Funktionsweise künstlicher neuronaler Netze

Künstliche neuronale Netze sind ein Spezialbereich des maschinellen Lernens, der sogar einen eigenen Trendbegriff hat: Deep Learning.
Doch wie funktioniert ein künstliches neuronales Netz überhaupt? Und wie wird es in Python realisiert? Dies ist Artikel 2 von 6 der Artikelserie –Einstieg in Deep Learning.

Gleich vorweg, wir beschränken uns hier auf die künstlichen neuronalen Netze des überwachten maschinellen Lernens. Dafür ist es wichtig, dass das Prinzip des Trainings und Testens von überwachten Verfahren verstanden ist. Künstliche neuronale Netze können aber auch zur unüberwachten Dimensionsreduktion und zum Clustering eingesetzt werden. Das bekannteste Verfahren ist das AE-Net (Auto Encoder Network), das hier aus der Betrachtung herausgenommen wird.

Beginnen wir mit einfach künstlichen neuronalen Netzen, die alle auf dem Perzeptron als Kernidee beruhen. Das Vorbild für künstliche neuronale Netze sind natürliche neuronale Netze, wie Sie im menschlichen Gehirn zu finden sind.

Perzeptron

Das Perzeptron (engl. Perceptron) ist ein „Klassiker“ unter den künstlichen neuronalen Netzen. Wenn von einem neuronalen Netz gesprochen wird, ist meistens ein Perzeptron oder eine Variation davon gemeint. Perzeptrons sind mehrschichtige Netze ohne Rückkopplung, mit festen Eingabe- und Ausgabeschichten. Es gibt keine absolut einheitliche Definition eines Perzeptrons, in der Regel ist es jedoch ein reines FeedForward-Netz mit einer Input-Schicht (auch Abtast-Schicht oder Retina genannt) mit statisch oder dynamisch gewichteten Verbindungen zur Ausgabe-Schicht, die (als Single-Layer-Perceptron) aus einem einzigen Neuron besteht. Das eine Neuron setzt sich aus zwei mathematischen Funktionen zusammen: Einer Berechnung der Nettoeingabe und einer Aktivierungsfunktion, die darüber entscheidet, ob die berechnete Nettoeingabe im Brutto nun “feuert” oder nicht. Es ist in seiner Ausgabe folglich binär: Man kann es sich auch als kleines Lämpchen vorstellen, so dass abhängig von den Eingabewerten und den Gewichtungen eine Nettoeingabe (Summe) bildet und eine Sprungfunktion darüber entscheidet, ob am Ende das Lämpchen leuchtet oder nicht. Dieses Konzept der Ausgabeerzeugung wird Forward-Propagation genannt.

Single-Layer-Perceptron

Auch wenn “Netz” für ein einzelnes Perzeptron mit seinem einen Neuron etwas übertrieben wirken mag, ist es doch die Grundlage für viele größere und mehrschichtige Netze.

Betrachten wir nun die Mathematik der Forward-Propagation.

Wir haben eine Menge an Eingabewerten x_0, x_1 \dots x_n. Wobei für x_0 als Bias-Input stets gilt: x_0 = 1,0. Der Bias-Input ist nur ein Platzhalter für das wichtige Bias-Gewicht.

    \[ x = \begin{bmatrix} x_0\\ x_1\\ x_2\\ x_3\\ \vdots\\ x_n \end{bmatrix} \]


Für jede Eingabevariable wird eine Gewichtsvariable benötigt: w_0, w_1 \dots w_n

    \[ w = \begin{bmatrix} w_0\\ w_1\\ w_2\\ w_3\\ \vdots\\ w_n \end{bmatrix} \]

Jedes Produkt aus Eingabewert und Gewichtung soll in Summe die Nettoeingabe z bilden. Hier zeigt sich z als lineare mathematische Funktion, die zwei-dimensional leicht als z = w_0 + w_1 \cdot x_1 mit w_0 als Y-Achsenschnitt wenn x_1 = 0.

    \[ z = w_0 \cdot x_0 + w_1 \cdot x_1 + \dots + w_n \cdot x_n \]

Die lineare Funktion wird nur durch die Sprungfunktion als sogenannte Aktivierungsfunktion zu einer binären Klasseneinteilung (siehe hierzu: Machine Learning – Regression vs Klassifikation), denn wenn z einen festzulegenden Schwellwert \theta überschreitet, liefert die Sprungfunktion \phi mit der Eingabe z einen anderen Wert als wenn dieser Schwellwert nicht überschritten wird.

(1)   \begin{equation*} \phi(z) = \begin{cases} 1 & \text{wenn } z \le \theta \\ -1 & \text{wenn } z < \theta \\ \end{cases} \end{equation*}

Die Definition dieser Aktivierungsfunktion ist der Kern der Klassifikation und viele erweiterte künstliche neuronale Netze unterscheiden sich im Wesentlichen vom Perzeptron dadurch, dass die Aktivierungsfunktion komplexer ist, als eine reine Sprungfunktion, beispielsweise als Sigmoid-Funktion (basierend auf der logistischen Funktion) oder die Tangens hyperbolicus (tanh) -Funktion. Mehr darüber dann im nächsten Artikel dieser Artikelserie, bleiben wir also bei der einfachen Sprungfunktion.

Künstliche neuronale Netze sind im Grunde nichts anderes als viel-dimensionale, mathematische Funktionen, die durch Schaltung als Neuronen nebeneinander (Neuronen einer Schicht) und hintereinander (mehrere Schichten) eine enorme Komplexität erfassen können. Die Gewichtungen sind dabei die Stellschraube, die die Form der mathematischen Funktion gestaltet, aus Geraden und Kurven, um eine Punktwolke zu beschreiben (Regression) oder um Klassengrenzen zu identifizieren (Klassifikation).

Eine andere Sichtweise auf künstliche neuronale ist die des Filters: Ein künstliches neuronales Netz nimmt alle Eingabe-Variablen entgegen (z. B. alle Pixel eines Bildes) und über ein Training werden die Gewichtungen (die Form des Filters) so gestaltet, dass der Filter immer zu richtigen Klasse (im Kontext der Bildklassifikation: die Objektklasse) führt.


Kommen wir nochmal kurz zurück zu der Berechnung der Nettoeingabe z. Da diese Schreibweise…

    \[ z = w_0 \cdot x_0 + w_1 \cdot x_1 + \dots + w_n \cdot x_n \]

… recht anstrengend ist, schreiben Fortgeschrittene der linearen Algebra lieber z = w^T \cdot x.

    \[ z = w^T \cdot x \]

Das hochgestellte T steht dabei für transponieren. Transponieren bedeutet, dass Spalten zu Zeilen werden – oder umgekehrt.

Beispielsweise befüllen wir zwei Vektoren x und w mit beispielhaften Inhalten:

Eingabewerte:

    \[ x = \begin{bmatrix} 5\\ 12\\ 30\\ 2 \end{bmatrix} \]

Gewichtungen:

    \[ w = \begin{bmatrix} 1\\ 2\\ 5\\ 12 \end{bmatrix} \]

Kann nun die Nettoeingabe z berechnet werden, denn der Gewichtungsvektor wird vom Spaltenvektor zum Zeilenvektor. So kann – mathematisch korrekt dargestellt – jedes Element des einen Vektors mit dem zugehörigen Element des anderen Vektors multipliziert werden, die dabei entstehenden Ergebniswerte werden summiert.

    \[ z = w^T \cdot x = \big[1\text{ }2\text{ }5\text{ }12\big] \cdot \begin{bmatrix} 5\\ 12\\ 30\\ 2 \end{bmatrix} = 1 \cdot 5 + 2 \cdot 12 + 5 \cdot 30 + 12 \cdot 2 = 203 \]


Zurück zur eigentlichen Aufgabe des künstlichen neuronalen Netzes: Klassifikation! (Regression, Clustering und Dimensionsreduktion blenden wir ja in diesem Artikel als Aufgabe aus 🙂

Das Perzeptron soll zwei Klassen trennen. Dafür sollen alle Eingaben richtig gewichtet werden, so dass die entstehende Nettoeingabe z die Sprungfunktion dann aktiviert, wenn der Datensatz nicht für die eine, sondern für die andere Klasse ausweist.

Da wir es mit einer linearen Funktion z zutun haben, ist die Konvergenz (= Passgenauigkeit des Models mit der Realität) eines Single-Layer-Perzeptrons nur für lineare Trennbarkeit möglich!

Training des Perzeptron-Netzes

Die Aufgabe ist nun, die richtigen Gewichte zu finden – und nicht nur irgendwelche richtigen, sondern genau die optimalen. Die Frage, die sich für jedes künstliche neuronale Netz stellt, ist die nach den richtigen Gewichtungen. Das Training eines Perzeptron ist vergleichsweise einfach, gerade weil es binär ist. Denn binär bedeutet auch, dass wenn eine falsche Antwort gegeben wurde, muss das jeweils andere mögliche Ergebnis korrekt sein.

Das Training eines Perzeptrons funktioniert wie folgt:

  1. Setze alle Gewichtungen auf den Wert 0,00
  2. Mit jedem Datensatz des Trainings
    1. Berechne den Ausgabewert \^{y}
    2. Vergleiche den Ausgabewert \^{y} mit dem tatsächlichen Ergebnis y
    3. Aktualisiere die Gewichtungen entgegen des Fehlers: w_i = w_i + \Delta w_i

Wobei die Gewichtsanpassung \Delta w_i entgegen des Fehlers (bzw. hin zur jeweils anderen möglichen Antwort) geschieht:

\Delta w_i = (\^{y}_j - y_j ) \cdot x_i

Anmerkung für die Experten: Die Schrittweite \eta blenden wir hier einfach mal aus. Bitte einfach von \eta = 1.0 ausgehen.

\Delta w_i ist die Differenz aus der Prädiktion und dem tatsächlichen Ergebnis (Klasse). Alle Gewichtungen werden mit jedem Fehler gleichzeitig aktualisiert. Sind alle Gewichtungen aktualisiert, kommt der nächste Durchlauf (erneuter Vergleich zwischen \^{y} und y), nicht zu vergessen ist dabei natürlich die Abhängigkeit von den Eingabewerten x:

\Delta w_0 = (\^{y}_j - y_j ) \cdot x_0

\Delta w_2 = (\^{y}_j - y_j ) \cdot x_1

\Delta w_2 = (\^{y}_j - y_j) \cdot x_2

\Delta w_n = (\^{y}_j - y_j) \cdot x_n

Training eines Perzeptrons

Das Training im überwachten Lernen basiert immer auf der Idee, den Ausgabe-Fehler (die Differenz zwischen Prädiktion und tatsächlich korrektem Ergebnis) zu betrachten und die Klassifikationslogik an den richtigen Stellschrauben (bei neuronalen Netzen sind das die Gewichtungen) entgegen des Fehlers anzupassen.

Richtige Klassifikations-Situationen können True-Positives und True-Negatives darstellen, die zu keiner Gewichtsanpassung führen sollen:

True-Positive -> Klassifikation: 1 | korrekte Klasse: 1

\Delta w_i = (\^{y}_j - y_j) \cdot x_i = (1 - 1) \cdot x_i = 0

True-Negative-> Klassifikation: -1 | korrekte Klasse: -1

\Delta w_i = (\^{y}_j - y_j) \cdot x_i = (-1 - -1) \cdot x_i = 0

Falsche Klassifikationen erzeugen einen Fehler, der zu einer Gewichtsanpassung entgegen des Fehlers führen soll:

False-Positive -> Klassifikation: 1 | korrekte Klasse: -1

\Delta w_i = (\^{y}_j - y_j) \cdot x_i = (1 - -1) \cdot x_i = 2 \cdot x_i

False-Negative -> Klassifikation: -1 | korrekte Klasse: 1

\Delta w_i = (\^{y}_j - y_j) \cdot x_i = (-1 - 1) \cdot x_i = -2 \cdot x_i

Imaginäres Trainingsbeispiel eines Single-Layer-Perzeptrons (SLP)

Nehmen wir an, dass x_1 = 0,5 ist und das SLP irrtümlicherweise die Klasse \^{y_1} = -1 ausgewiesen hat, obwohl die korrekte Klasse y_1 = +1 wäre. (Und die Schrittweite lassen wir bei \eta = 1,0)

Dann passiert folgendes:

\Delta w_1 = (\^{y}_1 - y_1) \cdot x_1 = (-1 - 1) \cdot 0,5 = -2,0 \cdot 0,5 = -1,0

Die Gewichtung w_1 verringert sich entsprechend w_1 = w_1 + \Delta w_1 = w_1 - 1,0 und somit wird die Wahrscheinlichkeit größer, dass wenn bei der nächsten Iteration (j=1) wieder die Klasse +1 korrekt sei,  den Schwellwert \phi(z) zu unterschreiten und auf eben diese korrekte Klasse zu stoßen.

Die Aktualisierung der Gewichtung \Delta w_i ist proportional zu x_i. So würde beispielsweise ein neues x_1=2,0 (bei Iteration j=2) zu einer irrtümlichen Klassifikation \^(y_2) = -1 (y_2 = +1) führen, würde die Entscheidungsgrenze zur korrekten Prädiktion der Klasse beim nächsten Durchlauf (j = 3) an w_1 noch weiter in die gleiche Richtung verschoben werden:

\Delta w_1 = (\^{y}_2 - y_2) \cdot x_1 = (-1 - 1) \cdot 2,0 = -2,0 \cdot 2,0 = -4,0

Mehr zum Training von künstlichen neuronalen Netzen ist im nächsten Artikel dieser Artikelserie zu erfahren.

Single-Layer-Perzeptrons (SLP) – Beispiel mit der boolischen Trennung

Verlassen wir nun das Training des Perzeptrons und gehen einfach mal davon aus, dass die idealen Gewichte schon gefunden wurden und schauen uns nun an, was ein Perzeptron alles (nicht) kann. Denn nicht vergessen, es soll eigentlich Klassen unterscheiden bzw. die dafür nötigen Entscheidungsgrenzen finden.

Boolische Operatoren unterscheiden Fälle nach boolischen Werten. Sie sind ein beliebtes “Hello World” für die Einarbeitung in die lineare Entscheidungslogik eines Perzeptrons. Es gibt drei grundlegende boolische Vergleichsoperatoren: AND, OR und XOR

  x1     x2   AND OR XOR
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Ein Perzeptron zur Lösung dieser Aufgabe bräuchte also zwei Dimensionen (+ Bias): x_1 und x_2
Und es müsste Gewichtungen haben, die dafür sorgen, dass die Vorhersage entsprechend der Logik AND, OR oder XOR mit \^{y} = \phi(z) = \phi (w_0 \cdot 1 + w_1 \cdot x_1 + w_2 \cdot x_2) funktioniert.

Dabei ist es wichtig, dass wir auch phi \phi als Sprungfunktion definieren. Sie könnte beispielsweise so aussehen, dass sie auf den Wert \phi(z) = 1 springt, wenn z > 0 ist, ansonsten aber \phi(z) = 0 bleibt.

Das Netz und die Gewichtungen (w-Setup) könnten für die AND- und die OR-Logik so aussehen:

Die Gewichtungen funktionieren beim SLP problemlos, denn wir haben es mit linear trennbaren Problemen zutun:

Kleiner Test gefällig? So nehmen wir uns erstmal die AND-Logik vor:

  • Wenn x1 = 0 und x2 = 0 ist, gilt: z = -1,5 \cdot 1 + 1 \cdot 0 + 1 \cdot 0 = - 1,5,
    wie erhalten als Prädiktion \phi(z) = \phi(-1,5) = 0
  • Wenn x1 = 1 und x2 = 0 ist, gilt: z = -1,5 \cdot 1 + 1 \cdot 1 + 1 \cdot 0 = - 0,5,
    wie erhalten als Prädiktion \phi(z) = \phi(-0,5) = 0
  • Wenn x1 = 1 und x2 = 1 ist, gilt: z = -1,5 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = + 0,5,
    wie erhalten als Prädiktion \phi(z) = \phi(0,5) = 1

Scheint zu funktionieren!

Und dann die OR-Logik mit

  • Wenn x1 = 0 und x2 = 0 ist, gilt: z = -0,5 \cdot 1 + 1 \cdot 0 + 1 \cdot 0 = - 0,5,
    wie erhalten als Prädiktion \phi(z) = \phi(-0,5) = 0
  • Wenn x1 = 1 und x2 = 0 ist, gilt: z = -0,5 \cdot 1 + 1 \cdot 1 + 1 \cdot 0 = + 0,5,
    wie erhalten als Prädiktion \phi(z) = \phi(0,5) = 1
  • Wenn x1 = 1 und x2 = 1 ist, gilt: z = -0,5 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = + 1,5,
    wie erhalten als Prädiktion \phi(z) = \phi(1,5) = 1

Super! Jedoch stellt sich nun die Frage, wie das XOR-Problem zu lösen ist, denn das bedingt sowohl die Grenzen von AND als auch jene des OR-Operators.

Multi-Layer-Perzeptron (MLP) bzw. (Deep) Feed Forward (FF) Net

Denn ein XOR kann mathematisch auch so korrekt beschrieben werden: x_1 \text{ xor } x_2 = (x_1 \text{ and } \neg x_2) \text{ or } (\neg x_1 \text{ and } x_2)

Testen wir es aus!

  • Wenn x1 = 0 und x2 = 0 ist, gilt:
    z_1 = w_{10} \cdot 1 + w_{11} \cdot x1 + w_{12} \cdot  x2 = -0.5 \cdot 1 + 1,0 \cdot 0 - 1,0 \cdot 0 = -0,5 und somit \phi(z_1) = \phi(-0,5) = 0
    z_2 = w_{20} \cdot 1 + w_{21} \cdot x1 + w_{22} \cdot  x2 = -0.5 \cdot 1 - 1,0 \cdot 0 + 1,0 \cdot 0 = -0,5 und somit \phi(z_2) = \phi(-0,5) = 0
    z_3 = w_{30} \cdot 1 + w_{31} \cdot \phi(z_1) + w_{32} \cdot \phi(z_2) = -0,5 \cdot 1 + 1,0 \cdot 0 + 1,0 \cdot 0 = -0,5 und somit \phi(z_3) = \phi(-0,5) = 0
  • Wenn x1 = 1 und x2 = 0 ist, gilt:
    z_1 = w_{10} \cdot 1 + w_{11} \cdot x1 + w_{12} \cdot  x2 = -0.5 \cdot 1 + 1,0 \cdot 1 - 1,0 \cdot 0 = 0,5 und somit \phi(z_1) = \phi(0,5) = 1
    z_2 = w_{20} \cdot 1 + w_{21} \cdot x1 + w_{22} \cdot  x2 = -0.5 \cdot 1 - 1,0 \cdot 1 + 1,0 \cdot 0 = -1,5 und somit \phi(z_2) = \phi(-1,5) = 0
    z_3 = w_{30} \cdot 1 + w_{31} \cdot \phi(z_1) + w_{32} \cdot \phi(z_2) = -0,5 \cdot 1 + 1,0 \cdot 1 + 1,0 \cdot 0 = 0,5 und somit \phi(z_3) = \phi(0,5) = 1
  • Wenn x1 = 0 und x2 = 1 ist, gilt:
    z_1 = w_{10} \cdot 1 + w_{11} \cdot x1 + w_{12} \cdot  x2 = -0.5 \cdot 1 + 1,0 \cdot 0 - 1,0 \cdot 1 = -1,5 und somit \phi(z_1) = \phi(-1,5) = 0
    z_2 = w_{20} \cdot 1 + w_{21} \cdot x1 + w_{22} \cdot  x2 = -0.5 \cdot 1 - 1,0 \cdot 0 + 1,0 \cdot 1 = 0,5 und somit \phi(z_2) = \phi(0,5) = 1
    z_3 = w_{30} \cdot 1 + w_{31} \cdot \phi(z_1) + w_{32} \cdot \phi(z_2) = -0,5 \cdot 1 + 1,0 \cdot 0 + 1,0 \cdot 1 = 0,5 und somit \phi(z_3) = \phi(0,5) = 1
  • Wenn x1 = 1 und x2 = 1 ist, gilt:
    z_1 = w_{10} \cdot 1 + w_{11} \cdot x1 + w_{12} \cdot  x2 = -0.5 \cdot 1 + 1,0 \cdot 1 - 1,0 \cdot 1 = -1,5 und somit \phi(z_1) = \phi(-0,5) = 0
    z_2 = w_{20} \cdot 1 + w_{21} \cdot x1 + w_{22} \cdot  x2 = -0.5 \cdot 1 - 1,0 \cdot 1 + 1,0 \cdot 1 = 0,5 und somit \phi(z_2) = \phi(-0,5) = 0
    z_3 = w_{30} \cdot 1 + w_{31} \cdot \phi(z_1) + w_{32} \cdot \phi(z_2) = -0,5 \cdot 1 + 1,0 \cdot 0 + 1,0 \cdot 0 = -0,5 und somit \phi(z_3) = \phi(-0,5) = 0

Es funktioniert!

Mehrfachklassifikation mit dem Perzeptron

Ein Perzeptron-Netz klassifiziert binär, die Ausgabe beschränkt sich auf 1 oder -1 bzw. 0 oder 1.

Jedoch wird in der Praxis oftmals eine One-vs-All (OvA) bzw. One-vs-Rest (OvR) Klassifikation implementiert. In diesem Fall steht die 1 für die Erkennung einer konkreten Klasse, während alle anderen übrigen Klassen als negativ betrachtet werden.

Um jede Klasse erkennen zu können, werden n Klassifizierer (= n Perzeptron-Netze) benötigt. Jedes Perzeptron-Netz ist auf die Erkennung einer bestimmten Klasse trainiert.

Adaline – Oder: die Limitation des Perzeptrons

Das Perzeptron wird nur über eine Sprungfunktion aktiviert. Das schränkt die Feinabstimmung des Trainings enorm ein. Besser sind Aktivierungen über stetige Funktionen, die dann nämlich differenzierbar (ableitbar) sind. Das ergibt eine konvexe Fehlerfunktion mit einem eindeutigen Minimum. Der Adaline-Algorithmus (ADAptive Linear NEuron) erweitert die Idee des Perzeptrons um genau diese Idee. Der wesentliche Fortschritt der Adaline-Regel gegenüber der des Perzeptrons ist demnach, dass die Aktualisierung der Gewichtungen nicht wie beim Perzeptron auf einer einfachen Sprungfunktion, sondern auf einer linearen, stetigen Aktivierungsfunktion beruht.

Single-Layer-Adaline

Wie ein künstliches neuronales Netz mit der Kategorie Adaline trainiert werden kann, wird im nächsten Artikel dieser Artikelserie erläutert.

Weiterführende Netz-Konzepte (CNN und RNN)

Wer bereits mit Frameworks wie TensorFlow in das Deep Learning eingestiegen ist, hat möglicherweise schon erweiterte Konzepte der künstlichen neuronalen Netze kennen gelernt. Die CNNs (Convolutional Neuronal Network) sind im Moment die Wahl für die Verarbeitung von hochdimensionalen Aufgaben, beispielsweise die Bilderkennung (Computer Vision) und Texterkennung (NLP). Das CNN erweitert die Möglichkeiten mit neuronalen Netzen deutlich, indem ein Netz zur Dimensionsreduktion vorgeschaltet wird, im Kern steckt jedoch weiterhin die Idee der MLPs. Beim Einsatz in der Bilderkennung funktionieren CNNs vereinfacht gesprochen so, dass der vorgeschaltete Netzbereich die Millionen Bildpixel sektorweise ausliest (Convolution, Faltung durch Auslesen über Sektoren, die sich gegenseitig überlappen), verdichtet (Pooling, beispielsweise über nicht-lineare Funktionen wie max()) und dann – nach diesem Prozedere – ähnlich eim MLP klassifiziert.

 

Eine andere erweiterte Form sind RNNs (Recurrent Neuronal Network), die ebenfalls auf der Idee des MLPs basieren, dieses Konzept jedoch dank Rückverbindungen (Neuronen senden an vorherige Schichten) und Selbstverbindungen (Neuronen senden an sich selbst) wiederum auf den Kopf stellen.

 

Dennoch ist es für das tiefere Verständnis von CNNs und RNNs essenziell, dass vorher das Konzept des MLPs verstanden ist. Es ist die einfachste Form der auch heute noch am meisten eingesetzten und sehr mächtigen Netz-Topologien.

Im Jahr 2016 hatte Fjodor van Veen von asimovinstitute.org hatte – dankenswerterweise – mal eine Zusammenstellung von Netz-Topologien erstellt, auf die ich heute noch immer mal wieder einen Blick werfe:

Künstliche neuronale Netze – Topologie-Übersicht von Fjodor van Veen

Buchempfehlungen

Die folgenden Bücher nutze ich für mein Selbststudium von Machine Learning und Deep Learning und sind teilweise Gedankenvorlagen auch für diesen Artikel gewesen:

 

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional) Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek(mitp Professional)

 

Modelling Data – Case Study: Importance of domain knowledge

What´s the relation between earnings and happiness? I saw this chart and was strongly irritated – why is there a linear regression, it´s clearly a logarithmic relationship.
Linear relationship between GDP and happiness.

So I got angry and wanted to know, which model is the better fit. I started to work immediatly, because it´s a huge difference for man kind. Think about it: you give a poor person money and he gets as happy as a rich person with the same amount added – that´s against common sense and propaganda to get rich. Like an cultural desease.

So I gathered the data and did a first comparation, and this logarithmic model was the better fit:
Logarithmic relationship between GDP and happiness.

I was right and seriously willing to clear the mess up – so posted the “correct” model on facebook, to explain things to my friends.

Once I came down…

I asked myself: “What´s the model that fits the data best – that would be more correct?”

So I started to write an algorithm to check polynominal regression levels for fit using a random train and test data split. Finally, I got to this result and was amazed:
Best polynominal relationship between GDP and happiness.

This seriously hit me: “What the f***! There seems to be maximum happiness reachable with a certain amount of income / GDP.” Can you understand, what this result would mean for our world and economy? Think about all economies growing continiously, but well happiest was there or will come there. What would you do? Send income to less developed countries, because you don´t need it? Stop invention and progress, because it´s of no use? Seriously, I felt like a socialist: Stop progress at this point and share.

So I thought a while and concluded: “F***ing statistics, we need a profound econometric model.”

I started modelling: Well, the first amount of money in a market based on money leverages a huge amount of happiness, because you can participate and feed yourself. We can approximate that by infinit marginal utility. Then the more you have, the less utility should be provided by the additional same amount added. Finally, more income is more options, so more should be always better. I concluded, that this is catched by a Cobb Douglas production function. Here´s the graph:
Cobb Douglas relationship between GDP and happiness.

That´s it, that´s the final model. Here I feel home, this looks like a normal world – for an economist.

The Relevance of Domain Knowledge

As this short case study shows, we get completly wrong information and conclusions, if we don´t do it right. If you were the most important decision making algorithm in global economic politics, imagine what desasterous outcomes it would have produced to automatically find an optimum of income.

This is a serious border of AI. If you want to analyse Big Data with algorithms, you may produce seriously wrong information and conclusions. Statistical analysis is allways about using the right model. And modelling is about the assumptions of the model. As long as you can not create the right assumtions for the statistical model automatically, Big Data analysis is near to crazy. So out of this point of view, Big Data analysis is either about very simplistic tendencies (like linear trends) or it´s bound to Data Scientists with domain knowledge checking each model – that´s slow.

Discussion

I´m quite new to the field of Data Science, but this case study shows very though limitations, clearly. It´s not about flexible fitting of data, it´s about right models. And right models don´t scale into the Big Data domain. What do you think is the solution for this issue?

Countries of Happiness – the Full Article

If you are interested in my final article on my personal blog, explaining the final results: Please feel welcome to read the article here. There is a translation widget in the menu, to read in your favorite language. The original article is german.

How To Remotely Send R and Python Execution to SQL Server from Jupyter Notebooks

Introduction

Did you know that you can execute R and Python code remotely in SQL Server from Jupyter Notebooks or any IDE? Machine Learning Services in SQL Server eliminates the need to move data around. Instead of transferring large and sensitive data over the network or losing accuracy on ML training with sample csv files, you can have your R/Python code execute within your database. You can work in Jupyter Notebooks, RStudio, PyCharm, VSCode, Visual Studio, wherever you want, and then send function execution to SQL Server bringing intelligence to where your data lives.

This tutorial will show you an example of how you can send your python code from Juptyter notebooks to execute within SQL Server. The same principles apply to R and any other IDE as well. If you prefer to learn through videos, this tutorial is also published on YouTube here:


 

Environment Setup Prerequisites

  1. Install ML Services on SQL Server

In order for R or Python to execute within SQL, you first need the Machine Learning Services feature installed and configured. See this how-to guide.

  1. Install RevoscalePy via Microsoft’s Python Client

In order to send Python execution to SQL from Jupyter Notebooks, you need to use Microsoft’s RevoscalePy package. To get RevoscalePy, download and install Microsoft’s ML Services Python Client. Documentation Page or Direct Download Link (for Windows).

After downloading, open powershell as an administrator and navigate to the download folder. Start the installation with this command (feel free to customize the install folder): .\Install-PyForMLS.ps1 -InstallFolder “C:\Program Files\MicrosoftPythonClient”

Be patient while the installation can take a little while. Once installed navigate to the new path you installed in. Let’s make an empty folder and open Jupyter Notebooks: mkdir JupyterNotebooks; cd JupyterNotebooks; ..\Scripts\jupyter-notebook

Create a new notebook with the Python 3 interpreter:

 

To test if everything is setup, import revoscalepy in the first cell and execute. If there are no error messages you are ready to move forward.

Database Setup (Required for this tutorial only)

For the rest of the tutorial you can clone this Jupyter Notebook from Github if you don’t want to copy paste all of the code. This database setup is a one time step to ensure you have the same data as this tutorial. You don’t need to perform any of these setup steps to use your own data.

  1. Create a database

Modify the connection string for your server and use pyodbc to create a new database.

  1. Import Iris sample from SkLearn

Iris is a popular dataset for beginner data science tutorials. It is included by default in sklearn package.

  1. Use RecoscalePy APIs to create a table and load the Iris data

(You can also do this with pyodbc, sqlalchemy or other packages)

Define a Function to Send to SQL Server

Write any python code you want to execute in SQL. In this example we are creating a scatter matrix on the iris dataset and only returning the bytestream of the .png back to Jupyter Notebooks to render on our client.

Send execution to SQL

Now that we are finally set up, check out how easy sending remote execution really is! First, import revoscalepy. Create a sql_compute_context, and then send the execution of any function seamlessly to SQL Server with RxExec. No raw data had to be transferred from SQL to the Jupyter Notebook. All computation happened within the database and only the image file was returned to be displayed.

While this example is trivial with the Iris dataset, imagine the additional scale, performance, and security capabilities that you now unlocked. You can use any of the latest open source R/Python packages to build Deep Learning and AI applications on large amounts of data in SQL Server. We also offer leading edge, high-performance algorithms in Microsoft’s RevoScaleR and RevoScalePy APIs. Using these with the latest innovations in the open source world allows you to bring unparalleled selection, performance, and scale to your applications.

Learn More

Check out SQL Machine Learning Services Documentation to learn how you can easily deploy your R/Python code with SQL stored procedures making them accessible in your ETL processes or to any application. Train and store machine learning models in your database bringing intelligence to where your data lives.

Other YouTube Tutorials:

Interview – Die Bedeutung von Machine Learning für das Data Driven Business

Um das Optimum aus ihren Daten zu holen, müssen Unternehmen Data Analytics vorantreiben, um Entscheidungsprozesse für Innovation und Differenzierung stärker zu automatisieren. Die Data Science scheint hier der richtige Ansatz zu sein, ist aber ein neues und schnelllebiges Feld, das viele Sackgassen kennt. Cloudera Fast Forward Labs unterstützt Unternehmen dabei sich umzustrukturieren, Prozesse zu automatisieren und somit neue Innovationen zu schaffen.

Alice Albrecht ist Research Engineer bei Cloudera Fast Forward Labs. Dort widmet sie sich der Weiterentwicklung von Machine Learning und Künstlicher Intelligenz. Die Ergebnisse ihrer Forschungen nutzt sie, um ihren Kunden konkrete Ratschläge und funktionierende Prototypen anzubieten. Bevor sie zu Fast Forward Labs kam, arbeitete sie in Finanz- und Technologieunternehmen als Data Science Expertin und Produkt Managerin. Alice Albrecht konzentriert sich nicht nur darauf, Maschinen “coole Dinge” beizubringen, sondern setzt sich auch als Mentorin für andere Wissenschaftler ein. Während ihrer Promotion der kognitiven Neurowissenschaften in Yale untersuchte Alice, wie Menschen sensorische Informationen aus ihrer Umwelt verarbeiten und zusammenfassen.

english-flagRead this article in English:
“Interview – The Importance of Machine Learning for the Data Driven Business”


Data Science Blog: Frau Albrecht, Sie sind eine bekannte Keynote-Referentin für Data Science und Künstliche Intelligenz. Während Data Science bereits im Alltag vieler Unternehmen angekommen ist, scheint Deep Learning der neueste Trend zu sein. Ist Künstliche Intelligenz für Unternehmen schon normal oder ein überbewerteter Hype?

Ich würde sagen, nichts von beidem stimmt. Data Science ist inzwischen zwar weit verbreitet, aber die Unternehmen haben immer noch Schwierigkeiten, diese neue Disziplin in ihr bestehendes Geschäft zu integrieren. Ich denke nicht, dass Deep Learning mittlerweile Teil des Business as usual ist – und das sollte es auch nicht sein. Wie jedes andere Tool, braucht auch die Integration von Deep Learning Modellen in die Strukturen eines Unternehmens eine klar definierte Vorgehensweise. Alles andere führt ins Chaos.

Data Science Blog: Nur um sicherzugehen, worüber wir reden: Was sind die Unterschiede und Überschneidungen zwischen Data Analytics, Data Science, Machine Learning, Deep Learning und Künstlicher Intelligenz?

Hier bei Cloudera Fast Forward Labs verstehen wir unter Data Analytics das Sammeln und Addieren von Daten – meist für schnelle Diagramme und Berichte. Data Science hingegen löst Geschäftsprobleme, indem sie sie analysiert, Prozesse mit den gesammelten Daten abgleicht und anschließend entsprechende Vorgänge prognostiziert. Beim Machine Learning geht es darum, Probleme mit neuartigen Feedbackschleifen zu lösen, die sich mit der Anzahl der zur Verfügung stehenden Daten noch detaillierter bearbeiten lassen. Deep Learning ist eine besondere Form des Machine Learnings und ist selbst kein eigenständiges Konzept oder Tool. Künstliche Intelligenz zapft etwas Komplizierteres an, als das, was wir heute sehen. Hier geht es um weit mehr als nur darum, Maschinen darauf zu trainieren, immer wieder dasselbe zu tun oder begrenzte Probleme zu lösen.

Data Science Blog: Und wie können wir hier den Kontext zu Big Data herstellen?

Theoretisch gesehen gibt es Data Science ja bereits seit Jahrzehnten. Die Bausteine für modernes Machine Learning, Deep Learning und Künstliche Intelligenz basieren auf mathematischen Theoremen, die bis in die 40er und 50er Jahre zurückreichen. Die Herausforderung bestand damals darin, dass Rechenleistung und Datenspeicherkapazität einfach zu teuer für die zu implementierenden Ansätze waren. Heute ist das anders. Nicht nur die Kosten für die Datenspeicherung sind erheblich gesunken, auch Open-Source-Technologien wie etwa Apache Hadoop haben es möglich gemacht, jedes Datenvolumen zu geringen Kosten zu speichern. Rechenleistung, Cloud-Lösungen und auch hoch spezialisierte Chip-Architekturen, sind jetzt auch auf Anfrage für einen bestimmten Zeitraum verfügbar. Die geringeren Kosten für Datenspeicherung und Rechenleistung sowie eine wachsende Liste von Tools und Ressourcen, die über die Open-Source-Community verfügbar sind, ermöglichen es Unternehmen jeder Größe, von sämtlichen Daten zu profitieren.

Data Science Blog: Was sind die Herausforderungen beim Einstieg in Data Science?

Ich sehe zwei große Herausforderungen: Eine davon ist die Sicherstellung der organisatorischen Ausrichtung auf Ergebnisse, die die Data Scientists liefern werden (und das Timing für diese Projekte).  Die zweite Hürde besteht darin, sicherzustellen, dass sie über die richtigen Daten verfügen, bevor sie mit dem Einstellen von Data Science Experten beginnen. Das kann “tricky” sein, wenn man im Unternehmen nicht bereits über Know-how in diesem Segment verfügt. Daher ist es manchmal besser, im ersten Schritt einen Data Engineer oder Data Strategist einzustellen, bevor man mit dem Aufbau eines Data Science Team beginnt.

Data Science Blog: Es gibt viele Diskussionen darüber, wie man ein datengesteuertes Unternehmen aufbauen kann. Geht es bei Data Science nur darum, am Ende das Kundenverhalten besser zu verstehen?

Nein “Data Driven” bedeutet nicht nur, die Kunden besser zu verstehen – obwohl das eine Möglichkeit ist, wie Data Science einem Unternehmen helfen kann. Abgesehen vom Aufbau einer Organisation, die sich auf Daten und Analysen stützt, um Entscheidungen über das Kundenverhalten oder andere Aspekte zu treffen, bedeutet es, dass Daten das Unternehmen und seine Produkte voranbringen.

Data Science Blog: Die Zahl der Technologien, Tools und Frameworks nimmt zu, was zu mehr Komplexität führt. Müssen Unternehmen immer auf dem Laufenden bleiben oder könnte es ebenso hilfreich sein, zu warten und Pioniere zu imitieren?

Obwohl es generell für Unternehmen nicht ratsam ist, pauschal jede neue Entwicklung zu übernehmen, ist es wichtig, dass sie mit den neuen Rahmenbedingungen Schritt halten. Wenn ein Unternehmen wartet, um zu sehen, was andere tun, und deshalb nicht in neue Entwicklungen investiert, haben sie den Anschluss meist schon verpasst.

Data Science Blog: Global Player verfügen meist über ein großes Budget für Forschung und den Aufbau von Data Labs. Mittelständische Unternehmen stehen immer unter dem Druck, den Break-Even schnell zu erreichen. Wie können wir die Wertschöpfung von Data Science beschleunigen?

Ein Team zu haben, das sich auf ein bestimmtes Set von Projekten konzentriert, die gut durchdacht und auf das Geschäft ausgerichtet sind, macht den Unterschied aus. Data Science und Machine Learning müssen nicht auf Forschung und Innovation verzichten, um Werte zu schaffen. Der größte Unterschied besteht darin, dass sich kleinere Teams stärker bewusst sein müssen, wie sich ihre Projektwahl in neue Rahmenbedingungen und ihre besonderen akuten und kurzfristigen Geschäftsanforderungen einfügt.

Data Science Blog: Wie hilft Cloudera Fast Forward Labs anderen Unternehmen, den Einstieg in Machine Learning zu beschleunigen?

Wir beraten Unternehmen, basierend auf ihren speziellen Bedürfnissen, über die neuesten Trends im Bereich Machine Learning und Data Science. Und wir zeigen ihnen, wie sie ihre Datenteams aufbauen und strukturieren können, um genau die Fähigkeiten zu entwickeln, die sie benötigen, um ihre Ziele zu erreichen.

Data Science Blog: Zum Schluss noch eine Frage an unsere jüngeren Leser, die eine Karriere als Datenexperte anstreben: Was macht einen guten Data Scientist aus? Arbeiten sie lieber mit introvertierten Coding-Nerds oder den Data-loving Business-Experten?

Ein guter Data Scientist sollte sehr neugierig sein und eine Liebe für die Art und Weise haben, wie Daten zu neuen Entdeckungen und Innovationen führen und die nächste Generation von Produkten antreiben können.  Menschen, die im Data Science Umfeld erfolgreich sind, kommen nicht nur aus der IT. Sie können aus allen möglichen Bereichen kommen und über die unterschiedlichsten Backgrounds verfügen.

Interview – The Importance of Machine Learning for the Data Driven Business

To become more data-driven, organizations must mature their analytics and automate more of their decision making processes for innovation and differentiation. Data science seems like the right approach, yet is a new and fast moving field that seems to have as many dead ends as it has high ways to value. Cloudera Fast Forward Labs, led by Hilary Mason, shows companies the way.

Alice Albrecht is a research engineer at Cloudera Fast Forward Labs.  She spends her days researching the latest and greatest in machine learning and artificial intelligence and bringing that knowledge to working prototypes and delivering concrete advice for clients.  Prior to joining Fast Forward Labs, Alice worked in both finance and technology companies as a practicing data scientist, data science leader, and – most recently – a data product manager.  In addition to teaching machines to do cool things, Alice is passionate about mentoring and helping others grow in their careers.  Alice holds a PhD from Yale in cognitive neuroscience where she studied how humans summarize sensory information from the world around them and the neural substrates that underlie those summaries.

Read this article in German:
“Interview – Die Bedeutung von Machine Learning für das Data Driven Business“

Data Science Blog: Ms. Albrecht, you are a well-known keynote speaker for data science and artificial intelligence. While data science has arrived business already, deep learning seems to be the new trend. Is artificial intelligence for business already normal business or is it an overrated hype?

I’d say it isn’t either of those two options.  Data science is now widely adopted but companies still struggle to integrate this new discipline into their existing businesses.  As for deep learning, it really depends on the company that’s looking into using this technique.  I wouldn’t say that deep learning is by any means part of business as usual- nor should it be.  It’s a tool like any other and building a capacity for using a tool without clearly defined business needs is a recipe for disaster.

Data Science Blog: Just to make sure what we are talking about: What are the differences and overlaps between data analytics, data science, machine learning, deep learning and artificial intelligence?

Here at Cloudera Fast Forward Labs, we like to think of data analytics as collecting data and counting things (mostly for quick charts and reports).  Data science solves business problems by counting cleverly and predicting things with the data that’s collected.  Machine learning is about solving problems with new kinds of feedback loops that improve with more data.  Deep learning is a particular type of machine learning and is not itself a separate concept or type of tool.  Artificial intelligence taps into something more complicated than what we’re seeing today – it’s much broader than training machines to repetitively do very specialized tasks or solve very narrow problems.

Data Science Blog: And how can we add the context to big data?

From a theoretical perspective, data science has been around for decades. The building blocks for modern day machine learning, deep learning and artificial intelligence are based on mathematical theorems  that go back to the 1940’s and 1950’s. The challenge was that at the time, compute power and data storage capacity were simply too expensive for the approaches to be implemented. Today that’s all changed.. Not only has the cost of data storage dropped considerably, open source technology like Apache Hadoop has made it possible to store any volume of data at costs approaching zero. Compute power, even highly specialised chip architectures, are now also available on demand and only for the time organisations need them through public and private cloud solutions. The decreased cost of both data storage and compute power, together with a growing list of tools and resources readily available via the open source community allows companies of any size to benefit from data (no matter that size of that data).

Data Science Blog: What are the challenges for organizations in getting started with data science?

I see two big challenges when getting started with data science.  One is ensuring that you have organizational alignment around exactly what type of work data scientists will deliver (and timing for those projects).  The second hurdle is around ensuring that you have the right data in place before you start hiring data scientists. This can be tricky if you don’t have in-house expertise in this area, so sometimes it’s better to hire a data engineer or a data strategist (or director of data science) before you ever get started building out a data science team.

Data Science Blog: There are many discussions about how to build a data-driven business. Is it just about using data science to get a better understanding of customer behavior?

No, being data driven doesn’t just mean better understanding your customers (though that is one way that data science can help in an organization).  Aside from building an organization that relies on data and analytics to help them make decisions (about customer behavior or otherwise), being a data-driven business means that data is powering your core products.

Data Science Blog: The number of technologies, tools and frameworks is increasing. For organizations this also means increasing complexity. Do companies need to stay always up-to-date or could it be an advice to wait and imitate pioneers later?

While it’s not critical (or advisable) for organizations to adopt every new advancement that comes along, it is critical for them to stay abreast of emerging frameworks.  If a business waits to see what others are doing, and therefore don’t invest in understanding how new advancements can affect their particular business, they’ve likely already missed the boat.

Data Science Blog: Global players have big budgets just for doing research and setting up data labs. Middle-sized companies need to see the break even point soon. How can we accelerate the value generation of data science?

Having a team that is highly focused on a specific set of projects that are well-scoped and aligned to the business makes all the difference.  Data science and machine learning don’t have to sacrifice doing research and being innovative in order to produce value.  The biggest difference is that smaller teams will have to be more aware of how their choice of project fits into emerging frameworks and their particular acute and near term business needs.

Data Science Blog: How does Cloudera Fast Forward Labs help other organizations to accelerate their start with machine learning?

We advise organizations, based on their particular needs, on what the latest advancements are in machine learning and data science, how to build and structure their data teams to develop the capabilities they need to meet their goals, and how to quickly implement custom forward-looking solutions using their own data and in-house expertise.

Data Science Blog: Finally, a question for our younger readers who are looking for a career as a data expert: What makes a good data scientist? Do you like to work with introverted coding nerds or the data loving business experts?

A good data scientists should be deeply curious and have a love for the ways in which data can lead to new discoveries and power the next generation of products.  We expect the people who thrive in this field to come from a variety of backgrounds and experiences.

R oder Python – Die Sprache der Wahl in einem Data Science Weiterbildungskurs

Die KDnuggets, ein einflussreicher Newletter zu Data Mining und inzwischen auch zu Data Science, überraschte kürzlich mit der Meldung „Python eats away at R: Top Software for Analytics, Data Science, Machine Learning in 2018. Trends and Analysis“.[1] Grundlage war eine Befragung, an der mehr als 2300 KDNuggets Leser teilnahmen. Nach Bereinigung um die sogenannten „Lone Voters“, gingen insgesamt 2052 Stimmen in die Auswertung ein.

Demnach stieg der Anteil der Python-Nutzer von 2017 bis 2018 um 11% auf 65%, während mit 48% weniger als die Hälfte der Befragungsteilnehmer noch R nannten. Gegenüber 2017 ging der Anteil von R um 14% zurück. Dies ist umso bemerkenswerter, als dass bei keinem der übrigen Top Tools eine Verminderung des Anteils gemessen wurde.

Wir verzichten an dieser Stelle darauf, die Befragungsergebnisse selbst in Frage zu stellen oder andere Daten herbeizuziehen. Stattdessen nehmen wir erst einmal die Zahlen wie sie sind und konzedieren einen gewissen Python Hype. Das Python Konjunktur hat, zeigt sich z.B. in der wachsenden Zahl von Buchtiteln zu Python und Data Science oder in einem Machine Learning Tutorial der Zeitschrift iX, das ebenfalls auf Python fußt. Damit stellt sich die Frage, ob ein Weiterbildungskurs zu Data Science noch guten Gewissens auf R als Erstsprache setzen kann.

Der Beantwortung dieser Frage seien zwei Bemerkungen vorangestellt:

  1. Ob die eine Sprache „besser“ als die andere ist, lässt sich nicht abschließend beantworten. Mit Blick auf die Teilarbeitsgebiete des Data Scientists, also Datenzugriff, Datenmanipulation und Transformation, statistische Analysen und visuelle Aufbereitung zeigt sich jedenfalls keine prinzipielle Überlegenheit der einen über die andere Sprache.
  2. Beide Sprachen sind quicklebendig und werden bei insgesamt steigenden Nutzerzahlen dynamisch weiterentwickelt.

Das Beispiel der kürzlich gegründeten Ursa Labs[2] zeigt überdies, dass es zukünftig weniger darum gehen wird „Werkzeuge für eine einzelne Sprache zu bauen…“ als darum „…portable Bibliotheken zu entwickeln, die in vielen Programmiersprachen verwendet werden können“[3].

Die zunehmende Anwendung von Python in den Bereichen Data Science und Machine Learning hängt auch damit zusammen, dass Python ursprünglich als Allzweck-Programmiersprache konzipiert wurde. Viele Entwickler und Ingenieure arbeiteten also bereits mit Python ohne dabei mit analytischen Anwendungen in Kontakt zu kommen. Wenn diese Gruppen gegenwärtig mehr und mehr in den Bereichen Datenanalyse, Statistik und Machine Learning aktiv werden, dann greifen sie naturgemäß zu einem bekannten Werkzeug, in diesem Fall zu einer bereits vorhandenen Python Implementation.

Auf der anderen Seite sind Marketingfachleute, Psychologen, Controller und andere Analytiker eher mit SPSS und Excel vertraut. In diesen Fällen kann die Wahl der Data Science Sprache freier erfolgen. Für R spricht dann zunächst einmal seine Kompaktheit. Obwohl inzwischen mehr als 10.000 Erweiterungspakete existieren, gibt es mit www.r-project.org immer noch eine zentrale Anlaufstelle, von der über einen einzigen Link der Download eines monolithischen Basispakets erreichbar ist.

Demgegenüber existieren für Python mit Python 2.7 und Python 3.x zwei nach wie vor aktive Entwicklungszweige. Fällt die Wahl z.B. auf Python 3.x, dann stehen mit Python3 und Ipython3 wiederum verschiedene Interpreter zur Auswahl. Schließlich gibt es noch Python Distributionen wie Anaconda. Anaconda selbst ist in zwei „Geschmacksrichtungen“ (flavors) verfügbar als Miniconda und eben als Anaconda.

R war von Anfang an als statistische Programmiersprache konzipiert. Nach allen subjektiven Erfahrungen eignet es sich allein schon deshalb besser zur Erläuterung statistischer Methoden. Noch vor wenigen Jahren galt R als „schwierig“ und Statistikern vorbehalten. In dem Maße, in dem wissenschaftlich fundierte Software Tools in den Geschäftsalltag vordringen wird klar, dass viele der zunächst als „schwierig“ empfundenen Konzepte letztlich auf Rationalität und Arbeitsersparnis abzielen. Fehler, Bugs und Widersprüche finden sich in R so selbstverständlich wie in allen anderen Programmiersprachen. Bei der raschen Beseitigung dieser Schwächen kann R aber auf eine große und wache Gemeinschaft zurückgreifen.

Die Popularisierung von R erhielt durch die Gründung des R Consortiums zu Beginn des Jahres 2015 einen deutlichen Schub. Zu den Initiatoren dieser Interessengruppe gehörte auch Microsoft. Tatsächlich unterstützt Microsoft R auf vielfältige Weise unter anderem durch eine eigene Distribution unter der Bezeichnung „Microsoft R Open“, die Möglichkeit R Code in SQL Anweisungen des SQL Servers absetzen zu können oder die (angekündigte) Weitergabe von in Power BI erzeugten R Visualisierungen an Excel.

Der Vergleich von R und Python in einem fiktiven Big Data Anwendungsszenario liefert kein Kriterium für die Auswahl der Unterrichtssprache in einem Weiterbildungskurs. Aussagen wie x ist „schneller“, „performanter“ oder „besser“ als y sind nahezu inhaltsleer. In der Praxis werden geschäftskritische Big Data Anwendungen in einem Umfeld mit vielen unterschiedlichen Softwaresystemen abgewickelt und daher von vielen Parametern beeinflusst. Wo es um Höchstleistungen geht, tragen R und Python häufig gemeinsam zum Ergebnis bei.

Der Zertifikatskurs „Data Science“ der AWW e. V. und der Technischen Hochschule Brandenburg war schon bisher nicht auf R beschränkt. Im ersten Modul geben wir z.B. auch eine Einführung in SQL und arbeiten mit ETL-Tools. Im gerade zu Ende gegangenen Kurs wurde Feature Engineering auf der Grundlage eines Python Lehrbuchs[4] behandelt und die Anweisungen in R übersetzt. In den kommenden Durchgängen werden wir dieses parallele Vorgehen verstärken und wann immer sinnvoll auch auf Lösungen in Python hinweisen.

Im Vertiefungsmodul „Machine Learning mit Python“ schließlich ist Python die Sprache der Wahl. Damit tragen wir der Tatsache Rechnung, dass es zwar Sinn macht in die grundlegenden Konzepte mit einer Sprache einzuführen, in der Praxis aber Mehrsprachigkeit anzutreffen ist.

[1] https://www.kdnuggets.com/2018/05/poll-tools-analytics-data-science-machine-learning-results.html

[2] https://ursalabs.org/

[3] Statement auf der Ursa Labs Startseite, eigene Übersetzung.

[4] Sarkar, D et al. Practical Machine Learning with Python, S. 177ff.

Deep Learning and Human Intelligence – Part 1 of 2

Many people are under the impression that the new wave of data science, machine learning and/or digitalization is new, that it did not exist before. But its history is as long as the history of humanity and/or science itself.  The scientific discovery could hardly take place without the necessary data. Even the process of discovering the numbers included elements of machine learning: pattern recognition, comparison between different groups (ranking), clustering, etc. So what differentiates mathematical formulas from machine learning and how does it relate to artificial intelligence?

There is no difference between the two if seen from the perspective of formulas however, such a perspective limits the type of data to which they can be applied. Data stored via tables consist of structured data and are stored in so-called relational databases. The reason for such a data storage is the connection between different fields that assume a well-established structure in advance, such as a company’s sales or balance sheet. However, with the emergence of personal computers, many of the daily activities have been digitalized: music, pictures, movies, and so on. All this information is stored unrelated to other data and therefore called unstructured data.

IEEE International Conference on Computer Vision (ICCV), 2015, DOI: 10.1109/ICCV.2015.428

Copyright: IEEE International Conference on Computer Vision (ICCV), 2015, DOI: 10.1109/ICCV.2015.428

The essence of scientific discoveries was and will be structure. Not surprisingly, the mathematical formulas revolve around relations between variables – information, in general. For example, Galileo derived the law of falling balls from measuring the successive hight of a falling ball. The main difficulty was to obtain measurements at regular time intervals. What about if the data is not structured, which mathematical formula should be applied then? There is a distribution of people’s height, but no distribution for the pictures taken in all holidays for the last year, there is an amplitude for acoustic signals, but no function that detects the similarity between two songs. This is one of the reasons why machine learning focuses heavily on clustering and classification.

Roughly speaking, these simple examples are enough to categorize the difference between scientific discovery and machine learning. Science is about discovering relationships between different variables, Machine Learning tries to automatize processes. Every technical improvement is part of the automation, so why is everything different in this case? Because the current automation deals with human intelligence. The car automates the walking, the kitchen stove the fire, but Machine Learning parts of the human intelligence. There is a difference between the previous automation steps and those of human intelligence. All the previous ones are either outside the human body – such as Fire – or unconsciously executed (once learned) – walking, spinning, etc. The automation induced by Machine Learning affects a part of the human intelligence that we consciously perceive. Of course, today’s machine learning tools are unable to automate all human intelligence, but it is a fascinating step in that direction.

A breakthrough in Machine Learning tasks was achieved in 2012 when the first Deep Learning algorithm for detecting types of images, reached near-human accuracy. It could appreciate the likelihood that the image is a human face, a train, a ball or a fish without having “seen” the picture before. Such an algorithm can be used in various areas:  personally – facial recognition in pictures and/or social media – as tagging of images or videos, medicine – cancer detection, etc. For understanding such cutting-edge issues of classification, one cannot avoid understanding how Deep Learning works. To see the beauty of such algorithms and, at the same time, to be able to comprehend the difficulty of working with them, an example will be the best guide.

The building blocks of Deep Learning are neurons, operational units, which perform mathematical operations or logical operations like AND, OR, etc., and are modelled after the neurons in the brain. Already in the 1950’s two neuroscientist, Hubel and Wiesel, observed that not all neurons in the brain are responding in the same fashion to visual stimuli. Some responded only to horizontal lines, whereas others to vertical lines, with other words, the brain is constructed with specialized neurons. Groups of such neurons are called, in the Machine Learning community, layers. Like in the brain, neurons with different properties are clustered in different layers. This implies that layers have also specific properties and have to be arranged in a specific way, called architecture. It is this architecture which differentiates Deep Learning from Artificial Neuronal Networks (ANN are similar to a layer).

Unfortunately, scientists still haven’t figured out how the brain works, thus to discover how to train Deep Learning from data was not an easy task, and is also the reason why another example is used to explain the training of Deep Learning: the eye. One has always to remember: once it is known how Deep Learning works, it is simple to find example which illustrates the working mechanism.  For such an analogy, it is sufficient for someone without any knowledge about Deep Learning, to keep in mind only the elements that compose such architectures: input data, different layers of neurons, output layers, ReLu’s.

Input data are any type of information, in our example it is light. Of course, that Deep Learning is not limited only to images or videos, but also to sound and/or time series, which would imply that the example would be the ear and sound waves, or the brain and numbers.

Layers can be seen as cells in the eye. It is well known that the eye is formed of different layers connected to each other with each of them having different properties, functionalities. The same is true also for the layers of a Deep Learning architecture: one can see the neurons as cells of the layer as the tissue. While, mathematically, the neurons are nothing more than simple operations, usually linear weight functions, they can be seen as the properties of individual cells. Each layer has one weight matrix, which gives the neuron (and layer) specific properties depending on the data and the task at hand.

It is here that the architecture becomes very important. What Deep Learning offers is a default setting of the layers with unknown weights. One can see this as trying to build an eye knowing that there are different types of cells and different ways how tissues of such cells can be arranged, but not which cell exactly is needed (with what properties) and which arrangement of layers works best. Such an approach has the advantage that one is capable of building any type of organ desired, but the disadvantage is also very obvious: it is time consuming to find the appropriate cell properties and layers arrangements.

Still, the strategy of Deep Learning is a significant departure from the Machine Learning approaches. The performance of Machine Learning methods is as good as the features engineering performed by Data Scientists, and thus depending on the creativity of the Data Scientist. In the case of Deep Learning the engineers of the features is performed automatically as part of the model building. This is a huge improvement, as the only difficult task is to have enough data and computer power to find the right weights matrices. Such an endeavor was performed also by nature for the eye — and is also the reason why one can choose it as an example for Deep Learning — evolution. It is not surprising that Deep Learning is one of the best direction scientists have of Artificial Intelligence today.

The evolution of the eye can be seen, from the perspective of Data Scientists, as the continuous training of a Deep Learning architecture which enables to recognize and track one or more objects. The performance of the evolutional process can be summed up as the fine tuning of the cells which are getting more and more susceptible to light and the adaptation of layers to enable a better vision. Different animals in different environments and different targets — as the hawk and the fly — developed different eyes than humans, but they all work according to the same principle. The tasks that Deep Learning is performing today are similar, for example it can be used to drive cars but there is still a difference:  there is no connection to other organs. Deep Learning is not the approximation of an Artificial Organism, like an android, but a simplified Artificial Organ that can work on its own.

Returning to the working mechanism of the Deep Learning architecture, we can already follow the analogy of what happens if a ray of light is hitting the eye. Once the eye is fully adapted to the task, one can followed how the information enters the Deep Learning architecture (Artificial Eye) by penetrating the input layer. already here arises the question, what kind of eye is the best? One where a small source of light can reach as many neurons as possible, or the one where the light sources reaches only few neurons? In order to take such a decision, a last piece of the puzzle is required: ReLu. One can see them as synapses between neurons (cells) and/or similarly for tissue. By using continuous functions, such as the shape of the latter ‘S’ (called sigmoid), the information from one neuron will be distributed over a large number of other neurons. If one uses the maximum function, then only few neurons are updated with processed information from earlier layers.

Such sparse structures between neurons, was a major improvement in the development of the technique of training Deep Learning architectures. Again, it has a strong evolutionary analogy: energy efficiency. By needing less neurons, the tissues and architecture are both kept to a minimal size which enables flexibility in development and less energy. As the information is process by the different layers, the Artificial Eye is gathering more and more complex (non-linear) structures — the adapted features –, which help to decide, from past experience, what kind of object is detected.

This was part 1 of 2 of the article series. Continue with Part 2.

Bringing intelligence to where data lives: Python & R embedded in T-SQL

Introduction

Did you know that you can write R and Python code within your T-SQL statements? Machine Learning Services in SQL Server eliminates the need for data movement. Instead of transferring large and sensitive data over the network or losing accuracy with sample csv files, you can have your R/Python code execute within your database. Easily deploy your R/Python code with SQL stored procedures making them accessible in your ETL processes or to any application. Train and store machine learning models in your database bringing intelligence to where your data lives.

You can install and run any of the latest open source R/Python packages to build Deep Learning and AI applications on large amounts of data in SQL Server. We also offer leading edge, high-performance algorithms in Microsoft’s RevoScaleR and RevoScalePy APIs. Using these with the latest innovations in the open source world allows you to bring unparalleled selection, performance, and scale to your applications.

If you are excited to try out SQL Server Machine Learning Services, check out the hands on tutorial below. If you do not have Machine Learning Services installed in SQL Server,you will first want to follow the getting started tutorial I published here: 

How-To Tutorial

In this tutorial, I will cover the basics of how to Execute R and Python in T-SQL statements. If you prefer learning through videos, I also published the tutorial on YouTube.

Basics

Open up SQL Server Management Studio and make a connection to your server. Open a new query and paste this basic example: (While I use Python in these samples, you can do everything with R as well)

Sp_execute_external_script is a special system stored procedure that enables R and Python execution in SQL Server. There is a “language” parameter that allows us to choose between Python and R. There is a “script” parameter where we can paste R or Python code. If you do not see an output print 7, go back and review the setup steps in this article.

Parameter Introduction

Now that we discussed a basic example, let’s start adding more pieces:

Machine Learning Services provides more natural communications between SQL and R/Python with an input data parameter that accepts any SQL query. The input parameter name is called “input_data_1”.
You can see in the python code that there are default variables defined to pass data between Python and SQL. The default variable names are “OutputDataSet” and “InputDataSet” You can change these default names like this example:

As you executed these examples, you might have noticed that they each return a result with “(No column name)”? You can specify a name for the columns that are returned by adding the WITH RESULT SETS clause to the end of the statement which is a comma separated list of columns and their datatypes.

Input/Output Data Types

Alright, let’s discuss a little more about the input/output data types used between SQL and Python. Your input SQL SELECT statement passes a “Dataframe” to python relying on the Python Pandas package. Your output from Python back to SQL also needs to be in a Pandas Dataframe object. If you need to convert scalar values into a dataframe here is an example:

Variables c and d are both scalar values, which you can add to a pandas Series if you like, and then convert them to a pandas dataframe. This one shows a little bit more complicated example, go read up on the python pandas package documentation for more details and examples:

You now know the basics to execute Python in T-SQL!

Did you know you can also write your R and Python code in your favorite IDE like RStudio and Jupyter Notebooks and then remotely send the execution of that code to SQL Server? Check out these documentation links to learn more: https://aka.ms/R-RemoteSQLExecution https://aka.ms/PythonRemoteSQLExecution

Check out the SQL Server Machine Learning Services documentation page for more documentation, samples, and solutions. Check out these E2E tutorials on github as well.

Would love to hear from you! Leave a comment below to ask a question, or start a discussion!

Analyse der Netzwerktopologie des Internets auf Basis des IPv4-Protokolls

Wie kommen Daten die man via Internet quer durch die Welt sendet eigentlich an ihr Ziel? Welchen Weg nehmen beispielsweise die Datenpakete, wenn ich von mir zu Hause eine Datei an meinen Nachbarn ein Haus weiter sende? Wie groß ist der “Umweg”, den die Daten nehmen? Und macht es eigentlich einen Unterschied, ob ich www.google.de, www.google.com oder www.google.nl aufrufe, oder gehen alle Suchanfragen sowieso an dasselbe Ziel?

Fragen wie diese lassen sich durch eine Kombination von Tools wie traceroute oder tracepath und geoiplookup beantworten und unter Verwendung des Python-Paketes geoplotlib sogar graphisch auf einer Weltkarte darstellen. Die so gewonnenen Ergebnisse zeigen Teile der Netzwerktopologie des Internets auf und führen zu interessanten, teils unerwarteten Erkenntnissen.

Ziel dieses Artikels soll sein, ein möglichst einfaches Tutorial zum selber mitbasteln bereit zu stellen. Die einzelnen Schritte die hierfür notwendig sind, werden möglichst einfach verständlich dargestellt und erklärt, trotzdem sind zum vollständigen Verständnis grundlegende Kenntnisse in Python sowie der Kommandozeile hilfreich. Er richtet sich aber auch an alle, die sich einfach einmal etwas in ihrer virtuellen Umgebung „umschauen“ möchten oder einfach nur an den Ergebnissen interessiert sind, ohne sich mit den Details und wie diese umgesetzt werden, auseinander setzen zu wollen.  Am Ende des Artikels werden die einzelnen Skripte des Projekts als zip-Datei bereitgestellt.

Hinweis: Diese Anleitung bezieht sich auf ein Linux-System und wurde unter Ubuntu getestet. Windows-User können beispielsweise mit dem Befehl tracert (als Ersatz für traceroute) ähnliche Ergebnisse erziehlen, jedoch muss dann das Parsing der IP-Adressen abgeändert werden.

1. Grundsätzliches Erkunden der Route, die ein Datenpaket nimmt

Hierfür wird ein Programm wie traceroute, tracepath oder nmap benötigt, welches durch Versenden von „abgelaufenen Datenpaketen“ die Hosts „auf dem Weg“ zum Ziel dazu bringt, ihre IPv4-Adresse zurück zu geben. In diesem Artikel wird beispielhaft traceroute verwendet, da dieses unter den meisten Linux-Versionen bereits zur „Grundausstattung“ gehört und somit für diesen Schritt keine weitere Software installiert werden muss. Die Verwendung von traceroute folgt der Syntax:

Als Ziel muss hier die IP-Adresse bzw. der Domainname des Zielrechners angegeben werden. Ein Beispiel soll dies vereinfachen:

Im Beispiel wird die Route zum Hostrechner mit der Domain www.google.de ermittelt. In der ersten Spalte der Ausgabe ist die Nummer des jeweiligen „Hops“ zu sehen. Wichtig ist insbesondere die zweite Spalte, welche die IPv4-Adresse des jeweiligen Rechners auf dem Weg zum Ziel darstellt. Die folgenden Spalten enthalten weitere Informationen wie Antwortzeiten der jeweiligen Server und die IP-Adressen der Folge-Server.

Um die Ausgabe in eine Form umzuwandeln, welche später einfacher von Python gelesen werden kann, muss diese noch ausgelesen werden (Parsing). zuerst soll die erste Zeile der Ausgabe herausgeschnitten werden, da diese zwar informativ, jedoch kein Teil der eigentlichen Route ist. Dies kann sehr einfach durchgeführt werden, indem die Ausgabe des traceroute-Befehls an einen Befehl wie beispielsweise sed „gepiped“ (also weitergeleitet) wird. Die dabei entstehende Pipe sieht dann wie folgt aus:

Um bei unserem Beispiel mit der Route zu www.google.de zu bleiben, sieht der Befehl und die Entsprechende Ausgabe wie folgt aus:

Anschließend soll die zweite Spalte der Ausgabe herausgeschnitten werden. Dies ist am einfachsten mit dem Befehl awk zu bewerkstelligen. Das Prinzip dahinter ist das gleiche wie im obigen Schritt: die Ausgabe des vorherigen Befehls wird dem Befehl awk als Eingabe weitergeleitet, womit der gesamte Befehl nun wie folgt aussieht:

Bezogen auf das google-Beispiel sehen Ein- und Ausgabe nun so aus:

Im letzten Schritt sollen die einzelnen IP-Adressen durch Leerzeichen getrennt in eine einzelne Zeile geschrieben werden. Sinn dieses Schrittes ist, dass später viele Zielrechner nacheinander aus einer Datei eingelesen werden können und jede Route zu einem Zielrechner als eine einzelne Zeile in eine Zieldatei geschrieben wird.
Auch dieser Schritt funktioniert ähnlich wie die obigen Schritte, indem die Ausgabe des letzten Schrittes an einen weiteren Befehl weitergeleitet wird, der diese Funktion erfüllt. Dieser Schritt könnte wieder mit dem Befehl sed durchgeführt werden, da aber nur ein einzelnes Zeichen (nämlich das Zeilenumbruch-Zeichen bzw. Newline) durch ein Leerzeichen ersetzt werden soll, wird hier aufgrund der einfacheren Syntax der Befehl tr verwendet.
Der fertige Befehl sieht nun wie folgt aus:

Oder im fertigen Beispiel mit www.google.de:

Hiermit ist das Parsen abgeschlossen und die fertige Ausgabe kann nun in eine Ergebnisdatei geschrieben werden. Um automatisch viele Zielrechner aus einer Datei einzulesen und alle gefundenen Routen in eine Zieldatei zu schreiben, wird der obige Befehl in eine Schleife „verpackt“ welche die Zielrechner Zeile für Zeile aus der Datei zieladressen.txt ausliest und die gefundenen Routen ebenso Zeile für Zeile in die Datei routen.csv schreibt. Die Datei routen.csv kann später zur Ermittlung verschiedener Informationen zu den gefunden IP-Adressen einfach mit einem Python-Skript eingelesen und geparst werden.

In diesem Artikel wird das fertige Skript ohne weitere Erklärung in der beiliegenden zip-Datei bereitgestellt. Wen die genaue Funktionsweise der Schleife interessiert, sei angehalten sich generell über die Funktionsweise von Shellskripten einzulesen, da dies den Rahmen des Artikels sprengen würde.

Dieses Skript benötigt die Datei zieladressen.txt welche wie folgt aussehen muss (anstatt Domainnamen können auch direkt IPv4-Adressen verwendet werden):

2. Sammeln von (Geo-)Informationen zu bestimmten IPv4-Adressen

Die gefundenen IPv4-Adressen können anschließend mit dem Befehl geoiplookup oder über die Internetseite http://geoiplookup.net/ relativ genau (meißtens auf Städteniveau) lokalisiert werden. Dies funktioniert, da einzelne Subnets in der Regel bestimmten Regionen und Internetprovidern zugeordnet sind.

Der Befehl geoiplookup greift hierbei auf eine vorher installierte und lokal gespeicherte Datenbank zu, welche je nach installierter Version als Country- oder City-Edition vorliegt. Da geoiplookup nicht zu den Standartbordmitteln unter Linux gehört und um die weiteren Schritte auch Benutzern anderer Betriebssysteme zu ermöglichen, wird hier nur ein kurzes Beispiel der Benutzung dieses Befehls und dessen Ausgabe gegeben und im weiteren die Online-Abfrage mittels eines Python-Skriptes beschrieben.

Die Internetseite http://geoiplookup.net bietet einen Onlineservice welcher Geo- und weitere Informationen zu gegebenen IPv4-Adressen bereitstellt. Öffnet man die Seite ohne Angabe einer IP-Adresse in einem Browser, so erhält man die entsprechenden Informationen über die eigene IP-Adresse. (Achtung: die Verwendung eines Proxies oder gar Tor führt zwangsläufig zu falschen Ergebnissen.)

Da die Seite auch über eine API (also eine automatisierte Abfrageschnittstelle) unter der Adresse “http://api.geoiplookup.net/?query=${IPADRESSE}” verfügt, kann man die entsprechenden Informationen zu den IP-Adressen mittels eines Pythonskriptes abfragen und auswerten. Als Antwort erhält man eine XML‑Datei welche beispielsweise folgendermaßen aussieht:

Diese kann im Browser z. B. unter der Adresse http://api.geoiplookup.net/?query=77.20.253.87 aufgerufen werden (oder unter: http://api.geoiplookup.net/ für die eigene Adresse).

Um die hierin enthaltenen Informationen mit Hilfe von Python auszulesen lässt sich ElementTree aus aus dem Modul xml.etree, das in der Python-Standartbibliothek vorhanden ist, verwenden. Dies wird im beiliegenden Skript mit der Funktion get_hostinfo() bewerkstelligt:

Diese parst die XML-Datei automatisch zu einem Python-DefaultDict das dann die entsprechenden Informationen enthält (das DefaultDict wird verwendet da normale Python Dictionaries zu Fehlern führen, wenn nicht gesetzte Werte abgefragt werden). Die Ausgabe der Funktion sieht dann wie folgt aus:

3. Plotten der gefundenen Routen mit geoplotlib auf einer Weltkarte

Wichtig für das anschließende Plotten ist hierbei die Geolocation also ‘latitude’ und ‘longitude’. Mit den Werten kann man anschließend die mit traceroute gefundenen Pfade als Basemap plotten. Dies funktioniert mit der Funktion drawroutes2map():

Der Plot einer Verbindungsanfrage an www.google.de aus Berlin sieht beispielsweise folgendermaßen aus:

Hier wird deutlich, dass Datenpakete durchaus nicht immer den kürzesten Weg nehmen, sondern teilweise rund um die Welt gesendet werden (Deutschland – USA – Sydney(!) – USA), bevor sie an ihrem Ziel ankommen und dass das Ziel einer Verbindung zu einer Domain mit der Endung „de“ nicht unbedingt in Deutschland liegen muss.

Mit Default-Einstellungen werden von der Funktion drawroutes2map() alle Routen in zufälligen Farben geplottet, welche in der Datei routen.csv gefunden werden.

Lässt man viele Routen plotten wird hierbei die Netzwerkstruktur deutlich, über die die Daten im Internet verteilt werden. Auf dem obigen Plot kann man recht gut erkennen, dass die meisten Internetseiten in Europa oder den USA gehostet werden, einige noch in China und Japan, dagegen beispielsweise Afrika praktisch unbedeutend ist.

Auf dem nächsten Plot wiederum ist zu erkennen, dass es tatsächlich eine Art “Hotspots” gibt über die fast alle Daten laufen, wie z. B. Frankfurt am Main, Zürich und Madrid.

4. Schematische Darstellung der Routen als directed Graph mit graphviz

Mit graphviz lassen sich schematische Graphen darstellen. Mit dem Paket pygraphviz existiert hiefür auch eine Python-Anbindung. Die schematische Darstellung als Graph ist in vielen Fällen deutlich übersichtlicher als die Darstellung auf einer Weltkarte und die Topologie des Netzwerkes wird besser sichtbar.

Die entsprechende Python-Funktion, die alle Routen aus der Datei routes.csv als geplotteten Graph ausgibt ist drawroutes2graph():

Die Funktion schreibt den erstellten Graph in der Dot-Language in die Datei routes.dot und erstellt zwei verschiedene visuelle Darstellungen als png-Dateien.

Da mit der Funktion get_hostinfo() auch weitere Informationen zu den jeweiligen IP-Adressen verfügbar sind  können diese auch visuell im Graph dargestellt werden. So sind in der folgenden Darstellung Hosts in verschiedenen Ländern in unterschiedlichen Farben dargestellt. (Deutschland in grün, USA in rot, Spanien in gelb, Schweiz in blau, China in magenta und alle übrigen Länder und Hosts ohne Länderinformation in schwarz).

Diese Art der Darstellung vereint damit die Vorteile der schematischen Darstellung mit der Geoinformation zu den jeweiligen Hosts. Aus der Grafik lässt sich beispielsweise sehr gut erkennen, dass, trotz oft vieler Zwischenstationen innerhalb eines Landes, Landesgrenzen überschreitende Verbindungen relativ selten sind.

Auch interessant ist, dass das Netzwerk durchaus Maschen aufweist – mit anderen Worten: Dass ein und dieselbe Station bei verschiedenen Verbindungsanfragen über verschiedene Zwischenstationen angesprochen wird und Daten, die von Punkt A nach Punkt B gesendet werden, nicht immer denselben Weg nehmen.

5. Schlussfolgerung

Was kann man hieraus denn nun letztendlich an Erkenntnissen ziehen? Zum einen natürlich, wie Daten via Internet über viele Zwischenstationen rund um die Welt gesendet und hierbei mit jeder Station neu sortiert werden. Vor allem aber auch, dass mit dem entsprechenden Know-How und etwas Kreativität mit bemerkenswert wenig Code bereits Unmengen an Daten gesammelt, geordnet und ausgewertet werden können. Alle möglichen Daten werden in unserer heutigen Welt gespeichert und sind zu einem nicht unbeträchtlichen Teil auch für jeden, der weiß, wer diese Daten hat oder wie man sie selber ermitteln kann, verfügbar und oft lassen sich hier interessante Einblicke in die Funktionsweise unserer Welt gewinnen.

Machine Learning vs Deep Learning – Wo liegt der Unterschied?

Machine Learning gehört zu den Industrie-Trends dieser Jahre, da besteht kein Zweifel. Oder war es Deep Learning? Oder Artificial Intelligence? Worin liegt da eigentlich der Unterschied? Dies ist Artikel 1 von 6 der Artikelserie –Einstieg in Deep Learning.

Machine Learning

Maschinelles Lernen (ML) ist eine Sammlung von mathematischen Methoden der Mustererkennung. Diese Methoden erkennen Muster beispielsweise durch bestmögliche, auf eine bestmögliche Entropie gerichtete, Zerlegung von Datenbeständen in hierarchische Strukturen (Entscheidungsbäume). Oder über Vektoren werden Ähnlichkeiten zwischen Datensätzen ermittelt und daraus trainiert (z. B. k-nearest-Neighbour, nachfolgend einfach kurz: k-nN) oder untrainiert (z.B. k-Means) Muster erschlossen.

Algorithmen des maschinellen Lernens sind tatsächlich dazu in der Lage, viele alltägliche oder auch sehr spezielle Probleme zu lösen. In der Praxis eines Entwicklers für Machine Learning stellen sich jedoch häufig Probleme, wenn es entweder zu wenige Daten gibt oder wenn es zu viele Dimensionen der Daten gibt. Entropie-getriebene Lern-Algorithmen wie Entscheidungsbäume werden bei vielen Dimensionen zu komplex, und auf Vektorräumen basierende Algorithmen wie der k-nächste-Nachbarn-Algorithmus sind durch den Fluch der Dimensionalität in ihrer Leistung eingeschränkt.


Der Fluch der Dimensionalität

Datenpunkte sind in einem zwei-dimensionalen Raum gut vorstellbar und auch ist es vorstellbar, das wir einen solchen Raum (z. B. ein DIN-A5-Papierblatt) mit vielen Datenpunkten vollschreiben. Belassen wir es bei der Anzahl an Datenpunkten, nehmen jedoch weitere Dimensionen hinzu (zumindest die 3. Dimension können wir uns noch gut vorstellen), werden die Abstände zwischen den Punkten größer. n-dimensionale Räume können gewaltig groß sein, so dass Algorithmen wie der k-nN nicht mehr gut funktionieren (der n-dimensionale Raum ist einfach zu leer).


Auch wenn es einige Konzepte zum besseren Umgang mit vielen Dimensionen gibt (z. B. einige Ideen des Ensemble Learnings)

Feature Engineering

Um die Anzahl an Dimensionen zu reduzieren, bedienen sich Machine Learning Entwickler statistischer Methoden, um viele Dimensionen auf die (wahrscheinlich) nützlichsten zu reduzieren: sogenannte Features. Dieser Auswahlprozess nennt sich Feature Engineering und bedingt den sicheren Umgang mit Statistik sowie idealerweise auch etwas Fachkenntnisse des zu untersuchenden Fachgebiets.
Bei der Entwicklung von Machine Learning für den produktiven Einsatz arbeiten Data Scientists den Großteil ihrer Arbeitszeit nicht an der Feinjustierung ihrer Algorithmen des maschinellen Lernens, sondern mit der Auswahl passender Features.

Deep Learning

Deep Learning (DL) ist eine Disziplin des maschinellen Lernes unter Einsatz von künstlichen neuronalen Netzen. Während die Ideen für Entscheidungsbäume, k-nN oder k-Means aus einer gewissen mathematischen Logik heraus entwickelt wurden, gibt es für künstliche neuronale Netze ein Vorbild aus der Natur: Biologische neuronale Netze.

Prinzip-Darstellung eines künstlichen neuronalen Netzes mit zwei Hidden-Layern zwischen einer Eingabe- und Ausgabe-Schicht.

Wie künstliche neuronale Netze im Detail funktionieren, erläutern wir in den nächsten zwei Artikeln dieser Artikelserie, jedoch vorab schon mal so viel: Ein Eingabe-Vektor (eine Reihe von Dimensionen) stellt eine erste Schicht dar, die über weitere Schichten mit sogenannten Neuronen erweitert oder reduziert und über Gewichtungen abstrahiert wird, bis eine Ausgabeschicht erreicht wird, die einen Ausgabe-Vektor erzeugt (im Grunde ein Ergebnis-Schlüssel, der beispielsweise eine bestimmte Klasse ausweist: z. B. Katze oder Hund). Durch ein Training werden die Gewichte zwischen den Neuronen so angepasst, dass bestimmte Eingabe-Muster (z. B. Fotos von Haustieren) immer zu einem bestimmten Ausgabe-Muster führen (z. B. “Das Foto zeigt eine Katze”).

Der Vorteil von künstlichen neuronalen Netzen ist die sehr tiefgehende Abstraktion von Zusammenhängen zwischen Eingabe-Daten und zwischen den abstrahierten Neuronen-Werten mit den Ausgabe-Daten. Dies geschieht über mehrere Schichten (Layer) der Netze, die sehr spezielle Probleme lösen können. Aus diesen Tatsachen leitet sich der übergeordnete Name ab: Deep Learning

Deep Learning kommt dann zum Einsatz, wenn andere maschinelle Lernverfahren an Grenzen stoßen und auch dann, wenn auf ein separates Feature Engineering verzichtet werden muss, denn neuronale Netze können über mehrere Schichten viele Eingabe-Dimensionen von selbst auf die Features reduzieren, die für die korrekte Bestimmung der Ausgabe notwendig sind.

Convolutional Neuronal Network

Convolutional Neuronal Networks (CNN) sind neuronale Netze, die vor allem für die Klassifikation von Bilddaten verwendet werden. Sie sind im Kern klassische neuronale Netze, die jedoch eine Faltungs- und eine Pooling-Schicht vorgeschaltet haben. Die Faltungsschicht ließt den Daten-Input (z. B. ein Foto) mehrfach hintereinander, doch jeweils immer nur einen Ausschnitt daraus (bei Fotos dann einen Sektor des Fotos), die Pooling-Schicht reduzierte die Ausschnittsdaten (bei Fotos: Pixel) auf reduzierte Informationen. Daraufhin folgt das eigentliche neuronale Netz.

CNNs sind im Grunde eine spezialisierte Form von künstlichen neuronalen Netzen, die das Feature-Engineering noch geschickter handhaben.

Deep Autoencoder

Gegenwärtig sind die meisten künstlichen neuronalen Netze ein Algorithmen-Modell für das überwachte maschinelle Lernen (Klassifikation oder Regression), jedoch kommen sie auch zum unüberwachten Lernen (Clustering oder Dimensionsreduktion) zum Einsatz, die sogenannten Deep Autoencoder.

Deep Autoencoder sind neuronale Netze, die im ersten Schritt eine große Menge an Eingabe-Dimensionen auf vergleichsweise wenige Dimensionen reduzieren. Die Reduktion (Encoder) erfolgt nicht abrupt, sondern schrittweise über mehrere Schichten, die reduzierten Dimensionen werden zum Feature-Vektor. Daraufhin kommt der zweite Teil des neuronalen Netzes zum Einsatz: Die reduzierten Dimensionen werden über weitere Schichten wieder erweitert, die ursprünglichen Dimensionen als abstrakteres Modell wieder rekonstruiert (Decoder). Der Sinn von Deep Autoencodern sind abstrakte Ähnlichkeitsmodelle zu erstellen. Ein häufiges Einsatzgebiet sind beispielsweise das maschinelle Identifizieren von ähnlichen Bildern, Texten oder akkustischen Signalmustern.

Artificial Intelligence

Artificial Intelligence (AI) oder künstliche Intelligenz (KI) ist ein wissenschaftlicher Bereich, der das maschinelle Lernen beinhaltet, jedoch noch weitere Bereiche kennt, die für den Aufbau einer KI von Nöten sind. Eine künstliche Intelligenz muss nicht nur Lernen, sie muss auch Wissen effizient abspeichern, einordnen bzw. sortieren und abrufen können. Sie muss ferner über eine Logik verfügen, wie sie das Wissen und das Gelernte einsetzen muss. Denken wir an biologische Intelligenzen, ist es etwa nicht so, dass jegliche Fähigkeiten erlernt wurden, einige sind mit der Geburt bereits ausgebildet oder liegen als sogenannter Instinkt vor.

Ein einzelner Machine Learning Algorithmus würde wohl kaum einen Turing-Test bestehen oder einen Roboter komplexe Aufgaben bewältigen lassen. Daher muss eine künstliche Intelligenz weit mehr können, als bestimmte Dinge zu erlernen. Zum wissenschaftlichen Gebiet der künstlichen Intelligenz gehören zumindest:

  • Machine Learning (inkl. Deep Learning und Ensemble Learning)
  • Mathematische Logik
    • Aussagenlogik
    • Prädikatenlogik
    • Default-Logik
    • Modal-Logik
  • Wissensbasierte Systeme
    • relationale Algebra
    • Graphentheorie
  • Such- und Optimierungsverfahren:
    • Gradientenverfahren
    • Breitensuche & Tiefensuche

AI(ML(DL))

Buch-Empfehlungen

Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung (Computational Intelligence) Praxiseinstieg Deep Learning: Mit Python, Caffe, TensorFlow und Spark eigene Deep-Learning-Anwendungen erstellen