Posts

6 Ways to Optimize Your Database for Performance

Knowing how to optimize your organization’s database for maximum performance can lead to greater efficiency, productivity, and user satisfaction. While it may seem challenging at first, there are a few easy performance tuning tips that you can get started with.

1. Use Indexing

Indexing is one of the core ways to give databases a performance boost. There are different ways of approaching indexing, but they all have the same goal: decreasing query wait time by making it easier to find and access data.

Indexes have a search key attached to a value or data reference. The index file will direct a query to a record, “bucket” of data, or group of data, depending on the indexing method used. Choosing a good indexing method for your specific needs will reduce strain on your system by making it much easier for data to be located, since a uniform, systematic organization is applied to the entire database.

2. Avoid Using Loops

Many coders learn early on that loops can be both useful and dangerous. It is all too easy to accidentally create an infinite loop and crash your whole system.

Loops are problematic when it comes to database performance because they often are looping redundantly. That is not to say that loops should never be used; they are useful sometimes. It simply depends on the specific case, and removing or minimizing unnecessary loops will help increase performance.

For example, having SQL queries inside of loops is not generally advised, because the system is running the same query numerous times rather than just once. A good rule of thumb is that the more data you have in a loop, the slower it is going to be.

3. Get a Stronger CPU

This fix is a classic in computer science. A CPU with better specs will increase system performance. There are ways, like those above, to increase performance within your system’s organization and coding. However, if you find that your database is consistently struggling to keep up, your hardware might be in need of an upgrade.

Even if the CPU you have seems like it should be sufficient, a CPU that is more powerful than your minimum requirements will be able to handle waves of queries with ease. The more data you are working with and the more queries you need to manage, the stronger your CPU needs to be.

4. Defragment Data

Data defragmentation is a common solution for performance issues. When data gets accessed, written, and rewritten many times, it can get fragmented from all that copying. It is good practice to go in and clean things up on a regular basis.

One symptom of fragmented data is clogged memory, where tables are taking up more room than they should. Crammed memory, as discussed below, is another common cause of a low-performing database.

5. Optimize Queries

There are many ways to go about optimizing queries, depending on the indexing method and the specific needs of your database. When queries aren’t being handled efficiently, the whole system can get backed up, leading to longer wait times for query results. Causes may include duplicate or overlapping indexes and keys or queries that return data that isn’t relevant.

Optimizing queries can be a complex process, but there are some easy steps you can take to work out the best plan for your database and identify its specific inefficiencies.

6. Optimize Memory

Another hardware fix that may help under-performing databases is additional memory space. Databases need some memory “wiggle room” to operate quickly. When your memory is nearly or completely full, things get backed up while the system struggles to find room for creating temporary files and moving things around. It’s a bit like trying to reorganize a living room that is packed floor-to-ceiling with boxes. You need plenty of empty floor space to maneuver and shuffle things around.

Databases work the same way. Increasing your database’s memory capacity will allow it more flexibility and operating room, reducing stress on the system so it can run more efficiently.

Keep It Simple

Many of the tips above focus on simplifying and cleaning up your database. Keep your coding as straightforward and easy-to-navigate as possible. Databases are all about accessing information, so your main priority should simply be to have a well-organized system. Keeping these tips in mind will help you do just that and get your database running at top-notch performance!

Machine Learning: Online vs Offline

Das ist Artikel 4 von 4 aus der Artikelserie – Was ist eigentlich Machine Learning?

Die Begriffe online und offline sind mit vielen Bedeutungen versehen und so ist – wie bei vielen Unterscheidungsmöglichkeiten des maschinellen Lernens – die Verwirrung vorprogrammiert. Diese Unterscheidung betrifft die Trainingsphasen der parametrischen Verfahren des maschinellen Lernens.

Offline Learning

Mit Offline Learning ist nicht gemeint, dass der Algorithmus nicht ans Internet angebunden ist, sondern dass es sich bei der Trainingsprozedure um eine Stapelverarbeitung handelt. Daher wird manchmal auch vom Batch Learning gesprochen. Beim Batch Learning werden die Parameter bzw. das Modell erst angepasst, nachdem der gesamte Batch (Stapel an Datensätzen) das Training durchlaufen hat. Die gewöhnliche Gradientenmethode als ein Optimierungsverfahren ist das Gradientenabstiegsverfahren als Stapelverarbeitung. Dabei wird der Gradient, der die Richtung für die Anpassung der Gewichtungen der Funktionsparameter vorgibt, anhand der gesamten Trainingsdatenmenge berechnet.

Der Vorteil dieser Vorgehensweise ist, dass das Training als Prozess sehr schnell läuft und die Funktionsparameter direkt aus dem gesamten Datenbestand heraus bestimmt werden.

Demgegenüber steht der Nachteil, dass der ganze Stapel in den Arbeitsspeicher geladen werden muss, was eine entsprechend leistungsfähige Hardware voraussetzt. Soll das Lern-System für das Training live an einer Datenquelle (z. B. ein Data Stream aus dem Social Media) angebunden werden, müssen die Daten erstmal gespeichert werden (Bildung des Stapels), bevor sie verarbeitet und dann verworfen werden können, was den dafür nötigen Speicherplatz bedingt.

Online Learning

Beim Online-Learning wird nicht über einen Stapel (Batch) trainiert, sondern jeder einzelne Datensatz (aus einer großen Menge an Datensätzen oder live hinzugefügte Datensätze) wird dem Training einzeln hinzugefügt, trainiert und umgehend in eine Parameteranpassung (Modellanpassung) umgesetzt. Dies lässt sich beispielsweise mit der stochastischen Gradientenmethode realsieren, die iterativ arbeiten und den Gradienten zur Gewichtungsanpassung für jeden einzelnen Datensatz bestimmt, statt einen ganzen Batch zu verarbeiten und daraus einen Fehler zu berechnen. Online-Learning ist ein inkrementell arbeitendes Lernen, welches das Modell kontinuierlich – nämlich nach jedem Datensatz (Sample) – anpasst.

Die Optimierung läuft somit – wenn auf eine große Datenmenge angewendet wird – natürlich langsamer und ist eher nicht geeignet, wenn ein Training schnell verlaufen muss oder eine große Datenmenge die Hardware sowieso schon auslastet. Dafür wird das Modell beim Online-Learning in Echtzeit trainiert, wenn neue Daten zur Verfügung stehen. Neu hinzugefügte Daten fließen sofort ins Modell ein, so kann ein Lern-System als ein Live-System gleich auf Änderungen reagieren und die Trainingsdaten wieder verworfen werden (da sie bereits ins Training eingeflossen sind).

Mini-Batch-Verfahren

Während beim Online Learning alle Datensätze einzeln durchgegangen werden (dauert lange) und beim Offline Learning der gesamte Stapel an Datensätzen durchgearbeitet wird (viel Speicherplatzbedarf), ist der sogenannte Mini-Batch der Mittelweg. Wie der Name bereits andeutet, wird ein kleinerer Stapel (z. B. 50 Datensätze) gesammelt und verarbeitet.

Künstliche Intelligenz und Data Science in der Automobilindustrie

Data Science und maschinelles Lernen sind die wesentlichen Technologien für die automatisch lernenden und optimierenden Prozesse und Produkte in der Automobilindustrie der Zukunft. In diesem Beitrag werde die zugrundeliegenden Begriffe Data Science (bzw. Data Analytics) und maschinelles Lernen sowie deren Zusammenhang definiert. Darüber hinaus wird der Begriff Optimizing Analytics definiert und die Rolle der automatischen Optimierung als Schlüsseltechnologie in Kombination mit Data Analytics dargelegt. Der Stand der Nutzung dieser Technologien in der Automobilindustrie wird anhand der wesentlichen Teilprozesse in der automobilen Wertschöpfungskette (Entwicklung, Einkauf, Logistik, Produktion, Marketing, Sales und Aftersales, Connected Customer) an exemplarischen Beispielen erläutert. Dass die Industrie heute erst am Anfang der Nutzungsmöglichkeiten steht, wird anhand von visionären Anwendungsbeispielen verdeutlicht, die die revolutionären Möglichkeiten dieser Technologien darstellen. Der Beitrag zeigt auf, wie die Automobilindustrie umfassend, vom Produkt und dessen Entstehungsprozess bis zum Kunden und dessen Verbindung zum Produkt, durch diese Technologie effizienter und kundenorientierter wird.

english-flagRead this article in English:
“Artificial Intelligence and Data Science in the Automotive Industry”

Read more