Location at Data Hacker Days announced

We are happy to announce your our venue for the Data Hacker Days: Kühlhaus Berlin.

Data Hacker Days will take place from 28th to 30st May 2019 in Berlin.

The industrial look of Kühlhaus Berlin is a perfect place to challenge hackers to work and solve the hackathon. The backyard will be a chill area and to take a break or networking with other people.  

More information about Data Hacker you can find on the website: https://datahackerdays.com/

Like our facebook website: https://www.facebook.com/Data-Hacker-Days-278017336397423/

Freier Eintritt für Young Professionals zu den Data Leader Days 2018

Jetzt bewerben und kostenfrei beim Spitzenevent der Datenwirtschaft am 14. oder 15. November in Berlin dabei sein!
Die Data Leader Days senden regelmäßig wichtige Impulse in die Big Data und KI-Welt aus und sind ein führendes Forum für Wissens-, Ideen- und Informationsaustausch. Die Spitzen von Anwenderunternehmen zeigen exklusiv in einem innovativen Programm mit Keynote, Präsentationen sowie Use & Business Cases auf, wie Digitalisierung und Künstliche Intelligenz umgesetzt und zum neuen Wettbewerbsvorteil werden.

Zu den Speakern gehören die Data Leader von E.ON, Pro7Sat1, Deutscher Sparkassen- und Giroverband, Airbus, Wittenstein, BASF, Merck, Heidelberger Druckmaschinen, Vodafone, FTI und von weiteren Unternehmen.

Bewerbe Dich bis zum 02.11.2018 mit einem kurzen Statement, warum Du dabei sein möchtest! Schicke mir Dein Statement an linhchi.nguyen@datanomiq.de und überzeuge uns.
Ist dein Statement aussagekräftig und überzeugend, laden wir Dich kostenlos zu einem der beiden Veranstaltungstage ein.

My Desk for Data Science

In my last post I anounced a blog parade about what a data scientist’s workplace might look like.

Here are some photos of my desk and my answers to the questions:

How many monitors do you use (or wish to have)?

I am mostly working at my desk in my office with a tower PC and three monitors.
I definitely need at least three monitors to work productively as a data scientist. Who does not know this: On the left monitor the data model is displayed, on the right monitor the data mapping and in the middle I do my work: programming the analysis scripts.

What hardware do you use? Apple? Dell? Lenovo? Others?

I am note an Apple guy. When I need to work mobile, I like to use ThinkPad notebooks. The ThinkPads are (in my experience) very robust and are therefore particularly good for mobile work. Besides, those notebooks look conservative and so I’m not sad if there comes a scratch on the notebook. However, I do not solve particularly challenging analysis tasks on a notebook, because I need my monitors for that.

Which OS do you use (or prefer)? MacOS, Linux, Windows? Virtual Machines?

As a data scientist, I have to be able to communicate well with my clients and they usually use Microsoft Windows as their operating system. I also use Windows as my main operating system. Of course, all our servers run on Linux Debian, but most of my tasks are done directly on Windows.
For some notebooks, I have set up a dual boot, because sometimes I need to start native Linux, for all other cases I work with virtual machines (Linux Ubuntu or Linux Mint).

What are your favorite databases, programming languages and tools?

I prefer the Microsoft SQL Server (T-SQL), C# and Python (pandas, numpy, scikit-learn). This is my world. But my customers are kings, therefore I am working with Postgre SQL, MongoDB, Neo4J, Tableau, Qlik Sense, Celonis and a lot more. I like to get used to new tools and technologies again and again. This is one of the benefits of being a data scientist.

Which data dou you analyze on your local hardware? Which in server clusters or clouds?

There have been few cases yet, where I analyzed really big data. In cases of analyzing big data we use horizontally scalable systems like Hadoop and Spark. But we also have customers analyzing middle-sized data (more than 10 TB but less than 100 TB) on one big server which is vertically scalable. Most of my customers just want to gather data to answer questions on not so big amounts of data. Everything less than 10TB we can do on a highend workstation.

If you use clouds, do you prefer Azure, AWS, Google oder others?

Microsoft Azure! I am used to tools provided by Microsoft and I think Azure is a well preconfigured cloud solution.

Where do you make your notes/memos/sketches. On paper or digital?

My calender is managed digital, because I just need to know everywhere what appointments I have. But my I prefer to wirte down my thoughts on paper and that´s why I have several paper-notebooks.

Now it is your turn: Join our Blog Parade!

So what does your workplace look like? Show your desk on your blog until 31/12/2017 and we will show a short introduction of your post here on the Data Science Blog!

 

Success Criteria Process Mining

Process Mining is much more than the automatic drawing of process models.

Process mining is on the rise. By using Process mining, organizations can see how their processes really operate [1]. The results are amazing new insights about these processes that cannot be obtained in any other way. However, there are a few things that can go wrong. In this article, Frank van Geffen and Anne Rozinat give you tips about the pitfalls and advice that will help you to make your first process mining project as successful as it can be. Read more