Datenvisualisierung in Python [Tutorial]

Python ist eine der wichtigsten Programmiersprachen in der Data Science Szene. Der Einstieg in diese Programmiersprache fällt zum Beispiel im Vergleich zur Programmiersprache R etwas einfacher, da Python eine leicht zu verstehende Syntax hat. Was jedoch beim Einstieg zur größeren Hürde werden kann, ist der Umgang mit den unüberschaubar vielen Bibliotheken. Die wichtigsten Bibliotheken für Data Science / Data Analytics stellte ich bereits in diesem Artikel kurz vor. Hier ist es wichtig, einfach erstmal anzufangen – Warum nicht mit den ersten Datenvisualisierungen?

Natürlich gibt es sehr viele tolle und schön anzusehende Visualisierungen, die teilweise sehr speziell sind. In einem anderen Artikel stellte ich beispielsweise die 3D-Visualisierung von Graphen mit Python und UbiGraph vor. Dieser Artikel hier gilt aber vor allem Einsteigern, die erste Diagramme hergezaubert bekommen möchten.

Damit wir beginnen können, müssen im Python-Skript zuerst zwei wichtige Bibliotheken eingebunden werden:

import matplotlib.pyplot as pyplot

import pandas as pandas

Beide Bibliotheken können direkt gedownloaded werden, sind aber auch im Anaconda Framework enthalten (Empfehlung: Anaconda für Python 2.7).

Die Bibliothek matplotlib (library) ist mit Sicherheit die gängigste zur Visualisierung von Daten. Die Bibliothek pandas ist eine der verbreitetsten, die für den Zugriff, die Manipulation und Analyse von Daten eingesetzt wird. In diesen einfachsten Beispielen benutzen wir pandas nur zum Zugriff auf Daten.

Für die Visualisierung benötigen wir natürlich auch ein Beispiel-Dataset (Tabelle). Eine solche kann sich jeder selber erstellen, wer die nachfolgenden Code-Beispiele aber nachstellen möchte, kann diese Daten verwenden:

Diese 20 Zeilen können einfach via Copy + Paste in eine Datei kopiert werden, die dann als data-science-blog-python-beispiel.txt abgespeichert werden kann.

Der Zugriff von Python aus erfolgt dann mit pandas wie folgt:

dataset = pandas.read_csv("data-science-blog-python-beispiel.txt", sep="|", header=0, encoding="utf8")

Kreisdiagramm

Ein Kreisdiagramm (Pie Chart) lässt sich basierend auf diesen Daten beispielsweise wie folgt erstellen:

kreisdiagramm

Balkendiagramm

Balkendiagramme können einfachste Größenverhältnisse aufzeigen.

balkendiagram

Gestapeltes Balkendiagramm

Mit nur wenig Erweiterung wird aus dem einfachen Balkendiagramm ein gestapeltes.

balkendiagram-gestapelt

Histogramm (Histogram)

Histogramme sind ein wichtiges Diagramm der Statistik, mit dem sich Verteilungen aufzuzeigen lassen.

histogramm

Lininediagramm

Der Beispieldatensatz gibt kein gutes Szenario her, um ein korrektes Liniendiagramm darstellen zu können; aber dennoch hier ein How-To für ein Liniendiagramm:

line-diagam

Kastengrafik (Box Plot)

Ein Box Plot zeigt sehr gut Schwerpunkte in einer Verteilung.

box-plot-diagam

Punktverteilungsdiagramm (Scatter Plot)

punktdiagramm

Blasendiagramm (Bubble Chart)

Das Punktdiagramm kann leicht durch hinzufügen einer dritten Dimension zu einem Bubble-Chart erweitert werden. In dieser Darstellung mit logarithmischen x-/y-Achsen (log).

bubblechart

 

About Author

3 replies

Trackbacks & Pingbacks

  1. […] hier fast immer weiter. Die gängigsten 2D-Visualisierungen in Python wurden von mir bereits hier […]

  2. […] hier fast immer weiter. Die gängigsten 2D-Visualisierungen in Python wurden von mir bereits hier […]

  3. […] Die CSV-Datei einfach hier downloaden: (einen Überblick über den Inhalt bietet auch eine Einführung in Python, die ebenfalls auf dieser CSV-Datei […]

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *

97196 Views