Wahrscheinlichkeitesrechnung – Grundstein für Predictive Analytics

Die Wahrscheinlichkeitsrechnung behandelt die Gesetzmäßigkeiten  des (von außen betrachtet) zufälligen Vorkommens bestimmter Ereignisse aus einer vorgegebenen Ereignismenge. Die mathematische Statistik fasst diese Wahrscheinlichkeitsrechnung zur Stochastik zusammen, der Mathematik des Zufalls

Mit diesem Artikel – zu der ich eine Serie plane – möchte ich den Einstieg in Predictive Analytics wagen, zugegebenermaßen ein Themengebiet, in dem man sich sehr schnell verlieren und den Wald vor lauter Bäumen nicht mehr findet. Also belassen wir es erstmal bei einem sanften Einstieg…

Klassische Definition der Wahrscheinlichkeit

Das klassische Verständnis der Wahrscheinlichkeit geht von endlich vielen Ausgängen (Ereignisse) aus, bei denen alle Ausgänge gleich wahrscheinlich sind. Die dafür erdachten Zufallsexperimente wurden von dem französischen Mathematiker Pierre Simon Lapplace (1749 – 1827) zum ersten Mal nachvollziehbar beschrieben. Diese Zufallsexperimente werden daher auch Laplace-Experimente genannt.

Bei einem Laplace Experiment gilt:

Ereignismenge \Omega = {\omega_1,\omega_2,\omega_3,…\omega_s}
Wahrscheinlichkeit p(w_j)=\frac{1}{s}=\frac{1}{|\Omega|}
(j=1,2,3,…s)

Die Ergebnismenge, das ist die Menge aller möglichen Ereignisse, wird in der Regel mit einem \Omega (Omega) gekennzeichnet, ein beliebiges Einzelereignis hingegen als \omega (kleines Omega).

Eine typische Laplace-Wahrscheinlichkeitsfrage ist ein bevorstehender Würfelwurf. Wie groß ist die Wahrscheinlichkeit, mit einem echten (unverfälschten) Würfel eine gerade Zahl zu würfeln?

Mit \Omega={1,2,3,4,5,6} und A={2,4,6} folgt P(A)=\frac{|A|}{|\Omega|}=\frac{3}{6}=0,5.

Axiomatische Definition der Wahrscheinlichkeit

Jeder Wahrscheinlichkeitsbegriff muss auf denselben äußeren Bedingungen beruhenden Zufallsexperimenten beliebig oft wiederholbar sein. Die axiomatische Definition der Wahrscheinlichkeit P(A) eines Ereignisses A berücksichtigt Axiome. Axiome sind nicht beweisbare Grundpostulate, darunter fallen Gegebenheiten, die gewissermaßen unverstanden sind und deren Vorkommen und Bedeutung in der Regel empirisch belegt werden müssen.
Die Definition der axiomatischen Wahrscheinlichkeit stammt vom russischen Mathematiker Andrej Nikollajewitsch Kolmogorov (1903 – 1987).

In der Realität gibt es keine perfekte Zufälligkeit, denn jedes Ergebnis ist von ganz bestimmten Faktoren abhängig. Auf den Würfelwurf bezogen, hängt das gewürfelte Ergebnis von unüberschaubar vielen Faktoren ab. Wären diese alle bekannt, könnte das Ergebnis exakt berechnet und somit mit einer Sicherheit vorhergesagt werden. Da dafür jedoch in der Praxis unbestimmbar viele Faktoren eine Rolle spielen (beispielsweise die genaue Beschaffenheit des Würfels in Form, Gewicht, Materialwiderstand, der genaue Winkel, die Fallgeschwindigkeit, die Ausgangsposition der Hand und des Würfels) können wir das Ergebnis nur schätzen, indem die Beschreibung des Vorgangs vereinfacht wird. Nur diese Vereinfachung macht es uns möglich, Vorhersagen zu treffen, die dann jedoch nur eine Wahrscheinlichkeit darstellen und somit mit einer Unsicherheit verbunden sind.

In der abstrakten Welt des perfekten Zufalls gäbe es die gleiche Chance, eine “4” zu würfeln, wie jeweils alle anderen Ziffern.

Mit \Omega={1,2,3,4,5,6} und A={4} folgt P(A)=\frac{|A|}{|\Omega|}=\frac{1}{6}=0,167.

Das Ergebnis eines Wurfes des Würfels ist in der Realität auch von der Beschaffenheit des Würfels abhängig. Angenommen, der Würfel hat auf Seite der Ziffer “4” bei allen vier Kanten eine Abrundung, die ein Umkippen auf eine andere Seite begünstigen, so bedeutet dies:

  • Die Ziffer “4” hat vier abgerundete Kanten, die Wahrscheinlichkeit eine “4” zu würfeln sinkt stark
  • Die Ziffern “1”, “3”, “5”, “6” haben jeweils eine abgerundete Kante (Berühungskante zur “4”) sinkt
  • Die Ziffer “2” liegt der “4” gegenüber, hat somit keine Berührungskante und keine Abrundung, so steigt ihre Chance gewürfelt zu werden

Nun könnte sich nach einer empirischen Untersuchung mit einer ausreichenden Stichprobe folgende Wahrscheinlichkeit ergeben:

  • p(4) = 0,1
  • p(1) = p(3) = p(5) = p(6) = 0,15
  • p(2) = 0,3
  • P(\Omega) = 1,0

Durch die Analyse der bisherigen Wurf-Historie und der Betrachtung der Beschaffenheit der Kanten des Würfels können wir uns somit weit realistischere Wahrscheinlichkeiten über die Wurfergebnisse ermitteln. Wie hoch wäre nun die Wahrscheinlichkeit, nach einem Wurf eine gerade Zahl zu würfeln?

Mit \Omega={1,2,3,4,5,6} und A={2,4,6} folgt P(A)=p(2)+p(4)+p(6)=0,55.

Die üblichen Verdächtigen – 8 häufige Fehler in der Datenanalyse

Das eine vorab: eine Liste der meist begangenen Fehler in der Datenanalyse wird in jedem Fall immer eine subjektive Einschätzung des gefragten Experten bleiben und unterscheidet sich je nach Branche, Analyse-Schwerpunkt und Berufserfahrung des Analysten. Trotzdem finden sich einige Missverständnisse über viele Anwendungsbereiche der Datenanalyse hinweg immer wieder. Die folgende Liste gibt einen Überblick über die acht am häufigsten begangenen Fehler in der angewandten Datenanalyse von denen ich behaupte, dass sie universell sind.

  1. Statistische Signifikanz versus Relevanz

Die Idee der statistischen Signifikanz wird oft missverstanden und deswegen fälschlicherweise mit statistisch belegter Relevanz gleichgesetzt. Beide messen jedoch sehr unterschiedliche Dinge. Statistische Signifikanz ist ein Maß der Gewissheit, welches die Zufälligkeit von Variation berücksichtigt. „Statistisch signifikant“ bedeutet also, dass es unwahrscheinlich ist, dass ein bestimmtes Phänomen nur zufällig auftritt. „Statistisch nicht signifikant“ bedeutet, dass neben der zufälligen Variation keine systematische bewiesen werden konnte. Wichtig: dies bedeutet nicht, dass es keine Effekte gibt, sondern, dass diese nicht belegt werden konnten. Statistische Signifikanz lässt sich mit ausreichend vielen Beobachtungen allerdings auch für sehr kleine Unterschiede belegen. Generell gilt: je größer die Stichprobe, desto kleiner werden die Unterschiede, welche als statistisch signifikant getestet werden. Deswegen unterscheidet sich die statistische Relevanz von der statistischen Signifikanz.

Statistische Relevanz misst hingegen die Effektstärke eines Unterschiedes. Die Größe eines Unterschiedes wird dazu in Relation zur Streuung der Daten gesetzt und ist damit unabhängig von der Stichprobengröße. Je größer die Varianz der Zufallsvariablen, desto kleiner wird die Effektstärke.

  1. Korrelation versus Kausalität

Wird eine hohe Korrelation zwischen zwei Größen festgestellt, so wird oft geschlussfolgert, dass eine der beiden Größen die andere bestimmt. In Wahrheit können auch komplexe statistische und ökonometrische Modelle keine Kausalität beweisen. Dies gilt sogar, wenn die Modellierung einer theoretischen Grundlage folgt, denn auch die kann falsch sein. Regelmäßig lehnen sich Forscher und Analysten aus dem Fenster, indem sie Wirkungen behaupten, welche eine genaue Prüfung nicht aushalten. Standardfragen, die als Automatismus einer jeden Analyse folgen sollte, welche behauptet Effekte gefunden zu haben sind: Welche Rolle spielen unbeobachtete Heterogenitäten, umgekehrte Kausalität und Messfehler in den Variablen für das Schätzergebnis? Erst wenn diese drei Quellen von Endogenität kontrolliert werden und außerdem davon ausgegangen werden kann, dass die Stichprobe die Grundgesamtheit repräsentiert, kann ein kausaler Zusammenhang angenommen und quantifiziert werden.

  1. Unbeobachtete Einflussfaktoren

Nicht messbare und deswegen nicht erhobene Einflüsse verzerren die geschätzten Parameter der kontrollierbaren Faktoren, sofern letztere mit den unbeobachteten im Zusammenhang stehen. In anderen Worten: der geschätzte Effekt wird fälschlicherweise der beobachteten Größe zugeschrieben, wenn eigentlich eine dritte, nicht beobachtete Größe die Zielgröße bedingt und gleichzeitig mit der beobachteten Größe korreliert. Das Lehrbeispiel
für Verzerrungen durch unbeobachtete Größen ist die Lohngleichung – eine Gleichung die seit nunmehr 60 Jahren intensiv beforscht wird. Die Schwierigkeit bei der Quantifizierung des Effektes von Ausbildung liegt darin, dass die Entlohnung nicht nur über Alter, Berufserfahrung, Ausbildung und den anderen Kontrollvariablen variiert, sondern auch durch das unterschiedlich ausgeprägte Interesse an einem lukrativen Erwerb und die Fähigkeit des Einzelnen, diesen zu erlangen. Die Herausforderung: es gibt keinen statistischen Test, welche eine Fehlspezifikation durch unbeobachtete Größen angibt. Unabdingbar ist deswegen ein tiefgehendes Verständnis des Analyseproblems. Dieses befähigt den Analysten Hypothesen zu formulieren, welche unbeobachteten Größen über eine Korrelation mit dem getesteten Regressor im Fehlerterm ihr Unwesen treiben. Um Evidenz für die Hypothesen zu schaffen, müssen smarte Schätzdesigns oder ausreichend gute Instrumente identifiziert werden.statistische-verzerrung

  1. Selektionsverzerrung

Eine Selektionsverzerrung liegt vor, wenn Beobachtungen nicht für jedes Individuum vorliegen oder von der Analyse ausgeschlossen werden. Die Grundvoraussetzung für jeden statistischen Hypothesentest ist die Annahme einer Zufallsstichprobe, so dass die Zielpopulation repräsentativ abgebildet ist. In der Praxis ergeben sich allerdings oft Situationen, in denen bestimmte Merkmale nur für eine Gruppe, aber nicht für eine zweite beobachtet werden können. Beispielsweise kann der Effekt einer gesundheitsfördernden Maßnahme eines Großbetriebes für die gesamte Belegschaft nicht durch die freiwillige Teilnahme einiger Mitarbeiter gemessen werden. Es muss explizit dafür kontrolliert werden, welche Unterschiede zwischen Mitarbeitern bestehen, welche das Angebot freiwillig in Anspruch nehmen im Vergleich zu denen, die es nicht annehmen. Eine Gefahr der Über- oder Unterschätzung der Effekte besteht generell immer dann, wenn über die Beschaffenheit der Stichprobe im Vergleich zur Grundgesamtheit nicht nachgedacht wird. Auf Basis einer nicht repräsentativen Stichprobe werden dann fälschlicherweise Generalisierungen formuliert werden, welche zu falschen Handlungsempfehlungen führen können.

  1. Überanpassung und hohe Schätzervarianz

Überanpassung passiert, wenn der Analyst „zu viel“ von den Daten will. Wird das Model überstrapaziert, so erklären die Kontrollvariablen nicht nur die Zielgröße sondern auch das weiße Rauschen, also die Zufallsfehler. Die Anzahl der Regressoren im Verhältnis zur Anzahl der Beobachtungen ist in solch einer Spezifikation übertrieben. Das Problem: zu wenig Freiheitsgrade und das vermehrte Auftreten von Multikollinearität führen zu einer hohen Varianz in der Verteilung der Schätzer. Ein Schätzergebnis einer Spezifikation mit einer hohen Schätzervarianz kann also Schätzergebnisse produzieren, welche vom wahren Wert weiter entfernt sind als ein verzerrter Schätzer. Tatsächlich ist ein „falsches“ meistens ein Hinweis auf Multikollinearität.verlorene-effizienz-statistisches-modell

Oft macht es Sinn, die Spezifikation anzupassen, indem man die korrelierten Regressoren ins Verhältnis zueinander zu setzt. In der Praxis geht es immer darum, einen Kompromiss aus Verzerrung und Varianz zu finden. Das Kriterium hierfür ist die Minimierung des mittleren quadratischen Fehlers. Um zu überprüfen, ob der Analyst über das Ziel hinausgeschossen ist, gibt es zudem verschiedene Validierungsmethoden, welche je nach Methode einen bestimmten Anteil oder sogar keine Daten „verschwenden“, um das Modell zu überprüfen.kompromiss-quadratischer-fehler-statistisches-modell

  1. Fehlende Datenpunkte

Beobachtungen mit fehlenden Datenpunkten werden in der Praxis aus der Analyse in den meisten Fällen ausgeschlossen, einfach deswegen, weil das am schnellsten geht. Bevor das gemacht wird, sollte allerdings immer die Frage vorangestellt werden, wieso diese Datenpunkte fehlen. Fehlen sie zufällig, so führt der Ausschluss der Beobachtungen zu keinen unterschiedlichen Ergebnissen. Fehlen sie allerdings systematisch, beispielsweise wenn Personen mit bestimmten Merkmalen spezifische Daten lieber zurückhalten, so ergeben sich daraus Herausforderungen. Es sollte dann darum gehen, diese gesamte Verteilung zu ermitteln. Ist unklar, ob die Daten zufällig oder systematisch fehlen, so sollte sich der Analyst im Zweifel dieser Frage annehmen. Es müssen dann Informationen identifiziert werden, welche helfen die fehlenden Daten zu imputieren.

  1. Ausreißer

Ausreißer werden in vielen Anwendungen mit standardisierten Verfahren identifiziert und aus dem Datensatz entfernt. Dabei lohnt es sich in vielen Fällen, die Daten ernst zu nehmen. Die Voraussetzung hierfür: die Datenpunkte müssen legitim sein. Problemlos ausschließen lassen sich Datenpunkte, welche durch Eingabefehler und bewusste Falschmeldung erzeugt wurden. Legitime Datenpunkte sind hingegen “echte” Werte. Die Einbeziehung von Ausreißern kann mitunter einen inhaltlichen Beitrag zur Analyse leisten, da auch sie einen Teil der Population im Ganzen sind. Problematisch wird die Beibehaltung von Ausreißern, wenn durch sie Zusammenhänge identifizierbar werden, die auf den Rest der Population nicht zutreffen. Mögliche Verfahren, welche Ausreißer mit dem Rest der Beobachtungen versöhnen, sind Transformationen der Daten oder die Anwendung robuster Schätzverfahren. Beide Ansätze spielen mit einer stärkeren Gewichtung der mittleren Verteilung. Außerdem kann beispielsweise in Regressionen überprüft werden, inwieweit etwa ein nicht-linearer Fit die Ausreißer besser in die Schätzung aufnimmt.

  1. Spezifizierung versus Modellierung

Allzu oft werden komplizierte statistische Modelle gebaut, bevor überprüft wurde, was ein einfaches Modell leisten kann. Bevor jedoch komplexe Modelle gestrickt werden, sollte zuerst an der Spezifikation des Modells gearbeitet werden. Kleine Anpassungen wie die Inklusion verbesserter Variablen, die Berücksichtigung von Interaktionen und nicht-linearen Effekten bringen uns in manchen Fällen der Wahrheit näher als ein aufwendiges Modell und sollten in jedem Fall ausgereizt werden, bevor ein aufwendigeres Modell gewählt wird. Je einfacher das Modell, desto einfacher ist es in der Regel auch die Kontrolle darüber zu behalten. In jedem Fall sollten die gewählten Spezifikationen immer durch Sensitivitätsanalysen unterstützt werden. Unterschiede in der Variablendefinition und der Selektion der Daten, sollten sowohl getestet als auch berichtet werden. Einen guten Grund, das Modell zu wechseln hat der Analyst dann, wenn daraus ersichtlich wird, dass Annahmen des einfachen Modells verletzt werden und dieses deswegen keine validen Ergebnisse produziert.

Top 10 der Python Bibliotheken für Data Science

Python gilt unter Data Scientists als Alternative zu R Statistics. Ich bevorzuge Python auf Grund seiner Syntax und Einfachheit gegenüber R, komme hinsichtlich der vielen Module jedoch häufig etwas durcheinander. Aus diesem Grund liste ich hier die – meiner Einschätzung nach – zehn nützlichsten Bibliotheken für Python, um einfache Datenanalysen, aber auch semantische Textanalysen, Predictive Analytics und Machine Learning in die Tat umzusetzen.

NumPy – Numerische Analyse

NumPy ist eine Open Source Erweiterung für Python. Das Modul stellt vorkompilierte Funktionen für die numerische Analyse zur Verfügung. Insbesondere ermöglicht es den einfachen Umgang mit sehr großen, multidimensionalen Arrays (Listen) und Matrizen, bietet jedoch auch viele weitere grundlegende Features (z. B. Funktionen der Zufallszahlenbildung, Fourier Transformation, linearen Algebra). Ferner stellt das NumPy sehr viele Funktionen mathematische Funktionen für das Arbeiten mit den Arrays und Matrizen bereit.

matplotlib – 2D/3D Datenvisualisierung

Die matplotlib erweitert NumPy um grafische Darstellungsmöglichkeiten in 2D und 3D. Das Modul ist in Kombination mit NumPy wohl die am häufigsten eingesetzte Visualisierungsbibliothek für Python.

Die matplotlib bietet eine objektorientierte API, um die dynamischen Grafiken in Pyhton GUI-Toolkits einbinden zu können (z. B. GTL+ oder wxPython).

NumPy und matplotlib werden auch mit den nachfolgenden Bibliotheken kombiniert.

Bokeh – Interaktive Datenvisualisierung

Während die Plot-Funktionen von matplotlib statisch angezeigt werden, kann in den Visualsierungsplots von Bokeh der Anwender interaktiv im Chart klicken und es verändern. Bokeh ist besonders dann geeignet, wenn die Datenvisualisierung als Dashboard im Webbrowser erfolgen soll.

Das Bild über diesen Artikel zeigt Visualiserungen mit dem Python Package Bokeh.

Pandas – Komplexe Datenanalyse

Pandas ist eine Bibliothek für die Datenverarbeitung und Datenanalyse mit Python. Es erweitert Python um Datenstrukturen und Funktionen zur Verarbeitung von Datentabellen. Eine besondere Stärke von Pandas ist die Zeitreihenanalyse. Pandas ist freie Software (BSD License).

Statsmodels – Statistische Datenanalyse

Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of descriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.

Die explorative Datenanalyse, statistische Modellierung und statistische Tests ermöglicht das Modul Statsmodels. Das Modul bringt neben vielen statistischen Funktionen auch eigene Plots (Visualisierungen) mit. Mit dem Modul wird Predictive Analytics möglich. Statsmodels wird häufig mit NumPy, matplotlib und Pandas kombiniert.

SciPy – Lineare Optimierung

SciPy ist ein sehr verbreitetes Mathematik-Modul für Python, welches den Schwerpunkt auf die mathematische Optimierung legt. Funktionen der linearen Algebra, Differenzialrechnung, Interpolation, Signal- und Bildverarbeitung sind in SciPy enthalten.

scikit-learn – Machine Learning

scikit-learn ist eine Framework für Python, das auf NumPy, matplotlob und SciPy aufsetzt, dieses jedoch um Funktionen für das maschinelle Lernen (Machine Learning) erweitert. Das Modul umfasst für das maschinelle Lernen notwendige Algorithmen für Klassifikationen, Regressionen, Clustering und Dimensionsreduktion.

Mlpy – Machine Learning

Alternativ zu scikit-learn, bietet auch Mlpy eine mächtige Bibliothek an Funktionen für Machine Learning. Mlpy setzt ebenfalls auf NumPy und SciPy, auf, erweitert den Funktionsumfang jedoch um Methoden des überwachten und unüberwachten maschinellen Lernens.

NLTK – Text Mining

NLTK steht für Natural Language Toolkit und ermöglicht den effektiven Einstieg ins Text Mining mit Python. Das Modul beinhaltet eigene (eher einfache) Visualisierungsmöglichkeiten zur Darstellung von Textmuster-Zusammenhängen, z. B. in Baumstrukturen. Für Text Mining und semantische Textanalysen mit Python gibt es wohl nichts besseres als NLTK.

Theano – Multidimensionale Berechnungen & GPU-Processing

Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently

Für multidimensionale Datenanalysen bzw. die Verarbeitung und Auswertung von multidimensionalen Arrays gibt es wohl nichts schnelleres als die Bibliothek Theano. Theano ist dabei eng mit NumPy verbunden.

Theano ermöglicht die Auslagerung der Berechnung auf die GPU (Grafikprozessor), was bis zu 140 mal schneller als auf der CPU sein soll. Getestet habe ich es zwar nicht, aber grundsätzlich ist es wahr, dass die GPU multidimensionale Arrays schneller verarbeiten kann, als die CPU. Zwar ist die CPU universeller (kann quasi alles berechnen), die GPU ist aber auf die Berechnung von 3D-Grafiken optimiert, die ebenfalls über multidimensionalen Vektoren verarbeitet werden.

Data Science Evolution

Wie wurde aus Business Intelligence eigentlich Big Data? Aus Sicht der Unternehmen herrscht große Verwirrung darüber, welcher Begriff nun eigentlich was bedeutet und was dieser für das Unternehmen bedeutet.

Es stellt sicadvanced-data-scienceh die Frage, ob Business Intelligence nun veraltet ist und von Big Data Analytics ersetzt wird oder ob Big Data Analytics die Weiterführung von Business Intelligence darstellt. Darüber gibt es unterschiedliche Meinungen, aber die Evolution, die sich über das letzte Jahrzehnt von einfachen Reports zu den aktuellen Möglichkeiten im Bereich von Big Data Analytics erstreckt, können wir uns recht deutlich vor Augen führen.

Raw Data

Rohdaten stellen das “Material” da, welches die Grundlage für jegliche Analysen bildet. Auch wenn Rohdaten erstmal nicht besonders erwähnenswert klingen, so existiert viel Wissenschaft und Business rund um Rohdaten, denn deren Speicherung kann durchaus sehr komplex sein. Abhängig von Art und Struktur der Daten kommen hier unterschiedliche relationale und nicht-relationale (NoSQL) Datenbanken zum Einsatz. Aktueller Trend ist ferner die InMemory-Datenhaltung, die unabhängig von der eigentlichen Datenbankstruktur möglich ist.

Das Angebot an kostenpflichtigen und kostenfreien Datenbanken ist bereits beinahe unüberschaubar groß. Beispielsweise können die relationalen Datenbanken MariaDB, Oracle DB oder PostgreeSQL genannt werden. Neo4J (graphenorientiert), MongoDB (dokumentenorientiert), Apache Cassandra und SAP HANA (beide spaltenorientiert) sowie Redis (Key-Value-Datenbank) sind hingegen Beispiele für sogenannte NoSQL-Datenbanken.

Clean Data

Bereinigte Daten sollte heutzutage eine Selbstverständlichkeit sein? Weit gefehlt! Aus Erfahrung kann ich sagen, dass eine wirklich saubere Datenbasis die Ausnahme darstellt. Die Regel sind Inkonsistenzen zwischen relationalen Daten, Formatfehler, leere Datenfelder (die nicht leer sein dürften) usw. Mit der Bereinigung der Daten haben zurzeit noch alle Unternehmen und Institute zu kämpfen, sofern sie sich diesen Kampf überhaupt stellen.

Standard-Reporting

Reporting in Excel gibt es nun schon mindestens zwei Jahrzehnte und wird auch heute noch (mehr) betrieben. Mit der Etablierung von ERP-Systemen, beispielsweise Microsoft Dynamics NAV oder SAP ERP, fand auch das automatisierte Reporting Einzug in die deutschen Unternehmen. Heute bieten alle ERP-Systeme (bzw. CRM-, SRM-, PLM-Systeme) zumindest grundlegende Reporting-Funktionen in Form von Tabellen, Balken- und Kuchendiagrammen. Diese Reports sind allerdings in der Regel wenig anpassbar durch die Anwender.

Business Intelligence

Kurz nach dem Einsetzen des Wachstums auf dem Markt der ERP-Systeme lebte auch das Business Intelligence mit den schönen grafischen Dashboards auf. BI bedient sich dabei überwiegend aus den Daten des ERP-Systems. Ferner werden noch weitere – vorwiegend unternehmensinterne – Daten hinzugezogen, z. B. aus Excel-Dateien. Der Erfolg von Business Intelligence kam insbesondere mit den Dashboards und einer einfachen Bedienbarkeit, denn BI wurde für ERP-Anwender gemacht.

Im Bereich BI hatte QlikTech mit der Software QlikView einen Volltreffer gelandet, denn diese hat den Weg in viele Unternehmen als BI-Lösung gefunden.

(Big) Data Analytics – Causality Analytics

Data Analytics geht einen Schritt weiter als BI, denn hier geht es nicht nur darum zu analysieren, welche Ereignisse eingetreten sind, sondern auch warum. Data Analytics ist sehr viel flexibler als BI und wird tendenziell eher programmiert als zusammengeklickt. Hier spielen Daten aus externen Datenquellen (z. B. dem Internet) oftmals eine wichtige Rolle und machen daraus Big Data. Zudem kommt vermehrt Statistik und Machine Learning zum Einsatz um Kausalitäten aus den vielfältigen Datenmengen

Gearbeitet wird beispielsweise mit den Programmiersprachen R und Python, aber auch mit IBM SPSS oder SAS Advanced Analytics.

Predictive Modeling

Prädiktive Analysemodelle gehen noch einen Schritt weiter, denn nach der Frage nach dem Warum stellt sich für viele Geschäftszwecke die Frage, wann es wieder geschehen wird. Predictive Analytics gilt als eine Königsdisziplin, arbeitet mit induktiver Statistik und scheint mit der Einbindung von Big Data beinahe unbegrenzte Möglichkeiten der Vorhersage z. B. von Umsätzen, Lagerbeständen und Maschinenabnutzung zu bieten.

Optimierung

Der letzte Schritt in der Evolution ist die Simulation von allen Stellschrauben mit dem Ziel zur Optimierung des Systems (z. B. das Geschäft, die Fabrik oder die Maschine). Was in der Industriebetriebswirtschaft schon lange als Operations Research bekannt ist, wird mit Big Data Analytics einen neuen Aufschwung erfahren, denn hier werden immer mehr relevante Stellschrauben identifiziert und berücksichtigt werden können.