Tag Archive for: Looker

Business Intelligence – 5 Tips for better Reporting & Visualization

Data and BI Analysts often concentrate on learning a BI Tool, but the main thing to do is learn how to create good data visualization!

BI reporting has become an indispensable part of any company. In Business Intelligence, companies sometimes have to choose between tools such as PowerBI, QlikSense, Tableau, MikroStrategy, Looker or DataStudio (and others). Even if each of these tools has its own strengths and weaknesses, good reporting depends less on the respective tool but much more on the analyst and his skills in structured and appropriate visualization and text design.

Based on our experience at DATANOMIQ and the book “Storytelling with data” (see footnote in the pdf), we have created an infographic that conveys five tips for better design of BI reports – with self-reflective clarification.

Direct link to the PDF: https://data-science-blog.com/wp-content/uploads/2021/11/Infographic_Data_Visualization_Infographic_DATANOMIQ.pdf

About DATANOMIQ

DATANOMIQ is a platform-independent consulting- and service-partner for Business Intelligence and Data Science. We are opening up multiple possibilities for the first time in all areas of the value chain through Big Data and Artificial Intelligence. We rely on the best minds and the most comprehensive method and technology portfolio for the use of data for business optimization.

Contact

DATANOMIQ GmbH
Franklinstr. 11
D-10587 Berlin
I: www.datanomiq.de
E: info@datanomiq.de

Artikelserie: BI Tools im Vergleich – Qlik Sense

Dies ist ein Artikel der Artikel-Serie “BI Tools im Vergleich – Einführung und Motivation“, zu der auch die vorab sehr lesenswerten einführenden Worte und die Ausführungen zur Datenbasis gehören. Auf Grundlage derselben Daten wurde analog zu diesem Artikel hier auch ein Artikel über Microsoft Power BI und einen zu Tableau.

Übrigens gibt es auch Erweiterungen für Qlik Sense, die Process Mining ermöglichen. Eine dieser Erweiterungen ist die von MEHRWERK Process Mining.

Lizenzmodell

Neben Qlik Sense gibt es auch das lang bewährte Qlik View, dass auf der gleichen In-Memory-Kerntechnologie basiert. Qlik Sense wurde im Jahr 2014 vom schwedischen Softwareunternehmen Qlik Tech herausgebracht und bei Qlik Sense liegt auch der Fokus der Weiterentwicklung. Es handelt sich um Self-Service-BI und eine Plattform für Visual Data Analysis. Dabei gibt es die Möglichkeit einer On Premise Server Version (interne Cloud) oder auf die Server von Qlik zu setzen und somit gänzlich auf die Qlik Sense Cloud zu setzen, also die Qlik Sense Cloud als SaaS-Lösung. Dazu gibt es noch Qlik Sense Desktop, das für kleinere Projekte ausreichen kann und ganz ohne die Cloud auskommt, jedoch Ergebnisse bei Bedarf in die Cloud publishen kann. Ähnlich wie bei Tableau und anders als derzeitig bei Power BI, wird für das Editieren von Apps/Dashboards jedoch kein Qlik Sense Desktop benötigt, denn das Erstellen, Bearbeiten und Verwalten von Qlik Sense Reports darf komplett in der Cloud (vom Browser aus) stattfinden.

Der Kunde hat die Wahl zwischen den Lizenzmodellen von Qlik Sense Business (SaaS) und Qlik Sense Enterprise (SaaS oder On Premise). Die Enterprise Variante ist dann noch mal in Enterprise Professional, Enterprise Analyzer und Enterprise Analyzer Capacity eingeteilt, es stehen also insgesamt drei Lizenzen zur Auswahl. Der Preis für Qlik Sense Business beträgt monatlich derzeitig $30 pro Anwender. Das offizielle Preismodell sieht für Enterprise Professionell $70 für einen Benutzer pro Monat vor und für Enterprise Analyzer $40 pro Benutzer pro Monat. Zum Kennenlernen der Business Version gibt eine kostenlose 30-Tage-Testversion.

Die Version Qlik Sense Desktop ist in der Funktionalität an der SaaS Lösung Qlik Sense Enterprise angepasst und steht ihr in nichts Essenziellem nach. Die Desktop Version kann nur auf Windows-Computern ausgeführt werden und die Verwendung mehrerer Bildschirme oder Tablets wird nicht unterstützt. Außerdem werden Sicherheitsfunktionen nicht unterstützt und es gibt keine Funktion zum automatischen Speichern. Mehr zu den Unterschieden hier.

Community & Features von anderen Entwicklern

Wie relevant die Community für Visualisierungstools ist, wurde bereits in den vorherigen Blogartikeln zu Power BI und Tableau beschrieben. Auch Qlik besitzt eine offizielle Community Seite, in der u. a. Diskussionen, Blogs und Support angeboten werden. Auch hier finden sich zu den meisten Problemstellungen eine Menge Lösungsansätze. Zudem bietet Qlik auf den offiziellen Webseiten auch sehr viele Lernvideos an, mit denen sich Neulinge einarbeiten und fortgeschrittene Anwender auch noch einiges erfahren können.

Neben den zahlreichen Visualisierungen können auch weitere Diagramme hinzugefügt werden. Im Qlik Sense Desktop werden bei Arbeitsblatt im Reiter Benutzerdefinierte Objekte zwei Bundles mitgeliefert. Hier können auch Erweiterungen importiert werden. Ein bekanntes Bundle ist die Vizlib, welches hier unterschiedliche Packages zur Verfügung stellt. Diese Erweiterungen können einfach importiert werden, indem die heruntergeladenen Verzeichnisse in den Qlik Sense Extensions Ordner eingefügt werden. Wem auch die Erweiterungen nicht ausreichen, der kann sogenannte Widgets erstellen. Diese werden in HTML und CSS geschrieben, daher ist ein gewisses Grundverständnis vorausgesetzt. Diese Widgets können auf Qlik Sense Funktionalitäten zugreifen und diese per Klick ausführen. So kann bspw. ein Button zum Entfernen aller gesetzten Filter erstellt werden.

Erstellung von Filtern in Qlik Sense

Daten laden & transformieren

Flexibler als die meisten Vergleichstools ist Qlik in der Verknüpfung von Datenquellen. Es werden Hunderte von Datenquellen angeboten, durch die der Anwender Zugriff auf seine Daten erhalten kann. Die von Qlik entwickelte Associate Engine beschleunig die Verarbeitung von verknüpften Daten. Die Anbindung von Cloudanwendungen steht hier im Vordergrund, aber es werden natürlich auch klassische Datenbanken, Textfiles usw. angeboten.

Nachdem die Daten geladen sind, befindet sich im Dateneditor unter dem Reiter auto generated selection eine automatisch generierte Query für den Ladevorgang. Dieses „Datenladeskript“ kann angelegt, bearbeitet und ausgeführt werden. Im Reiter „Main“ befinden sich hier vordefinierte Variableneinstellungen, wie z. B. SET ThousandSep=’.’; wobei auch diese angepasst und erweitert werden können. Zudem gibt es die Möglichkeit, das Datenmodell mit allen Tabellenverbindungen anzeigen zu lassen. Die große Qlik-Community und die Tutorials ermöglicht es jedem Nutzer, die vielen Möglichkeiten mit Qlik Script zügig aus dem Internet zu erlernen.

Daten laden & transformieren: AdventureWorks2017Dataset

Im Reiter Datenmanager werden die empfohlenen Verknüpfungen angezeigt. Diese sind für Einsteiger sehr nützlich. Im Verlauf der Analysen musste jedoch nachjustiert werden. Wenn die ID-Spalten zum Verknüpfen z. B. unterschiedliche Bezeichnungen haben, tut sich der Algorithmus schon mal schwer.

Abbildung eines Datenmodels in Qlik Sense. Zusehen sind die Verbindungen zwischen den Tabellen der Datenbank “AdventureWorks2016”.

Eine vom Tool vordefinierte Detailansicht in Form einer Visualisierung (siehe Screenshot) ermöglicht einen schnellen und einfachen Qualitätscheck der gerade erst geladenen Daten. Hier können die Verbindungen angepasst und neue erstellt werden. Hier können erste Datentransformation durchgeführt werden, z. B. die Ersetzung von Daten oder NULL-Werten.

Datentransformationen mit einfachen Eingabemasken – Hier: Ersetzen von Werten in Tabellen-Spalten.

Zudem können Felder hinzugefügt, also berechnet werden (ähnlich wie in Power BI und Tableau als neues Measure). Z. B. können Textwerte mit dem Operator „&“ verbunden und somit z. B. Vor- und Nachname ganz intuitiv in eine Spalte zusammengefügt werden. Außerdem gibt es mathematische Operatoren für Berechnungen und ein SQL-artiges „like“, um Zeichenfolgen mit Mustern zu vergleichen. Auch an dieser Stelle können Formeln eingegeben werden. Die Formeln umfassen hier: String-, Datums-, numerische, Bedingungs-, mathematische, Verteilungsfunktionen usw. Zu beachten ist hier, dass die Daten neu geladen werden müssen, um die berechneten Spalten zu updaten. Der Umgang mit den Formeln aber erscheint mir einfacher als z. B. mit DAX in Power BI.

Daten visualisieren

Dank einer benutzerfreundlichen Oberfläche sind auch Analysen ohne großes Vorwissen und per Drag and Drop möglich. Individuelle Dashboards sind in wenigen Schritten möglich und erfordern keine besonderen Tricks oder Kniffe um gleich zum Erfolg zu kommen. Die Datenvisualisierung erfolgt in sogenannten Apps, in denen die Dashboards (Seiten in der App) liegen. Diese können von Qlik Sense Desktop nach Qlik Cloud hochgeladen werden und von dort aus mit anderen Usern geteilt werden.

Qlik Sense enthält von Hause aus eine große Anzahl an Visualisierungsmöglichkeiten. „Entdecken Sie neue Einblicke in ihre Daten“ heißt es bei der Funktion namens Einblicke (Insights), denn hier wird der Zugriff auf die Qlik Cognitive Engine gewährt. Dabei kann der Anwender eine Frage an den sogenannten Insight Advisor in natürlicher Sprache formulieren, woraus dann AI-gestützte Dashboard-Vorschläge generiert werden. Auch wenn diese Funktion noch nicht vollkommen ausgereift erscheint, ist dies sicherlich ein Schritt in die Business Intelligence der Zukunft.

Qlik Sense Insights – Einblicke gewinnen mit Stichworten in menschlicher Sprache. Funktioniert mal besser, mal schlechter. Die Titel der Diagramme sind (in Qlik Sense stets per default) die Formeln der Darstellung. Diese lassen sich leicht umbenennen.

Diese Diagrammvorschläge können einen guten ersten Eindruck über verschiedene Dimensionen und Kennzahlen geben und die Diagramme können direkt zu den Arbeitsblättern hinzugefügt werden. Es können auch Fragen gestellt werden, die Berechnungen zur Grundlage haben. So wird im folgenden Beispiel die Korrelation zwischen zwei Kennzahlen ermittelt.

Qlik Sense Insights – Korrelation erstellt mit Anweisung auf Englisch

Den ersten Auftritt hatte die Cognitive Engine im April 2018 und der Insight Advisor im Juni 2018. Über den Insight Adviser werden auch die empfohlenen Verknüpfungen im Datenmanager generiert, diese sollten jedoch vom Anwender (z. B. BI-Developer, Data Analyst oder Data Engineer) jedoch nochmal überblickt werden, da diese nicht unbedingt fehlerfrei abläuft. Gerade in vielen Geschäftsdaten verstecken sich viele “falsche Freunde” unter den ID-Spalten-Benennungen, die einen Zusammenhang herzustellen scheinen – aber es nicht immer tun.

Diagramme können ansonsten auf übliche Weise über eine Paletten ausgewählt werden, um sie dann mit Kennzahlen und Dimensionen zu befüllen. Die Charts können mit vordefinierten Optionen in den Kategorien Daten, Sortieren, Darstellung usw. bearbeitet werden. Unter Darstellung können ggf. verschiedene Designs ausgewählt werden und Beschriftungen, Titel etc. angepasst werden. Die Felder zur Auswahl der Kennzahlen und Dimensionen können nach Tabelle ausgewählt werden, sie sind ansonsten alle in einer Liste und können über eine Suchfunktion schnell gefunden werden, vorausgesetzt die genaue Bezeichnung ist bekannt. Diese Suchfunktion wird auch an anderen Stellen angewandt, immer dann, wenn Felder ausgewählt werden.

Es gibt außerdem die Option „Master-Elemente“, um wieder verwendbare Dimensionen oder Kennzahlen (Measures) zu erstellen.

Hier können Berechnungen für Kennzahlen und Dimensionen hinterlegt und in jedem Arbeitsblatt wiederverwendet werden. Dies gilt auch für Visualisierungen und die damit verbundenen Dateninputs und Einstellungen.

Mit Drag and Drop stößt der Anwender hier schon mal an seine Grenzen, aber dann helfen die Formeln von Qlik Sense Script weiter. Wenn bspw. das Diagramm namens KPI eine Kennzahl mit Filterung nach einer Dimension anzeigen soll, hilft die Formel: Sum({<DimensionName={‘Value’}>} MeasureName. Eine Qlik Sense Formelsammlung ist hier zu finden. Jede Kennzahl und Dimension kann als Formel eingegeben werden. Im Formel bearbeiten – Editor werden auch schon gebräuchliche Berechnungen wie Aggregierungsfunktionen (Sum, Avg, Max usw.) und Distinct, vorgegeben und können auf Knopfdruck und ohne Coding generiert werden, ähnliche wie ein Quick Measure in Power BI.

Fazit

Das Finanzmodell ist auf jede Unternehmensgröße ausgerichtet. Wenn die Datenbereinigung im Vorfeld stattgefunden hat, sind Visualisierungen in wenigen Schritten möglich. Es gibt dabei die Möglichkeit, die Daten in gewissem Rahmen zu transformieren. Für die gewünschte Darstellung der Kennzahlen ist die Verwendung von Qlik Sense Script oftmals erforderlich, jedoch kommen Anfänger auch lange ohne Coding aus. Insgesamt bewerte ich die Nutzerfreundlichkeit auf Grund der intuitiveren Bedienung subjektiv höher als bei Tableau oder Power BI.

Es können Erweiterungen und Widgets zur tiefgründigen Dashboard Erstellung und Analyse genutzt werden. Es gibt viele Drag and Drop Funktionen, um die Dashboards zusammen zu ziehen. Die Erstellung einfacher Berichte erfordert keinen Entwickler oder einen gut ausgebildeten Data Analyst, dennoch werden Unternehmen bei größeren Vorhaben auf Grund der Komplexität von Unternehmensprozessen, die in der Business Intelligence darzustellen versucht werden, nicht um geschultes Personal herum kommen, wofür es viele Angebote an Trainings auch von Qlik-Partnern gibt. Die Schnelligkeit der Datenverarbeitung liegt dank der Associative Engine im Vergleich zu den anderen beiden Tools vorne. AI-gestützte Vorschläge können bei der Dashboard-Erstellung zusätzliche Unterstützung leisten. Die Kombination beider Komponenten, Schnelligkeit und Ai-gestützte Vorschläge des Insight Advisors, grenzt das Qlik Sense Tool zwar nicht so sehr von den anderen Anbietern ab, wie Qlik gerne hätte…. Dennoch ist Qlik Sense auch heute noch ein Tool, dass für Ad-Hoc-Analytics wie Business Intelligence mit Standard Reporting in Erwägung gezogen werden sollte.

Artikelserie: BI Tools im Vergleich – Datengrundlage

Dieser Artikel wird als Fortsetzung des ersten Artikels, einer Artikelserie zu BI Tools, die Datengrundlage erläutern.

Als Datengrundlage sollen die Trainingsdaten – AdventureWorks 2017 – von Microsoft dienen und Ziel soll es sein, ein möglichst gleiches Dashboard in jedem dieser Tools zu erstellen.

Bei der Datenbasis handelt es sich bereits um ein relationales Datenbankmodel mit strukturierten Daten, welches als Datei-Typ .bak zur Verfügung steht. Die Daten sind bereits bereinigt und normalisiert, sowie bestehen auch bereits Beziehungen zwischen den Tabellen. Demnach fallen sowohl aufwendige Datenbereinigungen weg, als auch der Aufbau eines relationalen Datenmodells im Dashboard. In den meisten Tools ist beides möglich, wenn auch nicht das optimale Programm. Vor allem sollte vermieden werden Datenbereinigungen in BI Tools vorzunehmen. Alle Tools bieten einem die Möglichkeit strukturierte und unstrukturierte Daten aus verschiedensten Datenquellen zu importieren. Die Datenquelle wird SQL Server von Microsoft sein, da die .bak Datei nicht direkt in die meisten Dashboards geladen werden kann und zudem auf Grund der Datenmenge ein kompletter Import auch nicht ratsam ist. Aus Gründen der Performance sollten nur die für das Dashboard relevanten Daten importiert werden. Für den Vergleich werden 15 von insgesamt 71 Tabellen importiert, um Visualisierungen für wesentliche Geschäftskennzahlen aufzubauen. Die obere Grafik zeigt das Entity-Relationship-Modell (ERM) zu den relevanten Tabellen. Die Datengrundlage eignet sich sehr gut für tiefer gehende Analysen und bietet zugleich ein großes Potential für sehr ausgefallene Visualisierungen. Im Fokus dieser Artikelserie soll aber nicht die Komplexität der Grafiken, sondern die allgemeine Handhabbarkeit stehen. Allgemein besteht die Gefahr, dass die Kernaussagen eines Reports in den Hintergrund rücken bei der Verwendung von zu komplexen Visualisierungen, welche lediglich der Ästhetik dienlich sind.

Eine Beschränkung soll gelten: So soll eine Manipulation von Daten lediglich in den Dashboards selbst vorgenommen werden. Bedeutet das keine Tabellen in SQL Server geändert oder Views erstellt werden. Gehen wir einfach Mal davon aus, dass der Data Engineer Haare auf den Zähnen hat und die Zuarbeit in jeglicher Art und Weise verwehrt wird.

Also ganz nach dem Motto: Help yourself! 😉

Daten zum Üben gibt es etliche. Einfach Mal Github, Kaggle oder andere Open Data Quellen anzapfen. Falls ihr Lust habt, dann probiert euch doch selber einmal an den Dashboards. Ihr solltet ein wenig Zeit mitbringen, aber wenn man erstmal drin ist macht es viel Spaß und es gibt immer etwas neues zu entdecken! Das erste Dashboard und somit die Fortsetzung dieser Artikelserie wird  Power BI als Grundlage haben.

Hier ein paar Links um euch startklar zu machen, falls das Interesse in euch geweckt wurde.

Dataset: AdventureWorks 2017

MS SQL Server

MS SSMS

MS Power BI (Desktop)

Artikelserie: BI Tools im Vergleich – Einführung und Motivation

„Mit welchem BI-Tool arbeitest du am liebsten?“ Mit dieser Frage werde ich dieser Tage oft konfrontiert. Meine klassische Antwort und eine typische Beraterantwort: „Es kommt darauf an.“ Nach einem Jahr als Berater sitzt diese Antwort sicher, aber gerade in diesem Fall auch begründet. Auf den Analytics und Business Intelligence Markt drängen jedes Jahr etliche neue Dashboard-Anbieter und die etablierten erweitern Services und Technik in rasantem Tempo. Zudem sind die Anforderungen an ein BI-Tool höchst unterschiedlich und von vielen Faktoren abhängig. Meine Perspektive, also die Anwenderperspektive eines Entwicklers, ist ein Faktor und auch der Kern dieser Artikelserie. Um die Masse an Tools auf eine machbare Anzahl runter zu brechen werde ich die bekanntesten Tools im Vergleich ausprobieren und hier vorstellen. Die Aufgabe ist also schnell erklärt: Ein Dashboard mit den gleichen Funktionen und Aussagen in unterschiedlichen Tools erstellen. Im Folgenden werde ich auch ein paar Worte zur Bewertungsgrundlage und zur Datengrundlage verlieren.

Erstmal kurz zu mir: Wie bereits erwähnt arbeite ich seit einem Jahr als Berater, genauer als Data Analyst in einem BI-Consulting Unternehmen namens DATANOMIQ. Bereits davor habe ich mich auf der anderen Seite der Macht, quasi als Kunde eines Beraters, viel mit Dashboards beschäftigt. Aber erst in dem vergangenen Jahr wurde mir die Fülle an BI Tools bewusst und der Lerneffekt war riesig. Die folgende Grafik zeigt alle Tools welche ich in der Artikelserie vorstellen möchte.

Gartner’s Magic Quadrant for Analytics and Business Intelligence Platform führt jedes Jahr eine Portfolioanalyse über die visionärsten und bedeutendsten BI-Tools durch, unter der genannten befindet sich nur eines, welches nicht in dieser Übersicht geführt wird, ich jedoch als potenziellen Newcomer für die kommenden Jahre erwarte. Trotz mittlerweile einigen Jahren Erfahrung gibt es noch reichlich Potential nach oben und viel Neues zu entdecken, gerade in einem so direkten Vergleich. Also seht mich ruhig als fortgeschrittenen BI-Analyst, der für sich herausfinden will, welche Tools aus Anwendersicht am besten geeignet sind und vielleicht kann ich dem ein oder anderen auch ein paar nützliche Tipps mit auf den Weg geben.

Was ist eigentlich eine „Analytical and Business Intelligence Platform“?

Für alle, die komplett neu im Thema sind, möchte ich erklären, was eine Analytical and Business Intelligence Platform in diesem Kontext ist und warum wir es nachfolgend auch einfach als BI-Tool bezeichnen können. Es sind Softwarelösungen zur Generierung von Erkenntnissen mittels Visualisierung und Informationsintegration von Daten. Sie sollten einfach handhabbar sein, weil der Nutzer für die Erstellung von Dashboards keine speziellen IT-Kenntnisse mitbringen muss und das Userinterface der jeweiligen Software einen mehr oder minder gut befähigt die meisten Features zu nutzen. Die meisten und zumindest die oben genannten lassen sich aber auch um komplexere Anwendungen und Programmiersprachen erweitern. Zudem bestimmt natürlich auch der Use Case den Schwierigkeitsgrad der Umsetzung.

Cloudbasierte BI Tools sind mittlerweile der Standard und folgen dem allgemeinen Trend. Die klassische Desktop-Version wird aber ebenfalls von den meisten angeboten. Von den oben genannten haben lediglich Data Studio und Looker keine Desktop- Version. Für den einfachen User macht das keinen großen Unterschied, welche Version man nutzt. Aber für das Unternehmen in Gesamtheit ist es ein wesentlicher Entscheidungsfaktor für die Wahl der Software und auch auf den Workflow des Developers bzw. BI-Analyst kann sich das auswirken.

Unternehmensperspektive: Strategie & Struktur

Die Unternehmensstrategie setzt einen wesentlichen Rahmen zur Entwicklung einer Datenstrategie worunter auch ein anständiges Konzept zur Data Governance gehört.

Ein wesentlicher Punkt der Datenstrategie ist die Verteilung der BI- und Datenkompetenz im Unternehmen. An der Entwicklung der Dashboards arbeiten in der Regel zwei Parteien, der Developer, der im Unternehmen meistens die Bezeichnung BI- oder Data Analyst hat, und der Stakeholder, also einzelner User oder die User ganzer Fachabteilungen.

Prognose: Laut Gartner wird die Anzahl der Daten- und Analyse-Experten in den Fachabteilungen, also die Entwickler und Benutzer von BI Tools, drei Mal so schnell wachsen verglichen mit dem bereits starken Wachstum an IT-Fachkräften.

Nicht selten gibt es für ein Dashboard mehrere Stakeholder verschiedener Abteilungen. Je nach Organisation und Softwarelösung mit unterschiedlich weitreichenden Verantwortlichkeiten, was die Entwicklung eines Dashboards an geht.

Die obige Grafik zeigt die wesentlichen Prozessschritte von der Konzeption bis zum fertigen Dashboard und drei oft gelebte Konzepte zur Verteilung der Aufgaben zwischen dem User und dem Developer. Natürlich handelt es sich fast immer um einen iterativen Prozess und am Ende stellen sich auch positive Nebenerkenntnisse heraus. Verschiedene Tools unterstützen durch Ihre Konfiguration und Features verschiedene Ansätze zur Aufgabenverteilung, auch wenn mit jedem Tool fast jedes System gelebt werden kann, provozieren einige Tools mit ihrem logischen Aufbau und dem Lizenzmodell zu einer bestimmten Organisationsform. Looker zum Beispiel verkauft mit der Software das Konzept, dem User eine größere Möglichkeit zu geben, das Dashboard in Eigenregie zu bauen und gleichzeitig die Datenhoheit an den richtigen Stellen zu gewährleisten (mittlerer Balken in der Grafik). Somit wird dem User eine höhere Verantwortung übertragen und weit mehr Kompetenzen müssen vermittelt werden, da der Aufbau von Visualisierung ebenfalls Fehlerpotential in sich birgt. Ein Full‑Service hingegen unterstützt das Konzept fast aller Tools durch Zuweisen von Berechtigungen. Teilweise werden aber gewisse kostenintensive Features nicht genutzt oder auf Cloud-Lizenzen verzichtet, so dass jeder Mitarbeiter unabhängig auf einer eigenen Desktop-Version arbeitet, am Ende dann leider die Single Source of Truth nicht mehr gegeben ist. Denn das führt eigentlich gezwungenermaßen dazu, dass die User sich aus x beliebigen Datentöpfen bedienen, ungeschultes Personal falsche Berechnungen anstellt und am Ende die unterschiedlichen Abteilungen sich mit schlichtweg falschen KPIs überbieten. Das spricht meistens für ein Unternehmen ohne vollumfängliches Konzept für Data Governance bzw. einer fehlenden Datenstrategie.

Zu dem Thema könnte man einen Roman schreiben und um euch diesen zu ersparen, möchte ich kurz die wichtigsten Fragestellungen aus Unternehmensperspektive aufzählen, ohne Anspruch auf Vollständigkeit:

  • Wann wird ein Return on Invest (ROI) realisiert werden?
  • Wie hoch ist mein Budget für BI-Lösungen?
  • Sollen die Mitarbeiter mit BI-Kompetenz zentral oder dezentral organisiert sein?
  • Wie ist meine Infrastruktur aufgebaut? Cloudbasiert oder on Premise?
  • Soll der Stakeholder/User Zeit-Ressourcen für den Aufbau von Dashboards erhalten?
  • Über welche Skills verfügen die Mitarbeiter bereits?
  • Welche Autorisierung in Bezug auf die Datensichtbarkeit und -manipulation haben die jeweiligen Mitarbeiter der Fachabteilungen?
  • Bedarf an Dashboards: Wie häufig werden diese benötigt und wie oft werden bestehende Dashboards angepasst?
  • Kann die Data Exploration durch den Stakeholder/User einen signifikanten Mehrwert liefern?
  • Werden Dashboards in der Regel für mehrere Stakeholder gebaut?

Die Entscheidung für die Wahl eines Dashboards ist nicht nur davon abhängig, wie sich die Grafiken von links nach rechts schieben lassen, sondern es handelt sich auch um eine wichtige strategische Frage aus Unternehmersicht.

Ein Leitsatz hierbei sollte lauten:
Die Strategie des Unternehmens bestimmt die Anforderungen an das Tool und nicht andersrum!

Perspektive eines Entwicklers:      Bewertungsgrundlage der Tools

So jetzt Mal Butter bei die Fische und ab zum Kern des Artikels. Jeder der Artikel wird aus den folgenden Elementen bestehen:

  • Das Tool:
    • Daten laden
    • Daten transformieren
    • Daten visualisieren
    • Zukunftsfähigkeit am Beispiel von Pythonintegration
    • Handhabbarkeit
  • Umweltfaktoren:
    • Community
    • Dokumentation
    • Features anderer Entwickler(-firmen) zur Erweiterung
    • Lizenzmodell
      • Cloud (SaaS) ODER on premise Lizenzen?
      • Preis (pro Lizenz, Unternehmenslizenz etc.)
      • Freie Version

 

Im Rahmen dieser Artikelserie erscheinen im Laufe der kommenden Monate folgende Artikel zu den Reviews der BI-Tools:

  1. Power BI von Microsoft
  2. Tableau
  3. Qlik Sense
  4. MicroStrategy (erscheint demnächst)
  5. Looker (erscheint demnächst)

Über einen vorausgehend veröffentlichten Artikel wird die Datengrundlage erläutert, die für alle Reviews gemeinsam verwendet wird: Vorstellung der Datengrundlage