Posts

Warenkorbanalyse in R

Was ist die Warenkorbanalyse?

Die Warenkorbanalyse ist eine Sammlung von Methoden, die die beim Einkauf gemeinsam gekauften Produkte oder Produktkategorien aus einem Handelssortiment untersucht. Ziel der explorativen Warenkorbanalyse ist es, Strukturen in den Daten zu finden, so genannte Regeln, die beschreiben, welche Produkte oder Produktkategorien gemeinsam oder eben nicht gemeinsam gekauft werden.

Beispiel: Wenn ein Kunde Windeln und Bier kauft, kauft er auch Chips.

Werden solche Regeln gefunden, kann das Ergebnis beispielsweise für Verbundplatzierungen im Verkaufsraum oder in der Werbung verwendet werden.

Datenaufbau

Die Daten, die für diese Analyse untersucht werden, sind Transaktionsdaten des Einzelhandels. Meist sind diese sehr umfangreich und formal folgendermaßen aufgebaut:

data-bsp

Ausschnitt eines Beispieldatensatzes: Jede Transaktion (= Warenkorb = Einkauf) hat mehrere Zeilen, die mit der selben Transaktionsnummer (Spalte Transaction) gekennzeichnet sind. In den einzelnen Zeilen der Transaktion stehen dann alle Produkte, die sich in dem Warenkorb befanden. In dem Beispiel sind zudem noch zwei Ebenen von Produktkategorien als zusätzliche Informationen enthalten.

Es gibt mindestens 2 Spalten: Spalte 1 enthält die Transaktionsnummer (oder die Nummer des Kassenbons, im Beispielbild Spalte Transaction), Spalte 2 enthält den Produktnamen. Zusätzlich kann es weitere Spalten mit Infos wie Produktkategorie, eventuell in verschiedenen Ebenen, Preis usw. geben. Sind Kundeninformationen vorhanden, z.B. über Kundenkarten, so können auch diese Informationen enthalten sein und mit ausgewertet werden.

Beschreibende Datenanalyse

Die Daten werden zunächst deskriptiv, also beschreibend, analysiert. Dazu werden z.B. die Anzahl der Transaktionen und die Anzahl der Produkte im Datensatz berechnet. Zudem wird die Länge der Transaktionen, also die Anzahl der Produkte in den einzelnen Transaktionen untersucht. Dies wird mit deskriptiven Maßzahlen wie Minimum, Maximum, Median und Mittelwert in Zahlen berichtet sowie als Histogramm grafisch dargestellt, siehe folgende Abbildung.

hist-sizes
Histogramm der Längenverteilung der Transaktionen.

Die häufigsten Produkte werden ermittelt und können gesondert betrachtet werden. Als Visualisierung kann hier ein Balkendiagramm mit den relativen Häufigkeiten der häufigsten Produkte verwendet werden, wie im folgenden Beispiel.

relfreq-items
Relative Häufigkeiten der häufigsten Produkte, hier nach relativer Häufigkeit größer 0,1 gefiltert.

Ähnliche Analysen können bei Bedarf auch auf Kategorien-Ebene oder nach weiteren erhobenen Merkmalen selektiert durchgeführt werden, je nachdem, welche Informationen in den Daten stecken und welche Fragestellungen für den Anwender interessant sind.

Verbundanalyse

Im nächsten Schritt wird mit statistischen Methoden nach Strukturen in den Daten gesucht, auch Verbundanalyse genannt. Als Grundlage werden Ähnlichkeitsmatrizen erstellt, die für jedes Produktpaar die Häufigkeit des gemeinsamen Vorkommens in Transaktionen bestimmen. Solch eine Ähnlichkeitsmatrix ist zum Beispiel eine Kreuztabelle in der es für jedes Produkt eine Spalte und eine Zeile gobt. In den Zellen in der Tabelle steht jeweils die Häufigkeit, wie oft dieses Produktpaar gemeinsam in Transaktionen in den Daten vorkommt, siehe auch folgendes Beispiel.

screenshot-crosstable-ausschnitt

Ähnlichkeitsmatrix oder Kreuztabelle der Produkte: Frankfurter und Zitrusfrüchte werden in 64 Transaktionen zusammen gekauft, Frankfurter und Berries in 22 usw.

Auf Basis solch einer Ähnlichkeitsmatrix wird dann z.B. mit Mehrdimensionaler Skalierung oder hierarchischen Clusteranalysen nach Strukturen in den Daten gesucht und Gemeinsamkeiten und Gruppierungen gefunden. Die hierarchische Clusteranalyse liefert dann ein Dendrogram, siehe folgende Abbildung, in der ähnliche Produkte miteinander gruppiert werden.

dendrogram

Dendrogram als Visualisierung des Ergebnisses der hierarchischen Clusterananlyse. Ähnliche Produkte (also Produkte, die zusammen gekauft werden) werden zusammen in Gruppen geclustert. Je länger die vertikale Verbindungslinie ist, die zwei Gruppen oder Produkte zusammen fasst, um so unterschiedlicher sind diese Produkte bzw. Gruppen.

Assoziationsregeln

Schließlich sollen neben den Verbundanalysen am Ende in den Daten Assoziationsregeln gefunden werden. Es werden also Regeln gesucht und an den Daten geprüft, die das Kaufverhalten der Kunden beschreiben. Solch eine Regel ist zum Beispiel „Wenn ein Kunde Windeln und Bier kauft, kauft er auch Chips.“ Formal: {Windeln, Bier} → {Chips}

Für diese Regeln lassen sich statistische Maßzahlen berechnen, die die Güte und Bedeutung der Regeln beschreiben. Die wichtigsten Maßzahlen sind Support, Confidence und Lift:

Support ist das Signifikanzmaß der Regel. Es gibt an, wie oft die gefundene Regel in den Daten anzuwenden ist. Wie oft also die in der Regel enthaltenen Produkte gemeinsam in einer Transaktion vorkommen. In dem Beispiel oben: Wie oft kommen Windeln, Bier und Chips in einer Transaktion gemeinsam vor?

Confidence ist das Qualitätsmaß der Regel. Es beschreibt, wie oft die Regel richtig ist. In dem oben genanten Beispiel: Wie oft ist in einer Transaktion Chips enthalten, wenn auch Windeln und Bier enthalten sind?

Lift ist das Maß der Bedeutung der Regel. Es sagt aus wie oft die Confidence den Erwartungswert übersteigt. Wie ist die Häufigkeit des gemeinsamen Vorkommens von Windeln, Bier und Chips im Verhältlnis zur erwarteten Häufigkeit des Vorkommens, wenn die Ereignisse stochastisch unabhängig sind?

Algorithmen

In den Daten werden zunächst alle möglichen Regeln gesammelt, die einen Mindestwert an Support und Confidence haben. Die Mindestwerte werden dabei vom Nutzer vorgegeben. Da es sich bei Transaktionsdaten um große Datenmengen handelt und häufig große Anzahlen von Produkten enthalten sind, wird die Suche nach Regeln zu einem komplexen Problem. Es wurden verschiedene effiziente Algorithmen als Suchstrategien entwickelt, z.B. der APRIORI-Algorithmus von Agrawal und Srikant (1994), der auch im weiter unten vorgestellten Paket arules von R verwendet wird.

Sind die Assoziationsregeln gefunden, können Sie vom Nutzer genauer untersucht werden und z.B. nach den oben genannten Kennzahlen sortiert betrachtet werden, oder es werden die Regeln für spezielle Warenkategorien genauer betrachtet, siehe folgendes Beispiel.

screenshot-rules

Beispielausgabe von Regeln, hier die drei Regeln mit dem besten Lift. In der ersten Regel sieht man: Wenn Bier und Wein gekauft wird, wird auch Likör gekauft. Diese Regel hat einen Support von 0,002. Diese drei Produkte kommen also in 0,2 % der Transaktionen vor. Die Confidence von 0,396 zeigt, dass in 39,6 % der Transaktionen auch Likör gekauft wird, wenn Bier und Wein gekauft wird.

Umsetzung mit R

Die hier vorgestellten Methoden zur Warenkorbanalyse lassen sich mit dem Paket arules der Software R gut umsetzen. Im Folgenden gebe ich eine Liste von nützlichen Befehlen für diese Analysen mit dieser Software. Dabei wird mit data hier durchgehend der Datensatz der Transaktionsdaten bezeichnet.

Zusammenfassung des Datensatzes:

  • Anzahl der Transaktionen und Anzahl der Warengruppen
  • die häufigsten Produkte werden genannt mit Angabe der Häufigkeiten
  • Längenverteilung der Transaktionen (Anzahl der Produkte pro Transaktion): Häufigkeiten, deskriptive Maße wie Quartile
  • Beispiel für die Datenstruktur (Levels)

Längen der Transaktionen (Anzahl der Produkte pro Transaktion)

Histogramm als grafische Darstellung der Transaktionslängen

rel. Häufigkeiten der einzelnen Produkte, hier nur die mit mindestens 10 % Vorkommen

Äquivalenzmatrix: Häufigkeiten der gemeinsamen Käufe für Produktpaare

Unähnlichkeitsmatrix für die hierarchische Clusteranalyse

Hierarchische Clusteranalyse

Dendrogram der hierarchischen Clusteranalyse

Assoziationsregeln finden mit APRIORI-Algorithmus, hier Regeln mit mindestens 1% Support und 20 % Confidence

Zusammenfassung der oben gefundenen Regeln (Anzahl, Eigenschaften Support, Confidence, Lift)

Einzelne Regeln betrachten, hier die laut Lift besten 5 Regeln

Referenzen:

  • Michael Hahsler, Kurt Hornik, Thomas Reutterer: Warenkorbanalyse mit Hilfe der Statistik-Software R, Innovationen in Marketing, S.144-163, 2006.
  • Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta, Introduciton to arules – A computational environment for mining association rules and frequent item sets. (Link zum PDF)
  • Rakesh Agrawal, Ramakrishnan Srikant, Fast algorithms for mining association rules, Proceedings of the 20th VLDB Conference Santiago, Chile, 1994
  • Software R:  R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Link: R-Project.org.
  • Paket: arules: Mining Association Rules using R.

Beispieldatensatz: Groceries aus dem Paket arules

Python vs R Statistics

Immer wieder wird mir von Einsteigern die Frage gestellt, ob sich der Einstieg und die Einarbeitung in die Programmiersprache Python eher lohnen würde als in R Statistics. Nun gibt es in den englischsprachigen Portalen bereits viele Diskussionen und Glaubenskriege zu diesem Vergleich – diese habe ich mir mit Absicht nicht weiter durchgelesen, sondern ich versuche hier meine Erfahrung aufs Blog zu bringen und bin auf Eure Meinungen/Erfahrungen gespannt!

Mit weniger R-Code schneller zum Ziel, und mit Python darüber hinaus

Was mir beim Einstieg in R gleich auffiel: Nach der Installation kann man sofort loslegen! Ein Plot oder eine Regressionsanalyse ist binnen weniger Code-Zeilen erledigt, denn die Sprache bringt diese Funktionen von Haus aus mit. In Python ist das Ziel auch nicht weit weg, allerdings müssen für die Plots erst die MatplotLib installiert werden, für Matrizenberechnung die Numpy-Bibliothek und um eine, mit der R-Datenstruktur Data.Frame vergleichbare Datenstruktur in Python zu erhalten, die Pandas-Bibliothek. Diese Python-Bibliotheken kann man zwar mit Fug und Recht als Bestandteil des Python-Universums ansehen, standardmäßig ausgeliefert werden sie aber nicht und auch sollten sie streng vom Standardpython in der Anwendung getrennt werden, im Klartext: Die Bibliotheken erfordern extra Einarbeitung und machen die Handhabung komplizierter, das einfache Python verliert ein Stück weit seine Einfachheit.

Auch die beliebte Entwicklungsumgebung R-Studio sucht seinesgleichen und ist IPython meiner Meinung nach hinsichtlich der Usability absolut überlegen. R ist einfach darauf ausgerichtet, Daten zu analysieren und zu visualisieren, aber beschränkt sich eben auch darauf.

“R is more about sketching, and not building,” says Michael Driscoll, CEO of Metamarkets. “You won’t find R at the core of Google’s page rank or Facebook’s friend suggestion algorithms. Engineers will prototype in R, then hand off the model to be written in Java or Python.”

Im Gegenzug ist Python eine Programmiersprache, die nicht nur an den einen Zweck gebunden ist. Mit Python können ebenfalls (Web-)Server- oder Desktop-Anwendungen und somit ohne Technologiebruch analytische Anwendungen komplett in Python entwickelt werden. Und auch wenn R ebenfalls unüberschaubar viele Packages mitbringt, bietet Python noch einiges mehr, beispielsweise zur dreidimensionalen Darstellung von Graphen.

Software-Entwickler lieben Python, Mathematiker eher R

Data Science ist ein äußerst interdisziplinäres Fachgebiet und Data Scientists können Mathematiker, Physiker, Informatiker, Ingenieure oder (wenn auch etwas seltener) Wirtschafts- oder auch Geisteswissenschaftler sein. Ein Großteil kommt aus der Mathematik oder äußerst mathematischer Fachgebiete wie der Physiker oder der Elektroingenieurwissenschaft. In diesen Studiengängen wird überwiegend mit Programmiersprachen gearbeitet, die von Mathematikern für Mathematiker entwickelt wurden, also R Statistics, MATLAB oder Octave. Beispielsweise ist meine Frau studierte Elektotechnikingenieurin und setzte alle ihre Prototypen des maschinellen Lernens in MATLAB um, sie findet sich aber auch in R gut zurecht.

Wer aus der Software-Entwicklung kommt, findet sich in Python vermutlich sehr viel schneller zurecht als in R. In meiner subjektiven Wahrnehmung stelle ich tatsächlich fest, dass diejenigen Data Scientists, die aus der Mathematik zum Data Science gekommen sind, meistens R präferieren und diejenigen, die aus der Anwendungsentwicklung kommen, eher mit Python arbeiten.

datascience

Python kollaboriert besser

Ein Data Scientist kommt selten allein, denn Data Science ist Teamarbeit. Und wo Teams ein gemeinsames Ziel erreicht sollen, werden besondere Anforderungen an die Arbeitsumgebung gestellt. Python gilt als eine syntaktisch leicht verständliche Programmiersprache, die manchmal sogar als “executable Pseudocode” bezeichnet wird (was allerdings dann doch leicht übertrieben ist…). Es ist also für alle Teammitglieder eine relativ einfach zu erlernende Sprache. Dabei muss Python nicht von allen Teammitgliedern favorisiert werden, denn eigene lokale Prototypen können in R, Octave oder was auch immer erstellt werden, lassen sich dann aber auch einfach in Python integrieren. Für richtig schnelle Anwendungen sind Python und R als Interpretersprachen sowieso zu langsam, solche Anwendungen werden am Ende in C/C++ umgesetzt werden müssen, aber selbst dann bietet Python nicht zu unterschätzende Vorteile: Der Erfolg von Python im wissenschaftlichen Rechnen beruht nämlich auch auf der unkomplizierten Integration von Quellcode der Programmiersprachen C, C++ und Fortran.

Neue Spieler auf dem Feld: Scala und Julia

Leider kann ich zu den beiden Programmiersprachen Scala und Julia (noch) nicht viel sagen. Scala scheint sich meiner Einschätzung nach als eine neue Alternative für Python zu entwickeln. Scala ist ein Produkt aus dem Java-Universum und war als eine Programmiersprache für unterschiedlichste Zwecke gedacht. Die Sprache setzt sich im Big Data Science immer weiter durch, einige Tools für Big Data Analytics (Apache Spark, Apache Flink) sind auf Scala ausgelegt und basieren selbst auf dieser Programmiersprache. Was Scala als eine stark von Java inspirierte Sprache sehr sympathisch macht, ist der enorm kompakte Code. Ein MapReduce-Algorithmus lässt sich in Scala mit einem Bruchteil an Code erstellen, als es in Java der Fall wäre, wie es auch die Code-Beispiele der Spark-Webseite eindrücklich zeigen: (Was ist eigentlich Apache Spark?)

Text Search in Python (Apache Spark)
Text Search in Scala (Apache Spark)
Text Search in Java (Apache Spark)

Julia wurde (ähnlich wie R) explizit für den Zweck der statistischen Datenanalyse entwickelt, wird auf Grund des aktuellen Beta-Status noch kaum produktiv eingesetzt. Da Julia auf sehr schnelle Anwendungen ausgerichtet ist, liegt in Julia die neue Hoffnung für jene, für die R und Python zu langsame Interpretersprachen sind.

Buchempfehlungen zum Einstieg in R oder Python

Es versteht sich von selbst, dass ich alle Bücher auch selbst besitze und mehr als nur das Vorwort gelesen habe…

Was ist Eure Erfahrung? Ihr seid gefragt!

Schreibt Eure Meinung einfach als Kommentar zu diesem Artikel! Wer meint, den Vergleich logischer, “richtiger” und nachvollziehbarer aufs digitale Papier bringen zu können, darf einen Artikelvorschlag übrigens gerne an redaktion@data-science-blog.com senden!