Tag Archive for: Interview

Interview mit Prof. Carsten Felden über Artificial Intelligence und Cognitive Computing

Wird Artificial Intelligence oder Cognitive Computing oder beides zusammen der Standard, den alle haben müssen?

Prof. Dr. Carsten Felden ist Vorsitzender des Vorstandes des TDWI e.V., der größten Community für Analytics und Buisness Intelligence.. Er ist selbst Experte und Consultant für Business Intelligence und für diesen Fachbereich Lehrstuhlinhaber an der TU Bergakademie Freiberg.

Data Science Blog: Herr Prof. Felden, welcher Weg hat Sie bis an die Spitze des erfolgreichsten deutschen Verbandes für Analytics und Business Intelligence geführt?

Ich möchte die Beantwortung gerne umdrehen: Der TDWI ist ein Verein, in dem sich jeder als Mitglied engagieren darf und soll. Und da die Themen mir Freude bereiten und immer wieder neue Facetten zeigen, bin ich auch mit Begeisterung dabei und trage dies gerne in den Verein. Zu diesen Themen bin ich über mein Studium der Wirtschaftswissenschaft gelangt, in dem ich Wirtschaftsinformatik und Logistik vertiefte. Bei Professor Chamoni bot sich mir 2002 die Gelegenheit zur Promotion, in der ich mittels Text Mining ein Analysesystem in Python entwickelte, um Energiemarktentwicklungen zu erklären. Schon während dieser Zeit ergaben sich aber immer wieder Fragestellungen, welche die Entscheidungsfindung an sich betrafen. Dies interessierte mich in den vielen Facetten, so dass ich eine Habilitationsschrift anschloss, um den Entscheidungsprozess näher von der theoretischen Seite zu beleuchten. Dabei nahm ich Datenanalyseprozesse als Grundlage, um deren Wirkung auf menschliche Entscheidungsträger zu betrachten. Mit der Übernahme meiner Professur in 2006 baute ich einen kompetenzcenterorientierten Lehrstuhl auf, der sich zum Ziel setzte zu untersuchen, wie man realistisch mit Daten arbeiten kann, was man mit Daten tun kann. Dies in unterschiedlichen Welten: dem internationalen High-Tech-Konzern, dem Mittelständler als Hidden Champion oder dem kleineren Unternehmen. Insbesondere die Verbindung von Theorie und Praxis hat immer wieder die universitäre Lehre befruchtet und diese wollte ich auch in den Verein tragen. Im Rahmen der Veranstaltungen des TDWI habe ich immer viele neue Dinge oder realistische Einschätzungen aktuell diskutierter Dinge erhalten und wollte letztlich diese auch aus meinen Projekterfahrungen in die dortigen Diskussionen in unterschiedlichen Veranstaltungen zurückbringen. Das ich nun Vorsitzender dieses Vereins sein darf ist aber den Mitgliedern zu verdanken, die Vertrauen in mich setzten, den Weg des Vereins weiter voran zu treiben und meinen Vorstandskollegen, ohne deren Arbeit und Unterstützung meine Tätigkeit nichts wert wäre. Es ist der Verein als Ganzes, der den Mehrwert bietet und nicht einzelne Personen.

Data Science Blog: Wie weit ist die Industrie mittlerweile beim Einsatz von AI, also künstlicher Intelligenz?

Eine eindeutige Antwort ist hier gar nicht möglich. Allein schon die Deutung des Begriffs in der Praxis, macht es manchmal schwer, zwischen echten und unechten AI-Projekten zu unterscheiden. Letztlich kann man aber abgrenzend sagen, dass AI die automatisierte Entscheidung ermöglicht und nicht bei der Entscheidungsunterstützung für einen menschlichen Aufgabenträger endet. Egal, ob es nun ein echte oder ein unechtes AI-Projekt ist, es gilt, dass Daten entsprechend zu identifizieren, zu extrahieren und ggf. zu transformieren und final bereitzustellen sind. Nun soll aber nicht der Manager mit seinem fachlichem Know How (=Bauchgefühl) diese Informationen zur Entscheidung nutzen, sondern die Maschine übernimmt auch diesen Part (ohne Bauchgefühl) basierend auf Algorithmen. Man darf den Begriff der Entscheidung nicht immer mit einer besonderen Tragweite verbinden, da schon das einfache Signal einer Maschine: „Ich bin frei, ich habe Zeit, ich kann das jetzt tun!“ ist eine Entscheidung.
Um auch noch kurz auf die Abgrenzung zu den unechten Projekten einzugehen: hier erlebe ich immer wieder, dass AI mit künstlichen neuronalen Netzen gleichgesetzt wird. Natürlich kann man solche Netze hier nutzen, aber letztlich geht es nur darum, den Entscheidungsprozess in unterschiedlichen Situationen zu automatisieren. Zu diesem Zweck muss man prüfen, wo das sinnhaft möglich ist, da es nicht das Ziel sein kann, alles ohne Wenn und Aber zu automatisieren. In technisch-affinen Unternehmen sehen wir schon einige Umsetzungen, die über den Pilot-Status hinaus sind. Beispielhaft zu nennen sind da vollautomatisierte Fertigungen, insofern der Herstellungsprozess reihenfolgeunabhängig ist oder aber Controllingprozesse. Im Kern sind es aktuell noch Tätigkeiten, die keinen ausgeprägten kreativen Kern beinhalten, aber ein hohes Maß an Kommunikation zwischen den Beteiligten Systemelementen erfordern. In Summe gibt es ein breites Interesse und schon viele Orientierungsbeispiele, die dazu führen werden, dass diese Projekte intensiver zunehmen werden.

Data Science Blog: Wie grenzen Sie eigentlich Artificial Intelligence und Cognitive Computing voneinander ab? Wo liegen die Unterschiede?

Letztlich kann ich hier zum vorherigen ergänzen: beim Cognitive Computing handelt es sich um die Fortführung der wissensbasierten Systeme beziehungsweise der Expertensysteme. Der enorme und damit auch beeindruckende Unterschied zu den Vorläufern ist die Fähigkeit des Lernens im Sinne einer inhaltlichen Weiterentwicklung der vorhandenen Wissensbasis, die nun wesentlich ausgeprägter ist und auch automatisiert in entsprechenden Wissensdomänen stattfinden kann. AI kann einerseits zum Lernen des Systems beitragen, andererseits das gelernte für die automatisierte Entscheidung anwenden. Beide Ansätze nutzen und befruchten sich also gegenseitig.

Data Science Blog: Welche Trends im Bereich Machine Learning bzw. Deep Learning werden Ihrer Meinung nach in den Jahren 2018 und 2019 von Bedeutung werden?

Da möchte ich direkt zu unserer diesjährigen Konferenz in München herüber schwenken. Traditionell finden wir dort die Trends der nächsten Jahre schon in Vorträgen und Diskussionen.
Insgesamt beobachten wir eine starke Entwicklung hin zur Analyse unstrukturierter Daten. Machine Learning wird zunehmend intensiv in textuellen Analysen genutzt, um zum Beispiel eine E-Mail-Kategorisierung beziehungsweise Reaktion auf eine E-Mail zu automatisieren. Darüber hinaus ist die Verarbeitung von Bildern mit Ansätzen des Deep Learning ein zunehmender Trend. Dies in Szenarios wie die Fehlererkennung in der Herstellung oder dem Erkennen des Anwenders und dahingehend automatischen Anpassung seiner vorliegenden Systemlösung mit den passenden Inhalten. Sie sehen also, dass alle Facetten der algorithmischen Datenanalyse bedeutend werden. Dabei stellen wir aber auch fest, dass der klassischen Hausaufgaben, wie Datenintegration, Datenqualitätssicherung, Datenbereitstellung etc. nicht vom Tisch sind, sondern auch immer wieder neu diskutiert werden. Hier kommt aktuell hinzu, Verfahren der künstlichen Intelligenz zu nutzen, um eine dynamische Schemaerzeugung in Zeiten von Data Lakes automatisiert auszuführen, um den Anwendern für die jeweilige Entscheidungssituation Daten bedarfs- und verarbeitungsgerecht zur Verfügung zu stellen. Wir sehen also, dass die Übernahme von Tätigkeiten durch maschinellen Aufgabenträger der treibende Faktor ist, was dann mittels Machine Learning bzw. Deep Learning umsetzbar ist.

Data Science Blog: In wie weit wird der Begriff „Business Intelligence“ Ihrer Meinung nach zukünftig erhalten bleiben? Wie nahtlos ließen sich die neuen Möglichkeiten mit künstlicher Intelligenz in BI-Systeme integrieren?

Nun ja, aktuell werden wir mit Schlagworten überflutet, die darüber hinaus noch oftmals mit unterschiedlichen Verständnissen belegt sind, so dass es mehr Verwirrung als Erkenntnis gibt. Wissenschaftlich betrachtet ist Business Intelligence ein allumfassender Begriff, da er lediglich benennt, dass Daten zu sammeln und zu Entscheidungszwecken aufzubereiten sind. Dies subsummiert also auch AI.
In der Praxis ist BI aber eher das alte, starre Berichtswesen und passt dann so gar nicht zu den dynamischen Analyticsansätzen. Hier muss man aber sagen, dass Self Service Ansätze und die zunehmende Flexibilisierung der Architekturen dabei unterstützt, beide Welten zusammenzubringen. Aktuell ist man noch auf dem Niveau, über Schnittstellen bewusst Code auszutauschen. Beispielsweise lässt sich R-Code in vielen BI-Werkzeugen ausführen. Letztlich erleben wir aber alle, dass Geräte immer einfacher zu steuern sind und dadurch Welten auch zusammenfließen und das wird auch hier geschehen, weil es die Anwender einfach so gewohnt sind.

Data Science Blog: Manchmal hört man, dass Data Scientists gerade an ihrer eigenen Arbeitslosigkeit arbeiten, da zukünftige Verfahren des maschinellen Lernens Data Mining selbstständig durchführen können. Werden Tools Data Scientists bald ersetzen?

Die Wirtschaftsinformatik hat das Postulat der sinnhaften Vollautomation. Daher sehe ich es auch hier so, dass man die Punkte beziehungsweise Stellen im Prozess identifizieren muss, wo die Anwendung der Data Science Sinn macht. Darüber hinaus sehe ich den Data Scientist eigentlich nicht als eine Person, sondern als ein Konglomerat an Fähigkeiten, oftmals verteilt über mehrere Abteilungen und damit auch mehrere Personen, die zusammenarbeiten müssen. Die geforderten Fähigkeiten werden sich sicherlich wandeln, jedoch wird Kommunikationsfähigkeit immer der Schlüssel sein und Tools werden dahingehend das Data Science Team nicht ersetzen, sondern immer Mittel zum Zweck im Rahmen der sinnhaften Vollautomation sein.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik oder Wirtschaftswissenschaften, abgeschlossen haben, was würden sie diesen jungen Damen und Herren raten, wie sie gute Data Scientists werden können?

Kommunizieren können und neugierig sein. Sie werden alle viel im Rahmen ihrer Ausbildung an fundamentalen Fähigkeiten gelernt haben, aber lassen sie sich auf die Partner im Projekt ein, interessieren sie sich für all das, was auf der fachlichen Ebene geschieht und wie der technische Fortschritt aussieht. Ich kann immer nur wiederholen, dass offene Kommunikation eine wichtige Fähigkeit in Projekten ist, die nicht hoch genug bewertet werden kann. Die TDWI-Konferenz oder all die anderen Formate des Vereins bieten die Möglichkeit, Wissen aufzunehmen, auszutauschen und sich selber mit anderen zu vernetzen. Ich denke wirklich, dass gute Data Scientist derartiges nutzen, um die eigenen Themen bestmöglich angehen zu können, denn das ist der Schlüssel zum Erfolg!

Prof. Felden wird am 25. Juni die TDWI Konferenz in München eröffnen, die unter dem Slogan „Business Intelligence meets Artificial Intelligence“ die neuen Möglichkeiten unter Einsatz künstlicher Intelligenz in den Fokus stellen wird.

Interview – Process Mining ist ein wichtiger Treiber der Prozessautomatisierung

Interview mit Prof. Scheer, Erfinder des etablierten ARIS-Konzepts, über die Bedeutung von Big Data für die Prozessoptimierung

Prof. Dr. Dr. h.c. mult. August-Wilhelm Scheer

Copyright – Scheer GmbH

Prof. Dr. Dr. h.c. mult. August-Wilhelm Scheer war Gründer der IDS Scheer AG und Direktor des von ihm gegründeten Instituts für Wirtschaftsinformatik an der Universität des Saarlandes in Saarbrücken. Es ist der Erfinder des bekannten ARIS-Konzeptes und heute Alleingesellschafter und Beiratsvorsitzender der Scheer GmbH (www.scheer-group.com), einem Consulting- und Software-Haus in Saarbrücken. Daneben gehören zur Scheer Gruppe  Beteiligungen an Start- up Unternehmen.

Data Science Blog: Herr Prof. Scheer, Sie sind der Erfinder des ARIS-Konzepts in den 90er-Jahren, mit dem viele Unternehmen in den darauffolgenden Jahren ihr betriebliches Informationssystem überarbeiten konnten. Auch heute arbeiten viele Unternehmen an der Umsetzung dieses Konzepts. Was hat sich heute verändert?

Prof. Scheer: Auch heute noch bilden Prozessmodelle die Grundlage der digitalen Prozessautomatisierung, indem sie menschliche Arbeitsleistung innerhalb der Modelle durch IT ­Systeme unterstützen oder ersetzen. Die Scheer GmbH setzt diesen modellgetriebenen Ansatz erfolgreich in großen BPM und SAP ­Einführungsprojekten ein. Hierfür wurden in den vergangenen Jahren industriespezifische Referenzmodelle entwickelt, die unter der Bezeichnung „Performance Ready“ eine beachtliche Beschleunigung hervorbringen.

Weitere Treiber der Automatisierung sind die technische Weiterentwicklung der IT, insbesondere durch prozessorientierte Architekturen der Anwendungssoftware, sowie Big Data, Data Mining, Cloud Computing und Hardware ­Infrastruktur. Gleichzeitig werden neuere Forschungsergebnisse zu Modellierungsmethoden, der Künstlichen Intelligenz und Data Mining zunehmend in der Praxis der digitalen Geschäftsprozessorganisation umgesetzt.

Data Science Blog: Zu Zeiten der ARIS-Einführung steckte die Geschäftswelt, insbesondere die Industrie, gerade im Trend zum Lean Management. Heute ist es ähnlich mit dem Trend zu Big Data und Analytics. Welche Synergien gibt es hier im Kontext von Data Analytics?

Prof. Scheer: Mit der Implementierung einer lauffähigen Prozesslösung ist der enge BPM ­Ansatz von der  Problemerkennung bis zum lauffertigen Anwendungssystem abgeschlossen. In der Realität können jedoch auch unvorhergesehenen Abweichungen auftreten oder Störungen entstehen. Derartige Abweichungen begründen das Interesse an der Auswertung realer Prozessinstanzen. Die automatische Suche in Datenbeständen, um unerwartete Muster und Zusammenhänge zu erkennen und diese in gut verständlicher, häufig grafischer Form aufzubereiten, wird generell als Datamining bezeichnet und gehört zum Gebiet der Data Analytics. Wird dieses Vorgehen auf Geschäftsprozesse angewendet, so wird es als Process Mining bezeichnet. Es geht also  darum, die Spuren der Geschäftsprozesse während ihrer Ausführung in einer Logdatei zu erfassen und ihr Verhalten zu beobachten (Monitoring).

Data Science Blog: Welche Anwendungsfälle sind mit Process Mining zu bewältigen? Und welche Mehrwerte werden Ihrer Erfahrung nach daraus generiert?

Prof. Scheer: Beim Process Mining generiert ein komplexer Algorithmus aus den Datenspuren der Logdatei von Anwendungssystemen automatisch ein Ist-­Prozessmodell. Aus den Vergleichen des bestehenden Soll-­Modells mit den Datenspuren der Logdatei und des generierten Ist-Modells werden Abweichungen ermittelt. Diese werden analysiert, um das Soll-Modell an die Realität anzupassen und organisatorische Verbesserungsvorschläge zu entwickeln. Process Mining kann Auskunft geben, ob bei der Prozessausführung Compliance ­Regeln eingehalten oder verletzt werden, an welchen Stellen Kapazitätsengpässe entstehen, ob von vorgesehenen Kapazitätszuordnungen abgewichen wurde, wie sich Durchlaufzeiten und Qualität verhalten usw.. Die Ergänzung des BPM ­Ansatzes um das Process Mining, insbesondere auch durch den Einsatz von KI ­Techniken, führt zu einer neuen Qualität des Prozessmanagements und wird deshalb als intelligentes BPM (iBPM) bezeichnet.

Data Science Blog: Welche analytischen Methoden kommen zum Einsatz und auf welche Software-Technologien setzen Sie dabei?

Prof. Scheer: Das Process Mining wird gegenwärtig wissenschaftlich intensiv mit formalen Methoden bearbeitet. Ziel dieser Forschungen ist es, das Process Mining durch Entwicklung komplexer Algorithmen nahezu vollständig zu automatisieren. Der Verzicht auf den Einsatz menschlichen Fachwissens führt aber z. T. zu einer überhöhten Komplexität der Algorithmen für Aufgaben, die ein erfahrener Prozessmanager intuitiv leicht und besser erledigen kann. Hier ist eine Kombination aus Automatik und Fachwissen sinnvoller. Die Unternehmen der Scheer Gruppe legen den Fokus auf die Modellierung und das mehr strategische BPM und sehen Process Mining als Ergänzung dieses Ansatzes. Die Software „Scheer Process Mining“ folgt diesem Ansatz und sieht sie als Ergänzung ihrer modellbasierten BPMS ­Software „Scheer BPaaS“ und „Scheer E2EBridge“. Weiterhin unterstützen unsere Berater in vielen Projekten das Produkt „ARIS PPM“ der Software AG.

Data Science Blog: Sind die datengetriebenen Prozessanalysen vorerst abgeschlossen, geht es an die Umsetzung der Verbesserungen. Wie unterstützen Sie Unternehmen dabei, diese herbei zu führen? Und in wie weit können datengetriebene Entscheidungssysteme realisiert werden, die die Vision des autonomen Unternehmens im Sinne der Industrie 4.0 einen Schritt näher bringen?

Prof. Scheer: Sowohl langfristige strategische BPM Projekte als auch kurzfristig taktische Umsetzungen aus Process Mining Aktivitäten werden von der Scheer Gruppe unterstützt. Aber wir schauen auch in die Zukunft. Im Rahmen von Machine Learning werden Algorithmen entwickelt, die aus Beobachtungen ein Systemverhalten erkennen (lernen), um es dann für Prognosen auszuwerten. Als bekannteste Verfahren sind künstliche neuronale Netze zu nennen. Diese bilden Funktionen des menschlichen Gehirns ab. Interessante Anwendungsfälle gibt es bereits in der Fertigung. An Produktionsanlagen werden heute zahlreiche Sensoren angebracht, die Temperatur, Schwingungen, Energieverbrauch usw. kontinuierlich messen. Diese Datenströme können als Input ­Größen von neuronalen Netzen ausgewertet und zu Prognosen genutzt werden. Das Unternehmen IS ­Predict, das zur Scheer Gruppe gehört, hat dazu eigene Algorithmen auf Basis von KI entwickelt und führt seit Jahren erfolgreich Projekte zu Predictive Maintenance und zur vorausschauenden Qualitätssteuerung durch. 

Data Science Blog: Process Mining ist somit ein spannendes Zukunftsthema. Unter welchen Rahmenbedingungen sollten derartige Projekte durchgeführt werden? Was sind Ihrer Erfahrung nach die Kriterien zum Erfolg?

Prof. Scheer: Zunächst ist es sehr wichtig, das Thema aus der Business-Perspektive anzugehen und sich nicht zu früh mit technologischen Fragen auseinanderzusetzen: Welche Fragen sollen durch Process Mining beantwortet werden? Welche Informationsquellen werden hierfür benötigt?

Zu Beginn des Projekts sollte zunächst eine konkrete Aufgabenstellung angegangen werden, die auch von ihrer Größenordnung gut zu bewältigen ist. Je konkreter die Aufgabenstellung gewählt wird, desto größer ist die Erfolgswahrscheinlichkeit und umso schneller kann ein ROI erzielt werden. Natürlich bedeutet dies nicht, das „große Ganze“ zu vernachlässigen. Auch bei der Einführung von Process Mining gilt der Grundsatz „think big, start small“.

Data Science Blog: Datengetriebene Prozessanalysen bedingen interdisziplinäres Wissen. Welche Tipps würden Sie einem Prozessmanager geben, der sich in die Thematik einarbeiten möchte?

Prof. Scheer: Die Grundvoraussetzung für die Einführung von Process Mining ist ein gutes Verständnis aller Aspekte des Geschäftsmodells.  Darauf aufbauend sollte ein guter Überblick der Unternehmensprozesse und ihrer Ausprägung in den verschiedenen Unternehmensbereichen vorhanden sein. Immer wichtiger wird in diesem Zusammenhang das Thema der verschiedenen Arten von Daten und wie sie entlang der Prozesse entstehen bzw. angewendet werden. Hierbei sind für Process Mining insbesondere zwei Arten von Daten relevant:  Kennzahlen, die bei der Ausführung der Prozesse entstehen, die sog. Prozesskennzahlen oder Process KPIs. Neben den Process KPIs können mit Process Mining fachliche Daten, die während der Ausführung der Prozesse erfasst oder manipuliert werden, betrachtet werden. Mit den Process Mining Produkten von Scheer können beide Arten von Daten analysiert werden. Der Einstieg in die Datenanalyse erfolgt über das Process Analytics Dashboard. Weitergehende Informationen zu den Details der Prozesse liefert dann das Modul Process Explorer.

What makes a good Data Scientist? Answered by leading Data Officers!

What makes a good Data Scientist? A question I got asked recently a lot by data science newbies as well as long-established CIOs and my answer ist probably not what you think:
In my opinion is a good Data Scientist somebody with, at least, a good knowledge of computer programming, statistics and the ability of understanding the customer´s business. Above all stands a strong interest in finding value in distributed data sources.

Debatable? Maybe. That’s why I forwarded this question to five other leading Data Scientists and Chief Data Officers in Germany, let’s have a look on their answers to this question and create your own idea of what a good Data Scientist might be:


Dr. Andreas Braun – Head of Global Data & Analytics @ Allianz SE

A data scientist connects thorough analytical and methodological understanding  with a technical hands-on/ engineering mentality.
Data scientists bridge between analytics, tech, and business. “New methods”, such as machine learning, AI, deep learning etc. are crucial and are continuously challenged and improved. (14 February 2017)


Dr. Helmut Linde – Head of Data Science @ SAP SE

The ideal data scientist is a thought leader who creates value from analytics, starting from a vision for improved business processes and an algorithmic concept, down to the technical realization in productive software. (09 February 2017)


Klaas Bollhoefer – Chief Data Scientist @ The unbelievable Machine Company

For me a data scientist thinks ahead, thinks about and thinks in-between. He/she is a motivated, open-minded, enthusiastic and unconventional problem solver and tinkerer. Being a team player and a lone wolf are two sides of the same coin and he/she definitely hates unicorns and nerd shirts. (27 March 2017)

 


Wolfgang Hauner – Chief Data Officer @ Munich Re

A data scientist is, from their very nature, interested in data and its underlying relationship and has the cognitive, methodical and technical skills to find these relationships, even in unstructured data. The essential prerequisites to achieve this are curiosity, a logical mind-set and a passion for learning, as well as an affinity for team interaction in the work place. (08 February 2017)

 


Dr. Florian Neukart – Principal Data Scientist @ Volkswagen Group of America

In my opinion, the most important trait seems to be driven by an irresistible urge to understand fundamental relations and things, whereby I summarize both an atom and a complex machine among “things”. People with this trait are usually persistent, can solve a new problem even with little practical experience, and strive for the necessary training or appropriate quantitative knowledge autodidactically. (08 February 2017)

Background idea:
That I am writing about atoms and complex machines has to do with the fact that I have been able to analyze the most varied data through my second job at the university, and that I am given a chance to making significant contributions to both machine learning and physics, is primarily rooted in curiosity. Mathematics, physics, neuroscience, computer science, etc. are the fundamentals that someone will acquire if she wants to understand. In the beginning, there is only curiosity… I hope this is not too out of the way, but I’ve done a lot of job interviews and worked with lots of smart people, and it has turned out that quantitative knowledge alone is not enough. If someone is not burning for understanding, she may be able to program a Convolutional Network from the ground but will not come up with new ideas.

 


Interview mit Prof. Dr. Kai Uwe Barthel über Data Science mit Deep Learning

Interview mit Prof. Dr. Barthel, Chief Visionary Officer der Pixolution GmbH in Berlin, über Funktion, Einsatz und Einstieg in künstliche neuronale Netze.

Prof. Kai Barthel ist Gründer und CVO der Pixolution GmbH, ein Unternehmen, das Deep Learning dazu einsetzt, Bilder über ihre Pixelinhalte automatisiert verstehen zu können. Darüber hinaus ist Prof. Barthel in der Forschung und Lehre für Medieninformatik und Visual Computing an der Hochschule für Technik und Wirtschaft in Berlin tätig.

Data Science Blog: Welcher Weg hat Sie zu einem führenden Experten für Deep Learning und zur Gründung der Pixolution GmbH geführt?

Im Prinzip bin ich über mein Interesse an elektronischen Musikinstrumenten auf den Weg zur Analyse von Bits und Bytes gekommen. Als Schüler war ich von den neuen Möglichkeiten der Klangerzeugung fasziniert. 1980, zwei Jahre vor meinem Abitur, baute ich einen eigenen Synthesizer, ohne wirklich zu verstehen, was ich dort eigentlich tat.

Daraufhin studierte ich Elektrotechnik mit Fokus auf Signalverarbeitung, blieb nach dem Diplom diesem Themenbereich treu und arbeitete als wissenschaftlicher Mitarbeiter an der TU Berlin, wo ich zum Thema Bildkompression promovierte.

In diesem Kontext bin ich auf MPEG-7 gestoßen und fand das Konzept sehr spannend.  MPEG-7 war im Gegensatz zu MPEG-1, 2 und 4 kein Kompressionsstandard für Video- oder Audiodaten, sondern die Idee bestand darin, Metadaten von Mediendateien zu erzeugen. Ich befasste mich mit der automatisierten Beschreibung von Bildern, ohne manuelle Verschlagwortung, allein auf Basis der Pixelwerte. Spätestens das war für mich der erste Schritt in Richtung maschinelles Lernen.

Unser erster Erfolg war das Programm ImageSorter, das wir im Jahr 2006 als Freeware veröffentlichten. Hiermit konnte man hunderte von Bildern visuell sortiert darstellen und somit gesuchte Bilder schneller finden. Wir bekamen rasch unerwartete Anfragen aus der Industrie, wie etwa von CEWE mit der Aufgabe, Bilder für Fotobücher automatisch zu sortieren. Aus diesem Bedarf heraus haben wir dann die Pixolution GmbH gegründet. Auch Mauritius Images, eine der ältesten Bildagenturen Deutschlands, hatte unseren Algorithmus eingesetzt, mit dem die Ergebnisse einer Bildsuche inhaltsbasiert sortiert präsentiert wurden und somit die Nutzer in die Lage versetzten, mehrere hundert Bilder gleichzeitig zu erfassen.

Data Science Blog: Im Gegensatz zu anderen Anbietern künstlicher Intelligenz, befassen Sie sich nicht nur mit der einfachen Klassifikation von Bildern, sondern Sie verwenden Deep Learning, um dem Computer ein generelles Verständnis von Bildern zu verleihen.

Deep Learning ist ein Mittel zum Zweck, womit sich viele Aufgaben lösen lassen. Heute analysieren wir Bilder automatisiert über künstliche neuronale Netze, da diese in den letzten Jahren enorm an Reife hinzugewonnen haben. Hiermit lassen sich neben der Klassifikation „was ist der Inhalt eines Bildes?“ eine Reihe weiterer Aufgaben lösen. Hierzu gehört neben der automatischen Verschlagwortung unbekannter Bilder, das Finden ähnlicher Bilder, die Detektion von Duplikaten im Datenbestand, aber auch die Beantwortung sehr spezifischer Fragestellungen, wie etwa nach der Qualität, der Stimmung oder dem Stil eines Bildes. Einige Beispiele sind auf unserer Webseite http://www.visual-computing.com  zu finden. Natürlich lässt sich Deep-Learning auch auf andere Datentypen anwenden. Das kennen wir alle von Sprachassistenten wie Siri oder Email-Spamfiltern etc.

Unser Hauptprodukt bei Pixolution ist ein Plugin für Solr, womit wir ein klassisches Dokumentensuchsystem in die Lage versetzen, auch Bilder (z.B. von Agentur- oder Produktdatenbanken) gleichzeitig nach konventionellen Metadaten und visuellen/inhaltlichen Kriterien durchsuchbar zu machen. Dafür müssen die Bilder von der Maschine „verstanden“ werden.

Data Science Blog: Was bedeutet Deep Learning denn eigentlich im Kontrast zu Machine Learning? Wo beginnt Deep Learning und – als obligatorische Frage – ist Deep Learning ein überzogenes Buzzword?

Machine Learning ist im Prinzip der Oberbegriff aller Verfahren, bei denen Computer zu einer bestimmten Fragestellung selber den Algorithmus zur Lösung generieren können. Heute wird der Begriff „Machine Learning“ sicherlich etwas verschwenderisch verwendet. Zum Teil werden oft schon einfachere Verfahren wie beispielsweise Decision Trees oder K-means-Clustering als Machine Learning „verkauft“. Das eigentliche Machine Learning verwendet unterschiedliche Arten künstlicher neuronaler Netze. Einfache Aufgaben lassen sich mit kleinen neuronalen Netzen mit zwei bis vier Schichten lösen, dies reicht beispielsweise für die Erkennung von handschriftlichen Ziffern.

Deep Learning verwendet neuronale Netze mit deutlich mehr Schichten (bis hin zu Hunderten). Erst mit diesen vielen Schichten, die insgesamt Tausende bis Millionen von Netzwerkgewichten (zu lernende Parameter) haben, werden Lösungen für wirklich komplexe Aufgaben möglich.

Deep Learning ist ein Unterbereich von Machine Learning. Für mich ist Deep Learning kein Buzzword, denn die Lösungsmöglichkeiten von komplexen Aufgaben sind tiefgreifend. Es hat sich in den letzten Jahren einiges getan, so dass wirklich hochkomplizierte Aufgaben lösbar geworden sind.

Data Science Blog: Deep Learning gilt allerdings auch als Blackbox. Für den Menschen nachvollziehbare Entscheidungen von der Maschine sind somit nicht mehr möglich. Wie nachteilig wirkt sich das auf den Einsatz aus?

Die einzelnen Bestandteile eines künstlichen neuronalen Netzes sind recht simpel. Aus diesen elementaren Teilen werden neue Lösungsmodelle zusammengesetzt. Die Summe dieser Bestandteile und deren Interaktion wird jedoch schnell sehr hoch, so dass die Netze tatsächlich nicht mehr detailliert nachvollziehbar sind. Es stimmt also, dass künstliche neuronale Netze ab einer gewissen Größe zur Blackbox werden. Und es gibt auch Beispiele, mit denen solche Netze in die Irre geführt werden können. Nichtsdestotrotz liefern diese Netze die besten Ergebnisse, so dass dieser Nachteil in Kauf genommen wird – denn was wären die Alternativen?  Gerade im Bereich der Analyse und der Visualisierung der Funktionsweise von neuronalen Netzen gibt es viele Forschungsansätze, die das Verständnis mittelfristig deutlich verbessern werden. In vielen Bereichen sind die Klassifikationsergebnisse, die mit ausreichend vielen Beispielen trainiert wurden, besser als menschliche Experten. Hinzu kommt, dass menschliche Experten oft auch nicht genau begründen können, warum Sie zu einer bestimmten Eischätzung kommen, letztlich gleichen sie eine konkrete Fragestellung mit ihren umfangreichen Erfahrungen ab, was eine recht ähnliche Herangehensweise ist.

Data Science Blog: Welche Anwendungsszenarien für künstliche neuronale Netze gibt es?

Eine häufig verwendete Definition dessen, was Deep Learning an Aufgaben bewältigen kann, lautet: Es sind die Aufgaben, die ein Mensch in einer Sekunde lösen kann, ohne darüber nachdenken zu müssen. Wir können ein Netz darauf trainieren und es auf eine Aufgabe sozusagen „abrichten“. Im Unternehmen können künstliche neuronale Netze z. B. auffällige Verhaltensweisen von Maschinen identifizieren. Für mich geht es im Wesentlichen darum, der Maschine beizubringen, Bilder zu verstehen.

Das Verständnis von akustischen Signalen und Bildern ist schon lange ein Ziel der Informatik, es wird jedoch erst seit kurzem in zufriedenstellendem Ausmaß erreicht. Mit künstlichen neuronalen Netzen können Bilder vom Computer analysiert und Aussagen über ihre Inhalte gemacht werden. In den ersten Terminator-Filmen mit Arnold Schwarzenegger war es noch Science Fiction, dass die Welt aus Kamerabildern heraus analysiert und verstanden wurde. Inzwischen ist dies möglich. Was sicherlich noch eine Weile dauern wird, sind die Lösungen von Aufgaben, die eine zeitliche Planung oder ein strategisches Vorgehen benötigen.

Data Science Blog: Für welche Anwendungen in der Industrie ist Deep Learning schon gegenwärtig nutzbar?

Als Beispiel sei hier die industrielle Bildverarbeitung genannt. Bis vor kurzem war dies eine Sequenz von fein abgestimmten Schritten, wobei mit genau vordefinierten Bedingungen, wie etwa dem Bildhintergrund und einer bestimmten Beleuchtung, gearbeitet wurde. Dann wurde von einem Bildverarbeitungsexperten eine Kaskade von speziellen Bildverarbeitungsalgorithmen aufgesetzt, die das spezifische Problem lösten. Dies Prinzip hat meist sehr gut funktioniert, aber diese Ansätze ließen sich nicht gut generalisieren und mussten für jedes neue Problem wieder neu angepasst werden.

Beim Deep Learning ist die Situation eine ganz andere. Hier geht es darum, genügend Beispiele an Bildern und den dazugehörigen Ergebnissen zu haben. Das System lernt dann alleine, wie aus den Bildern bzw. Pixeln mit welchen Operationen die gewünschten Ergebnisse vorhergesagt werden können.

Für jeden, dem das noch zu abstrakt ist: Auch sehr spezifische Aufgaben aus der Industrie können mit neuronalen Netzen bewältigt werden. In der Fertigung und Montage können z.B. Nachfüllbehälter für Schrauben mit Kameras ausgestattet werden. Die Algorithmen erkennen dann über die Kamerabilder nicht nur zuverlässig, ob sich noch genügend viele Schrauben im Behälter befinden, sondern z. B. auch, um welche Schrauben es sich genau handelt.

Letztendlich spielt Deep Learning gerade in vielen Industrieanwendungen eine Rolle, so auch in der Spracherkennung oder dem Konzept des autonomen Fahrens. Das Hauptproblem beim Deep Learning ist nicht so sehr die Frage nach dem optimalen Netzwerk, sondern es besteht eher darin, genügend gute Beispiele zu haben, anhand derer die Netzwerke dann trainiert werden können.

Data Science Blog: Welche Entwicklungen der vergangenen Jahre ermöglichten die enormen Erfolge in Sachen Deep Learning?

Deep Learning wird in der Regel nicht mit CPUs, der zentralen Recheneinheit eines Computers, durchgeführt, sondern über GPUs, also speziell für Grafikberechnung ausgelegte Prozessoren – übrigens auch dann, wenn keine Bilder sondern andere Daten analysiert werden sollen. GPUs sind spezialisiert auf die Berechnung von Fließkommazahlen und können Matrizenmultiplikationen parallelisieren und somit etliche Male schneller als die CPU durchführen. Die heutige Hardware ermöglicht die notwendige Rechenleistung für künstliche neuronale Netze bereitzustellen.

Zum anderen benötigen Deep Learning Algorithmen sehr große Mengen an Trainingsdaten. Um ein neuronales Netz auf Bilder zu trainieren, um beispielsweise Katzen von Hunden zu unterscheiden, braucht es tausende Bilder mit Katzen und Hunden aus unterschiedlichen Perspektiven, Farben und Formen. Wir profitieren davon, dass sich diverse Menschen die Mühe gemacht haben, Millionen von Beispielbildern exakt zu beschriften und der Wissenschaft für das Training zur Verfügung zu stellen.

Data Science Blog: Was hat sich denn seitens der Algorithmen getan? Es heißt, dass die Backpropagation als Lernmethodik der große Clou bei neuronalen Netzen sei?

Backpropagation ist ein Lernverfahren für neuronale Netze, mit dem sich Aufgaben lösen lassen, bei denen die, zu den Eingangsdaten gehörigen/gewünschten Ergebnisse bekannt sind (supervised learning). Nach jedem Durchlauf der Daten durch das Netzwerk (Forward-Pass) gibt es einen Fehler im Endergebnis. Das Backpropagation-Verfahren arbeitet auf Basis der Gradientenabstiegsmethode und passt sukzessive die Netzwerkgewichte so an, dass der Fehler kleiner wird.

Eigentlich ist das Backpropagation-Verfahren ist schon recht lange bekannt. Neben der Beschleunigung der Computer und der Verfügbarkeit geeigneter Trainingsdaten, gab es jedoch erst in den letzten Jahren die notwendigen algorithmischen Fortschritte, mit denen es möglich wurde, auch extrem großen Netzwerke erfolgreich zu trainieren. Hier sind die Convolutional Netzwerke zu nennen, die insbesondere das Verstehen von Bildern (aber auch andere hochkomplexe Problemstellungen) erst möglich machten. Convolutional Netzwerke verwenden nicht für jeden Pixel ein individuelles Gewicht. Vielmehr wird ein Satz von zu erlernenden Filtern mit verhältnismäßig wenig Parametern/Gewichten verwendet. Jede Filterung erzeugt ein neues Bild, Pooling-Verfahren reduzieren die Auflösung dieser neu erzeugten Bilder, indem nur besonders aktive Neuronen beibehalten werden. Durch diese beiden Maßnahmen lässt sich die Zahl der Netzwerkgewichte gegenüber vollvernetzten Netzwerken deutlich reduzieren und ein erfolgreiches Netzwerktraining auch mit begrenzten Mengen an Beispieldaten erzielen.

Data Science Blog: Wie kann man sich denn vorstellen, wie so ein künstliches neuronales Netz funktioniert?

Die Grundidee ist an die biologischen Arbeitsweise im Gehirn angelehnt. Schichten von Neuronen erkennen bestimmte Muster. Auf den ersten Schichten sind dies zunächst einfache Strukturen wie Ecken, Kanten oder Farbübergänge. Die Neuronen führen also eine Funktion/Filterung aus, die jeden Eingabewert mit einer bestimmten Gewichtung multipliziert und diese Teilergebnisse aufsummiert. Eine nicht-lineare Funktion erzeugt hieraus einen Aktivierungswert, den Output, der angibt, ob ein entsprechendes Muster vorliegt. Dieser Output ist dann wiederum der Input für die nächste Netzwerkschicht ist. In den nächsten Schichten werden die einfachen Strukturen dann zu komplizierteren Mustern zusammengesetzt. Viele Linien aus unterschiedlichen Teilmustern ergeben beispielsweise Gitter, zwei senkrechte Linien ein Kreuz, usw. Letztlich lernen die Netzwerke aus allen möglichen Konstellationen der Eingangsdaten diejenigen Kombinationen, die in realen Daten/Bildern auftreten. Auf den letzten Schichten werden dann komplexere Muster erkannt, etwa mehrere Kreise und Konturlinien, die in einer bestimmten Anordnung beispielsweise ein menschliches Gesicht darstellen. Soll das künstliche neuronale Netz dieses Muster erkennen können, rechnen wir über die Backpropagation die Gewichtungen aus, die anhand der Beispielbilder – manche zeigen ein menschliches Gesicht, andere nicht – den kleinstmöglichen Klassifizierungsfehler erzeugen. Es wird beim Trainieren eines neuronalen Netzes also eine Funktion ermittelt, die den Input (die Bilddaten) auf den entsprechend Output (die korrekte Kategorie des Bildes) abbildet.

Data Science Blog: Was würden Sie Data Scientists raten, die in Deep Learning einsteigen möchten? Wie bewältigt man den Einstieg?

Ich würde nicht direkt ins Deep Learning einsteigen, sondern sicher erstmal versuchen, mich mit allgemeinen Methoden des maschinellen Lernens vertraut zu machen. Hierzu gehören Techniken wie das Clustering oder lineare/logistische Regression. Ich denke, dass jeder, der in diesen Bereich einsteigen will, wirklich einmal selber ein einfachstes Netzwerk (z.B. XOR und darüber hinaus) per Hand programmiert haben sollte. Hierfür können Tools wie MATLAB oder Octave verwendet werden. Erst im Anschluss, wenn man grundlegenden Kenntnisse erlangt hat, können Frameworks wie z.B. TensorFlow verwendet werden, was den Vorteil hat, dass einem die Bestimmung der mathematischen Ableitungen der Netzwerkstrukturen abgenommen wird. Dann lassen sich auch bestehende Lösungen besser nachvollziehen bzw. anpassen, um das Rad für den produktiven Lauf nicht noch einmal neuerfinden zu müssen, sondern die gewünschten Implementierungen ohne Umwege direkt angehen zu können.

Interview – Data Science in der Automobilbranche

Interview mit Herrn Dr. Florian Neukart, Principal Data Scientist der
Volkswagen Group of America

Herr Dr. Florian Neukart ist Principal Data Scientist der Volkswagen Group of America. Herr Neukart arbeitete nach seiner Promotion in der Informatik an der University of Brasov als Consultant für Business Analytics bei SAP und wechselte 2013 als Data Scientist zu Audi. 2015 übernahm er für mehr als ein Jahr die Funktion als Chief Technology Officer des Volkswagen Data Labs, bis er September 2016 zu Volkswagen in die USA wechselte. Darüber hinaus ist er bereits seit 2010 in der Forschung und Lehre für Quantum Computing, maschinelles Lernen und künstliche Intelligenz tätig und zudem Autor des Buches „Reverse Engineering the Mind – Consciously Acting Machines and Accelerated Evolution“.

Data Science Blog: Herr Dr. Neukart, Sie sind einer der führenden Data Scientists in der Automobilbranche. Schlägt Ihr Herz mehr für die automobile Praxis oder für die Forschung?

Das kann ich so klar nicht trennen – ich habe das Glück, seit Jahren in beiden Welten tätig sein zu können, und was für mich dabei den besonderen Reiz ausmacht, ist die Möglichkeit, neuste Forschung in die Praxis zu überführen, also anhand von realen Problemstellungen zu verifizieren, ob eine Theorie praxistauglich ist oder nicht. Umgekehrt gilt das genauso – es kommt vor, dass ich mich mit Fragestellungen konfrontiert sehe, für welche die erforderliche analytische Mathematik noch nicht entwickelt wurde, was wieder zu neuer Forschung und innovativen Ideen anregt. Schon mein ganzes Leben bin ich getrieben von Neugierde und will verstehen, wie Dinge funktionieren, unabängig davon, ob es sich um die Gruppendynamik und Selbstorganisation von Herzzellen, quantenphysikalisches Verhalten von subatomaren Teilchen, autonom agierende Fahrzeuge, Fluktuationsprognosen in Märkten oder die Auswertung und Interpretation von Sprache handelt. Dabei ist es zwar primär die Mathematik, die mir hilft, Zusammenhänge zu verstehen und zu interpretieren, aber erst die Technologien und Plattformen, die über die letzten Jahre entwickelt wurden, um etwa rechenintensive Mathematik zu parallelisieren, Daten im Hauptspeicher zu halten und effizient abzufragen, machen unsere Arbeit erst möglich und richtig interessant.

Data Science Blog: Welche Rolle spielt Data Science derzeit für die Automobilbranche? Sicherlich dreht sich gerade alles um das autonome Fahrzeug?

Natürlich sind selbstfahrende Fahrzeuge und Mobilität ein grosses Thema bei OEMs. Aber Data Science ist viel umfassender. Data Science hat bereits Einzug in die technische Entwicklung, Einkauf, Marketing, Logistik, Produktion, Sales, After Sales und Retail gehalten. Speziell der Connected Customer wird immer bedeutender, da sich die internationale Wettbewerbsfähigkeit in naher Zukunft auch über die neuen technischen und Serviceangebote definieren wird, die mit Hilfe von Data Science und maschinellem Lernen möglich werden. Bezogen auf selbstfahrende Fahrzeuge beginnen wir, das gesamte Ökosystem, bestehend aus Infrastruktur und unterschiedlichen Verkehrsteilnehmern, als Multi-Agentensystem zu betrachten. Vehicle to Vehicle und Vehicle to X-Kommunikation gewinnen an Bedeutung, und speziell die Einführung von sozialen Komponenten wird entscheidende Vorteile bringen. Beispielhaft gesprochen, können Ziele der Flotte sein, die Sicherheit für die Passagiere und andere Verkehrsteilnehmer (Passanten, Radfahrer, Motorräder, Fiaker :-)) zu maximieren und gleichzeitig den Verkehrsfluss zu optimieren. Es macht wenig Sinn, eine Ampel an einer Kreuzung auf Rot zu schalten, wenn die Kreuzung gefahrlos durchquert werden kann. Davon abgesehen werden in naher Zukunft alle Fahrzeuge mit ähnlichen Sensoren ausgestattet sein, etwa Kameras, LiDAR, Radar, Ultraschall und Mikrofonen zur akustischen Umfeldwahrnehmung. Ein weiteres Szenario versetzt die Stadtverwaltung in die Lage zu erkennen,  wo der Verkehrsfluss stockt und was getan werden muss, um diesen zu optimieren. Das „was getan werden muss“ ist extrem interessant – etwa könnte man die Strassen digital werden lassen, also Asphaltstraßen durch Glas ersetzen und durch OLEDs ergänzen. Damit sind dann dynamische Veränderungen der Verkehrsführung möglich. Materialtechnisch ist das machbar, denn die Oberflächenstruktur von Glas kann so entwickelt werden, dass dieses auch im Regen rutschfest ist. Glas kann zudem so flexibel und gleichzeitig stabil designet werden, dass auch darüberfahrende LKWs es nicht zum Brechen bringen. Die Abwärme der Displays kann zur Beheizung genutzt werden – es gibt somit auch im Winter keine Eisfahrbahnen mehr. Die Stadt kann sich selbst als Agent in die Multi-Agentenumgebung einbringen und zur Erreichung der definierten Ziele beitragen.

Data Science Blog: Was sind gerade heiße Themen im Automotive-Sektor? Und demgegenüber gestellt, welche Themen spielen in der KI-Forschung gerade eine größere Rolle?

Data Science hat in jedem Bereich Einzug gehalten. Jedes Thema ist auf seine Art „heiss“, egal ob es sich „nur“ um eine Marktprognose, die vorhin erwähnten Multi-Agentensysteme, kollaborative Arbeitsumgebungen, in denen Menschen und Roboter in der Produktion zusammenarbeiten, oder etwa persönliche Assistenten handelt. Nehmen wir eine Marktprognose als Beispiel. Hier sind für den menschlichen Entscheider nicht nur die internen Verkaufszahlen und alle Indikatoren, die etwa die Weltbank liefert, interessant, sondern auch die Gesellschaftsentwicklung und die politischen Strukturen.

In der KI-Forschung ist das für mich interessanteste Thema die generelle KI, also die Schaffung einer künstlichen Intelligenz, die domänenunabhängig komplexe Probleme selbstständig lösen kann. Vieles, was uns einfach scheint, hat sich aber als sehr komplex für KI-Systeme herausgestellt. Der Weg zur generellen KI und künstlichem Bewusstsein führt für mich über das Verständnis von Dingen, wobei ich hier sowohl ein Atom als auch eine komplexe Lebensform als „Ding“ zusammenfasse. Ein Teil, der uns (und Software) hilft, Dinge in deren Kontext und Umgebung einzubetten und zu beschreiben, ist die Sprache – etwa ist ein Reifen Teil eines Fahrzeugs und eine Schraube Teil eines Reifens. Das und die Kombinationen mit anderen Säulen der KI, wie etwa Computer Vision, Logik und Entscheidungsfindung, Maschine Learning und Multi-Agentensystemen (Multi-Agenten-Lernen), bringt uns der generellen und bewussten KI Schritt für Schritt näher, wobei ich mir hier nicht anmaße, eine Definition für Bewusstsein zu geben.

Data Science Blog: Welche Tools verwenden Sie bzw. Ihr Team bei Ihrer Arbeit? Setzen Sie dabei auch auf Open Source?

Wir sind „technolgieagnostisch“, wir versuchen also, für jeden Anwendungsfall die beste Technologie zu finden und einzusetzen. Das ist mal ein Tool oder eine Plattform von einem grossen Softwarehersteller, mal eine Lösung von einem Startup, wobei wir die meisten unserer Projekte doch in R oder Python umsetzen. Wir packen auch unsere Eigenentwicklungen in Libraries, die wir momentan aber noch ausschliesslich intern nutzen.


Data Science Blog: Was macht für Sie einen guten Data Scientist aus? Nach wem suchen Sie, wenn Sie einen Data Scientist einstellen?

Die wichtigste Eigenschaft scheint mir ein Drang nach dem Verständnis von Zusammenhängen und Dingen zu sein – eine starke Neugier – wobei ich unter „Dingen“ je nach Kontext Atome genauso wie komplexe Maschinen einordne.

Dass ich über Atome und komplexe Maschinen schreibe, hat damit zu tun, weil ich auch durch meinen zweiten Job an der Uni vielfältigste Daten analyiseren durfte. Und dass ich Beiträge zu Maschinenlernen und Physik verfasse, liegt tatsächlich in erster Linie an meiner Neugierde. Die Mathematik, Physik, Neurowissenschaft, Informatik … sind Grundlagen, die sich jemand aneignen wird, wenn sie/er verstehen will.

Data Science Blog: Wie sieht Ihrer Erfahrung nach der Arbeitsalltag als Data Scientist nach dem morgendlichen Café bis zum Feierabend aus?

Idealerweise startet der Tag nicht mit Emails :-). Wenn ich aus meiner Erfahrung sprechen darf, dann lässt einen die Data Science auch nach der Arbeit nicht los und die Grenzen von Beruf und Hobby überlagern sich irgendwann. Schon während dem morgendlichen Café tauschen wir uns über die jeweiligen Projekte aus – jeder sollte soviel wie möglich über alle Projekte wissen, um nicht lediglich Nischenwissen aufzubauen. Scrum hat sich auch in Bezug auf Data Science bewährt – je nachdem, wie viele Data Scientists an einem Thema arbeiten und wie viele Tasks anfallen, machen tägliche Stand-Ups Sinn – speziell wenn ein Projekt viele Subkomponenten hat, die als grosses Ganzes funktionieren müssen, hat so jeder Beteiligte immer vollste Transparenz. Die meiste Zeit fliesst natürlich in die Entwicklung der jeweiligen Prototypen / Produkte, aber etwa ein Drittel sollte reserviert sein für das Durcharbeiten von Papers mit aktuellsten Forschungsergebnissen und dem Einarbeiten in neue Technologien. Ich habe mal gesagt bekommen „Data Scientists sprechen nicht viel“, was für die Zeit während der Entwicklungsarbeit (und meiner Erfahrung nach auf die meisten Informatiker) auch zutrifft, da wir zumeist den Zustand eines komplexen Systems im Kopf behalten müssen – tatsächlich aber sprechen wir sehr gerne und viel über mögliche Arten, Probleme zu verstehen und zu lösen. Für meine Kollegen und mich ist Data Science kein bloßer Job, wir beschäftigen uns auch nach dem Feierabend noch mit relevanter Lektuere oder privaten Side-Projects – wie gesagt, wir haben das Glück, Job und Hobby zu vereinen.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik oder Wirtschaftslehre, abgeschlossen haben, was würden sie diesen jungen Damen und Herren raten, wie sie einen guten Einstieg ins Data Science bewältigen können?

Natürlich ist ein solider methodischer Hintergrund, darunter Statistik, Mathematik und Informatik mit Fokus auf Machine Learning erforderlich, und auch das technische Wissen, die Theorie in Produkte zu überführen, also in Programmiersprachen und relevante Libraries, Datenbanken, Streaming und IoT. Das sind Kernkompetenzen, aber wie gesagt, am Anfang steht die Neugierde. Ich rate jedoch jedem, sich einem Problem nicht ausschließlich über die Theorie zu nähern, sondern erst zu versuchen, das Problem zu verstehen und das theoretische Wissen hands-on aufzubauen. Niemand weiss alles, und die Recherche rund um ein Problem ist ein wichtiger Lernprozess, aus dem man unglaublich viel mitnehmen kann. Data Science ist immer hands-on, und Neugierde führt zum Ziel.

Was macht einen guten Data Scientist aus? Kurzinterviews mit 6 führenden Experten!

Was macht eigentlichen einen guten Data Scientist aus?

Diese Frage wurde mir von Studenten und Absolventen, aber auch von alteingesessenen CIOs bereits häufiger gestellt. Gerade Deutsche Unternehmen sind hinsichtlich der Möglichkeiten mit Data Science noch nicht so recht aufgeklärt und auch erst seit wenigen Jahren bieten Hochschulen entsprechende Schwerpunkte oder sogar ganze Studiengänge an. Zumindest für Wirtschaftsunternehmen ist Data Science eine neue Disziplin und somit ist es auch nicht verwunderlich, dass für das Berufsbild des Data Scientists noch ganz unterschiedliche Auffassungen vorherrschen – Und ganz ehrlich: Die Recruiter mit ihren wirren Anforderungsprofilen machen es nicht besser!

Dieses Mal möchte ich selbst jedoch einen Schritt zurücktreten und keine konkrete Antwort auf die Frage geben, was denn einen guten Data Scientist ausmacht. Ich habe diese Frage einfach mal an Experten weitergeleitet, die ich zu den führenden Data Science Experten in Deutschland zähle. Und hier sind ihre Antworten: Read more

Interview – Using Decision Science to forecast customer behaviour

Interview with Dr. Eva-Marie Müller-Stüler from KPMG about how to use Decision Science to forecast customer behaviour

Dr. Eva-Marie Müller-Stüler is Chief Data Scientist and Associate Director in Decision Science at KPMG LLP in London. She graduated as a mathematician at the Technical University of Munich with a year abroad in Tokyo, and completed her Doctorate at the Philipp University in Marburg.

linkedin-button xing-button

Read this article in German:
“Interview – Mit Data Science Kundenverhalten vorhersagen “

Data Science Blog: Ms Dr. Müller-Stüler, which path led you to the top of Analytics for KPMG?

I always enjoyed analytical questions, and have a great interest in people and finance. For me, understanding how people work and make decisions is incredibly exciting. In my Master’s and my PhD theses I had to analyse large amounts of data and had to program various algorithms. Now, combining a solid mathematical education with specific industry and business knowledge enables me to understand my clients’ businesses and to develop methods that disrupt the market and uncover new business strategies.

Data Science Blog: What kind of analytical solutions do you offer your clients? What benefits do you generate for them?

Our team focuses on Behaviour and Customer Science under a mantra and mission: “We understand human behaviour and we change it”. We look at all the data artefacts a person (for example, the customer or the employee) leaves behind and try to solve the question of how to change their behaviour or to predict future behaviour. With advanced analytics and data science we develop “always-on” forecasting models, which enable our clients to act in advance. This could be forecasting customer demand at a particular location, how it can be improved or influenced in the desired direction, or which kind of promotions work best for which customer. Also the challenge of predicting where, and with what product mix, a new store should be opened can be solved much more accurately with Predictive Analytics than by conventional methods.


Data Science Blog: What prerequisites must be fulfilled to ensure that predictive analyses work adequately for customer behaviour?

The data must, of course, have a certain quality and history to recognize trends and cycles. Often, however, one can also create an advantage by using additional new data sources. Experience and creativity are enormously important to understand what is possible and how to improve the quality of our work, or whether something only increases the noise.

Data Science Blog: What external data sources do you need to integrate? How do you handle unstructured data?

As far as external data sources are concerned, we are very spoiled here in England. We use about 10,000 different signals on average, and which vary depending on the question. These might include signals that show the composition of the population, local traffic information, the proximity of sights, hospitals, schools, crime rates and many more. The influence of each signal is also different for each problem. So, a high number of pick pocketing incidences can be a positive sign of the vibrancy of an area, and that people carry a lot of cash on average. For a fast food retailer with a presence in the city centre, for example, this could have a positive influence on a decision to invest in a new outlet in the area, in another area the opposite.

Data Science Blog: What possibilities does data science provide for forensics or fraud detection?

Every customer is surrounded by thousands of data signals and produces and transmits more by through his behaviour. This enables us to get a pretty good picture about the person online. As every kind of person also has a certain behavioural pattern (and this also applies to fraudsters) it is possible to recognise or predict these patterns in time.

Data Science Blog: What tools do you use in your work? When do you rely on proprietary software or on open source?

This depends on what stage we are in the process and the goal defined. We differentiate our team into different groups: Our Data Wranglers (who are responsible for extracting, generating and processing the data) work with other tools than our Data Modellers. Basically our tool kit covers the entire range of SQL Server, R, Python, but sometimes also Matlab or SAS. More and more, we are working with cloud-based solutions. Data visualization and dashboards in Qlik, Tableau or Alteryx are usually passed on to other teams.

Data Science Blog: What does your working day as a data scientist look like from after the morning café until the end of the evening?

My role is perhaps best described as the player’s coach. At the beginning of a project, it is primarily about working with the client to understand and develop the project. New ideas and methods have to be developed. During a project, I manage the teams and knowledge transfer; the review and the questioning of the models are my main tasks. In the end I do the final sign-off of the project. Since I often run several projects at different stages at the same time, it is guaranteed never boring.

Data Science Blog: Are good Data Scientists of your experience more likely to be consultant types or introvert nerds?

That depends upon what one is focused. A Data Visualizer or Data Artist reduces the information and visualise it in a great and understandable way. This requires creativity, a good understanding of business and safe handling of the tools.

The Data Analyst is more concerned with the “Slicing and Dicing” of data. The aim is to analyse the past and to recognize relationships. It is important to have good mathematical and statistical abilities in addition to the financial knowledge.

The Data Scientist is the most mathematical type. His job is to recognize deeper connections in the data and to make predictions. This involves the development of complicated models or Machine Learning Algorithms. Without a good mathematical education and programming skills it is unfortunately not possible to understand the risk of potential errors in full depth. The danger of drawing wrong conclusions or interpreting correlations counterfactually is very great. A simple example of this is that, in summer, when the weather is beautiful, more people eat ice cream and go swimming. Therefore, there is a strong correlation between eating ice and the number of drowned people, although eating ice cream does not lead to drowning. The influencing variable is the temperature. To minimise the risk for wrong conclusions I think it is important have worked and studied mathematics, data science, machine learning and statistics in depth – this usually means a PhD in science related subject.

Beyond that, business and industry knowledge is also important for a Data Scientist. His solutions must be relevant to the client and solve their problems or improve their processes. The best AI machine does not give any bank a competitive advantage if it predicts the sale of ice cream based on the weather. This may be 100% correct, but has no relevance for the client.

It is quite similar to other areas (e.g., medicine) too. There are many different areas, but for serious problems it is best to ask a specialist so that you do not draw wrong conclusions.

Data Science Blog: For all students who have soon finished their bachelor’s degree in computer science, mathematics, or economics, what would they advise these young ladies how to become good Data Scientists?

Never stop learning! The market is currently developing incredibly fast and has so many great areas to focus on. You should dive into it with passion, enthusiasm and creativity and have fun with the recognition of patterns and relationships. If you also surround yourself with interesting and inspiring people from whom you can learn more, I predict that you’ll do well.

This interview is also available in German: https://data-science-blog.com/de/blog/2016/11/10/interview-mit-advanced-analytics-kundenverhalten-verstehen/

Interview – die Zukunft des Data Science

Interview mit Herrn Dr. Helmut Linde von SAP über Data Science heute und in Zukunft

dr-helmut-lindeHerr Dr. Helmut Linde ist Head of Data Science bei SAP Custom Development. Der studierte Physiker und Mathematiker promovierte im Jahre 2006 und war seitdem für den Softwarekonzern mit Hauptsitz in Walldorf tätig. Dort baute Linde das Geschäft mit Dienstleistungen und kundenspezifischer Entwicklung rund um die Themen Prognose- und Optimierungsalgorithmen mit auf und leitet heute eine globale Data Science Practice.

Data Science Blog: Herr Dr. Linde, welcher Weg hat Sie in den Analytics-Bereich der SAP geführt?

Als theoretischer Physiker habe ich mich natürlich immer schon für die mathematische Modellierung komplexer Sachverhalte interessiert. Gleichzeitig finde ich es extrem spannend, geschäftliche Fragestellungen zu lösen und dadurch in der realen Welt etwas zu bewegen. Die SAP mit ihrer weltweiten Präsenz in allen größeren Branchen und ihrer umfassenden Technologie-Plattform hat mir die ideale Möglichkeit geboten, diese Interessen zusammenzubringen.

Data Science Blog: Welche Analysen führen Sie für Ihre Kundenaufträge durch? Welche Vorteile generieren Sie für Ihre Kunden?

Mein Team arbeitet global und branchenübergreifend, d.h. wir befassen uns mit einer großen Bandbreite analytischer Fragestellungen. Oft geht es dabei darum, das Verhalten von Endkunden besser zu verstehen und vorherzusagen. Auch die Optimierung von Lieferketten und Lagerbeständen ist ein häufiger Anwendungsfall. In unseren Projekten geht es z.B. darum, den Absatz von Tageszeitungen zu prognostizieren, Schichten für Call-Center-Mitarbeiter optimal zu planen, Lastspitzen in Stromnetzen zu vermeiden und vieles andere mehr.

Das Hauptaugenmerk meines Teams liegt dabei auf der Entwicklung von analytischen Software-Lösungen. Für unsere Kunden heißt das, dass sie nicht nur einmalig Wettbewerbsvorteile aus ihren Daten ziehen, sondern Prognosen und Optimierung wiederholbar, nachhaltig und skalierbar in ihre Geschäftsprozesse integrieren können. Außerdem profitieren Kunden natürlich von der Größe der SAP und unserer langjährigen Erfahrung. Bei den allermeisten Anfragen können wir sagen: „Ja, etwas sehr ähnliches haben wir schon einmal gemacht.“

Data Science Blog: Viele Unternehmen haben den Einstieg ins Data Science noch nicht gefunden. Woran hängt es Ihrer Erfahrung nach?

Zunächst einmal sehe ich – basierend auf der Menge an Anfragen, die auf meinem Schreibtisch landen – einen äußerst positiven Trend, der zeigt, dass in vielen Unternehmen das Thema Data Science enorm an Bedeutung gewinnt.

Andererseits gibt es sicherlich Fachgebiete, die leichter zugänglich sind. Nicht in jedem Unternehmen gibt es die kritische Masse an Expertise und Unterstützung, die für konkrete Projekte nötig ist.

Data Science Blog: Welche Möglichkeiten bietet Data Science für die Industrie 4.0?

Unter Industrie 4.0 verstehe ich eine immer stärkere Vernetzung von Maschinen, Sensoren und Erzeugnissen. Schon für das Zusammenführen und Bereinigen der dabei anfallenden Daten wird man einen steigenden Grad an Automatisierung durch Algorithmen benötigen, da ansonsten die manuellen Aufwände viele Anwendungsfälle unwirtschaftlich machen. Darauf aufbauend werden Algorithmen den Kern vieler neuer Szenarien bilden. Mit einigen unserer Kunden arbeiten wir beispielsweise an Projekten, bei denen die Qualität von Endprodukten anhand von Maschineneinstellungen und Sensorwerten vorhergesagt wird. Dies erlaubt eine präzisere Steuerung der Produktion und führt zu reduziertem Ausschuss.  Ein anderes Beispiel ist ein Projekt mit einer Eisenbahngesellschaft, bei dem wir automatisch gewisse Stromverbraucher wie Heizungen oder Klimaanlagen für wenige Minuten abschalten, wenn im Stromnetz eine unerwünschte Lastspitze vorhergesagt wird.

Data Science Blog: Welche Tools verwenden Sie bei Ihrer Arbeit? Setzen Sie dabei auch auf Open Source?

In unseren Projekten orientieren wir uns immer an den Notwendigkeiten des konkreten Anwendungsfalles und an der bereits vorhandenen IT-Landschaft beim Kunden. Schließlich muss unsere Lösung dazu passen und sauber integriert und gewartet werden können. Natürlich kommen häufig hauseigene Werkzeuge wie SAP Predictive Analysis für die Modellbildung oder SAP Lumira für schnelle Visualisierung zum Einsatz. Als Plattform spielt SAP HANA eine große Rolle – nicht nur zur Datenhaltung, sondern auch zur Ausführung von Algorithmen und als Anwendungsserver. In SAP HANA gibt es auch eine Schnittstelle zu ‚R‘, so dass in manchen Projekten auch Open Source zum Einsatz kommt.

Data Science Blog: Was sind aktuelle Trends im Bereich Data Science? Um welche Methoden dreht es sich aktuell besonders stark bei SAP?

Einer der größten Trends der letzten Jahre ist sicherlich die zunehmend ganzheitliche Nutzung von Daten, insbesondere auch von rohen, unstrukturierten Daten gepaart mit einem höheren Grad an Automatisierung. Wo vor vielleicht fünf oder zehn Jahren noch großer Wert auf Datenvorverarbeitung und Feature Engineering gelegt wurde, werden diese Schritte heute zunehmend von den Tools selbständig durchgeführt.

Gleichzeitig wachsen klassisches Business Intelligence und Data Science immer mehr zusammen. Wir sehen eine steigende Zahl von Projekten, in denen Kunden analytische Lösungen implementieren, welche in Komplexität und Funktionsumfang deutlich über traditionelle Berichte und Dashboards hinausgehen, dabei aber durchaus ohne fortgeschrittene Mathematik auskommen.

Data Science Blog: Sofern Sie sich einen Ausblick zutrauen, welche Trends kommen 2017 und 2018 vermutlich auf uns zu?

Data-Science-Methoden und traditionelle Geschäftsprozesse werden immer enger verzahnt. In Zukunft übernehmen Algorithmen viel mehr jener Tätigkeiten, die auch nach umfassender Prozessautomatisierung heute immer noch von Sachbearbeitern zu erledigen sind – zum Beispiel eingehende Zahlungen einer Rechnung zuzuordnen, Lebensläufe von Bewerbern vor zu sortieren, die Plausibilität von Abrechnungen zu prüfen und Ähnliches.

Data Science Blog: Gehört die Zukunft weiterhin den Data Scientists oder eher den selbstlernenden Tools, die Analysen automatisiert für das Business entwickeln, durchführen und verbessern werden?

Es gibt definitiv einen Trend zu stärkerer Automatisierung bei den Tools und den starken Wunsch, Kompetenzen näher an die Endanwender zu bringen. Analysen werden zunehmend in den Geschäftsbereichen selbst durchgeführt.

Gleichzeitig sehe ich einen Wandel in der Rolle des Data Scientist. Es reicht nicht mehr, viele Algorithmen und ein paar Data Mining Tools im Detail zu kennen, um wirklich Mehrwert zu stiften. Der Data Scientist der Zukunft ist ein Vordenker, der ganzheitliche Visionen entwickelt, wie geschäftliche Fragestellungen mit Hilfe von Analytik gelöst werden können. Dabei müssen neue oder geänderte Geschäftsprozesse, ihre technische Umsetzung und algorithmische Lösungen gleichermaßen angegangen werden. Nehmen Sie als Beispiel das Thema Predictive Maintenance: Es gibt viele Data Scientists, die aus Sensordaten etwas über den Zustand einer Maschine ableiten können. Aber nur wenige Experten verstehen es, dies dann auch noch sinnvoll in reale Instandhaltungsprozesse einzubetten.

Die Nachfrage nach einem solchen Rollenprofil, für das es heute noch nicht einmal einen wirklich treffenden und allgemein gebräuchlichen Namen gibt, wird auch in Zukunft weit höher sein als die Verfügbarkeit von qualifizierten Kandidaten.

Data Science Blog: Wie sieht Ihrer Erfahrung nach der Arbeitsalltag als Data Scientist nach dem morgendlichen Café bis zum Feierabend aus?

Unsere Arbeitstage sind sehr abwechslungsreich. Jeder Data Scientist hat meistens ein größeres Kundenprojekt, das 60% bis 90% der Arbeitszeit benötigt. Dazu gehören normalerweise Workshops beim Kunden vor Ort – je nach Projekt und Standort können das zwei Tage in der Schweiz oder auch mal zwei Wochen in China sein. Außerdem fließt natürlich viel Zeit in die Analyse und Visualisierung von Daten, das Programmieren von Algorithmen und Anwendungen sowie die Erstellung von Unterlagen. Manchmal arbeiten wir nebenbei noch an einem anderen kleineren Projekt, zum Beispiel der Entwicklung eines Prototyps für eine Kundenpräsentation.

Einen Großteil unserer Projektarbeit liefern wir remote, das heißt, wir sind nur zu Workshops oder bei besonderem Bedarf beim Kunden vor Ort. Die Entwicklungs- und Analysearbeit erfolgt dann aus dem Büro oder, je nach Präferenz, auch aus dem Home Office. Insgesamt ermöglicht die Arbeitsweise eine gute Work-Life-Balance für alle Lebensmodelle.

Data Science Blog: Welches Wissen und welche Erfahrung setzen Sie für Ihre Data Scientists voraus? Und nach welchen Kriterien stellen Sie Data Science Teams für Ihre Projekte zusammen?

Der Großteil unserer Data Scientists hat einen akademischen Hintergrund mit Promotion und teilweise auch Post-Doc-Erfahrung in einem quantitativen Feld. Man sollte neben oder nach dem Studium schon einige Jahre praktische Erfahrung in quantitativen Analysen und idealerweise auch in Software-Entwicklung gesammelt haben, um als Data Scientist in Projekten erfolgreich zu sein. Daneben ist uns eine hohe Selbständigkeit und Eigenmotivation sehr wichtig, da wir in Projekten mit sehr unterschiedlichen Herausforderungen und vielen neuen und wechselnden Technologien konfrontiert sind, die hohe Umsicht und Flexibilität erfordern.

Unsere Projektteams stellen wir je nach Anforderungen zusammen. Bei Projekten, die stärker auf das Ergebnis einer Analyse abzielen, stellen wir oft ein kleines Projektteam komplett aus geeigneten Data Scientists zusammen. Wenn der Fokus stärker in Richtung eines Software-Produkts geht, wird häufig nur der analytische Kern und ggf. Anforderungs- und Projektmanagement von Data Scientists aus meinem Team übernommen. Dazu stoßen dann noch Kollegen aus anderen Bereichen, die beispielsweise Erfahrung mit bestimmten Backend-Technologien, als Software-Architekt, oder als UX-Designer mitbringen.

Data Science Blog: Grenzen Sie auch andere Rollen ab, wie beispielsweise den Data Engineer? Oder sind beide Tätigkeitsfelder untrennbar miteinander verbunden?

Aus meiner Sicht ist es wichtig, dass der Data Scientist, der für die Analyse der Daten verantwortlich ist, so weit wie möglich auch in die Vorverarbeitung und Vorbereitung der Daten mit einbezogen wird. Je nach Projekt können gewisse Tätigkeiten auch von Kollegen mit anderem Profil übernommen werden, aber die dedizierte Rolle eines Data Engineers gibt es bei uns nicht.

Data Science Blog: Sind gute Data Scientists Ihrer Erfahrung nach tendenziell eher Beratertypen oder introvertierte Nerds?

Ein wirklich guter Data Scientist passt weder in die eine noch in die andere Schublade. Sie oder er überzeugt in erster Linie durch Kompetenz – und zwar sowohl in geschäftlichen Fragestellungen als auch in technischen und mathematischen. Gleichzeitig ist die Fähigkeit notwendig, gegenüber Projektpartnern und Kunden überzeugend aufzutreten und komplexe Sachverhalte klar und anschaulich zu strukturieren.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik oder Wirtschaftslehre, abgeschlossen haben, was würden sie diesen jungen Damen und Herren raten, wie sie einen guten Einstieg ins Data Science bewältigen können?

Seien Sie neugierig und erweitern Sie Ihren Horizont! Die führenden Data Scientists sind Unternehmensberater, Software-Architekt und Mathematiker in einer Person. Versuchen Sie, systematisch Erfahrung in allen drei Bereichen aufzubauen.

Interview – Erfolgreicher Aufbau einer Data Science Kompetenz

Interview mit Dr. Dirk Hecker vom Fraunhofer IAIS über den erfolgreichen Aufbau einer Data Science Kompetenz

dr-dirk-heckerDr. Dirk Hecker ist Geschäftsführer der »Fraunhofer-Allianz Big Data«, einem Verbund von 28 Fraunhofer-Instituten zur branchenübergreifenden Forschung und Technologieentwicklung im Bereich Big Data. Außerdem leitet Dr. Hecker die Abteilung »Knowledge Discovery« am Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS. Die Forschungs­schwerpunkte der Abteilung liegen im Data Mining und Machine Learning. Darüber hinaus verantwortet Dr. Hecker das Data-Scientist-Qualifizierungsprogramm bei Fraunhofer und leitet die Arbeitsgruppe »Smart Cities« im »Smart Data Innovation Lab«. Herr Hecker ist in Mitglied der »Networked European Software and Services Initiative (NESSI)« und hat langjährige Erfahrung in der Leitung von Forschungs- und Industrieprojekten. Seine aktuellen Arbeitsschwerpunkte liegen in den Bereichen Big Data Analytics, Predictive Analytics und Deep Learning.

Data Science Blog: Herr Dr. Hecker, welcher Weg hat Sie zu Fraunhofer geführt und wie treiben Sie Data Science bei Fraunhofer voran?

Ich habe bereits als Student bei Fraunhofer angefangen und nach Abschluss meines Studiums schnell die Leitung einer Arbeitsgruppe übertragen bekommen. Unser Schwerpunkt war damals das Thema Mobility Mining, die automatisierte Extraktion von Mustern aus GPS, Mobilfunkdaten sowie Induktionsschleifenmessungen, vor allem zur Verkehrsmodellierung. Als uns 2012 die Big-Data-Welle erreichte und ich die Abteilung „Knowledge Discovery“ übernahm, haben wir die erste Potenzialanalyse für Big Data in Deutschland veröffentlicht und es fiel der Startschuss für unser Data-Science-Schulungsprogramm, da wir das Unterstützungspotenzial für Unternehmen im Bereich Data Science sofort erkannt haben. Mit der Gründung der Fraunhofer-Allianz Big Data vor jetzt fast drei Jahren konnten wir unser Angebot „Beratung, Technologie, Schulung“ branchenübergreifend ausbauen. Ein Beispiel ist der „Big Data Business Club“, eine exklusive Plattform für Chief Digital oder Data Officers (CDOs) in Unternehmen. Wir beraten und unterstützen Unternehmen branchenübergreifend bei der Umsetzung ihrer Big-Data-Projekte und entwickeln die passenden Tools und Softwareprodukte.

Data Science Blog: Könnten Unternehmen die Projekte nicht einfach in den jeweiligen Fachbereichen direkt selbst umsetzen? Oder in der zentralen Unternehmens-IT-Abteilung?

Für die Datenanalyse braucht man Experten, also Data Scientists. Die gibt es in vielen Fachabteilungen zunächst nicht, und oft auch noch nicht in der zentralen IT. Da ist es ein guter Weg, die Kompetenzen beim eigenen Personal in Kooperationsprojekten mit erfahrenen Partnern aufzubauen.

Data Science Blog: Sie bieten bei Fraunhofer ein sogenanntes „Data Science Starter Toolkit“ an, wofür brauchen Unternehmen ein weiteres Toolkit?

Bevor sie in eine Big-Data-Plattform investieren und sich damit längerfristig binden, können Unternehmen in diesem Toolkit eine breite Palette aktueller Big Data- und In-Memory-Technologien  erproben und sich hier beraten lassen. Außerdem erleichtert das Toolkit die nicht-kommerzielle Kooperation mit akademischen Partnern. Das ist besonders in der Anfangsphase interessant, wenn überhaupt erst das Potenzial in den eigenen Daten exploriert werden soll.

Data Science Blog: Sie bearbeiten Anwendungsfälle unterschiedlicher Branchen. Können sich Branchen die Anwendungsfälle gegenseitig abschauen oder sollte jede Branche auf sich selbst fokussiert bleiben?

Gute Branchenkenntnis ist für uns unerlässlich, denn jede Branche hat ihre Besonderheiten, etwa was die Prozesse oder auch die Datenquellen anbelangt. Dennoch können sich Unternehmen an Best-Practice-Beispielen aus anderen Branchen orientieren. Darum arbeiten wir auch in der Fraunhofer-Allianz Big Data instituts- und branchenübergreifend zusammen. Unsere Kunden schätzen es gerade in der Bratungs- und Ideenfindungsphase, wenn sie über den Tellerrand schauen können und Beispiele aus anderen Branchen vorgestellt bekommen. Außerdem lassen sich externe Datenquellen in verschiedenen Branchen nutzen: Social Media, Mobilfunkdaten, Wikipedia, Nachrichtenkanäle.  Schließlich erwarten wir im Bereich des Deep Learning, dass man bild-, sprach- und textverarbeitende Module in Zukunft vortrainieren und dann mit weniger Aufwand auf die Anwendung spezialisieren kann.

Data Science Blog: Welche Trends im Bereich Machine Learning bzw. Deep Learning werden Ihrer Meinung nach im kommenden Jahr 2017 von Bedeutung sein?

Schon heute ist das maschinelle Lernen die Schlüsseltechnik für die Echtzeitanalyse von Big Data, also die Überwachung und Automatisierung von Prozessen jeglicher Art. Deep Learning erschließt aktuell insbesondere unstrukturierte Datenmengen, also die bekannte Dimension „Variety“. Die Technik rund um Deep Learning ist aktuell verantwortlich für die jüngsten Erfolge im Bereich der Künstlichen Intelligenz: maschinelles Sehen, Text- und Sprachverstehen, Text- und Sprachproduktion, maschinelle Übersetzung. Damit werden zunehmend intelligente Geräte gebaut und Systeme entwickelt, die uns einerseits Routine-Sacharbeiten und -Entscheidungen abnehmen und uns andererseits als Assistenten begleiten und beraten. In Zukunft werden wir immer weniger auf graphische Benutzeroberflächen angewiesen sein, sondern sprechen oder chatten mit smarten Geräten, Umgebungen und Assistenzsystemen.

Data Science Blog: Es heißt, dass Data Scientists gerade an ihrer eigenen Arbeitslosigkeit arbeiten, da zukünftige Verfahren des maschinellen Lernens Data Mining selbstständig durchführen können. Werden die Tools Data Scientists bald ersetzen?

Auf keinen Fall. In industriellen Datenanalyseprojekten gehen ja bis zu 80% des Aufwands in die Erarbeitung der Aufgabenstellung, in Datenexploration und -vorverarbeitung. Und die Digitalisierung und das Internet der Dinge werden uns noch auf viele Jahre hinaus mit neuen Fragestellungen versorgen. Methoden des Reinforcement-Lernens, die Feedback nutzen, um selbstständig weiter zu lernen, sind Gegenstand aktiver Forschung.  Praktisch stellt sich da auch die Frage, wie Reaktionen der Umwelt überhaupt als Feedback zu interpretieren sind. Und schließlich stellt sich das Problem der Haftung. In einigen Anwendungsbereichen werden wir selbstlernende Systeme vorerst ausschließen, bis sichergestellt werden kann, dass sie sich kein unerwünschtes Verhalten aneignen.  Solche Systeme zu bauen wird eine neue Kompetenz von Data Scientists sein.

Data Science Blog: Sollten Unternehmen erfahrene Data Scientists direkt einkaufen? Oder gibt es auch realistische Möglichkeiten, diese einfach selbst auszubilden?

Wir arbeiten mit etlichen Unternehmen zusammen, die ihren Mitarbeitern eine Fortbildung finanzieren, sei es durch ein berufsbegleitendes Studium, sei es durch Kompaktkurse. Die Fraunhofer-Allianz Big Data bietet zum Beispiel ein umfassendes, kompaktes Schulungsprogramm mit Zertifizierung an. Zudem sind Auftragsprojekte eine gute Gelegenheit, das erlernte Wissen praktisch zu vertiefen. Datenanalyseprojekte sind ja von Natur aus agil und erfordern eine enge Zusammenarbeit. Da ist es leicht, die anstehenden Arbeiten wöchentlich zwischen eigenen Mitarbeitern und externen Experten aufzuteilen. So arbeiten wir bereits mit einigen Unternehmen erfolgreich zusammen, teilweise sind die Fachkräfte sogar bei uns vor Ort oder wir unterstützen sie direkt im Unternehmen.

Data Science Blog: Sind gute Data Scientists Ihrer Erfahrung nach tendenziell eher Beratertypen oder introvertierte Nerds?

Data Scientists, die angefangen beim Geschäft und der Anwendungsdisziplin über die Big-Data-Tools bis zu statistischer Analyse und maschinellen Lernen alles selbst beherrschen, finden Sie selten und dann können Sie die Experten vielleicht nicht bezahlen. Allein schon deshalb arbeiten Data Scientists in Teams und bündeln unterschiedliche Kompetenzen und auch Charaktere. Kommunikative Fähigkeiten sind dabei unabdingbar.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik oder Wirtschaftswissenschaften abgeschlossen haben, was würden Sie diesen jungen Damen und Herren raten, wie sie gute Data Scientists werden können?

Praxis und Neugier. In jedem Datenanalyseprojekt lernt man dazu – durch die Daten und durch die Zusammenarbeit mit den Kolleginnen und Kollegen. Darum würde ich nach einer Beschäftigung suchen, die immer neue Herausforderungen verspricht. Außerdem richten sich die Gehälter insbesondere nach den fortschrittlichen Tools, die man beherrscht – im Augenblick Spark und Python. Es ist also wichtig, den Blick auf technologische Entwicklungen nicht zu verlieren.

Anmerkung der Redaktion: Das Fortbildungsprogramm der Fraunhofer Acadamy zum Thema Data Science / Big Data ist im Aus- und Fortbildungskatalog enthalten.

 

Interview – Mit Data Science Kundenverhalten vorhersagen

Frau Dr. Eva-Marie Müller-Stüler ist Associate Director in Decision Science der KPMG LLP in London. Sie absolvierte zur Diplom-Mathematikerin an der Technischen Universität München, mit einem einjährigen Auslandssemester in Tokyo, und promovierte an der Philipp Universität in Marburg.

linkedin-button xing-button

english-flagRead this article in English:
“Interview – Using Decision Science to forecast customer behaviour”

Data Science Blog: Frau Dr. Müller-Stüler, welcher Weg hat Sie bis an die Analytics-Spitze der KPMG geführt?

Ich hatte schon immer viel Spaß an analytischen Fragestellungen, aber auch ein großes Interesse an Menschen und Finance. Die Frage wie Menschen ticken und Entscheidungen treffen finde ich unglaublich spannend. Im Mathematikstudium und auch bei der Doktorarbeit kamen dann das Auswerten von großen Datenmengen und das Programmieren von Algorithmen hinzu. Die solide mathematische Ausbildung kombiniert mit dem spezifischen Branchen- und Finanzverständnis ermöglicht es mir das Geschäftsmodell meiner Kunden zu verstehen und Methoden zu entwickeln, die den Markt verändern und neue Wege finden.

Data Science Blog: Welche Analysen führen Sie für Ihre Kundenaufträge durch? Welche Vorteile generieren Sie für Ihre Kunden?

Unser Team beschäftigt sich hauptsächlich mit Behaviour und Customer Science. Daher auch der Slogan „We understand human behaviour and we change it“. Unser Focus ist der Mensch (z.B. Kunde oder der Mitarbeiter) und die Frage, wie wir ihn durch das Verständnis seiner Datenartefakte im Verhalten ändern bzw. zukünftiges Verhalten vorhersagen können. Auf dieser Basis entwickeln wir Always-on forecasting Modelle, die es dem Mandanten ermöglichen, bereits im Vorfeld zu agieren. Das kann z.B. bedeuten, durch ortgenaue Informationen spezifische Kundennachfrage an einem bestimmten Standort vorherzusagen, wie sie verbessert oder in die gewünschte Richtung beeinflusst werden kann oder durch welche Maßnahmen bzw. Promotions welcher Kundentyp optimal erreicht wird. Oder auch die Frage wo und mit welcher Produktmischung am besten ein neues Geschäft eröffnet werden soll, ist mit Predictive Analytics viel genauer vorherzusagen als durch herkömmliche Methoden.

Data Science Blog: Welche Voraussetzungen müssen erfüllt sein, damit prädiktive Analysen für Kundenverhalten adäquat funktionieren?

Die Daten müssen natürlich eine gewisse Qualität und Historie haben um z. B. auch Trends und Zyklen zu erkennen. Oft kann man sich aber auch über die Einbindung neuer Datenquellen einen Vorteil erschaffen. Dabei ist Erfahrung und Kreativität enorm wichtig, um zu verstehen was möglich ist und die Qualität verbessert oder ob etwas nur für mehr Rauschen sorgt.

Data Science Blog: Welche externen Datenquellen müssen Sie dafür einbinden? Wie behandeln Sie unstrukturierte Daten?

Hier in England ist man – was externe Datenquellen angeht – schon sehr verwöhnt. Wir benutzen im Schnitt an die 10.000 verschiedene Signale, die je nach Fragestellung unterschiedlich seien können: z. B. die Zusammensetzung der Bevölkerung, Nahverkehrsinformationen, die Nähe von Sehenswürdigkeiten, Krankenhäusern, Schulen, Kriminalitätsraten und vieles mehr. Der Einfluss eines Signals ist bei jedem Problem unterschiedlich. So kann eine hohe Anzahl an Taschendiebstählen ein Zeichen dafür sein, dass in der Gegend viel los ist und die Menschen im Schnitt viel Bargeld bei sich tragen. Das kann z. B. für einen Fast Food-Retailer in der Innenstadt durchaus einen positiven Einfluss auf sein Geschäft haben in einer anderen Gegend aber das Gegenteil bedeuten.

Data Science Blog: Welche Möglichkeiten bietet Data Science für die Forensik bzw. zur Betrugserkennung?

Da jeden Kunden tausende Datensignale umgeben und er durch sein Verhalten weitere produziert und aussendet, kann man gerade beim Online-Geschäft schon ein ziemlich gutes Bild über die Person bekommen. Jede Art von Mensch hat ein gewisses Verhaltensmuster und das gilt auch für Betrüger. Diese Muster muss man nur rechtzeitig erkennen oder vorherzusagen lernen.

Data Science Blog: Welche Tools verwenden Sie bei Ihrer Arbeit? In welchen Fällen setzten Sie auf proprietäre Software, wann hingegen auf Open Source?

Das hängt vom Arbeitsschritt und dem definierten Ziel ab. Wir unterscheiden unser Team in unterschiedliche Gruppen: Unsere Data Wrangler (die für das Extrahieren, Erzeugen und Aufbereiten der Daten zuständig sind) arbeiten mit anderen Tools als z. B. unsere Data Modeller. Im Grunde umfasst es die gesamte Palette von SQL Server, R, Python, manchmal aber auch Matlab oder SAS. Immer häufiger arbeiten wir auch mit auf Cloud-Technologie basierenden Lösungen. Data Visualisation und Dashboards in Qlik, Tableau oder Alteryx geben wir in der Regel jedoch an andere Teams weiter.

Data Science Blog: Wie sieht Ihrer Erfahrung nach der Arbeitsalltag als Data Scientist nach dem morgendlichen Café bis zum Feierabend aus?

Meine Rolle ist vielleicht am besten zu beschreiben als der Player-Coach. Da läuft von allem etwas mit ein. Am Anfang eines Projektes geht es vor Allem darum, mit den Mandaten die Fragestellung zu erarbeiten und das Projekt zu gewinnen. Teil dessen ist auch neue Ideen und Methoden zu entwickeln.  Während eines Projektes sind das Team Management, der Wissenstransfer im Team, der Review und das Hinterfragen der Modelle meine Hauptaufgaben. Am Schluss kommt dann der endgültige Sign-off des Projektes. Da ich oft mehrere Projekte in unterschiedlichen Stadien gleichzeitig leite, wird es garantiert nie langweilig.

Data Science Blog: Sind gute Data Scientists Ihrer Erfahrung nach tendenziell eher Beratertypen oder introvertierte Nerds?

Das hängt so ein bisschen davon ab wo man seinen Schwerpunkt sieht. Als Data Visualizer oder Data Artist geht es darum die Informationen auf das wesentlich zu reduzieren und toll und verständlich darzustellen. Dafür braucht man Kreativität und ein gutes Verständnis für das Geschäft und einen sicheren Umgang mit den Tools.

Der Data Analyst beschäftigt sich vor Allem mit dem „Slice and Dice“ von Data. Ziel ist es, die Vergangenheit zu analysieren und Zusammenhänge zu erkennen. Es ist wichtig zusätzlich zu dem finanziellen Wissen auch gute mathematische Fähigkeiten zu haben.

Der Data Scientist ist der mathematischste von allen. Er beschäftigt sich damit aus den Daten tiefere Zusammenhänge zu erkennen und Vorhersagen zu treffen. Dabei geht es um die Entwicklung von komplizierten Modellen oder auch Machine Learning Algorithmen. Ohne eine gute mathematische Ausbildung und Programmierkenntnisse ist es leider nicht möglich die Sachen in voller Tiefe zu verstehen. Die Gefahr falsche Schlüsse zu ziehen oder Korrelationen zu interpretieren, die sich aber nicht bedingen ist sehr groß. Ein einfaches Beispiel hierfür ist, dass im Sommer, wenn das Wetter schön ist, mehr Menschen Eis essen und in Seen baden gehen. Daher lässt sich eine eindeutige Korrelation zwischen Eis essen und der Anzahl an Ertrunkenen zeigen, obwohl nicht das Eis essen zum Ertrinken führt sondern die beeinflussende Variable die Temperatur ist. Daher ist ein Doktor in einem mathematiknahen Fach schon wichtig.

Genauso ist aber für den Data Scientist auch das entsprechende Finanz- und Branchenwissen wichtig, denn seine Erkenntnisse und Lösung müssen relevant für den Kunden sein und deren Probleme lösen oder Prozesse verbessern. Die tollste AI Maschine bringt keiner Bank einen Wettbewerbsvorteil, wenn sie den Eisverkauf auf Basis des Wetters vorhersagt. Das kann zwar rechnerisch 100% richtig sein, hat aber keine Relevanz für den Kunden.

Es ist im Grunde wie in anderen Bereichen (z. B. der Medizin) auch. Es gibt viele verschiedene Schwerpunkte und für ernsthafte Probleme wendet man sich am besten an einen Spezialisten, damit man keine falschen Schlüsse zieht.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik oder Wirtschaftslehre, abgeschlossen haben, was würden sie diesen jungen Damen und Herren raten, wie sie gute Data Scientists werden können?

Nie aufhören mit dem Lernen!  Der Markt entwickelt sich derzeit unglaublich schnell und hat so viele tolle Seiten. Man sollte einfach mit Leidenschaft, Begeisterung und Kreativität dabei sein und Spaß an der Erkennung von Mustern und Zusammenhängen haben. Wenn man sich dann noch mit interessanten und inspirierenden Menschen umgibt, von denen man noch mehr lernen kann, bin ich zuversichtlich, dass man eine tolle Arbeitszeit haben wird.