Tag Archive for: Finance

Connections Between Data Science & Finance

Image Source: pixabay.com

The world of finance is changing at an unprecedented rate. Data science has completely altered the face of traditional finance management. Though data has long been a critical component to finances, the introduction of big data and artificial intelligence have created new tools that are strengthening the predictive ability of many financial institutions.

These changes have led to a rapid increase in the need for financial professionals with data science skills. Nearly every sector in finances is converting to greater use of data science and management from the stock market and retirement accounts to credit score calculation. A greater understanding of the interplay between data and finance is a key skill gap.

Likewise, they have opened many doors for those that are interested in analyzing their personal finances. More and more people are taking their finances into their own hands and using the data tools available to make the best decisions for them. In today’s world, the sky’s the limit for financial analysis and management!

The Rise of the Financial Analyst

Financial analysts are the professionals who are responsible for the general management of money and investments both in an industrial and personal finance realm. Typically a financial analyst will spend time reviewing and understanding the overall stock portfolio and financial standing of a client including:

  • Stocks
  • Bonds
  • Retirement accounts
  • Financial history
  • Current financial statements and reports
  • Overarching business and industry trends

From there, the analyst will provide a recommendation with data-backed findings to the client on how they should manage their finances going into the future.

As you can imagine, with all of this data to analyze, the need for financial analysts to have a background or understanding of data science has never been higher! Finance jobs requiring skills such as artificial intelligence and big data increased by over 60% in the last year. Though these new jobs are typically rooted in computer science and data analytics, most professionals still need a background in financial management as well.

The unique skills required for a position like this means there is a huge (and growing) skills gap in the financial sector. Those professionals that are qualified and able to rise to fill the need are seeing substantial pay increases and hundreds of job opportunities across the nation and the globe.

A Credit Score Example

But where does all of this data science and professional financial account management come back to impact the everyday person making financial decisions? Surprisingly, pretty much in every facet of their lives. From things like retirement accounts to faster response times in financial analysis to credit scores — data science in the financial industry is like a cloaked hand pulling the strings in the background.

Take, for example, your credit score. It is one of the single most important numbers in your life, for better or worse. A high credit score can open all sorts of financial doors and get you better interest rates on the things you need loans for. A bad score can limit the amount lenders willing to qualify you for a loan and increase the interest rate substantially, meaning you will end up paying far more money in the end.

Your credit score is calculated by several things — though we understand the basic outline of what goes into the formula, the finer points are somewhat of a mystery. We know the big factors are:

  • Personal financial history
  • Debit-credit ratio
  • Length of credit history
  • Number of new credit hits or applications

All of this data and number crunching can have a real impact on your life, just one example of how data in the financial world is relevant.

Using Data Science in Personal Finance

Given all this information, you might be thinking to yourself that what you really need is a certificate in data science. Certainly, that will open a number of career doors for you in a multitude of realms, not just the finance industry. Data science is quickly becoming a cornerstone of how most major industries do business.

However, that isn’t necessarily required to get ahead on managing your personal finances. Just a little information about programs such as Excel can get you a long way. Some may even argue that Excel is the original online data management tool as it can be used to do things like:

  • Create schedules
  • Manage budgets
  • Visualize data in charts and graphs
  • Track revenues and expenses
  • Conditionally format information
  • Manage inventory
  • Identify trends in large data sets

There are even several tools and guides out there that will help you to get started!

***

Data analysis and management is here to stay, especially when it comes to the financial industry. The tools are likely to continue to become more important and skills in their use will increase in value. Though there are a lot of professional skills using big data to manage finances, there are still a lot of tools out there that are making it easier than ever to glean insights into your personal finances and make informed financial decisions.

Interview: Data Science in der Finanzbranche

Interview mit Torsten Nahm von der DKB (Deutsche Kreditbank AG) über Data Science in der Finanzbranche

Torsten Nahm ist Head of Data Science bei der DKB (Deutsche Kreditbank AG) in Berlin. Er hat Mathematik in Bonn mit einem Schwerpunkt auf Statistik und numerischen Methoden studiert. Er war zuvor u.a. als Berater bei KPMG und OliverWyman tätig sowie bei dem FinTech Funding Circle, wo er das Risikomanagement für die kontinentaleuropäischen Märkte geleitet hat.

Hallo Torsten, wie bist du zu deinem aktuellen Job bei der DKB gekommen?

Die Themen Künstliche Intelligenz und maschinelles Lernen haben mich schon immer fasziniert. Den Begriff „Data Science“ gibt es ja noch gar nicht so lange. In meinem Studium hieß das „statistisches Lernen“, aber im Grunde ging es um das gleiche Thema: dass ein Algorithmus Muster in den Daten erkennt und dann selbstständig Entscheidungen treffen kann.

Im Rahmen meiner Tätigkeit als Berater für verschiedene Unternehmen und Banken ist mir klargeworden, an wie vielen Stellen man mit smarten Algorithmen ansetzen kann, um Prozesse und Produkte zu verbessern, Risiken zu reduzieren und das Kundenerlebnis zu verbessern. Als die DKB jemanden gesucht hat, um dort den Bereich Data Science weiterzuentwickeln, fand ich das eine äußerst spannende Gelegenheit. Die DKB bietet mit über 4 Millionen Kunden und einem auf Nachhaltigkeit fokussierten Geschäftsmodell m.E. ideale Möglichkeiten für anspruchsvolle aber auch verantwortungsvolle Data Science.

Du hast viel Erfahrung in Data Science und im Risk Management sowohl in der Banken- als auch in der Versicherungsbranche. Welche Rolle siehst du für Big Data Analytics in der Finanz- und Versicherungsbranche?

Banken und Versicherungen waren mit die ersten Branchen, die im großen Stil Computer eingesetzt haben. Das ist einfach ein unglaublich datengetriebenes Geschäft. Entsprechend haben komplexe Analysemethoden und auch Big Data von Anfang an eine große Rolle gespielt – und die Bedeutung nimmt immer weiter zu. Technologie hilft aber vor allem dabei Prozesse und Produkte für die Kundinnen und Kunden zu vereinfachen und Banking als ein intuitives, smartes Erlebnis zu gestalten – Stichwort „Die Bank in der Hosentasche“. Hier setzen wir auf einen starken Kundenfokus und wollen die kommenden Jahre als Bank deutlich wachsen.

Kommen die Bestrebungen hin zur Digitalisierung und Nutzung von Big Data gerade eher von oben aus dem Vorstand oder aus der Unternehmensmitte, also aus den Fachbereichen, heraus?

Das ergänzt sich idealerweise. Unser Vorstand hat sich einer starken Wachstumsstrategie verschrieben, die auf Automatisierung und datengetriebenen Prozessen beruht. Gleichzeitig sind wir in Dialog mit vielen Bereichen der Bank, die uns fragen, wie sie ihre Produkte und Prozesse intelligenter und persönlicher gestalten können.

Was ist organisatorische Best Practice? Finden die Analysen nur in deiner Abteilung statt oder auch in den Fachbereichen?

Ich bin ein starker Verfechter eines „Hub-and-Spoke“-Modells, d.h. eines starken zentralen Bereichs zusammen mit dezentralen Data-Science-Teams in den einzelnen Fachbereichen. Wir als zentraler Bereich erschließen dabei neue Technologien (wie z.B. die Cloud-Nutzung oder NLP-Modelle) und arbeiten dabei eng mit den dezentralen Teams zusammen. Diese wiederum haben den Vorteil, dass sie direkt an den jeweiligen Kollegen, Daten und Anwendern dran sind.

Wie kann man sich die Arbeit bei euch in den Projekten vorstellen? Was für Profile – neben dem Data Scientist – sind beteiligt?

Inzwischen hat im Bereich der Data Science eine deutliche Spezialisierung stattgefunden. Wir unterscheiden grob zwischen Machine Learning Scientists, Data Engineers und Data Analysts. Die ML Scientists bauen die eigentlichen Modelle, die Date Engineers führen die Daten zusammen und bereiten diese auf und die Data Analysts untersuchen z.B. Trends, Auffälligkeiten oder gehen Fehlern in den Modellen auf den Grund. Dazu kommen noch unsere DevOps Engineers, die die Modelle in die Produktion überführen und dort betreuen. Und natürlich haben wir in jedem Projekt noch die fachlichen Stakeholder, die mit uns die Projektziele festlegen und von fachlicher Seite unterstützen.

Und zur technischen Organisation, setzt ihr auf On-Premise oder auf Cloud-Lösungen?

Unsere komplette Data-Science-Arbeitsumgebung liegt in der Cloud. Das vereinfacht die gemeinsame Arbeit enorm, da wir auch sehr große Datenmengen z.B. direkt über S3 gemeinsam bearbeiten können. Und natürlich profitieren wir auch von der großen Flexibilität der Cloud. Wir müssen also z.B. kein Spark-Cluster oder leistungsfähige Multi-GPU-Instanzen on premise vorhalten, sondern nutzen und zahlen sie nur, wenn wir sie brauchen.

Gibt es Stand heute bereits Big Data Projekte, die die Prototypenphase hinter sich gelassen haben und nun produktiv umgesetzt werden?

Ja, wir haben bereits mehrere Produkte, die die Proof-of-Concept-Phase erfolgreich hinter sich gelassen haben und nun in die Produktion umgesetzt werden. U.a. geht es dabei um die Automatisierung von Backend-Prozessen auf Basis einer automatischen Dokumentenerfassung und -interpretation, die Erkennung von Kundenanliegen und die Vorhersage von Prozesszeiten.

In wie weit werden unstrukturierte Daten in die Analysen einbezogen?

Das hängt ganz vom jeweiligen Produkt ab. Tatsächlich spielen in den meisten unserer Projekte unstrukturierte Daten eine große Rolle. Das macht die Themen natürlich anspruchsvoll aber auch besonders spannend. Hier ist dann oft Deep Learning die Methode der Wahl.

Wie stark setzt ihr auf externe Vendors? Und wie viel baut ihr selbst?

Wenn wir ein neues Projekt starten, schauen wir uns immer an, was für Lösungen dafür schon existieren. Bei vielen Themen gibt es gute etablierte Lösungen und Standardtechnologien – man muss nur an OCR denken. Kommerzielle Tools haben wir aber im Ergebnis noch fast gar nicht eingesetzt. In vielen Bereichen ist das Open-Source-Ökosystem am weitesten fortgeschritten. Gerade bei NLP zum Beispiel entwickelt sich der Forschungsstand rasend. Die besten Modelle werden dann von Facebook, Google etc. kostenlos veröffentlicht (z.B. BERT und Konsorten), und die Vendors von kommerziellen Lösungen sind da Jahre hinter dem Stand der Technik.

Letzte Frage: Wie hat sich die Coronakrise auf deine Tätigkeit ausgewirkt?

In der täglichen Arbeit eigentlich fast gar nicht. Alle unsere Daten sind ja per Voraussetzung digital verfügbar und unsere Cloudumgebung genauso gut aus dem Home-Office nutzbar. Aber das Brainstorming, gerade bei komplexen Fragestellungen des Feature Engineering und Modellarchitekturen, finde ich per Videocall dann doch deutlich zäher als vor Ort am Whiteboard. Insofern sind wir froh, dass wir uns inzwischen auch wieder selektiv in unseren Büros treffen können. Insgesamt hat die DKB aber schon vor Corona auf unternehmensweites Flexwork gesetzt und bietet dadurch per se flexible Arbeitsumgebungen über die IT-Bereiche hinaus.

Dem Wettbewerb voraus mit Künstlicher Intelligenz

Was KI schon heute kann und was bis 2020 auf deutsche Unternehmen zukommt

Künstliche Intelligenz ist für die Menschheit wichtiger als die Erfindung von Elektrizität oder die Beherrschung des Feuers – davon sind der Google-CEO Sundar Pichai und viele weitere Experten überzeugt. Doch was steckt wirklich dahinter? Welche Anwendungsfälle funktionieren schon heute? Und was kommt bis 2020 auf deutsche Unternehmen zu?

Big Data war das Buzzword der vergangenen Jahre und war – trotz mittlerweile etablierter Tools wie SAP Hana, Hadoop und weitere – betriebswirtschaftlich zum Scheitern verurteilt. Denn Big Data ist ein passiver Begriff und löst keinesfalls alltägliche Probleme in den Unternehmen.

Dabei wird völlig verkannt, dass Big Data die Vorstufe für den eigentlichen Problemlöser ist, der gemeinhin als Künstliche Intelligenz (KI) bezeichnet wird. KI ist ein Buzzword, dessen langfristiger Erfolg und Aktivismus selbst von skeptischen Experten nicht infrage gestellt wird. Daten-Ingenieure sprechen im Kontext von KI hier aktuell bevorzugt von Deep Learning; wissenschaftlich betrachtet ein Teilgebiet der KI.

Was KI schon heute kann

Deep Learning Algorithmen laufen bereits heute in Nischen-Anwendungen produktiv, beispielsweise im Bereich der Chatbots oder bei der Suche nach Informationen. Sie übernehmen ferner das Rating für die Kreditwürdigkeit und sperren Finanzkonten, wenn sie erlernte Betrugsmuster erkennen. Im Handel findet Deep Learning bereits die optimalen Einkaufsparameter sowie den besten Verkaufspreis.

Getrieben wird Deep Learning insbesondere durch prestigeträchtige Vorhaben wie das autonome Fahren, dabei werden die vielfältigen Anwendungen im Geschäftsbereich oft vergessen.

Die Grenzen von Deep Learning

Und Big Data ist das Futter für Deep Learning. Daraus resultiert auch die Grenze des Möglichen, denn für strategische Entscheidungen eignet sich KI bestenfalls für das Vorbereitung einer Datengrundlage, aus denen menschliche Entscheider eine Strategie entwickeln. KI wird zumindest in dieser Dekade nur auf operativer Ebene Entscheidungen treffen können, insbesondere in der Disposition, Instandhaltung, Logistik und im Handel auch im Vertrieb – anfänglich jeweils vor allem als Assistenzsystem für die Menschen.

Genau wie das autonome Fahren mit Assistenzsystemen beginnt, wird auch im Unternehmen immer mehr die KI das Steuer übernehmen.

Was sich hinsichtlich KI bis 2020 tun wird

Derzeit stehen wir erst am Anfang der Möglichkeiten, die Künstliche Intelligenz uns bietet. Das Markt-Wachstum für KI-Systeme und auch die Anwendungen erfolgt exponentiell. Entsprechend wird sich auch die Arbeitsweise für KI-Entwickler ändern müssen. Mit etablierten Deep Learning Frameworks, die mehrheitlich aus dem Silicon Valley stammen, zeichnet sich der Trend ab, der für die Zukunft noch weiter professionalisiert werden wird: KI-Frameworks werden Enterprise-fähig und Distributionen dieser Plattformen werden es ermöglichen, dass KI-Anwendungen als universelle Kernintelligenz für das operative Geschäft für fast alle Unternehmen binnen weniger Monate implementierbar sein werden.

Wir können bis 2020 also mit einer Alexa oder Cortana für das Unternehmen rechnen, die Unternehmensprozesse optimiert, Risiken berichtet und alle alltäglichen Fragen des Geschäftsführers beantwortet – in menschlich-verbal formulierten Sätzen.

Der Einsatz von Künstlicher Intelligenz zur Auswertung von Geschäfts- oder Maschinendaten ist auch das Leit-Thema der zweitägigen Data Leader Days 2018 in Berlin. Am 14. November 2018 sprechen renommierte Data Leader über Anwendungsfälle, Erfolge und Chancen mit Geschäfts- und Finanzdaten. Der 15. November 2018 konzentriert sich auf Automotive- und Maschinendaten mit hochrangigen Anwendern aus der produzierenden Industrie und der Automobilzuliefererindustrie. Seien Sie dabei und nutzen Sie die Chance, sich mit führenden KI-Anwendern auszutauschen.

Interview – Data Science in der FinTech-Branche

Christian Rebernik ist CTO bei Number 26 und zuständig für die technische Entwicklung dieses FinTech-Unternehmens. Er studierte Informatik und Wirtschaftsinformatik und kann auf langjährige Erfahrung als Software-Entwickler zurückgreifen. Seit etwa 2010 war er als CTO und CIO bei diversen eCommerce-christian-rebernikUnternehmen, u.a. bei Immobilien.net (heute ImmobilienScout24), PARSHIP und Zanox, tätig und gilt daher als ein etablierter IT-Manager, der seine Kenntnisse als Mentor des Axel Springer Plug and Play Accelerators weitergibt.

Data Science Blog: Herr Rebernik, wie sind Sie als CTO zum FinTech Number26 gekommen?

Ich durfte die Gründer im Accelerator 2013 als Mentor begleiten. Damals war das Produkt ausgelegt auf Teenager als Zielgruppe. 2014 änderten die Gründer Valentin und Maximilian das Produkt auf Number26, ein mobile-first Gehaltskonto mit Mastercard und der Vision das weltbeste Bankerlebnis zu bieten. Damit hatten sie aus meiner Sicht den richtigen Nerv der Zeit getroffen. Mein Erfahrung mit Banken war nicht positiv bis dato. Number26 hat aus meiner Sicht das Potential Bankwesen zu verändern.

Data Science Blog: Die FinTech-Szene möchte vieles besser machen als traditionelle Banken. Welche Rolle spielt Data Science dabei?

Beim Online-Banking etablierter Banken erhält man meistens nur eine reine Ansicht des Bankkontos, quasi eine statische und nicht kundenorientierte Darstellung des Kontostandes und der Kontotransaktionen. Wir glauben, diese Auflistung ohne Intelligenz ist nicht ausreichend und wenig auf den Kundenutzen fokussiert, mit der heutigen Technik kann man deutlich mehr bieten.
Unser Ziel ist es, eine der besten Customer Experience zu schaffen. Dank moderner Technologien haben wir viele unterschiedliche Möglichkeiten, um das zu erreichen. Eine davon ist es Smart Banking anzubieten, hier kommt Data Science ins Spiel.

Data Science Blog: Wofür nutzt Number26 Data Science genau?

Wir starten in Sachen Data Science jetzt erst voll durch. Unser erster Data Scientist wurde letztes Jahr im Oktober eingestellt. Unser Team ist also noch im Aufbau. Aktuell steht die sichere und number26appautomatisierte Kategorisierung von Finanztransaktionen bei uns im Fokus. Damit bieten wir den Nutzern leicht verständliche und genaue Auswertungen ihrer finanziellen Situation sowie eine Übersicht ihrer Einnahmen und Ausgaben. Interessanterweise gibt es unseres Wissens nach noch keine Bank, die Transaktionen direkt für den Kundennutzen kategorisiert.
Abhängig von der Transaktionsart nutzen wir unterschiedliche Methoden des maschinellen Lernens, die wir für die Erkennung der übergeordneten Kategorie verwenden.

Data Science Blog: Welche Machine Learning Methoden kommen zum Einsatz? Und wo finden die Analysen statt?

Wir haben mehrere ML-Methoden ausprobiert und durch eine Prototyping-Phase hinsichtlich ihrer Treffgenauigkeit bewertet. Wir setzen auf Amazon Webservices (AWS) und nutzen das Amazon Machine Learning Framework, auf dem wir auch unsere Modelle testen und Algorithmen erstellen. Der Input ist beispielsweise eine Kontotransaktion.
Unsere Algorithmen versuchen dieses dann zu kategorisieren. Daraus gewinnen wir zusätzliche Informationen, die wir unseren Kunden als Mehrwert anbieten.
Handelt es sich um eine Peer-to-Peer-Transaktion, wenn beispielsweise ich einem Freund Geld überweise, parsen wir den Verwendungszweck und nutzen Textmustererkennung zur Kategorisierung der Überweisung. Dazu splitten wir den Überweisungstext in einzelne Wörter auf, deren Bedeutung über Wörterbücher erkannt werden. Dadurch entstehen Kategorien, die vom Nutzer auch manuell nachträglich geändert werden können. Dieses Nutzerfeedback fließt in den Algorithmus zurück und wird in zukünftige Kategorisierungen mit einbezogen. Wir arbeiten nach mehreren Experimenten nun vermehrt mit Vector Spacing Modellen, wie dem k-Nearest-Neighbour-Algorithmus, über zurzeit 12 Achsen (Vektordimensionen). Jeder Vektor stellt eine Eigenschaft einer Transaktion dar, beispielsweise Geldbetrag, Verwendungszweck, Empfänger oder Währung. Je näher die Eigenschaften, die im Vektorraum als Punkte dargestellt werden, an den Eigenschaften anderer Finanztransaktion im selben Vektorraum liegen, desto wahrscheinlicher ist die Gemeinsamkeit als Kategorie.
Natürlich gibt es immer wieder False-Positives, die die eigentliche Herausforderung in Data Science darstellen. Beispielsweise lassen sich seltene Transaktionen wie die Zahnarztrechnung nur schwer trainieren. Wir trainieren unsere Kategorisierung der Banktransaktionen unter Einbeziehung der MasterCard-Kreditkartentransaktionen. Alle Vertragspartner bei MasterCard müssen einige Angaben mahcen, z.B. welche Art von Händler sie sind, Das hilft natürlich bei der Kategorisierung.

Data Science Blog: Der Beruf des Data Scientist wurde schon öfter als„Sexiest Job des 21. Jahrhunderts“ zitiert, gilt das auch in der Finanzindustrie?

Wir als FinTech-Unternehmen sind technologiegetrieben und in unserer Branche macht es wirklich Spaß, Probleme des Finanzalltags zu lösen. Neue Lösungen anzubieten, auf die vorher noch niemand gekommen ist, ist zwar nicht jedermanns Sache, unser Schlag Menschen entwickelt aber genau dafür die größte Leidenschaft.

Data Science Blog: Was sind Ihrer Meinung nach die alltäglichen Aufgaben eines Data Scientists und welche Skills sollte ein Data Scientist dafür mitbringen?

Die Arbeit als Data Scientist ist meines Erachtens dreigeteilt: ein Drittel Datenaufbereitung, ein Drittel Software-Entwicklung und ein Drittel Analyse.
Zum ersten Drittel gehört die Sichtung der Daten und Identifikation der Datenqualität. Ein Data Scientist muss aber auch Software-Entwickler sein und ein Verständnis für Software-Architekturen mitbringen. Große Datenmengen lassen sich nur über skalierbare Anwendungen auswerten. Wichtige Hilfsmittel und Testumgebungen müssen dafür selbst entwickelt werden.
Für die Analyse ist ein gutes Verständnis von Mathematik unumgänglich. Hinzu kommt ein ausgezeichnetes Verständnis für das Kerngeschäft des Unternehmens, in unserem Fall das Finanzwesen, um dementsprechend relevante Analysen durchzuführen.

Interview – Advanced Data Science in der Finanz- und Versicherungsbranche

Dr. Andreas Braun von der Allianz SE spricht exklusiv mit dem Data Science Blog über die Bedeutung von Data Science in der Finanz- und Versicherungsindustrie und was er von einem guten Data Scientist erwartet.

dr-andreas-braunDr. Andreas Braun ist Head of Global Data & Analytics bei der Allianz SE in München. Der promovierte Informatiker von der TU München begann seine Karriere als Berater bei Accenture, leitete danach verschiedene Abteilungen für Analyse und Digitalisierung und zuletzt den globalen Geschäftsbereich Business Applications bei der GfK SE. Er gilt heute als eine der erfahrensten Führungskräfte mit explizitem Know How in der Nutzung von Data & Analytics.

Data Science Blog: Herr Dr. Braun, welcher Weg hat Sie bis an die Analytics-Spitze der Allianz SE geführt?

Als Informatiker kam ich über Software-Entwicklung und Verteilte Systeme zur Datenanalyse. Schon während des Studiums war ich Mitbegründer einer Software-Firma, die Bildverarbeitungs- und Analyse-Software entwickelte. Der Schwenk hin zur Entwicklung von Systemen künstlicher Intelligenz kam während der Promotion an der TUM, insbesondere, da mein Doktorvater erst kürzlich von der Carnegie Mellon University (CMU) dorthin gewechselt hatte. (An der CMU wurde der Begriff Künstliche Intelligenz ja ursprünglich geprägt.) Dadurch hatte ich mir Schwerpunkte auf global verteilte Systeme und Künstliche Intelligenz gesetzt. Nach meinem akademischen Ausbildungsweg war ich dann in der Unternehmensberatung und später in der Marktforschung tätig. Als Global Head für Business Applications bei der GfK SE, der Gesellschaft für Konsumforschung, haben wir bereits 2011 auf Big Data Technologien, wie Hadoop und NoSQL,  gesetzt.

Als die Allianz sich auf Gruppenebene verstärkt im Bereich Digitalisierung und somit auch Data Analytics und Data Science aufstellte und konsequent ein eigenes Data & Analytics Team aufbaute, kam für mich die Gelegenheit zum Wechsel nach München. Seit Mai 2014 leite ich nun Global Data & Analytics (GD&A) bei der Allianz SE und setze vor allem auf Leute, die bereits Data Analytics und Data Science Expertise mitbringen, oft auch von außerhalb der Finanz- und Versicherungsindustrie.

Data Science Blog: Welche Rolle sehen Sie für Big Data Analytics in der Finanz- und Versicherungsbranche?

Aus meiner Sicht ist sogenannte „Big Data“ Technologie, also verteilte Systeme, neue Datenbanken usw., die eigentliche Maschinerie hinter der Digitalisierung. Es gibt zunehmend viele „Frontends“, also z. B. Benutzeroberflächen, (mobile) Geräte und Sensoren, für Anwender, mit denen Daten generiert werden. Webseiten, Apps, Smartphones und Connected Cars sind für sich gesehen jedoch noch nicht besonders intelligent und somit eingeschränkt nützlich. Die wirklich nutzbringende Intelligenz basiert auf Kontext, Daten und Analytics und ergibt sich erst durch die Vernetzung unzähliger Einzelkomponenten über Data Analytics Systeme. Auf dieser Basis lassen sich dann neue und digitale Geschäftsmodelle fördern.

Viele der heute gängigen Anwendungsfälle sind vielleicht von der Grundidee her manchmal ein alter Hut, lassen sich durch die jetzt verfügbare Technologie aber deutlich besser oder gar erstmalig lösen. Beispielsweise betreibt die Allianz Betrugserkennung schon sehr lange. Mittlerweile lassen sich jedoch komplexe oder gar organisierte Betrugsnetzwerke mit Ansätzen wie maschinellem Lernen (Machine Learning) und Graphen-Datenbanken sehr viel schneller, deutlich zuverlässiger und auch noch kostengünstiger aufdecken. Dadurch entstand bereits ein erheblich messbarer Vorteil für die Versichertengemeinschaft!

Data Science Blog: Wie arbeitet das Data & Analytics Team?

Im Data & Analytics Team werden daten-getriebene und analytische Anwendungsfälle („Use Cases“) pilotiert, prototypisch umgesetzt, methodisch validiert und auf unserer Referenzarchitektur („Stack“) aufgesetzt.

Ich glaube, die Data Scientists fühlen sich hier wohl, da wir für die unterschiedlichsten Fachbereiche und Landesgesellschaften tätig werden, die über große und sehr variantenreiche Datenquellen verfügen und sehr vielseitige Problemstellungen mitbringen. Abwechslung sowie beständiges Lernen sind somit garantiert. Für die Fachbereiche bieten wir alles aus einer Hand und geben einen schnellen Einstieg in die produktive Nutzung von großen und verteilten Datenbeständen.

Wir fühlen uns eigentlich fast wie ein eigenes Start-Up innerhalb des Konzerns und haben unsere eigene Infrastruktur. Das gibt uns Geschwindigkeit und Flexibilität bei gleichzeitig höchsten Standards für Sicherheits- und Datenschutz.

Data Science Blog: Finden die Analysen nur in Ihrem Team oder auch in den Fachbereichen statt?

Die Projekte werden in der Regel bei uns zentral durchgeführt, werden dabei aber meist vom Fachbereich angestoßen. Wir arbeiten dabei mit den jeweiligen Kollegen Hand in Hand. Die Fachbereiche sind stets eingeladen, möglichst eng mit uns zusammen zu arbeiten. Natürlich gibt es aber auch Projekte, die zentral ansetzen und im Wesentlichen erstmal von uns allein getrieben werden, insbesondere Themen, die eher R&D sind.

Data Science Blog: In wie weit werden unstrukturierte Daten in die Analysen einbezogen?

Unstrukturierte Daten spielen eine immer größere Rolle. Ich vermute, dass bereits etwa 70% der verwendeten Daten nach Volumen unstrukturiert oder semi-strukturiert sind.

Data Science Blog: Werden diese vollwertig genutzt oder sind diese nur eine Vorstufe, bevor sie in eine strukturierte Datenbank gespeist werden?

Unstrukturierte Daten werden bei uns nicht in eine strukturierte Datenbank überführt. Grundsätzlich belassen wir Rohdaten i.d.R. möglichst unverändert.

Aus technischer Sicht liegt unser Fokus vor allem auf den sogenannten NoSQL-Datenbanken und dazu passenden Datenformaten, wie z. B. großen, flachen Tabellen („Bigtable“), Parquet- und neuen Prozessmodellen, wie Streaming und Microbatches usw. Relationale Datenbanken spielen dabei eine eher untergeordnete Rolle, haben aber natürlich auch weiterhin ihre Berechtigung, beispielsweise für Meta-/ Stammdaten.

Data Science Blog: Die Allianz als Versicherer besitzt personenbezogene Datenbestände, welche Rolle spielt in Ihrer Arbeit der Datenschutz?

Wir befassen uns sehr viel mit IT-Sicherheit, Datenschutz (Data Privacy) und Datenethik. Die rechtlich zulässige Nutzung von Daten setzt für uns den Rahmen jeglicher Aktivitäten. Und während wir in Bezug auf IT-Sicherheit auf erhebliche Erfahrungswerte und Lösungsmuster zurückgreifen können, sind Data Privacy und Datenethik neue Themenkomplexe im Bereich der Datenanalytik, die sehr eng mit der Analyse verknüpft sind. Ich glaube, dass die letztliche Komplexität hierbei noch nicht vollständig erfasst ist, weswegen wir uns auch stark in der Forschung und Entwicklung in diesem Feld engagieren.

So hat die Allianz kürzlich einen Lehrstuhl für „Großskalige Datenanalyse und Maschinelles Lernen“ an der TU-München gestiftet, wovon wir uns u.a. einen Beitrag zur Erörterung entsprechender Fragen zur Datennutzung  erhoffen.

Data Science Blog: Welche Art von Data Scientists suchen Sie für Ihre zukünftigen Umsetzungen?

Data Scientists können bei uns abwechslungsreich arbeiten und für verschiedene Projekte unterschiedliche Rollen einnehmen und daran wachsen. Unsere Kollegen haben vorwiegend einen ingenieur- oder naturwissenschaftlichen Hintergrund, vor allem Informatiker, Physiker, Mathematiker und Statistiker, aber auch beispielsweise Psychologen.

Data Science Blog: Suchen Sie eher den introvertierten Nerd oder den kommunikationsstarken Beratertyp?

Wir suchen vor allem Hardcore Data Scientists, dazu gehören für mich eher die Naturwissenschaftler. Für uns ist Data Science programmatisch, also ganz klar abgegrenzt von „Klick“-orientierter Business Intelligence. Im Data Science kommen verschiedene Tools und Programmiersprachen zum Einsatz. Die meisten Data Scientists sind zwar keine Software-Entwickler, aber dennoch werden die Aufgaben im Kern durch Programmierung unter Einsatz von statistischen Verfahren und Methoden des maschinellen Lernens gelöst. Von einem Data Scientist erwarte ich darüber hinaus, dass die Qualität eines Modells nicht nur bloß eingeschätzt, sondern auch methodisch fundiert belegt werden kann.

Auf der anderen Seite haben wir auch Business Analysts, die vor allem in der Koordination der Use Cases eingesetzt werden. Ein Business Analyst versteht den Businesskontext und den Geschäftszweck von Daten und Analysen, unterstützt im Projektmanagement und kümmert sich um die Kommunikation und Implementierung in den Fachbereichen.

Data Science Blog: Unterscheiden Sie in Ihrem Bereich auch zwischen Data Scientist und Data Engineer?

Ja. In meinem Team arbeiten ungefähr 30% Data Engineers, 60% sind Data Scientists und 10% Business Analysts. Unsere Data Engineers kümmern sich um u.a. den Technologie und Tool-Stack und das Engineering.

Ich denke, viele der momentan kommerziell sehr erfolgreichen Use Cases sind sehr Engineering-lastig, haben also mit Datenhaltung, -transformation, -bewegung und Ausführbarkeit bzw. Anwendung zu tun. Dann spielt dabei Daten und Software Engineering sogar die größere Rolle als Data Science.

Und obwohl wir genau diese Jobtitel, also Data Scientist, Data Engineer und Business Analyst, haben, sind die Grenzen dazwischen fließend. Für unseren agilen Ansatz ist dabei vor allem wichtig, dass alle Mitarbeiter auf Augenhöhe in einem „self-contained“ Team zusammenarbeiten.