter Steinbeis Transferzentrum „Integrierte Systeme und Digitale Transformation“, ISD)

 

Anbieter-Informationen:
Steinbeis-Transferzentrum ISD (Zentrale: Steinbeis Transfer GmbH) – Ausfeldstr. 21 – 99880 Waltershausen – Tel. 03622 208334
E-Mail SU2209@stw.de
USt.-Ident-Nr. DE814628518 – Registergericht Stuttgart HRB 25312

Geschäftsführer: Dipl.-Ing. (FH) M. Eng. Erik Burchardt

Experten-Training: Angewandte Künstliche Intelligenz

Anzeige

Im Rahmen dieses praxisorientierten Kurses wird anhand eines konkreten Beispiels ein gesamter Prozess zur Mustererkennung nachvollzogen und selbst programmiert. Dabei werden die möglichen Methoden beleuchtet und angewandt.

Aufbaukurs: Angewandte Künstliche Intelligenz

Am 2.11. – 3.11.2022 oder 18.1. + 19.1.2023 in Gotha

Ziele:

–        Datenvorverarbeitung zur Nutzung von KI

–        Einsatz von Künstlichen Neuronalen Netzen für spezielle Anwendungen (Lernen mit Lehrer)

–        Nutzung von Anaconda, Tensorflow und Keras an konkreten Beispielen

–        Erarbeitung und Einsatz von KI-Methoden zur Datenverarbeitung

–        KI zur Mustererkennung (z. B. k-MEANS, Lernen ohne Lehrer)

 

Zielgruppe:

–        Erfahrene aus den Bereichen Programmierung, Entwicklung, Anwendung

 

Voraussetzungen:

–        Grundlegende Programmierkenntnisse empfehlenswert (aber nicht erforderlich)

 

Inhalte:

–        Datenverarbeitungsmethoden kennenlernen und nutzen

–        Programmierung und Nutzung von Klassifizierungsmethoden

–        Anwendung vom bestärkenden Lernen (Reinforcement Learning)

–        Einsatz kostenloser und kostenpflichtiger Tools zur Datenauswertung

–        Umfangreiche Darstellung der Ergebnisse

 

Ausweichtermin:

–        18.1. + 19.1.2023 in Gotha

 

Ein Schulungstag umfasst 6 Lehrveranstaltungsstunden (9.30 Uhr – 15.30 Uhr) und findet großenteils am PC statt. Die Verpflegung ist jeweils inklusive.

 

Preis pro Kurs (2 Tage): 980 Euro (netto)

Die Teilnehmerzahl pro Modul ist auf 6 begrenzt.

Rückfragen sowie Anmeldungen: schulung@cc-online.eu

Ansprechpartner: Prof. Dr.-Ing. Christian Döbel (Leiter Steinbeis Transferzentrum „Integrierte Systeme und Digitale Transformation“, ISD)

 

Anbieter-Informationen:
Steinbeis-Transferzentrum ISD (Zentrale: Steinbeis Transfer GmbH) – Ausfeldstr. 21 – 99880 Waltershausen – Tel. 03622 208334
E-Mail SU2209@stw.de
USt.-Ident-Nr. DE814628518 – Registergericht Stuttgart HRB 25312

Geschäftsführer: Dipl.-Ing. (FH) M. Eng. Erik Burchardt

Data Science und Python: Ein eingespieltes Team

Data Science ist ein immer wichtigeres Instrument für Unternehmen, um wertvolle Einblicke in die eigenen Systeme zu bekommen, ineffiziente Arbeitsweisen zu optimieren und um sich Vorteile gegenüber dem Wettbewerb zu verschaffen. Auch abseits der klassischen Softwarekonzerne verstehen Unternehmen mehr und mehr, welche Potenziale in einer systematischen Datenanalyse und in bereits kleinen Machine Learning-Projekten stecken – sei es für die schnellere Auswertung großer Excel-Sheets oder für eine Datenaufbereitung als zusätzlichen Service, der sich als neues Feature an die Kundschaft verkaufen lässt.

Das sind die typischen Phasen eines Data Science-Projekts. Jeder dieser sieben Schritte lässt sich mit Python umsetzen.

Das sind die typischen Phasen eines Data Science-Projekts. Jeder dieser sieben Schritte lässt sich mit Python umsetzen.

Python steht hoch im Kurs

Unternehmen, die den Nutzen der Data Science verstanden haben, suchen händeringend nach gut ausgebildeten Fachkräften. Eine essenzielle Fähigkeit hierfür: Das Programmieren mit Python. Die Open-Source-Programmiersprache wurde Anfang der 1990er-Jahre vom niederländischen Softwareentwickler Guido van Rossum entwickelt und hat sich innerhalb der letzten 30 Jahre als fester Bestandteil der internationalen IT-Landschaft etabliert.

Python überzeugt seine Anwender:innen mit größter Einfachheit, einer übersichtlichen Syntax und einer geringen Anzahl an Schlüsselwörtern. Im Gegensatz zu anderen beliebten Programmiersprachen wie etwa C++, PHP oder JavaScript kommen Python-Skripte mit vergleichsweise wenig Code aus und ermöglichen Anfänger:innen einen schnellen Einstieg. Zu guter Letzt ist Python plattformunabhängig, sodass Anwendungen auf Linux-, Mac-, Windows- und Unix-Systemen funktionieren.

Aber warum ist Python besonders in der Data Science so beliebt?

Zusätzlich zu den genannten Eigenschaften können sich Anwender:innen aus einem großen Pool an kostenlosen Erweiterungen (genannt „Libraries“ bzw. „Bibliotheken“) bedienen. So gibt es zahlreiche Bibliotheken

speziell für die Data Science, die Entwickler:innen und Python-Communities gratis zur Verfügung stellen. Damit lassen sich alle Schritte eines Data Science-Projekts – vom Sammeln und Bereinigen der Daten bis hin zur Analyse, Vorhersage und Visualisierung – nur mit Python als einziger Programmiersprache umsetzen.

Übrigens: Nur etwa fünf Prozent der weltweiten Python-Entwickler:innen arbeiten in Deutschland. Es werden zwar von Jahr zu Jahr mehr, aber dennoch ist die deutschsprachige Python-Community bisher vergleichsweise klein.

Einblick in die Praxis: Wie wird Python in der Data Science bereits angewendet?

Für viele Data Scientists ist Python die Sprache der Wahl, besonders wenn ein Programm mithilfe von künstlicher Intelligenz aus einem vorhandenen Datensatz „lernen“ und Aussagen über zukünftige Ereignisse treffen soll. Aufgrund seiner vielseitigen Anwendungsmöglichkeiten, der großen Data Science-Community bestehend aus Wissenschaftler:innen, Entwickler:innen und Hobby-Programmierer:innen sowie den frei verfügbaren Bibliotheken, vertrauen nicht nur die großen Tech-Konzerne wie Google, Netflix oder IBM auf Python. Auch Gesundheitsämter, Universitäten oder Banken setzen bei Data Science-Projekten auf Python. Was Sie mit der Programmiersprache theoretisch erreichen können und wie Python bereits eingesetzt wird, erfahren Sie hier anhand von drei Beispielen:

  1. Schneller und zuverlässiger FAQ-Service dank Chatbots

Auf vielen Webseiten öffnet sich heutzutage nach kurzer Zeit unten rechts ein kleines Chatfenster, in dem Nutzer:innen automatisch gefragt werden, ob sie Hilfe beim Online-Shopping, bei der Reklamation oder bei anderen Themen benötigen. Diese so genannten Chatbots dienen als kleine Helfer im Online-Service und sind meistens mit Python programmiert.

  1. Waldbrände verhindern – oder zumindest ihre Entwicklung vorhersagen

Auch die Natur kann von der Datenwissenschaft mit Python profitieren. Um beispielsweise den Verlauf eines Waldbrandes vorherzusagen und ihn schneller zu kontrollieren, kann eine Kombination aus den Daten vergangener Waldbrände, Informationen über den aktuellen Zustand des Waldes sowie Wetter- und Windvorhersagen eine große Hilfe sein.

Mithilfe der Datenwissenschaft können Forstämter und Kommunen dafür sorgen, dass die Feuerwehr ihre Einsätze besser plant, weniger Schäden entstehen und chaotische Waldbrände vermieden werden. Je mehr Daten zur Verfügung stehen, desto zuverlässiger unterstützt die Datenanalyse bei der Waldbrandbekämpfung.

  1. Große Potenziale für Medizin und Pharmazie

Data Science und Machine Learning bieten auch für Medizin und Pharmazie gewaltige Chancen, um Medikamente, Therapien und Vorhersagen zu optimieren. Ein wichtiges Stichwort ist hierbei die computergestützte Diagnose – etwa bei der Früherkennung von Parkinson oder verschiedenen Krebsarten.

In Kombination mit klassischen Untersuchungsmethoden lassen sich so schneller zuverlässigere Prognosen treffen, die das Eingriffsrisiko minimieren und somit Leben retten.

Was muss ich mitbringen, um Python zu lernen?

Wie bereits erwähnt ist Python eine einfache Programmiersprache, die gut lesbar ist und mit wenig Code auskommt. Trotzdem zögern viele Anfänger:innen, wenn sie das erste Mal die Kommandozeile aufrufen und mit einem Programm beginnen. Wesentlich komplexer wird es, wenn sich Anwender:innen in Python an einem Data Science-Projekt widmen, da hier nicht nur eine gewisse Code-Kenntnis, sondern auch Mathematik und Statistik wichtig sind. Wir empfehlen Ihnen deshalb: Konzentrieren Sie sich auf die folgenden vier Bereiche, um möglichst einfach in die Welt der Data Science mit Python einzusteigen.

Statistik und Mathematik

Es lässt sich nicht leugnen, dass Mathematik das Herzstück der Data Science ist. Um jedoch Daten gewinnbringend mit Python auszuwerten, muss man auch kein Alan Mathematik-Spezialist sein. Es ist von Vorteil, wenn Sie Ihre Mathematikkenntnisse aus der Schulzeit auffrischen und sich vor Ihrem ersten Projekt in die statistischen Grundphänomene einlesen. So fällt es Ihnen später leichter, Korrelationen und Fehler im Datensatz zu erkennen.

Interesse an Programmierung und Visualisierung

Zwar unterscheidet sich Python in Syntax und Struktur von anderen bekannten Programmiersprachen, aber dennoch fällt Ihnen der Einstieg leichter, wenn Sie bereits vorab ein Interesse am Programmieren besitzen. Allein das Verständnis, wie aus einem HTML-Code eine ansehnliche Webseite wird, vereinfacht es Ihnen, den Zusammenhang von Code-Input und Programm-Output zu verstehen.Es gibt aber auch Python-Trainings und -Kurse, in denen keinerlei Programmiererfahrungen vorausgesetzt werden.   Darüber hinaus spielt die Visualisierung der Daten eine wichtige Rolle, um die Erkenntnisse der Data Science auch für andere Kolleg:innen begreifbar zu machen.

Englischkenntnisse sind von Vorteil

Da wie eingangs erwähnt nur wenige Python-Entwickler:innen aus Deutschland stammen, werden Sie viele Tutorials und Foren-Beiträge in englischer Sprache vorfinden. Damit Sie besser verstehen, welche Anweisungen die Python-Community empfiehlt, ist eine gewisse Englischkenntnis bzw. ein Wörterbuch in greifbarer Nähe vorteilhaft.

Motivation und Neugier

Zuletzt hängt der Erfolg Ihrer Data Science-Projekte mit Python auch von Ihrer Motivation und Neugier ab. In diversen Foren, wie zum Beispiel auf der US-amerikanischen Plattform Reddit, finden Sie kleine Aufgaben speziell für Anfänger:innen, die Ihnen Schritt für Schritt den Umgang mit Python erleichtern. Wenn Sie sich mit solchen Aufgaben üben, werden Sie schnell den Umgang mit Python erlernen.

Die Trainings der Haufe Akademie zu Python und Data Science

Die Haufe Akademie ist ein Sponsor des Data Science Blogs. Lernen Sie mit ihr die Basics der Programmiersprache Python und erfahren Sie, wie Sie selbst einfache Automatisierungen wie auch größere Data Science-Projekte erfolgreich umsetzen können. Mehr erfahren über die Haufe Akademie!

Training of Deep Learning AI models

It’s All About Data: The Training of AI Models

In deep learning, there are different training methods. Which one we use in an AI project depends on the data provided by our customer: how much data is there, is it labeled or unlabeled? Or is there both labeled and unlabeled data?

Let’s say our customer needs structured, labeled images for an online tourism portal. The task for our AI model is therefore to recognize whether a picture is a bedroom, bathroom, spa area, restaurant, etc. Let’s take a look at the possible training methods.

1. Supervised Learning

If our customer has a lot of images and they are all labeled, this is a rare stroke of luck. We can then apply supervised learning. The AI model learns the different image categories based on the labeled images. For this purpose, it receives the training data with the desired results from us.

During training, the model searches for patterns in the images that match the desired results, learning the characteristics of the categories. The model can then apply what it has learned to new, unseen data and in this way provide a prediction for unlabeled images, i.e., something like “bathroom 98%.”

2. Unsupervised Learning

If our customer can provide many images as training data, but all of them are not labeled, we have to resort to unsupervised learning. This means that we cannot tell the model what it should learn (the assignment to categories), but it must find regularities in the data itself.

Contrastive learning is currently a common method of unsupervised learning. Here, we generate several sections from one image at a time. The model should learn that the sections of the same image are more similar to each other than to those of other images. Or in short, the model learns to distinguish between similar and dissimilar images.

Although we can use this method to make predictions, they can never achieve the quality of results of supervised learning.

3. Semi-supervised Learning

If our customer can provide us with few labeled data and a large amount of unlabeled data, we apply semi-supervised learning. In practice, we actually encounter this data situation most often.

With semi-supervised learning, we can use both data sets for training, the labeled and the unlabeled data. This is possible by combining contrastive learning and supervised learning, for example: we train an AI model with the labeled data to obtain predictions for room categories. At the same time, we let the model learn similarities and dissimilarities in the unlabeled data and then optimize itself. In this way, we can ultimately achieve good label predictions for new, unseen images.

Supervised vs. Unsupervised vs. Semi-supervised

Everyone who is entrusted with an AI project wants to apply supervised learning. In practice, however, this is rarely the case, as rarely all training data is well structured and labeled.

If only unstructured and unlabeled data is available, we can at least extract information from the data with unsupervised learning. These can already provide added value for our customer. However, compared to supervised learning, the quality of the results is significantly worse.

With semi-supervised learning, we try to resolve the data dilemma of small part labeled data, large part unlabeled data. We use both datasets and can obtain good prediction results whose quality is often on par with those of supervised learning. This article is written in cooperation between DATANOMIQ and pixolution, a company for computer vision and AI-bases visual search.

Wie kann man sich zum/r Data Scientist ausbilden lassen?

Anzeige

Das allgegenwärtige Internet und die Digitalisierung haben heutzutage viele Veränderungen in den Geschäften überall auf der Welt mit sich gebracht. Aus diesem Grund wird Data Science immer wichtiger.

In der Data Science werden große Datenmengen an Informationen aus allen Arten von Quellen gesammelt, sowohl aus strukturierten als auch aus unstrukturierten Daten. Dazu werden Techniken und Theorien aus verschiedenen Bereichen der Statistik, der Informationswissenschaft, der Mathematik und der Informatik verwendet.

Datenexperten und -expertinnen, d. h. Data Scientists, beschäftigen sich genau mit dieser Arbeit. Wenn Du Data Scientist werden möchten, kannst Du eine große Karriere in der Data Science beginnen, indem Du Dich für eine beliebige geeignete Weiterbildung einschreibst, der Deinem Talent, Deinen Interessen und Deinen Fähigkeiten in einigen der wichtigsten Data-Science-Kurse entspricht.

Was machen Data Scientists?

Zunächst einmal ist es wichtig zu verstehen, was man eigentlich unter dem Begriff „Data Scientist” versteht. Data Scientist ist lediglich ein neuer Beruf, der in vielen Artikeln häufig zusammen mit dem der Data Analysts beschrieben wird, weil die erforderlichen Grundfertigkeiten recht ähnlich sind. Vor allem müssen Data Scientists die Fähigkeit haben, Daten aus MySQL-Datenbanken zu extrahieren, Pivot-Tabellen in Excel zu verwalten, Datenbankansichten zu erstellen und Analytics zu verwalten.

Data Scientists werden viele Stellen in Unternehmen angeboten, die mit der zunehmenden Verfügbarkeit von Daten konfrontiert sind und Personen brauchen, die ihnen bei der Entwicklung der Infrastruktur helfen, die sie zur Verwaltung der Daten benötigen. Oft handelt es sich um Unternehmen, die ihre ersten Schritte in diesem Bereich machen. Dafür benötigen sie eine Person mit grundlegenden Fähigkeiten in der Softwaretechnik, um den gesamten Prozess voranzutreiben.

Dann gibt es stark datenorientierte Unternehmen, für diejenigen Daten sozusagen Rohprodukt und Rohstoff darstellen. In diesen Unternehmen werden Datenanalyse und maschinelles Lernen recht intensiv betrieben, wodurch Personen mit guten mathematischen, statistischen oder sogar physikalischen Fähigkeiten benötigt werden.

Es gibt auch Unternehmen, die keine Daten als Produkt haben, aber ihre Zukunft auf sie und ihre Sinne planen und abstimmen. Diese Unternehmen werden immer mehr und brauchen sowohl Data Scientists mit grundlegenden Fähigkeiten als auch Data Scientists mit speziellen Kenntnissen, von Visualisierung bis hin zu Machine Learning.

Kompetenzen der Data Scientists

Die Grundlagen sind zunächst für alle, die im Bereich der Data Science arbeiten, dieselben. Unabhängig von den Aufgaben, die Data Scientists zu erfüllen haben, muss man grundlegende Softwaretechnik beherrschen.

Selbstverständlich müssen Data Scientists mit Programmiersprachen wie R oder Python und mit Datenbanksprachen wie SQL umgehen können. Sie bedienen sich dann statistischer, grundlegender Fähigkeiten um zu bestimmen, welche Techniken für die zu erreichenden Ziele am besten geeignet sind.

Ebenso sind beim Umgang mit großen Datenmengen und in sogenannten „datengetriebenen” Kontexten Techniken und Methoden des maschinellen Lernens wichtig: KNN-Algorithmen (Nächste-Nachbarn-Klassifikation für Mustererkennung), Random Forests oder Ensemble Techniken kommen hier zum Einsatz.

Entscheidend ist, die für den jeweiligen Kontext am besten geeignete Technik unterscheiden zu können, und dies bevor man die verschiedenen Werkzeuge beherrscht.

Die lineare Algebra und die multivariate Berechnung sind auch unerlässlich. Sie bilden die Grundlage für viele der oben beschriebenen Fähigkeiten und können sich als nützlich erweisen, wenn das mit den Daten arbeitende Team beschließt, intern eigene Implementierungen zu entwickeln.

Eins ist noch entscheidend. In einer idealen Welt werden die Daten korrekt identifiziert, da sie vollständig und kohärent sind. In der realen Welt muss sich der Data Scientist mit unvollkommenen Daten auseinandersetzen, d. h. mit fehlenden Werten, Inkonsistenzen und unterschiedlichen Formatierungen. Hier kann man von Munging sprechen, d. h. von der Tätigkeit, die sogenannten Rohdaten in Daten umzuwandeln, die ein einheitliches Format haben und somit in den Prozess der Aufnahme und Analyse einbezogen werden können.

Wenn Daten als wesentlich für Geschäftsentscheidungen sind, reicht es nicht aus, eine Person zu haben, die sie verarbeiten, analysieren und aufnehmen kann. Die Visualisierung und Kommunikation von Daten ist ebenso zentral. Daten zu visualisieren und zu kommunizieren bedeutet, anderen die angewandten Techniken und die erzielten Ergebnisse zu beschreiben. Daher ist es wichtig zu wissen, wie man Visualisierungswerkzeuge wie ggplot oder D3.js verwendet.

Ausbildungsmöglichkeiten und Bootcamps, um Data Scientist zu werden

Kurz gesagt gibt es zwei gängige Wege, um Data Scientist zu werden.

  • Auf der einen Seite kann man einen Universitätslehrgang absolvieren. Diese Art von Studiengang führt zu einem spezialisierten Abschluss, der nach einem dreijährigen Bachelorabschluss in Informatik, Mathematik oder Statistik absolviert werden kann. In den letzten Jahren wurden diese neuen Studiengänge an den europäischen Universitäten immer häufiger angeboten.
  • Auf der anderen Seite kann man sich für eine Weiterbildung zum/r Data Scientist anmelden, zum Beispiel eine Weiterbildung von DataScientest. Als national und international anerkannte Ausbildungsorganisation bietet DataScientest eine Weiterbildung zum/r Data Scientist an, die sich an Personen mit einem Bachelorabschluss und Kenntnissen in Kommunikation wendet. Ihr großer Vorteil ist die persönliche Betreuung, die allen Teilnehmer und Teilnehmerinnen angeboten wird, sowie ein Fernstudium, das 85% individuelles Coaching und 15% Masterclasses umfasst. Alles läuft über eine sichere Plattform, damit jeder Teilnehmer und jede Teilnehmerin codieren, Daten erforschen usw. können.

Bei dieser DataScientest-Weiterbildung haben die Lernenden die Wahl zwischen einer weitgehenden Ausbildung (10 Stunden pro Woche) oder einer Bootcamp-Ausbildung (35 Stunden pro Woche). 

Das am Ende des Kurses erworbene Zertifikat wird von der Pariser Universität La Sorbonne anerkannt.