Tag Archive for: Datenanalyse

Man redet gerne über Daten, genutzt werden sie nicht

Der Big Data Hype ist vorbei und auf dem Anstieg zum „ Plateau of Productivity“. Doch bereits in dieser Phase klafft die Einschätzung von Analysten mit der Verbreitung von Big Data Predictive Analytics/Data Mining noch weit von der Realität in Deutschland auseinander. Dies belegt u.a. eine Studie der T-Systems Multimedia Solutions, zu welcher in der FAZ* der Artikel Man redet gerne über Daten, genutzt werden sie nicht, erschienen ist. Mich überrascht diese Studie nicht,  sondern bestätigt meine langjährige Markterfahrung.

Die Gründe sind vielfältig: keine Zeit, keine Priorität, keine Kompetenz, kein Data Scientist, keine Zuständigkeit, Software zu komplex – Daten und Use-Cases sind aber vorhanden.

Im folgenden Artikel wird die Datenanalyse- und Data-Mining Software der Synop Systems vorgestellt, welche „out-of-the-box“ alle Funktionen bereitstellt, um Daten zu verknüpfen, zu strukturieren, zu verstehen, Zusammenhänge zu entdecken, Muster in Daten zu lernen und Prognose-Modelle zu entwickeln.

Anforderung an „Advanced-Data-Analytics“-Software

Um Advanced-Data-Analytics-Software zu einer hohen Verbreitung zu bringen, sind folgende Aspekte zu beachten:

  1. Einfachheit in der Nutzung der Software
  2. Schnelligkeit in der Bearbeitung von Daten
  3. Analyse von großen Datenmengen
  4. Große Auswahl an vorgefertigten Analyse-Methoden für unterschiedliche Fragestellungen
  5. Nutzung (fast) ohne IT-Projekt
  6. Offene Architektur für Data-Automation und Integration in operative Prozesse

Synop Analyzer – Pionier der In-Memory Analyse

Um diese Anforderungen zu erfüllen, entstand der Synop Analyzer, welcher seit 2013 von der Synop Systems in den Markt eingeführt wird. Im Einsatz ist die Software bei einem DAX-Konzern bereits seit 2010 und zählt somit zum Pionier einer In-Memory-basierenden Data-Mining Software in Deutschland. Synop Analyzer hat besondere Funktionen für technische Daten. Anwender der Software sind aber in vielen Branchen zu finden: Automotive, Elektronik, Maschinenbau, Payment Service Provider, Handel, Versandhandel, Marktforschung.

Die wesentlichen Kernfunktionen des  Synop Analyzer sind:

a. Eigene In-Memory-Datenhaltung:

Optimiert für große Datenmengen und analytische Fragestellungen. Ablauffähig auf jedem Standard-Rechner können Dank der spaltenbasierenden Datenhaltung und der Komprimierung große Datenmengen sehr schnell analysiert werden. Das Einlesen der Daten erfolgt direkt aus Datenbanktabellen der Quellsysteme oder per Excel, CSV, Json oder XML. Unterschiedliche Daten können verknüpf und synchronisiert werden. Hohe Investitionen für Big-Data-Datenbanken entfallen somit. Eine Suche von Mustern von diagnostic error codes (dtc), welche mind. 300 Mal (Muster) innerhalb 100 Mio. Datenzeilen vorkommen, dauert auf einem I5-Proz. ca. 1200 Sek., inkl. Ausgabe der Liste der Muster. Ein Prognosemodel mittels Naive-Bayes für das Produkt „Kreditkarte“ auf 800 Tsd. Datensätzen wird in ca. 3 Sek. berechnet.

b. Vielzahl an Analyse-Methoden

Um eine hohe Anzahl an Fragestellungen zu beantworten, hat der Synop Analyzer eine Vielzahl an vorkonfigurierten Analyse- und Data-Mining-Verfahren (siehe Grafik) implementiert. Daten zu verstehen wird durch Datenvisualisierung stark vereinfacht. Die multivariate Analyse ist quasi interaktives Data-Mining, welches auch von Fachanwendern schnell genutzt wird. Ad hoc Fragen werden unmittelbar beantwortet – es entstehen aber auch neue Fragen dank der interaktiven Visualisierungen. Data-Mining-Modelle errechnen und deren Modellgüte durch eine Testgruppe zu validieren ist in wenigen Minuten möglich. Dank der Performance der In-Memory-Analyse können lange Zeitreihen und alle sinnvollen Datenmerkmale in die Berechnungen einfließen. Dadurch werden mehr Einflussgrößen erkannt und bessere Modelle errechnet. Mustererkennung ist kein Hokuspokus, sondern Dank der exzellenten Trennschärfe werden nachvollziehbare, signifikante Muster gefunden. Dateninkonsistenzen werden quasi per Knopfdruck identifiziert.

synop-systems-module

c. Interaktives User Interface

Sämtliche Analyse-Module sind interaktiv und ohne Programmierung zu nutzen. Direkt nach dem Einlesen werden Grafiken automatisiert, ohne Datenmodellierung, erstellt.  Schulung ist kaum oder minimal notwendig und Anwender können erstmals fundierte statistische Analysen und Data-Mining in wenigen Schritten umsetzen. Data-Miner und Data Scientisten ersparen sich viel Zeit und können sich mehr auf die Interpretation und Ableitung von Handlungsmaßnahmen fokussieren.

d. Einfacher Einstieg – modular und mitwachsend

Der Synop Analyzer ist in unterschiedlichen Versionen verfügbar:

– Desktop-Version: in dieser Version sind alle Kernfunktionen in einer Installation kombiniert. In wenigen Minuten mit den Standard-Betriebssystemen MS-Windows, Apple Mac, Linux installiert. Außer Java-Runtime ist keine weitere Software notwendig. Somit fast, je nach Rechte am PC, ohne IT-Abt. installierbar. Ideal zum Einstieg und Testen, für Data Labs, Abteilungen und für kleine Unternehmen.

– Client/Server-Version: In dieser Version befinden die Analyse-Engines und die Datenhaltung auf dem Server. Das User-Interface ist auf dem Rechner des Anwenders installiert. Eine Cloud-Version ist demnächst verfügbar. Für größere Teams von Analysten mit definierten Zielen.

– Sandbox-Version: entspricht der C/S-Server Version, doch das User-Interface wird spezifisch auf einen Anwenderkreis oder einen Anwendungsfall bereitgestellt. Ein typischer Anwendungsfall ist, dass gewisse Fachbereiche oder Data Science-Teams eine Daten-Sandbox erhalten. In dieser Sandbox werden frei von klassischen BI-Systemen, Ad-hoc Fragen beantwortet und proaktive Analysen erstellt. Die Daten werden per In-Memory-Instanzen bereitgestellt.

Fazit:  Mit dem Synop Analyzer erhalten Unternehmen die Möglichkeit Daten sofort zu analysieren. Aus vorhandenen Daten wird neues Wissen mit bestehenden Ressourcen gewonnen! Der Aufwand für die Einführung ist minimal. Der Preis für die Software liegt ja nach Ausstattung zw. 2.500 Euro und 9.500 Euro. Welche Ausrede soll es jetzt noch geben?

Nur wer früh beginnt, lernt die Hürden und den Nutzen von Datenanalyse und Data-Mining kennen. Zu Beginn wird der Reifegrad klein sein: Datenqualität ist mäßig, Datenzugriffe sind schwierig. Wie in anderen Disziplinen gilt auch hier: Übung macht den Meister und ein Meister ist noch nie von Himmel gefallen.

Die üblichen Verdächtigen – 8 häufige Fehler in der Datenanalyse

Das eine vorab: eine Liste der meist begangenen Fehler in der Datenanalyse wird in jedem Fall immer eine subjektive Einschätzung des gefragten Experten bleiben und unterscheidet sich je nach Branche, Analyse-Schwerpunkt und Berufserfahrung des Analysten. Trotzdem finden sich einige Missverständnisse über viele Anwendungsbereiche der Datenanalyse hinweg immer wieder. Die folgende Liste gibt einen Überblick über die acht am häufigsten begangenen Fehler in der angewandten Datenanalyse von denen ich behaupte, dass sie universell sind.

  1. Statistische Signifikanz versus Relevanz

Die Idee der statistischen Signifikanz wird oft missverstanden und deswegen fälschlicherweise mit statistisch belegter Relevanz gleichgesetzt. Beide messen jedoch sehr unterschiedliche Dinge. Statistische Signifikanz ist ein Maß der Gewissheit, welches die Zufälligkeit von Variation berücksichtigt. „Statistisch signifikant“ bedeutet also, dass es unwahrscheinlich ist, dass ein bestimmtes Phänomen nur zufällig auftritt. „Statistisch nicht signifikant“ bedeutet, dass neben der zufälligen Variation keine systematische bewiesen werden konnte. Wichtig: dies bedeutet nicht, dass es keine Effekte gibt, sondern, dass diese nicht belegt werden konnten. Statistische Signifikanz lässt sich mit ausreichend vielen Beobachtungen allerdings auch für sehr kleine Unterschiede belegen. Generell gilt: je größer die Stichprobe, desto kleiner werden die Unterschiede, welche als statistisch signifikant getestet werden. Deswegen unterscheidet sich die statistische Relevanz von der statistischen Signifikanz.

Statistische Relevanz misst hingegen die Effektstärke eines Unterschiedes. Die Größe eines Unterschiedes wird dazu in Relation zur Streuung der Daten gesetzt und ist damit unabhängig von der Stichprobengröße. Je größer die Varianz der Zufallsvariablen, desto kleiner wird die Effektstärke.

  1. Korrelation versus Kausalität

Wird eine hohe Korrelation zwischen zwei Größen festgestellt, so wird oft geschlussfolgert, dass eine der beiden Größen die andere bestimmt. In Wahrheit können auch komplexe statistische und ökonometrische Modelle keine Kausalität beweisen. Dies gilt sogar, wenn die Modellierung einer theoretischen Grundlage folgt, denn auch die kann falsch sein. Regelmäßig lehnen sich Forscher und Analysten aus dem Fenster, indem sie Wirkungen behaupten, welche eine genaue Prüfung nicht aushalten. Standardfragen, die als Automatismus einer jeden Analyse folgen sollte, welche behauptet Effekte gefunden zu haben sind: Welche Rolle spielen unbeobachtete Heterogenitäten, umgekehrte Kausalität und Messfehler in den Variablen für das Schätzergebnis? Erst wenn diese drei Quellen von Endogenität kontrolliert werden und außerdem davon ausgegangen werden kann, dass die Stichprobe die Grundgesamtheit repräsentiert, kann ein kausaler Zusammenhang angenommen und quantifiziert werden.

  1. Unbeobachtete Einflussfaktoren

Nicht messbare und deswegen nicht erhobene Einflüsse verzerren die geschätzten Parameter der kontrollierbaren Faktoren, sofern letztere mit den unbeobachteten im Zusammenhang stehen. In anderen Worten: der geschätzte Effekt wird fälschlicherweise der beobachteten Größe zugeschrieben, wenn eigentlich eine dritte, nicht beobachtete Größe die Zielgröße bedingt und gleichzeitig mit der beobachteten Größe korreliert. Das Lehrbeispiel
für Verzerrungen durch unbeobachtete Größen ist die Lohngleichung – eine Gleichung die seit nunmehr 60 Jahren intensiv beforscht wird. Die Schwierigkeit bei der Quantifizierung des Effektes von Ausbildung liegt darin, dass die Entlohnung nicht nur über Alter, Berufserfahrung, Ausbildung und den anderen Kontrollvariablen variiert, sondern auch durch das unterschiedlich ausgeprägte Interesse an einem lukrativen Erwerb und die Fähigkeit des Einzelnen, diesen zu erlangen. Die Herausforderung: es gibt keinen statistischen Test, welche eine Fehlspezifikation durch unbeobachtete Größen angibt. Unabdingbar ist deswegen ein tiefgehendes Verständnis des Analyseproblems. Dieses befähigt den Analysten Hypothesen zu formulieren, welche unbeobachteten Größen über eine Korrelation mit dem getesteten Regressor im Fehlerterm ihr Unwesen treiben. Um Evidenz für die Hypothesen zu schaffen, müssen smarte Schätzdesigns oder ausreichend gute Instrumente identifiziert werden.statistische-verzerrung

  1. Selektionsverzerrung

Eine Selektionsverzerrung liegt vor, wenn Beobachtungen nicht für jedes Individuum vorliegen oder von der Analyse ausgeschlossen werden. Die Grundvoraussetzung für jeden statistischen Hypothesentest ist die Annahme einer Zufallsstichprobe, so dass die Zielpopulation repräsentativ abgebildet ist. In der Praxis ergeben sich allerdings oft Situationen, in denen bestimmte Merkmale nur für eine Gruppe, aber nicht für eine zweite beobachtet werden können. Beispielsweise kann der Effekt einer gesundheitsfördernden Maßnahme eines Großbetriebes für die gesamte Belegschaft nicht durch die freiwillige Teilnahme einiger Mitarbeiter gemessen werden. Es muss explizit dafür kontrolliert werden, welche Unterschiede zwischen Mitarbeitern bestehen, welche das Angebot freiwillig in Anspruch nehmen im Vergleich zu denen, die es nicht annehmen. Eine Gefahr der Über- oder Unterschätzung der Effekte besteht generell immer dann, wenn über die Beschaffenheit der Stichprobe im Vergleich zur Grundgesamtheit nicht nachgedacht wird. Auf Basis einer nicht repräsentativen Stichprobe werden dann fälschlicherweise Generalisierungen formuliert werden, welche zu falschen Handlungsempfehlungen führen können.

  1. Überanpassung und hohe Schätzervarianz

Überanpassung passiert, wenn der Analyst „zu viel“ von den Daten will. Wird das Model überstrapaziert, so erklären die Kontrollvariablen nicht nur die Zielgröße sondern auch das weiße Rauschen, also die Zufallsfehler. Die Anzahl der Regressoren im Verhältnis zur Anzahl der Beobachtungen ist in solch einer Spezifikation übertrieben. Das Problem: zu wenig Freiheitsgrade und das vermehrte Auftreten von Multikollinearität führen zu einer hohen Varianz in der Verteilung der Schätzer. Ein Schätzergebnis einer Spezifikation mit einer hohen Schätzervarianz kann also Schätzergebnisse produzieren, welche vom wahren Wert weiter entfernt sind als ein verzerrter Schätzer. Tatsächlich ist ein „falsches“ meistens ein Hinweis auf Multikollinearität.verlorene-effizienz-statistisches-modell

Oft macht es Sinn, die Spezifikation anzupassen, indem man die korrelierten Regressoren ins Verhältnis zueinander zu setzt. In der Praxis geht es immer darum, einen Kompromiss aus Verzerrung und Varianz zu finden. Das Kriterium hierfür ist die Minimierung des mittleren quadratischen Fehlers. Um zu überprüfen, ob der Analyst über das Ziel hinausgeschossen ist, gibt es zudem verschiedene Validierungsmethoden, welche je nach Methode einen bestimmten Anteil oder sogar keine Daten „verschwenden“, um das Modell zu überprüfen.kompromiss-quadratischer-fehler-statistisches-modell

  1. Fehlende Datenpunkte

Beobachtungen mit fehlenden Datenpunkten werden in der Praxis aus der Analyse in den meisten Fällen ausgeschlossen, einfach deswegen, weil das am schnellsten geht. Bevor das gemacht wird, sollte allerdings immer die Frage vorangestellt werden, wieso diese Datenpunkte fehlen. Fehlen sie zufällig, so führt der Ausschluss der Beobachtungen zu keinen unterschiedlichen Ergebnissen. Fehlen sie allerdings systematisch, beispielsweise wenn Personen mit bestimmten Merkmalen spezifische Daten lieber zurückhalten, so ergeben sich daraus Herausforderungen. Es sollte dann darum gehen, diese gesamte Verteilung zu ermitteln. Ist unklar, ob die Daten zufällig oder systematisch fehlen, so sollte sich der Analyst im Zweifel dieser Frage annehmen. Es müssen dann Informationen identifiziert werden, welche helfen die fehlenden Daten zu imputieren.

  1. Ausreißer

Ausreißer werden in vielen Anwendungen mit standardisierten Verfahren identifiziert und aus dem Datensatz entfernt. Dabei lohnt es sich in vielen Fällen, die Daten ernst zu nehmen. Die Voraussetzung hierfür: die Datenpunkte müssen legitim sein. Problemlos ausschließen lassen sich Datenpunkte, welche durch Eingabefehler und bewusste Falschmeldung erzeugt wurden. Legitime Datenpunkte sind hingegen “echte” Werte. Die Einbeziehung von Ausreißern kann mitunter einen inhaltlichen Beitrag zur Analyse leisten, da auch sie einen Teil der Population im Ganzen sind. Problematisch wird die Beibehaltung von Ausreißern, wenn durch sie Zusammenhänge identifizierbar werden, die auf den Rest der Population nicht zutreffen. Mögliche Verfahren, welche Ausreißer mit dem Rest der Beobachtungen versöhnen, sind Transformationen der Daten oder die Anwendung robuster Schätzverfahren. Beide Ansätze spielen mit einer stärkeren Gewichtung der mittleren Verteilung. Außerdem kann beispielsweise in Regressionen überprüft werden, inwieweit etwa ein nicht-linearer Fit die Ausreißer besser in die Schätzung aufnimmt.

  1. Spezifizierung versus Modellierung

Allzu oft werden komplizierte statistische Modelle gebaut, bevor überprüft wurde, was ein einfaches Modell leisten kann. Bevor jedoch komplexe Modelle gestrickt werden, sollte zuerst an der Spezifikation des Modells gearbeitet werden. Kleine Anpassungen wie die Inklusion verbesserter Variablen, die Berücksichtigung von Interaktionen und nicht-linearen Effekten bringen uns in manchen Fällen der Wahrheit näher als ein aufwendiges Modell und sollten in jedem Fall ausgereizt werden, bevor ein aufwendigeres Modell gewählt wird. Je einfacher das Modell, desto einfacher ist es in der Regel auch die Kontrolle darüber zu behalten. In jedem Fall sollten die gewählten Spezifikationen immer durch Sensitivitätsanalysen unterstützt werden. Unterschiede in der Variablendefinition und der Selektion der Daten, sollten sowohl getestet als auch berichtet werden. Einen guten Grund, das Modell zu wechseln hat der Analyst dann, wenn daraus ersichtlich wird, dass Annahmen des einfachen Modells verletzt werden und dieses deswegen keine validen Ergebnisse produziert.

DataQuest.io – Online Einstieg in Data Science mit Python

Data Science hat unglaublich viele Facetten und eine davon, ist die Analyse von Daten mit der Programmiersprache Python. Diese Programmiersprache ist neben R eine der am häufigsten eingesetzten Programmiersprachen für alle möglichen Aufgaben rund um die Auswertung von Daten.

Wer schon immer in die Datenanalyse mit Python einsteigen wollte, kann dies nun sehr einfach über einen ausgeklügelten Online-Kurs namens DataQuest tun.

Ich selbst habe DataQuest ausprobiert und finde es super. Die ersten Module waren für mich erstmal sehr zäh, da sich diese mit Pythen und einigen Programmiergrundlagen befassen. Die Module können allerdings in beliebiger Reihenfolge abgearbeitet werden. Hat man den “Learning Python”-Teil aber durch, wird es schnell sehr spezifisch und auch als Experte kann die Aufgaben als guten Denksport verstehen.

Sehr gut dabei ist, dass der komplette Kurs online in der Cloud stattfindet. Benötigt wird nichts weiter als ein gewöhnlicher Internet-Browser und man muss sich nicht mit der Einrichtung von Python und der Entwicklungsumgebung auf dem Computer beschäftigen. DataQuest stellt über den Browser server-seitig die Entwicklungsumgebung bereit. Es kann also sofort nach der Account-Einrichtung losgehen! Die Kurse von DataQuest gibt es allerdings nur auf Englisch.

Der Kursumfang beginnt recht ausführlich über die Grundlagen der Programmierung, basierend auf Python. Die Grundlagen werden jedoch bereits überwiegend anhand von Aufgaben im Bereich der Datenanalyse erklärt, beispielsweise den Zugriff auf Textdateien.

Zumindest alle Grundlagen-Kurse sind kostenlos. Der weitere Kursinhalt über die Programmiergrundlagen hinaus befasst sich direkt mit dem Einstieg in Data Science mit der explorativen Datenanalyse, der Datenvisualisierung und der Statistik im Allgemeinen und Predictive Analytics im Speziellen. Ferner sollen in der Zukunft Kurse mit einen Einstieg ins Maschinelle Lernen (Machine Learning) angeboten werden. Die interessantesten Kurse können jedoch nur über den Premium-Account gestartet werden. Dieser ist für bezahlbare 35 US-Dollar pro Monat zu haben.

URL zum Anbieter: www.dataquest.io