Entropie – Und andere Maße für Unreinheit in Daten
Dieser Artikel ist Teil 1 von 4 der Artikelserie Maschinelles Lernen mit Entscheidungsbaumverfahren.
Hierarchische Klassifikationsmodelle, zu denen das Entscheidungsbaumverfahren (Decision Tree) zählt, zerlegen eine Datenmenge iterativ oder rekursiv mit dem Ziel, die Zielwerte (Klassen) im Rahmen des Lernens (Trainingsphase des überwachten Lernens) möglichst gut zu bereiningen, also eindeutige Klassenzuordnungen für bestimmte Eigenschaften in den Features zu erhalten. Die Zerlegung der Daten erfolgt über einen Informationsgewinn, der für die Klassifikation mit einem Maß der Unreinheit berechnet wird (im nächsten Artikel der Serie werden wir die Entropie berechnen!) Read more