Kontrolle und Steuerung von Spark Applikationen über REST

Apache Spark erfreut sich zunehmender Beliebtheit in der Data Science Szene da es in Geschwindigkeit und Funktionalität eine immense Verbesserung bzw. Erweiterung des reinen Hadoop MapReduce Programmiermodells ist. Jedoch bleibt Spark ebenso wie Hadoop eine Technologie für Experten. Es erfordert zumindest Kenntnisse von Unix-Skripten und muss über die Command-Line gesteuert werden. Die vorhandenen Weboberflächen bieten nur sehr rudimentäre Einblicke in den Status von Spark Applikationen:

spark basic ui

Der Spark JobServer ist ein Open-Source Projekt, das eine REST-Schnittstelle (Representational State Transfer) für Spark anbietet. (In diesem YouTube Video wird anschaulich erläutert, was ein REST API ist und wozu es verwendet werden kann.) Vereinfacht gesagt, ermöglicht es der JobServer, Spark über diese REST-Schnittstelle als Webservice zu nutzen. Es ist möglich, über den JobServer Spark Kontexte und Applikationen (Jobs) zu managen und Kontexte über verschiedene Aufrufe der REST-Schnittstelle hinweg wiederzuverwenden. Jar Files mit Job Implementierungen können vorab über die gleiche Schnittstelle installiert werden, so dass es z.B. möglich ist, auch sehr feingranulare Jobs über die Schnittstelle zu steuern (vollständige Liste der Features).

Der Spark JobServer ist bereits bei verschiedenen Organisationen (u.a. Netflix, Zed Worldwide, KNIME, Azavea und Maana) im Einsatz. Diese Nutzer des JobServers verwenden ihn meist versteckt „unter der Haube“, um so ihre jeweiligen Werkzeuge Big-Data tauglich zu machen. So nutzt KNIME ab dem nächsten Release (Oktober 2015) den JobServer. Anwendern können dann Spark Jobs über eine grafische Oberfläche bequem von ihrem lokalen Rechner aus starten, monitoren und stoppen. In der folgenden Abbildung sehen Sie, wie Trainingsdaten auf den Server hochgeladen werden, um daraus verschiedene Machine Learning Modelle zu erstellen. Diese Modelle können dann auf Testdaten angewandt werden, die z.B. aus einer HIVE-Tabelle nach Spark importiert werden:

spark knime hive jobs

Jeder der dargestellten Knoten mit der Überschrift „Spark ***“, wie z.B. „Spark Decision Tree“, ist ein Spark Job im Sinne des JobServers. Weitere Beispiele für Spark Jobs sind verschiedene Vorverarbeitungsaufgaben wie das Sampling einer Tabelle oder ein Join über mehrere Tabellen.

Spark kann über den JobServer im Standalone-, Mesos- oder im Yarn-Client-Modus angesteuert werden. Eine sehr hilfreiche Erweiterung der eigentlichen Spark-Funktionalität bietet der JobServer über die sogenannten „Named RDDs“ an. Ein Resilient Distributed Dataset (RDD) ist im Prinzip ein Datensatz bzw. eine Tabelle in Spark. „Named RDDs“ erlauben die Weiterverwendung von RDDs über einzelne Jobs hinweg. So kann man Jobs modularer aufbauen und leichter Zwischenergebnisse inspizieren.

Ich kann aus eigener Erfahrung sagen, dass der JobServer die geeignete Middleware zwischen einer benutzerfreundlichen Oberfläche und Spark ist. Die Open-Source Community ist hier sehr aktiv und der JobServer lässt sich bei Bedarf gut erweitern.

About Author

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *

6134 Views