Posts

Geht mit Künstlicher Intelligenz nur „Malen nach Zahlen“?

Mit diesem Beitrag möchte ich darlegen, welche Grenzen uns in komplexen Umfeldern im Kontext Steuerung und Regelung auferlegt sind. Auf dieser Basis strebe ich dann nachgelagert eine Differenzierung in Bezug des Einsatzes von Data Science und Big Data, ab sofort mit Big Data Analytics bezeichnet, an. Aus meiner Sicht wird oft zu unreflektiert über Data Science und Künstliche Intelligenz diskutiert, was nicht zuletzt die Angst vor Maschinen schürt.

Basis meiner Ausführungen im ersten Part meines Beitrages ist der Kategorienfehler, der von uns Menschen immer wieder in Bezug auf Kompliziertheit und Komplexität vollführt wird. Deshalb werde ich am Anfang einige Worte über Kompliziertheit und Komplexität verlieren und dabei vor allem auf die markanten Unterschiede eingehen.

Kompliziertheit und Komplexität – der Versuch einer Versöhnung

Ich benutze oft die Begriffe „tot“ und „lebendig“ im Kontext von Kompliziertheit und Komplexität. Themenstellungen in „lebendigen“ Kontexten können niemals kompliziert sein. Sie sind immer komplex. Themenstellungen in „toten“ Kontexten sind stets kompliziert. Das möchte ich am Beispiel eines Uhrmachers erläutern, um zu verdeutlichen, dass auch Menschen in „toten“ Kontexten involviert sein können, obwohl sie selber lebendig sind. Deshalb die Begriffe „tot“ und „lebendig“ auch in Anführungszeichen.

Ein Uhrmacher baut eine Uhr zusammen. Dafür gibt es ein ganz klar vorgegebenes Rezept, welches vielleicht 300 Schritte beinhaltet, die in einer ganz bestimmten Reihenfolge abgearbeitet werden müssen. Werden diese Schritte befolgt, wird definitiv eine funktionierende Uhr heraus kommen. Ist der Uhrmacher geübt, hat er also genügend praktisches Wissen, ist diese Aufgabe für ihn einfach. Für mich als Ungelernten wird diese Übung schwierig sein, niemals komplex, denn ich kann ja einen Plan befolgen. Mit Übung bin ich vielleicht irgendwann so weit, dass ich diese Uhr zusammen gesetzt bekomme. Der Bauplan ist fix und ändert sich nicht. Man spricht hier von Monokontexturalität. Solche Tätigkeiten könnte man auch von Maschinen ausführen lassen, da klar definierte Abfolgen von Schritten programmierbar sind.

Nun stellen wir uns aber mal vor, dass eine Schraube fehlt. Ein Zahnrad kann nicht befestigt werden. Hier würde die Maschine einen Fehler melden, weil jetzt der Kontext verlassen wird. Das Fehlen der Schraube ist nicht Bestandteil des Kontextes, da es nicht Bestandteil des Planes und damit auch nicht Bestandteil des Programmcodes ist. Die Maschine weiß deshalb nicht, was zu tun ist. Der Uhrmacher ist in der Lage den Kontext zu wechseln. Er könnte nach anderen Möglichkeiten der Befestigung suchen oder theoretisch probieren, ob die Uhr auch ohne Zahnrad funktioniert oder er könnte ganz einfach eine Schraube bestellen und später den Vorgang fortsetzen. Der Uhrmacher kann polykontextural denken und handeln. In diesem Fall wird dann der komplizierte Kontext ein komplexer. Der Bauplan ist nicht mehr gültig, denn Bestellung einer Schraube war in diesem nicht enthalten. Deshalb meldet die Maschine einen Fehler. Der Bestellvorgang müsste von einem Menschen in Form von Programmcode voraus gedacht werden, so dass die Maschine diesen anstoßen könnte. Damit wäre diese Option dann wieder Bestandteil des monokontexturalen Bereiches, in dem die Maschine agieren kann.

Kommen wir in diesem Zusammenhang zum Messen und Wahrnehmen. Maschinen können messen. Messen passiert in monokontexturalen Umgebungen. Die Maschine kann messen, ob die Schraube festgezogen ist, die das Zahnrad hält: Die Schraube ist „fest“ oder „lose“. Im Falle des Fehlens der Schraube verlässt man die Ebene des Messens und geht in die Ebene der Wahrnehmung über. Die Maschine kann nicht wahrnehmen, der Uhrmacher schon. Beim Wahrnehmen muss man den Kontext erst einmal bestimmen, da dieser nicht per se gegeben sein kann. „Die Schraube fehlt“ setzt die Maschine in den Kontext „ENTWEDER fest ODER lose“ und dann ist Schluss. Die Maschine würde stetig zwischen „fest“ und „lose“ iterieren und niemals zum Ende gelangen. Eine endlose Schleife, die mit einem Fehler abgebrochen werden muss. Der Uhrmacher kann nach weiteren Möglichkeiten suchen, was gleichbedeutend mit dem Suchen nach einem weiteren Kontext ist. Er kann vielleicht eine neue Schraube suchen oder versuchen das Zahnrad irgendwie anders geartet zu befestigen.

In „toten“ Umgebungen ist der Mensch mit der Umwelt eins geworden. Er ist trivialisiert. Das ist nicht despektierlich gemeint. Diese Trivialisierung ist ausreichend, da ein Rezept in Form eines Algorithmus vorliegt, welcher zielführend ist. Wahrnehmen ist also nicht notwendig, da kein Kontextwechsel vorgenommen werden muss. Messen reicht aus.

In einer komplexen und damit „lebendigen“ Welt gilt das Motto „Sowohl-Als-Auch“, da hier stetig der Kontext gewechselt wird. Das bedeutet Widersprüchlichkeiten handhaben zu müssen. Komplizierte Umgebungen kennen ausschließlich ein „Entweder-Oder“. Damit existieren in komplizierten Umgebungen auch keine Widersprüche. Komplizierte Sachverhalte können vollständig in Programmcode oder Algorithmen geschrieben und damit vollständig formallogisch kontrolliert werden. Bei komplexen Umgebungen funktioniert das nicht, da unsere Zweiwertige Logik, auf die jeder Programmcode basieren muss, Widersprüche und damit Polykontexturalität ausschließen. Komplexität ist nicht kontrollier-, sondern bestenfalls handhabbar.

Diese Erkenntnisse möchte ich nun nutzen, um das bekannte Cynefin Modell von Dave Snowden zu erweitern, da dieses in der ursprünglichen Form zu Kategorienfehler zwischen Kompliziertheit und Komplexität verleitet. Nach dem Cynefin Modell werden die Kategorien „einfach“, „kompliziert“ und „komplex“ auf einer Ebene platziert. Das ist aus meiner Sicht nicht passfähig. Die Einstufung „einfach“ und damit auch „schwierig“, die es im Modell nicht gibt, existiert eine Ebene höher in beiden Kategorien, „kompliziert“ und „komplex“. „Einfach“ ist also nicht gleich „einfach“.

„Einfach“ in der Kategorie „kompliziert“ bedeutet, dass das ausreichende Wissen, sowohl praktisch als auch theoretisch, gegeben ist, um eine komplizierte Fragestellung zu lösen. Grundsätzlich ist ein Lösungsweg vorhanden, den man theoretisch kennen und praktisch anwenden muss. Wird eine komplizierte Fragestellung als „schwierig“ eingestuft, ist der vorliegende Lösungsweg nicht bekannt, aber grundsätzlich vorhanden. Er muss erlernt werden, sowohl praktisch als auch theoretisch. In der Kategorie „kompliziert“ rede ich also von Methoden oder Algorithmen, die an den bekannten Lösungsweg an-gelehnt sind.

Für „komplexe“ Fragestellungen kann per Definition kein Wissen existieren, welches in Form eines Rezeptes zu einem Lösungsweg geformt werden kann. Hier sind Erfahrung, Talent und Können essentiell, die Agilität im jeweiligen Kontext erhöhen. Je größer oder kleiner Erfahrung und Talent sind, spreche ich dann von den Wertungen „einfach“, „schwierig“ oder „chaotisch“. Da kein Rezept gegeben ist, kann man Lösungswege auch nicht vorweg in Form von Algorithmen programmieren. Hier sind Frameworks und Heuristiken angebracht, die genügend Freiraum für das eigene Denken und Fühlen lassen.

Die untere Abbildung stellt die Abhängigkeiten und damit die Erweiterung des Cynefin Modells dar.

Data Science und „lebendige“ Kontexte – der Versuch einer Versöhnung

Gerade beim Einsatz von Big Data Analytics sind wir dem im ersten Part angesprochenen Kategorienfehler erlegen, was mich letztlich zu einer differenzierten Sichtweise auf Big Data Analytics verleitet. Darauf komme ich nun zu sprechen.

In vielen Artikeln, Berichten und Büchern wird Big Data Analytics glorifiziert. Es gibt wenige Autoren, die eine differenzierte Betrachtung anstreben. Damit meine ich, klare Grenzen von Big Data Analytics, insbesondere in Bezug zum Einsatz auf Menschen, aufzuzeigen, um damit einen erfolgreichen Einsatz erst zu ermöglichen. Auch viele unserer Hirnforscher tragen einen erheblichen Anteil zum Manifestieren des Kategorienfehlers bei, da sie glauben, Wirkmechanismen zwischen der materiellen und der seelischen Welt erkundet zu haben. Unser Gehirn erzeugt aus dem Feuern von Neuronen, also aus Quantitäten, Qualitäten, wie „Ich liebe“ oder „Ich hasse“. Wie das funktioniert ist bislang unbekannt. Man kann nicht mit Algorithmen aus der komplizierten Welt Sachverhalte der komplexen Welt erklären. Die Algorithmen setzen auf der Zweiwertigen Logik auf und diese lässt keine Kontextwechsel zu. Ich habe diesen Fakt ja im ersten Teil eingehend an der Unterscheidung zwischen Kompliziertheit und Komplexität dargelegt.

Es gibt aber auch erfreulicherweise, leider noch zu wenige, Menschen, die diesen Fakt erkennen und thematisieren. Ich spreche hier stellvertretend Prof. Harald Walach an und zitiere aus seinem Artikel »Sowohl als auch« statt »Entweder-oder« – oder: wie man Kategorienfehler vermeidet.

„Die Wirklichkeit als Ganzes ist komplexer und lässt sich genau nicht mit solchen logischen Instrumenten komplett analysieren. … Weil unser Überleben als Art davon abhängig war, dass wir diesen logischen Operator so gut ausgeprägt haben ist die Gefahr groß dass wir nun alles so behandeln. … Mit Logik können wir nicht alle Probleme des Lebens lösen. … Geist und neuronale Entladungen sind Prozesse, die unterschiedlichen kategorialen Ebenen angehören, so ähnlich wie „blau“ und „laut“.

Aus diesen Überlegungen habe ich eine Big Data Analytics Matrix angefertigt, mit welcher man einen Einsatz von Big Data Analytics auf Menschen, also in „lebendige“ Kontexte, verorten kann.

Die Matrix hat zwei Achsen. Die x-Achse stellt dar, auf welcher Basis, einzelne oder viele Menschen, Erkenntnisse direkt aus Daten und den darauf aufsetzenden Algorithmen gezogen werden sollen. Die y-Achse bildet ab, auf welcher Basis, einzelne oder viele Menschen, diese gewonnenen Erkenntnisse dann angewendet werden sollen. Um diese Unterteilung anschaulicher zu gestalten, habe ich in den jeweiligen Quadranten Beispiele eines möglichen Einsatzes von Big Data Analytics im Kontext Handel zugefügt.

An der Matrix erkennen wir, dass wir auf Basis von einzelnen Individuen keine Erkenntnisse maschinell über Algorithmen errechnen können. Tun wir das, begehen wir den von mir angesprochenen Kategorienfehler zwischen Kompliziertheit und Komplexität. In diesem Fall kennzeichne ich den gesamten linken roten Bereich der Matrix. Anwendungsfälle, die man gerne in diesen Bereich platzieren möchte, muss man über die anderen beiden gelben Quadranten der Matrix lösen.

Für das Lösen von Anwendungsfällen innerhalb der beiden gelben Quadranten kann man sich den Fakt zu Nutze machen, dass sich komplexe Vorgänge oft durch einfache Handlungsvorschriften beschreiben lassen. Achtung! Hier bitte nicht dem Versuch erlegen sein, „einfach“ und „einfach“ zu verwechseln. Ich habe im ersten Teil bereits ausgeführt, dass es sowohl in der Kategorie „kompliziert“, als auch in der Kategorie „komplex“, einfache Sachverhalte gibt, die aber nicht miteinander ob ihrer Schwierigkeitsstufe verglichen werden dürfen. Tut man es, dann, ja sie wissen schon: Kategorienfehler. Es ist ähnlich zu der Fragestellung: “Welche Farbe ist größer, blau oder rot?” Für Details hierzu verweise ich Sie gerne auf meinen Beitrag Komplexitäten entstehen aus Einfachheiten, sind aber schwer zu handhaben.

Möchten sie mehr zu der Big Data Analytics Matrix und den möglichen Einsätzen er-fahren, muss ich sie hier ebenfalls auf einen Beitrag von mir verweisen, da diese Ausführungen diesen Beitrag im Inhalt sprengen würden.

Mensch und Maschine – der Versuch einer Versöhnung

Wie Ihnen sicherlich bereits aufgefallen ist, enthält die Big Data Analytics Matrix keinen grünen Bereich. Den Grund dafür habe ich versucht, in diesem Beitrag aus meiner Sicht zu untermauern. Algorithmen, die stets monokontextural aufgebaut sein müssen, können nur mit größter Vorsicht im „lebendigen“ Kontext angewendet werden.

Erste Berührungspunkte in diesem Thema habe ich im Jahre 1999 mit dem Schreiben meiner Diplomarbeit erlangt. Die Firma, in welcher ich meine Arbeit verfasst habe, hat eine Maschine entwickelt, die aufgenommene Bilder aus Blitzgeräten im Straßenverkehr automatisch durchzieht, archiviert und daraus Mahnschreiben generiert. Ein Problem dabei war das Erkennen der Nummernschilder, vor allem wenn diese verschmutzt waren. Hier kam ich ins Spiel. Ich habe im Rahmen meiner Diplomarbeit ein Lernverfahren für ein Künstlich Neuronales Netz (KNN) programmiert, welches genau für diese Bilderkennung eingesetzt wurde. Dieses Lernverfahren setzte auf der Backpropagation auf und funktionierte auch sehr gut. Das Modell lag im grünen Bereich, da nichts in Bezug auf den Menschen optimiert werden sollte. Es ging einzig und allein um Bilderkennung, also einem „toten“ Kontext.

Diese Begebenheit war der Startpunkt für mich, kritisch die Strömungen rund um die Künstliche Intelligenz, vor allem im Kontext der Modellierung von Lebendigkeit, zu erforschen. Einige Erkenntnisse habe ich in diesem Beitrag formuliert.

Data Driven Thinking

Daten gelten als vierter Produktionsfaktor – diese Erkenntnis hat sich mittlerweile in den meisten Führungsetagen durchgesetzt. Während das Buzzword Big Data gerade wieder in der Senke verschwindet, wird nun vor allem von der Data Driven Company gesprochen, oder – im Kontext von I4.0 – von der Smart Factory.
Entsprechend haben die meisten Konzerne in den Aufbau einer Big-Data-Infrastruktur investiert und auch die größeren Mittelständler beginnen allmählich damit, einen Anfang zu setzen. Für den Anfang bedarf es jedoch gar nicht erst eine neue IT-Infrastruktur oder gar eine eigene Data Science Abteilung, ein richtiger Start zum datengetriebenen Unternehmen beginnt mit dem richtigen Mindset – ein Bewusst sein für Datenpotenziale.

Data Driven Thinking

Auch wenn es spezielle Lösungsanbieter anders verkaufen, ist nicht etwa eine bestimmte Datenbank oder eine bestimmte Analysemethodik für die Bewerkstelligung der Digitalisierung notwendig, sondern die datengetriebene Denkweise. In den Datenbeständen der Unternehmen und jenen aus weiteren bisher unerschlossenen Datenquellen stecken große Potenziale, die erkannt werden wollen. Es ist jedoch nicht notwendig, gleich als ersten Schritt jegliche Potenziale in Daten erkennen zu müssen, denn es ist viel hilfreicher, für aktuelle Problemstellungen die richtigen Daten zu suchen, in denen die Antworten für die Lösungen stecken könnten.

Data Driven Thinking oder auch kurz Data Thinking, wie angeblich von einem der ersten Chief Data Officer als solches bezeichnet und auch von meinem Chief Data Scientist Kollegen Klaas Bollhoefer beworben, ist die korrekte Bezeichnung für das richtige Mindset, mit dem sowohl aktuelle Probleme als auch deren Lösungen aus Daten heraus besser identifiziert werden können. Hierfür braucht man auch kein Data Scientist zu sein, es reicht bereits ein in den Grundzügen ausgeprägtes Bewusstsein für die Möglichkeiten der Datenauswertung – Ein Skill, der zeitnah für alle Führungskräfte zum Must-Have werden wird!

Data Scientists als Design Thinker

Was gerade in Europa vordergründig kritisiert wird: Es treffen traditionelle Denkmuster auf ganz neue Produkte und Dienste, mit immer schnelleren Entwicklungsprozessen und tendenziell kürzeren Lebenszyklen – eine zum Scheitern verurteilte Kombination und sicherlich auch einer der Gründe, warum us-amerikanische und auch chinesische Internetunternehmen hier die Nase vorn haben.

Ein zeitgemäßer Ansatz, der im Produktmanagement bereits etabliert ist und genau dort das letzte Quäntchen Innovationskraft freisetzt, ist Design Thinking. Dabei handelt es sich um einen iterativen Ideenfindungs und -validierungsprozess, bei dem die Wünsche und Bedürfnisse der Anwender durchgängig im Fokus stehen, im Hintergrund jedoch steht ein interdisziplinäres Team, dass ein Geschäftsmodell oder einen Geschäftsprozess unter Berücksichtigung des Kundenfeedbacks designed. Nutzer und Entwickler müssen dabei stets im engen Austausch stehen. Erste Ideen und Vorschläge werden bereits möglichst früh vorgestellt, damit bereits lange vor der Fertigstellung das Feedback der Anwender in die weitere Realisierung einfließen kann. Somit orientiert sich die gesamte Entwicklungsphase am Markt – Zu spät erkannte Fehlentwicklungen und Flops lassen sich weitgehend vermeiden. Design Thinker stellen dem Nutzer gezielte Fragen und analysieren dessen Abläufe (und nichts anderes tut ein Data Scientist, er beobachtet seine Welt jedoch viel umfassender, nämlich über jegliche zur Verfügung stehende Daten).

Der Design Thinking Prozess führt crossfunktionale Arbeitsgruppen durch  sechs  Phasen:

In der ersten Phase, dem Verstehen, definiert die Arbeitsgruppe den Problemraum. In der darauffolgenden Phase des Beobachtens ist es entscheidend, die Aktivitäten im Kontext, also vor Ort, durchzuführen und Anwender in ihrem jeweiligen Umfeld zu befragen. In der dritten Phase werden die gewonnenen Erkenntnisse zusammengetragen. In der nachfolgenden Phase der Ideenfindung entwickelt das Team zunächst eine  Vielzahl von Lösungsoptionen. Abschließend werden beim Prototyping, in der fünften Phase, konkrete Lösungen entwickelt, die in der letzten Phase an den Zielgruppen auf ihren Erfolg getestet werden.

Beim Design Thinking mag es zwar eine grundsätzliche Vorgabe für den Ablauf der Ideenfindung und -erprobung geben – der eigentliche Mehrwert steckt jedoch in der dafür nötigen Denkweise und der Einstellung gegenüber dem Experimentieren sowie die Arbeit in einem interdisziplinären Team.

Data Driven Business Cycle

Data Driven Thinking überträgt diesen Ansatz auf die Mehrwert-Generierung unter Einsatz von Datenanalytik und leistet einen Transfer dieser systematischen Herangehensweise an komplexe Problemstellungen im Hinblick auf die Realisierung dafür angesetzter Big Data Projekte. Design Thinking unter Nutzung von Big Data ist überaus mächtig, wenn es darum geht, kundenorientierte Produkte und Prozesse zu entwickeln. Im Data Driven Business Cycle werden für immer neue Ideen und Fragestellungen:

  1. Daten generiert und gesammelt
  2. Daten gesichert, verwaltet und aufbereitet
  3. Daten analysiert
  4. daraus Erkenntnisse gezogen

Aus diesen sich iterativ kreisenden Prozessen der Datennutzung entsteht ein Data Pool (oftmals auch als Data Lake bezeichnet), der immer wieder zum für die Beantwortung von Fragen genutzt werden kann.

Prinzipien des maschinellen Lernen verstehen lernen

Data Driven Thinking entsteht mit dem Bewusstsein für die Potenziale, die in Daten liegen. Noch wirkungsvoller wird diese Denkweise, wenn auch ein Bewusstsein für die Möglichkeiten der Datenauswertung vorhanden ist.

„Kinder, die heute nicht programmieren können, sind die Analphabeten der Zukunft.“ schimpfte Vorzeige-Unternehmer Frank Thelen kürzlich in einer Politik-Talkrunde und bekräftigte damit meine noch davor verkündete Meinung “Karriere ohne Programmier-Erfahrung wird nahezu undenkbar”, denn “Systeme der künstlichen Intelligenz werden in der Zukunft unseren Einkauf und die Warenlieferung übernehmen, unsere Autos fahren, unsere Buchhaltung erledigen, unser Geld optimal auf den Finanzmärkten anlegen und unsere Krankheiten frühzeitig diagnostizieren und die bestmögliche medizinische Behandlung vorgeben.”

Jetzt muss niemand zum Experten für die Entwicklung künstlicher Systeme werden, um hier schritthalten zu können. Ein grundsätzliches Verständnis von den unterschiedlichen Prinzipien des maschinellen Lernen kann jedoch dabei helfen, solche Systeme und die dazugehörigen Chancen und Risiken besser einschätzen zu können, denn diese werden uns in Alltag und Beruf vermehrt begegnen, dabei einen entscheidenden Einfluss auf den Erfolg des Data Driven Business ausüben.

 

Data Science on a large scale – can it be done?

Analytics drives business

In today’s digital world, data has become the crucial success factor for businesses as they seek to maintain a competitive advantage, and there are numerous examples of how companies have found smart ways of monetizing data and deriving value accordingly.

On the one hand, many companies use data analytics to streamline production lines, optimize marketing channels, minimize logistics costs and improve customer retention rates.  These use cases are often described under the umbrella term of operational BI, where decisions are based on data to improve a company’s internal operations, whether that be a company in the manufacturing industry or an e-commerce platform.

On the other hand, over the last few years, a whole range of new service-oriented companies have popped up whose revenue models wholly depend on data analytics.  These Data-Driven Businesses have contributed largely to the ongoing development of new technologies that make it possible to process and analyze large amounts of data to find the right insights.  The better these technologies are leveraged, the better their value-add and the better for their business success.  Indeed, without data and data analytics, they don’t have a business.

Data Science – hype or has it always been around?Druck

In my opinion, there is too much buzz around the new era of data scientists.  Ten years ago, people simply called it data mining, describing similar skills and methods.  What has actually changed is the fact that businesses are now confronted with new types of data sources such as mobile devices and data-driven applications rather than statistical methodologies.  I described that idea in detail in my recent post Let’s replace the Vs of Big Data with a single D.

But, of course, you cannot deny that the importance of these data crunchers has increased significantly. The art of mining data mountains (or perhaps I should say “diving through data lakes”) to find appropriate insights and models and then find the right answers to urgent, business-critical questions has become very popular these days.

The challenge: Data Science with large volumes?

Michael Stonebraker, winner of the Turing Award 2014, has been quoted as saying: “The change will come when business analysts who work with SQL on large amounts of data give way to data EXASOL Pipelinescientists, which will involve more sophisticated analysis, predictive modeling, regressions and Bayesian classification. That stuff at scale doesn’t work well on anyone’s engine right now. If you want to do complex analytics on big data, you have a big problem right now.”

And if you look at the limitations of existing statistical environments out there using R, Python, Java, Julia and other languages, I think he is absolutely right.  Once the data scientists have to handle larger volumes, the tools are just not powerful and scalable enough.  This results in data sampling or aggregation to make statistical algorithms applicable at all.

A new architecture for “Big Data Science”

We at EXASOL have worked hard to develop a smart solution to respond to this challenge.  Imagine that it is possible to use raw data and intelligent statistical models on very large data sets, directly at the place where the data is stored.  Where the data is processed in-memory to achieve optimal performance, all distributed across a powerful MPP cluster of servers, in an environment where you can now “install” the programming language of your choice.

Sounds far-fetched?  If you are not convinced, then I highly recommend you have a look at our brand-new in-database analytic programming platform, which is deeply integrated in our parallel in-memory engine and extensible through using nearly any programming language and statistical library.

For further information on our approach to big data science, go ahead and download a copy of our technical whitepaper:  Big Data Science – The future of analytics.