Tag Archive for: Data Lake

Data Lakehouse

Was ist ein Data Lakehouse?

tl;dr

Ein Data Lakehouse ist eine moderne Datenarchitektur, die die Vorteile eines Data Lake und eines Data Warehouse kombiniert. Es kann strukturierte, halbstrukturierte und unstrukturierte Daten in einer Vielzahl von Formaten speichern und verarbeiten und bietet eine flexible und skalierbare Möglichkeit zur Speicherung und Analyse großer Datenmengen. In diesem Artikel werden die Geschichte von Data Lakehouses, ihre Vor- und Nachteile sowie einige der am häufigsten verwendeten Tools für ihre Erstellung erörtert, darunter Apache Spark, Delta Lake, Databricks, Apache Hudi und Apache Iceberg. Organisationen können je nach ihren spezifischen Bedürfnissen und Anforderungen zwischen einem Data Warehouse und einem Data Lakehouse wählen.

Einführung

In der Welt der Daten ist der Begriff Data Lakehouse allgegenwärtig und wird als Lösung für alle Datenanforderungen verkauft. Aber Moment mal, was ist eigentlich ein Data Lakehouse? Der Artikel beginnt mit einer Definition, was ein Lakehouse ist, gibt einen kurzen geschichtlichen Abriss, wie das Lakehouse entstanden ist und zeigt, warum und wie man ein Data Lakehouse aufbauen sollte.

Die Definition eines Data Lakehouse

Ein Data Lakehouse ist eine moderne Datenspeicher- und -verarbeitungsarchitektur, die die Vorteile von Data Lakes und Data Warehouses vereint. Es ist darauf ausgelegt, große Mengen an strukturierten, halbstrukturierten und unstrukturierten Daten aus verschiedenen Quellen zu verarbeiten und eine einheitliche Sicht auf die Daten für die Analyse bereitzustellen.

Data Lakehouses werden auf Cloud-basierten Objektspeichern wie Amazon S3, Google Cloud Storage oder Azure Blob Storage aufgebaut. Sie nutzen auch verteilte Computing-Frameworks wie Apache Spark, um skalierbare und effiziente Datenverarbeitungsfunktionen bereitzustellen.

In einem Data Lakehouse werden die Daten in ihrem Rohformat gespeichert, und Transformationen und Datenverarbeitung werden je nach Bedarf durchgeführt. Dies ermöglicht eine flexible und agile Datenexploration und -analyse, ohne dass komplexe Datenaufbereitungs- und Ladeprozesse erforderlich sind. Darüber hinaus können Data Governance- und Sicherheitsrichtlinien auf die Daten in einem Data Lakehouse angewendet werden, um die Datenqualität und die Einhaltung von Vorschriften zu gewährleisten.

Data Lakehouse Architecture by DATANOMIQ

Data Lakehouse Architecture

Eine kurze Geschichte des Data Lakehouse

Das Konzept des Data Lakehouse ist relativ neu und entstand Mitte der 2010er Jahre als Reaktion auf die Einschränkungen des traditionellen Data Warehousing und die wachsende Beliebtheit von Data Lakes.

Data Warehousing ist seit den 1980er Jahren die wichtigste Lösung für die Speicherung und Verarbeitung von Daten für Business Intelligence und Analysen. Data Warehouses wurden entwickelt, um strukturierte Daten aus Transaktionssystemen in einem zentralen Repository zu speichern, wo sie mit SQL-basierten Tools bereinigt, umgewandelt und analysiert werden konnten.

Mit der zunehmenden Datenmenge und -vielfalt wurde die Verwaltung von Data Warehouses jedoch immer schwieriger und teurer. Data Lakes, die Mitte der 2000er Jahre aufkamen, boten einen alternativen Ansatz für die Datenspeicherung und -verarbeitung. Data Lakes wurden entwickelt, um große Mengen an rohen und unstrukturierten Daten auf skalierbare und kostengünstige Weise zu speichern.

Data Lakes boten zwar viele Vorteile, verfügten aber nicht über die Struktur und die Data Governance-Funktionen von Data Warehouses. Dies machte es schwierig, aus den Daten aussagekräftige Erkenntnisse zu gewinnen und die Datenqualität und die Einhaltung von Vorschriften sicherzustellen.

Das Data Lakehouse wurde als Lösung für dieses Problem entwickelt und kombiniert die Vorteile von Data Lakes und Data Warehouses. Bei einem Data Lakehouse werden die Daten in ihrem Rohformat gespeichert, genau wie bei einem Data Lake. Das Data Lakehouse bietet jedoch auch die Struktur und die Governance-Funktionen eines Data Warehouse, was eine einfachere Datenverwaltung und -analyse ermöglicht.

Wann wird ein Data Lakehouse verwendet?

Ein Data Lakehouse kann für eine Vielzahl von Anwendungsfällen der Datenspeicherung und -verarbeitung eingesetzt werden, insbesondere für solche, bei denen große Mengen unterschiedlicher Datentypen aus verschiedenen Quellen anfallen. Einige häufige Anwendungsfälle sind:

  1. Datenexploration und -erkennung: Ein Data Lakehouse ermöglicht es Benutzern, Rohdaten auf flexible und agile Weise zu untersuchen und zu analysieren, ohne dass komplexe Datenaufbereitungsprozesse erforderlich sind. Dies kann Unternehmen dabei helfen, Muster und Erkenntnisse zu erkennen, die sonst nur schwer zu entdecken wären.
  2. Erweiterte Analysen und maschinelles Lernen: Data Lakehouses können erweiterte Analysen und maschinelles Lernen unterstützen, indem sie eine einheitliche Sicht auf die Daten bieten, die zum Trainieren von Modellen und zur Erstellung von Vorhersagen verwendet werden kann.
  3. Datenverarbeitung in Echtzeit: Ein Data Lakehouse kann zum Speichern und Verarbeiten von Echtzeit-Datenströmen von IoT-Geräten, Social-Media-Feeds und anderen Quellen verwendet werden, um Einblicke und Maßnahmen in Echtzeit zu ermöglichen.
  4. Datenintegration und -verwaltung: Data Lakehouses können Unternehmen dabei helfen, Daten aus verschiedenen Quellen zu integrieren und zu verwalten, um Datenqualität, Konsistenz und Compliance zu gewährleisten.
  5. Kunde 360: Ein Data Lakehouse kann zur Konsolidierung von Kundendaten aus verschiedenen Quellen wie Transaktionssystemen, sozialen Medien und Kundensupportsystemen verwendet werden, um eine vollständige Sicht auf den Kunden zu erhalten und personalisierte Erfahrungen zu ermöglichen.

Data Lakehouse vs. Data Warehouse

Data Lakehouse Schema

Data Lakehouse Schema

Das Data Lakehouse ist also eine moderne Alternative zu Data Warehouse und Data Lake. Aber wie entscheidet man, ob man ein Data Lakehouse oder ein Data Warehouse einsetzt? Hier sind einige Faktoren, die bei der Bewertung der Verwendung eines Data Lakehouse gegenüber einem Data Warehouse für Ihr Unternehmen zu berücksichtigen sind:

  1. Datentypen und -quellen: Wenn Ihr Unternehmen strukturierte Daten aus transaktionalen Systemen speichern und analysieren muss, ist ein Data Warehouse möglicherweise die bessere Wahl. Wenn Sie jedoch verschiedene Datentypen und -quellen haben, einschließlich unstrukturierter und halbstrukturierter Daten, ist ein Data Lakehouse die bessere Wahl.
  2. Anforderungen an die Datenverarbeitung: Wenn Ihr Unternehmen komplexe Abfragen und Aggregationen von Daten durchführen muss, ist ein Data Warehouse möglicherweise die bessere Wahl. Wenn Sie jedoch Ad-hoc-Abfragen und explorative Analysen durchführen müssen, ist ein Data Lakehouse besser geeignet.
  3. Datenvolumen: Wenn Sie relativ kleine Datenmengen haben, ist ein Data Warehouse möglicherweise die kostengünstigere Wahl. Wenn Sie jedoch große Datenmengen haben, die schnell wachsen, wäre ein Data Lakehouse die bessere Wahl.
  4. Datenlatenz: Wenn Ihr Unternehmen Daten in Echtzeit verarbeiten und analysieren muss, ist ein Data Lakehouse möglicherweise die bessere Wahl. Wenn Ihre Analyse jedoch eine gewisse Latenzzeit tolerieren kann, könnte ein Data Warehouse die bessere Wahl sein.
  5. Data Governance und Compliance: Wenn Ihr Unternehmen strenge Anforderungen an die Datenverwaltung und -einhaltung hat, ist ein Data Warehouse möglicherweise die bessere Wahl. Ein Data Lakehouse kann jedoch auch Data Governance und Compliance unterstützen, indem es die Datenabfolge, Zugriffskontrollen und Auditing-Funktionen bereitstellt.

Die Entscheidung für das eine oder das andere hängt hauptsächlich von der Menge und Häufigkeit der zu verarbeitenden Daten ab. Aber auch die Art der Daten (strukturiert oder unstrukturiert) spielt eine wichtige Rolle.

Tools zum Aufbau eines Data Lakehouse

Nachfolgend eine Liste an Tools, die für Data Lakehouses infrage kommen, ohne Anspruch auf Vollständigkeit:

  1. Apache Spark: Spark ist eine beliebte Open-Source-Datenverarbeitungs-Engine, die für den Aufbau eines Data Lakehouse verwendet werden kann. Spark unterstützt eine Vielzahl von Datenquellen, einschließlich strukturierter, halbstrukturierter und unstrukturierter Daten, und kann sowohl für die Batch- als auch für die Echtzeit-Datenverarbeitung verwendet werden. Spark ist direkt auf mehreren Cloud-Plattformen verfügbar, darunter AWS, Azure und Google Cloud Platform.Apacke Spark ist jedoch mehr als nur ein Tool, es ist die Grundbasis für die meisten anderen Tools. So basieren z. B. Databricks und Azure Synapse auf Apache Spark, vereinfachen den Umgang mit Spark für den Benutzer dabei gleichzeitig sehr.
  2. Delta Lake: Delta Lake ist eine Open-Source-Speicherschicht, die auf einem Data Lake läuft und Funktionen für die Zuverlässigkeit, Qualität und Leistung von Daten bietet. Delta Lake baut auf Apache Spark auf und ist auf mehreren Cloud-Plattformen verfügbar, darunter AWS, Azure und Google Cloud Platform.
  3. AWS Lake Formation: AWS Lake Formation ist ein verwalteter Service, der den Prozess der Erstellung, Sicherung und Verwaltung eines Data Lakehouse auf AWS vereinfacht. Lake Formation bietet eine Vielzahl von Funktionen, einschließlich Datenaufnahme, Datenkatalogisierung und Datentransformation, und kann mit einer Vielzahl von Datenquellen verwendet werden.
  4. Azure Synapse Analytics: Azure Synapse Analytics ist ein verwalteter Analysedienst, der eine einheitliche Erfahrung für Big Data und Data Warehousing bietet. Synapse Analytics umfasst eine Data Lakehouse-Funktion, die das Beste aus Data Lakes und Data Warehouses kombiniert, um eine flexible und skalierbare Lösung für die Speicherung und Verarbeitung von Daten zu bieten.
  5. Google Cloud Data Fusion: Google Cloud Data Fusion ist ein vollständig verwalteter Datenintegrationsdienst, der zum Aufbau eines Data Lakehouse auf der Google Cloud Platform verwendet werden kann. Data Fusion bietet eine Vielzahl von Funktionen zur Datenaufnahme, -umwandlung und -verarbeitung und kann mit einer Vielzahl von Datenquellen verwendet werden.
  6. Databricks: Databricks ist eine Cloud-basierte Datenverarbeitungs- und Analyseplattform, die auf Apache Spark aufbaut. Sie bietet einen einheitlichen Arbeitsbereich für Data Engineering, Data Science und maschinelles Lernen, der zum Aufbau und Betrieb eines Data Lakehouse verwendet werden kann. Databricks ist auf AWS, Azure und Google Cloud Platform verfügbar.
  7. Apache Hudi: Apache Hudi ist ein Open-Source-Datenmanagement-Framework, das eine effiziente und skalierbare Datenaufnahme, -speicherung und -verarbeitung ermöglicht. Hudi bietet Funktionen wie inkrementelle Verarbeitung, Upserts und Deletes sowie Datenversionierung, um die Datenqualität in einem Data Lakehouse zu erhalten. Apache Hudi ist auf AWS, Azure und Google Cloud Platform verfügbar.
  8. Apache Iceberg: Apache Iceberg ist ein Open-Source-Tabellenformat, das schnelle und effiziente Datenabfragen ermöglicht und gleichzeitig transaktionale und konsistente Ansichten von Daten in einem Data Lakehouse bietet. Es ist so konzipiert, dass es mit einer Vielzahl von Speichersystemen wie dem Hadoop Distributed File System (HDFS), Amazon S3 und Azure Blob Storage zusammenarbeitet. Apache Iceberg ist auf AWS, Azure und Google Cloud Platform verfügbar.

Alle diese Tools haben sich aufgrund ihrer Benutzerfreundlichkeit, Skalierbarkeit und Unterstützung für eine Vielzahl von Datenverarbeitungs- und Analyseanwendungen für den Aufbau von Data Lakehouses durchgesetzt. Die Wahl des Tools hängt von Ihren spezifischen Anforderungen ab, und es ist wichtig, jedes Tool sorgfältig zu bewerten, um festzustellen, welches den Anforderungen Ihres Unternehmens am besten entspricht.

Fazit

In diesem Artikel haben wir das Konzept des Data Lakehouse, seine Geschichte sowie seine Vor- und Nachteile erläutert. Wir haben auch über einige der gängigsten Tools gesprochen, die zum Aufbau eines Data Lakehouse verwendet werden, darunter Apache Spark, Apache Delta Lake, Databricks, Apache Hudi und Apache Iceberg.

Wir haben erörtert, wie Unternehmen zwischen einem Data Warehouse und einem Data Lakehouse wählen können und welche Faktoren bei dieser Entscheidung zu berücksichtigen sind. Zusammenfassend lässt sich sagen, dass es Vor- und Nachteile gibt, die zu berücksichtigen sind und mit den eigenen Anforderungen verglichen werden sollten.

Zusammengefasst bietet ein Data Lakehouse folgende Vor- und Nachteile:

Vorteile eines Data Lakehouse:

  1. Flexibilität: Ein Data Lakehouse bietet eine flexible Datenarchitektur, die strukturierte, halbstrukturierte und unstrukturierte Daten in einer Vielzahl von Formaten speichern und verarbeiten kann, einschließlich Data Lakes und Data Warehouses.
  2. Skalierbarkeit: Ein Data Lakehouse kann skaliert werden, um die Anforderungen großer und komplexer Datenverarbeitungs- und Analyse-Workloads zu erfüllen.
  3. Kosteneffektiv: Ein Data Lakehouse kann zur Kostensenkung beitragen, indem es den Bedarf an mehreren Datensilos beseitigt und die Datenduplizierung reduziert.
  4. Verarbeitung in Echtzeit: Ein Data Lakehouse kann für die Datenverarbeitung in Echtzeit genutzt werden, so dass Unternehmen datengesteuerte Entscheidungen in Echtzeit treffen können.
  5. Datenverwaltung: Ein Data Lakehouse kann zur Verbesserung der Data Governance beitragen, indem es ein zentrales Repository für alle Daten bereitstellt und eine fein abgestufte Zugriffskontrolle ermöglicht.

Nachteile, die vor der Entscheidung für ein Data Lakehouse zu berücksichtigen sind:

  1. Komplexität: Der Aufbau eines Data Lakehouse kann komplex sein und erfordert ein tiefes Verständnis von Datenmanagement- und -verarbeitungstechnologien.
  2. Datenqualität: Die Datenqualität kann in einem Data Lakehouse aufgrund der Vielfalt der Datenquellen und der fehlenden Struktur eine Herausforderung darstellen.
  3. Sicherheit: Die Sicherheit kann in einem Data Lakehouse ein Problem darstellen, da es oft notwendig ist, den Zugriff auf große Datenmengen zu verwalten, die an verschiedenen Orten gespeichert sind.
  4. Qualifikationen: Der Aufbau und die Pflege eines Data Lakehouse erfordern ein spezifisches Skillset, das sich von dem des traditionellen Data Warehousing oder der Big Data-Verarbeitung unterscheiden kann.
  5. Werkzeuge: Es gibt zwar viele Tools für den Aufbau eines Data Lakehouse, aber angesichts des rasanten Innovationstempos kann es eine Herausforderung sein, mit den neuesten Tools und Technologien Schritt zu halten.

Abschließend lässt sich sagen, dass ein Data Lakehouse für Unternehmen, die eine flexible, skalierbare und kosteneffiziente Methode zur Speicherung und Verarbeitung großer Datenmengen benötigen, erhebliche Vorteile bieten. Auch wenn der Aufbau eines Data Lakehouse grundsätzlich komplexer ist, gibt es viele Tools und Technologien, die Unternehmen beim Aufbau und Betrieb einer erfolgreichen Data Lakehouse-Architektur unterstützen und dieses vereinfachen.

Haben Sie bereits ein Data Lakehouse im Einsatz oder überlegen Sie, eines für Ihr Unternehmen zu bauen? Schreiben Sie mich an!

CAP Theorem

Understanding databases for storing, updating and analyzing data requires the understanding of the CAP Theorem. This is the second article of the article series Data Warehousing Basics.

Understanding NoSQL Databases by the CAP Theorem

CAP theorem – or Brewer’s theorem – was introduced by the computer scientist Eric Brewer at Symposium on Principles of Distributed computing in 2000. The CAP stands for Consistency, Availability and Partition tolerance.

  • Consistency: Every read receives the most recent writes or an error. Once a client writes a value to any server and gets a response, it is expected to get afresh and valid value back from any server or node of the database cluster it reads from.
    Be aware that the definition of consistency for CAP means something different than to ACID (relational consistency).
  • Availability: The database is not allowed to be unavailable because it is busy with requests. Every request received by a non-failing node in the system must result in a response. Whether you want to read or write you will get some response back. If the server has not crashed, it is not allowed to ignore the client’s requests.
  • Partition tolerance: Databases which store big data will use a cluster of nodes that distribute the connections evenly over the whole cluster. If this system has partition tolerance, it will continue to operate despite a number of messages being delayed or even lost by the network between the cluster nodes.

CAP theorem applies the logic that  for a distributed system it is only possible to simultaneously provide  two out of the above three guarantees. Eric Brewer, the father of the CAP theorem, proved that we are limited to two of three characteristics, “by explicitly handling partitions, designers can optimize consistency and availability, thereby achieving some trade-off of all three.” (Brewer, E., 2012).

CAP Theorem Triangle

To recap, with the CAP theorem in relation to Big Data distributed solutions (such as NoSQL databases), it is important to reiterate the fact, that in such distributed systems it is not possible to guarantee all three characteristics (Availability, Consistency, and Partition Tolerance) at the same time.

Database systems designed to fulfill traditional ACID guarantees like relational database (management) systems (RDBMS) choose consistency over availability, whereas NoSQL databases are mostly systems designed referring to the BASE philosophy which prefer availability over consistency.

The CAP Theorem in the real world

Lets look at some examples to understand the CAP Theorem further and provewe cannot create database systems which are being consistent, partition tolerant as well as always available simultaniously.

AP – Availability + Partition Tolerance

If we have achieved Availability (our databases will always respond to our requests) as well as Partition Tolerance (all nodes of the database will work even if they cannot communicate), it will immediately mean that we cannot provide Consistency as all nodes will go out of sync as soon as we write new information to one of the nodes. The nodes will continue to accept the database transactions each separately, but they cannot transfer the transaction between each other keeping them in synchronization. We therefore cannot fully guarantee the system consistency. When the partition is resolved, the AP databases typically resync the nodes to repair all inconsistencies in the system.

A well-known real world example of an AP system is the Domain Name System (DNS). This central network component is responsible for resolving domain names into IP addresses and focuses on the two properties of availability and failure tolerance. Thanks to the large number of servers, the system is available almost without exception. If a single DNS server fails,another one takes over. According to the CAP theorem, DNS is not consistent: If a DNS entry is changed, e.g. when a new domain has been registered or deleted, it can take a few days before this change is passed on to the entire system hierarchy and can be seen by all clients.

CA – Consistency + Availability

Guarantee of full Consistency and Availability is practically impossible to achieve in a system which distributes data over several nodes. We can have databases over more than one node online and available, and we keep the data consistent between these nodes, but the nature of computer networks (LAN, WAN) is that the connection can get interrupted, meaning we cannot guarantee the Partition Tolerance and therefor not the reliability of having the whole database service online at all times.

Database management systems based on the relational database models (RDBMS) are a good example of CA systems. These database systems are primarily characterized by a high level of consistency and strive for the highest possible availability. In case of doubt, however, availability can decrease in favor of consistency. Reliability by distributing data over partitions in order to make data reachable in any case – even if computer or network failure – meanwhile plays a subordinate role.

CP – Consistency + Partition Tolerance

If the Consistency of data is given – which means that the data between two or more nodes always contain the up-to-date information – and Partition Tolerance is given as well – which means that we are avoiding any desynchronization of our data between all nodes, then we will lose Availability as soon as only one a partition occurs between any two nodes In most distributed systems, high availability is one of the most important properties, which is why CP systems tend to be a rarity in practice. These systems prove their worth particularly in the financial sector: banking applications that must reliably debit and transfer amounts of money on the account side are dependent on consistency and reliability by consistent redundancies to always be able to rule out incorrect postings – even in the event of disruptions in the data traffic. If consistency and reliability is not guaranteed, the system might be unavailable for the users.

CAP Theorem Venn Diagram

Conclusion

The CAP Theorem is still an important topic to understand for data engineers and data scientists, but many modern databases enable us to switch between the possibilities within the CAP Theorem. For example, the Cosmos DB von Microsoft Azure offers many granular options to switch between the consistency, availability and partition tolerance . A common misunderstanding of the CAP theorem that it´s none-absoluteness: “All three properties are more continuous than binary. Availability is continuous from 0 to 100 percent, there are many levels of consistency, and even partitions have nuances. Exploring these nuances requires pushing the traditional way of dealing with partitions, which is the fundamental challenge. Because partitions are rare, CAP should allow perfect C and A most of the time, but when partitions are present or perceived, a strategy is in order.” (Brewer, E., 2012).

Data Warehousing Basiscs

Data Warehousing is applied Big Data Management and a key success factor in almost every company. Without a data warehouse, no company today can control its processes and make the right decisions on a strategic level as there would be a lack of data transparency for all decision makers. Bigger comanies even have multiple data warehouses for different purposes.

In this series of articles I would like to explain what a data warehouse actually is and how it is set up. However, I would also like to explain basic topics regarding Data Engineering and concepts about databases and data flows.

To do this, we tick off the following points step by step:

 

What Is Data Lake Architecture?

The volume of information produced by everyone in the world is growing exponentially. To put it in perspective, it’s estimated that by 2023 the big data analytics market will reach $103 billion.

Finding probable solutions for storing big data is a challenge. It’s no easy task to hold enormous amounts of information, clean it and transform it into understandable subsets — it’s best to take one step at a time.

Some reasons why companies access their big data is to:

  • Improve their consumer experience
  • Draw conclusions and make data-driven decisions
  • Identify potential problems
  • Create innovative products

There are ways to help define big data. Combining its characteristics with storage management methods help experts make their clients’ information digestible and understandable. Cue data lakes, which are repositories for big data in its native form.

Think of an actual lake with multiple water sources around the perimeter flowing into it. Picture these as three types of data: structured, semi-structured and unstructured. All this information can remain in a data lake and be accessed in its raw form at any time, making it an attractive storage method.

Here’s how data lakes are created, some of their components and how to avoid common pitfalls.

Creating a Data Lake

One benefit of creating and implementing a data lake is that structuring becomes much more manageable.  Pulling necessary information from a lake allows analysts to compare and contrast data and communicate any connections between datasets to their client.

There are four steps to follow when setting up a data lake:

  1. Choosing a software solution: Microsoft, Amazon and Google are cloud vendors that allow developers to create data lakes without using servers.
  2. Identifying where data is sourced: Where is your information coming from? Once sources are identified, determine how your data will be cleaned or transformed.
  3. Defining process and automation: It’s vital to outline how information should be processed once the data lake ingests it. This creates consistency for businesses.
  4. Establishing retrieval governance: Choosing who has access to what types of information is crucial for companies with multiple locations and departments. It helps with overall organization. Data scientists, for this reason, primarily access data lakes.

The next step would be to determine the extract, transform and load (ETL) process. ETL creates visual interpretations of data to provide context to businesses. When information from a data lake is sent to a warehouse, it can be analyzed.

Components of a Data Lake

Here is what happens to information once a data lake is created:

  • Collection: Data comes in from various sources.
  • Ingestion: Data is processed using management software.
  • Blending: Data is combined from multiple sources.
  • Transformation: Data is analyzed and made sense of.
  • Publication: Data can be used to drive business decisions.

There are other aspects of a data lake to keep in mind. These are the critical components that help provide business solutions:

  • Security: Data lakes require security to protect information — they do not have built-in safety measures.
  • Governance: Determine who can check on the quality of data and perform measurements.
  • Metadata: This provides information about other data to improve understanding.
  • Stewardship: Choose one or more employees to take on the responsibility of managing data.
  • Monitoring: Employ other software to perform the ETL process.

Big data lends itself to incorporating multiple processes to make it usable for companies. The volume of information one company produces is massive — to manage it, experts need to consider these components and steps when building a data lake.

What to Avoid When Using Data Lakes

The last thing people want for their data lake is to see it turn into a swamp. When big data is processed incorrectly, its value decreases, making it useless to the business sourcing it.

The first step in avoiding a common pitfall is to consider the sustainability of the data lake. Planning processes are necessary to ensure it’s secure, and governing and regulating incoming information will allow for long-term use.

A lack of security causes another problem that can arise in data lakes. Safety measures must be implemented. Because enterprises will build data lakes for different purposes, it’s easy for information to become unorganized and vulnerable to hacking. With security, the likelihood of data breaches decreases, and the quality of data remains high.

The most important thing to remember about data lakes is the planning stage. Without proper preparation, they tend to be overwhelming due to their size and complexity. Taking the time and care to establish the processes ahead of time is vital.

Using Data Lake Architecture for Business

Data lakes store massive amounts of information to be used later on to create subsets, analyze metadata and more. Their advantages allow businesses to be flexible, save money and have access to raw information at all times.

Simplify Vendor Onboarding with Automated Data Integration

Vendor onboarding is a key business process that involves collecting and processing large data volumes from one or multiple vendors. Business users need vendor information in a standardized format to use it for subsequent data processes. However, consolidating and standardizing data for each new vendor requires IT teams to write code for custom integration flows, which can be a time-consuming and challenging task.

In this blog post, we will talk about automated vendor onboarding and how it is far more efficient and quicker than manually updating integration flows.

Problems with Manual Integration for Vendor Onboarding

During the onboarding process, vendor data needs to be extracted, validated, standardized, transformed, and loaded into the target system for further processing. An integration task like this involves coding, updating, and debugging manual ETL pipelines that can take days and even weeks on end.

Every time a vendor comes on board, this process is repeated and executed to load the information for that vendor into the unified business system. Not just this, but because vendor data is often received from disparate sources in a variety of formats (CSV, Text, Excel), these ETL pipelines frequently break and require manual fixes.

All this effort is not suitable, particularly for large-scale businesses that onboard hundreds of vendors each month. Luckily, there is a faster alternative available that involves no code-writing.

Automated Data Integration

The manual onboarding process can be automated using purpose-built data integration tools.

To help you better understand the advantages, here is a step-by-step guide on how automated data integration for vendor onboarding works:

  1. Vendor data is retrieved from heterogeneous sources such as databases, FTP servers, and web APIs through built-in connectors available in the solution.
  2. The data from each file is validated by passing it through a set of predefined quality rules – this step helps in eliminating records with missing, duplicate, or incorrect data.
  3. Transformations are applied to convert input data into the desired output format or screen vendors based on business criteria. For example, if the vendor data is stored in Excel sheets and the business uses SQL Server for data storage, then the data has to be mapped to the relevant fields in the SQL Server database, which is the destination.
  4. The standardized, validated data is then loaded into a unified enterprise database that you can use as the source of information for business processes. In some cases, this can be a staging database where you can perform further filtering and aggregation to build a consolidated vendor database.
  5. This entire ETL pipeline (Step 1 through Step 4) can then be automated through event-based or time-based triggers in a workflow. For instance, you may want to run the pipeline once every day, or once a new file/data point is available in your FTP server.

Why Build a Consolidated Database for Vendors?

Once the ETL pipeline runs, you will end up with a consolidated database with complete vendor information. The main benefit of having a unified database is that it would have filtered information regarding vendors.

Most businesses have a strict process for screening vendors that follows a set of predefined rules. For example, you may want to reject vendors that have a poor credit history automatically. With manual data integration, you would need to perform this filtering by writing code. Automated data integration allows you to apply pre-built filters directly within your ETL pipeline to flag or remove vendors with a credit score lower than the specified threshold.

This is just one example; you can perform a wide range of tasks at this level in your ETL pipeline including vendor scoring (calculated based on multiple fields in your data), filtering (based on rules applied to your data), and data aggregation (to add measures to your data) to build a robust vendor database for decision-making and subsequent processes.

Conclusion

Automated vendor onboarding offers cost-and-time benefits to your organization. Making use of enterprise-grade data integration tools ensures a seamless business-to-vendor data exchange without the need for reworking and upgrading your ETL pipelines.

Integrate Unstructured Data into Your Enterprise to Drive Actionable Insights

In an ideal world, all enterprise data is structured – classified neatly into columns, rows, and tables, easily integrated and shared across the organization.

The reality is far from it! Datamation estimates that unstructured data accounts for more than 80% of enterprise data, and it is growing at a rate of 55 – 65 percent annually. This includes information stored in images, emails, spreadsheets, etc., that cannot fit into databases.

Therefore, it becomes imperative for a data-driven organization to leverage their non-traditional information assets to derive business value. We have outlined a simple 3-step process that can help organizations integrate unstructured sources into their data eco-system:

1. Determine the Challenge

The primary step is narrowing down the challenges you want to solve through the unstructured data flowing in and out of your organization. Financial organizations, for instance, use call reports, sales notes, or other text documents to get real-time insights from the data and make decisions based on the trends. Marketers make use of social media data to evaluate their customers’ needs and shape their marketing strategy.

Figuring out which process your organization is trying to optimize through unstructured data can help you reach your goal faster.

2. Map Out the Unstructured Data Sources Within the Enterprise

An actionable plan starts with identifying the range of data sources that are essential to creating a truly integrated environment. This enables organizations to align the sources with business objectives and streamline their data initiatives.

Deciding which data should be extracted, analyzed, and stored should be a primary concern in this regard. Even if you can ingest data from any source, it doesn’t mean that you should.

Collecting a large volume of unstructured data is not enough to generate insights. It needs to be properly organized and validated for quality before integration. Full, incremental, online, and offline extraction methods are generally used to mine valuable information from unstructured data sources.

3. Transform Unstructured Assets into Decision-Ready Insights

Now that you have all the puzzle pieces, the next step is to create a complete picture. This may require making changes in your organization’s infrastructure to derive meaning from your unstructured assets and get a 360-degree business view.

IDC recommends creating a company culture that promotes the collection, use, and sharing of both unstructured and structured business assets. Therefore, finding an enterprise-grade integration solution that offers enhanced connectivity to a range of data sources, ideally structured, unstructured, and semi-structured, can help organizations generate the most value out of their data assets.

Automation is another feature that can help speed up integration processes, minimize error probability, and generate time-and-cost savings. Features like job scheduling, auto-mapping, and workflow automation can optimize the process of extracting information from XML, JSON, Excel or audio files, and storing it into a relational database or generating insights.

The push to become a data-forward organization has enterprises re-evaluating the way to leverage unstructured data assets for decision-making. With an actionable plan in place to integrate these sources with the rest of the data, organizations can take advantage of the opportunities offered by analytics and stand out from the competition.