Stichwort Datenkompetenz: Von Big Data zu Big Insights

Anzeige – Artikel des Data Science Blog Sponsors Qlik.com

Wer in einer Organisation mit Daten arbeiten möchte, sollte dazu befähigt werden – sonst bleiben wertvolle Einblicke unter Umständen verborgen.

Aus der reinen Technologie-Perspektive ist Big Data nahezu grenzenlos: Prozessoren arbeiten immer schneller, die Kosten für Speicherplatz sinken kontinuierlich, Cloud-Dienste stellen ad hoc und flexibel auch riesige Speichervolumen zur Verfügung. Beste Voraussetzungen also für Big-Data-Enthusiasten? Könnte man meinen. Doch Big Data hat nicht von Haus aus Wert, Sinn oder Geschäftsnutzen. Der stellt sich erst ein, wenn die vielen verfügbaren Daten assoziativ und ohne Denk- oder Infrastruktur-Hürden neu kombiniert, analysiert und visualisiert – also wirklich smart – werden. Der Schlüssel dazu liegt in moderner Data Analytics Software, die unterschiedlichste Datenquellen und -formate verarbeiten und in Beziehung setzen kann – und so wertvolle neue Einsichten offenbart, die ohne Data Analytics im (Big-)Data-Lake abtauchen würden.

Reich an Daten – arm an Einsichten?

Entscheidend für den Erfolg von Big-Data-Projekten ist es, aus der Datenfülle die wirklich relevanten Zusammenhänge zu evaluieren – und nicht um des Sammelns willen Daten zu horten, die neue Einsichten eher zu- als aufdecken. Viele Organisationen befinden sich leider nach wie vor an diesem Punkt. Sie sind reich an Daten, aber nicht in der Lage, neue Informationen daraus zu extrahieren, die gute Ideen anstoßen, Innovation fördern und das Unternehmen nachhaltig weiterbringen. Es herrscht weitgehende Überforderung mit dem eigenen Datenschatz.

Wer in Big-Data-Technologien investiert, fragt früher oder später nach dem ROI seiner Investitionen. Dieser wird umso günstiger ausfallen, je leichter und passgenauer der Datennutzen an möglichst vielen Stellen im Unternehmen verfügbar ist. Hier gilt es zu erkennen, dass fast jeder im Unternehmen Daten gut nutzen kann und sich im Umgang mit ihnen sicher fühlen möchte, um seine Arbeit noch erfolgreicher zu machen – eine neue Untersuchung des Business-Intelligence-Experten Qlik beweist das.

88 Prozent sind überzeugt: Mit Daten läuft es besser

Demnach würden 66 Prozent der Befragten gerne mehr Zeit und Energie in ihre Datenkompetenz investieren – wenn es die Gelegenheit dazu gäbe. 88 Prozent der befragten Sachbearbeiter und ausführenden Kräfte sind überzeugt davon, dass sie mit adäquatem Datenzugang sowie mit den nötigen Befugnissen und Kompetenzen bessere Resultate im Job erreichen könnten. Doch nur 55 Prozent fühlen sich tatsächlich demensprechend ausgestattet und befähigt. Ganz anders das Bild unter Führungskräften: Unter diesen sind zwar 83 Prozent überzeugt davon, guten Zugang zu Daten zu haben – allerdings haben nur 26 Prozent der Chefs wirklich einen Ansatz gefunden, wie sie nutzbringend mit den Daten arbeiten können.

Das bedeutet: Zur datengetriebenen Arbeit sowie zur Unternehmenssteuerung und -entwicklung auf der Basis von Daten braucht nicht jeder im Unternehmen die gleichen Daten und Dashboards. Jedoch braucht jeder Mitarbeiter in der Organisation gleichermaßen die Möglichkeiten und Fähigkeiten, unkompliziert in den Daten zu forschen, die ihm persönlich helfen, seine Arbeit zu verbessern. Welche Ideen und Anschlussfragen die assoziative Data Discovery im Selfservice auslöst, ist vorher schwer zu sagen – Assoziation ist spontan. Daher gilt: Die Erkenntnis kommt beim Tun.

Aus diesem Grund verlangt wirkliche Innovation nach schrankenloser und intuitiver Datenarbeit, die Platz lässt für Ideen, für ungewöhnliche Datenkombinationen und für ein erfindungsreiches „Um-die-Ecke-Denken“. Lineare SQL-Abfragen können das nicht leisten – und entsprechen in ihren vordefinierten Pfaden nicht der wertvollen Kombinationskompetenz, die das menschliche Gehirn von Natur aus mitbringt.

Zukunftsweisende Data Analytics und Advanced Analytics versucht nicht, das Denken und Assoziieren zu ersetzen – sondern die kognitiven Prozesse des Anwenders zu unterstützen, sie zu erweitern und in ihren Möglichkeiten zu vervollständigen. So entsteht Augmented Intelligence: die intelligente Verknüpfung von menschlicher Ratio und technologischer Schnelligkeit, bzw. Vollständigkeit.

Zentral gemanagte Governance

Natürlich soll assoziatives und individuelles Daten-Handling nicht zum digitalen Selbstbedienungsladen führen. Um dennoch assoziative Analysen und freies Forschen in relevanten Daten zu gewährleisten, bewährt sich in der Selfservice-Datenanalyse zentral gesteuerte Governance mit rollenbasierter Datenverfügbarkeit und individuellen Zugriffsrechten als ideale Lösung.

Interview – Process Mining ist ein wichtiger Treiber der Prozessautomatisierung

Interview mit Prof. Scheer, Erfinder des etablierten ARIS-Konzepts, über die Bedeutung von Big Data für die Prozessoptimierung

Prof. Dr. Dr. h.c. mult. August-Wilhelm Scheer

Copyright – Scheer GmbH

Prof. Dr. Dr. h.c. mult. August-Wilhelm Scheer war Gründer der IDS Scheer AG und Direktor des von ihm gegründeten Instituts für Wirtschaftsinformatik an der Universität des Saarlandes in Saarbrücken. Es ist der Erfinder des bekannten ARIS-Konzeptes und heute Alleingesellschafter und Beiratsvorsitzender der Scheer GmbH (www.scheer-group.com), einem Consulting- und Software-Haus in Saarbrücken. Daneben gehören zur Scheer Gruppe  Beteiligungen an Start- up Unternehmen.

Data Science Blog: Herr Prof. Scheer, Sie sind der Erfinder des ARIS-Konzepts in den 90er-Jahren, mit dem viele Unternehmen in den darauffolgenden Jahren ihr betriebliches Informationssystem überarbeiten konnten. Auch heute arbeiten viele Unternehmen an der Umsetzung dieses Konzepts. Was hat sich heute verändert?

Prof. Scheer: Auch heute noch bilden Prozessmodelle die Grundlage der digitalen Prozessautomatisierung, indem sie menschliche Arbeitsleistung innerhalb der Modelle durch IT ­Systeme unterstützen oder ersetzen. Die Scheer GmbH setzt diesen modellgetriebenen Ansatz erfolgreich in großen BPM und SAP ­Einführungsprojekten ein. Hierfür wurden in den vergangenen Jahren industriespezifische Referenzmodelle entwickelt, die unter der Bezeichnung „Performance Ready“ eine beachtliche Beschleunigung hervorbringen.

Weitere Treiber der Automatisierung sind die technische Weiterentwicklung der IT, insbesondere durch prozessorientierte Architekturen der Anwendungssoftware, sowie Big Data, Data Mining, Cloud Computing und Hardware ­Infrastruktur. Gleichzeitig werden neuere Forschungsergebnisse zu Modellierungsmethoden, der Künstlichen Intelligenz und Data Mining zunehmend in der Praxis der digitalen Geschäftsprozessorganisation umgesetzt.

Data Science Blog: Zu Zeiten der ARIS-Einführung steckte die Geschäftswelt, insbesondere die Industrie, gerade im Trend zum Lean Management. Heute ist es ähnlich mit dem Trend zu Big Data und Analytics. Welche Synergien gibt es hier im Kontext von Data Analytics?

Prof. Scheer: Mit der Implementierung einer lauffähigen Prozesslösung ist der enge BPM ­Ansatz von der  Problemerkennung bis zum lauffertigen Anwendungssystem abgeschlossen. In der Realität können jedoch auch unvorhergesehenen Abweichungen auftreten oder Störungen entstehen. Derartige Abweichungen begründen das Interesse an der Auswertung realer Prozessinstanzen. Die automatische Suche in Datenbeständen, um unerwartete Muster und Zusammenhänge zu erkennen und diese in gut verständlicher, häufig grafischer Form aufzubereiten, wird generell als Datamining bezeichnet und gehört zum Gebiet der Data Analytics. Wird dieses Vorgehen auf Geschäftsprozesse angewendet, so wird es als Process Mining bezeichnet. Es geht also  darum, die Spuren der Geschäftsprozesse während ihrer Ausführung in einer Logdatei zu erfassen und ihr Verhalten zu beobachten (Monitoring).

Data Science Blog: Welche Anwendungsfälle sind mit Process Mining zu bewältigen? Und welche Mehrwerte werden Ihrer Erfahrung nach daraus generiert?

Prof. Scheer: Beim Process Mining generiert ein komplexer Algorithmus aus den Datenspuren der Logdatei von Anwendungssystemen automatisch ein Ist-­Prozessmodell. Aus den Vergleichen des bestehenden Soll-­Modells mit den Datenspuren der Logdatei und des generierten Ist-Modells werden Abweichungen ermittelt. Diese werden analysiert, um das Soll-Modell an die Realität anzupassen und organisatorische Verbesserungsvorschläge zu entwickeln. Process Mining kann Auskunft geben, ob bei der Prozessausführung Compliance ­Regeln eingehalten oder verletzt werden, an welchen Stellen Kapazitätsengpässe entstehen, ob von vorgesehenen Kapazitätszuordnungen abgewichen wurde, wie sich Durchlaufzeiten und Qualität verhalten usw.. Die Ergänzung des BPM ­Ansatzes um das Process Mining, insbesondere auch durch den Einsatz von KI ­Techniken, führt zu einer neuen Qualität des Prozessmanagements und wird deshalb als intelligentes BPM (iBPM) bezeichnet.

Data Science Blog: Welche analytischen Methoden kommen zum Einsatz und auf welche Software-Technologien setzen Sie dabei?

Prof. Scheer: Das Process Mining wird gegenwärtig wissenschaftlich intensiv mit formalen Methoden bearbeitet. Ziel dieser Forschungen ist es, das Process Mining durch Entwicklung komplexer Algorithmen nahezu vollständig zu automatisieren. Der Verzicht auf den Einsatz menschlichen Fachwissens führt aber z. T. zu einer überhöhten Komplexität der Algorithmen für Aufgaben, die ein erfahrener Prozessmanager intuitiv leicht und besser erledigen kann. Hier ist eine Kombination aus Automatik und Fachwissen sinnvoller. Die Unternehmen der Scheer Gruppe legen den Fokus auf die Modellierung und das mehr strategische BPM und sehen Process Mining als Ergänzung dieses Ansatzes. Die Software „Scheer Process Mining“ folgt diesem Ansatz und sieht sie als Ergänzung ihrer modellbasierten BPMS ­Software „Scheer BPaaS“ und „Scheer E2EBridge“. Weiterhin unterstützen unsere Berater in vielen Projekten das Produkt „ARIS PPM“ der Software AG.

Data Science Blog: Sind die datengetriebenen Prozessanalysen vorerst abgeschlossen, geht es an die Umsetzung der Verbesserungen. Wie unterstützen Sie Unternehmen dabei, diese herbei zu führen? Und in wie weit können datengetriebene Entscheidungssysteme realisiert werden, die die Vision des autonomen Unternehmens im Sinne der Industrie 4.0 einen Schritt näher bringen?

Prof. Scheer: Sowohl langfristige strategische BPM Projekte als auch kurzfristig taktische Umsetzungen aus Process Mining Aktivitäten werden von der Scheer Gruppe unterstützt. Aber wir schauen auch in die Zukunft. Im Rahmen von Machine Learning werden Algorithmen entwickelt, die aus Beobachtungen ein Systemverhalten erkennen (lernen), um es dann für Prognosen auszuwerten. Als bekannteste Verfahren sind künstliche neuronale Netze zu nennen. Diese bilden Funktionen des menschlichen Gehirns ab. Interessante Anwendungsfälle gibt es bereits in der Fertigung. An Produktionsanlagen werden heute zahlreiche Sensoren angebracht, die Temperatur, Schwingungen, Energieverbrauch usw. kontinuierlich messen. Diese Datenströme können als Input ­Größen von neuronalen Netzen ausgewertet und zu Prognosen genutzt werden. Das Unternehmen IS ­Predict, das zur Scheer Gruppe gehört, hat dazu eigene Algorithmen auf Basis von KI entwickelt und führt seit Jahren erfolgreich Projekte zu Predictive Maintenance und zur vorausschauenden Qualitätssteuerung durch. 

Data Science Blog: Process Mining ist somit ein spannendes Zukunftsthema. Unter welchen Rahmenbedingungen sollten derartige Projekte durchgeführt werden? Was sind Ihrer Erfahrung nach die Kriterien zum Erfolg?

Prof. Scheer: Zunächst ist es sehr wichtig, das Thema aus der Business-Perspektive anzugehen und sich nicht zu früh mit technologischen Fragen auseinanderzusetzen: Welche Fragen sollen durch Process Mining beantwortet werden? Welche Informationsquellen werden hierfür benötigt?

Zu Beginn des Projekts sollte zunächst eine konkrete Aufgabenstellung angegangen werden, die auch von ihrer Größenordnung gut zu bewältigen ist. Je konkreter die Aufgabenstellung gewählt wird, desto größer ist die Erfolgswahrscheinlichkeit und umso schneller kann ein ROI erzielt werden. Natürlich bedeutet dies nicht, das „große Ganze“ zu vernachlässigen. Auch bei der Einführung von Process Mining gilt der Grundsatz „think big, start small“.

Data Science Blog: Datengetriebene Prozessanalysen bedingen interdisziplinäres Wissen. Welche Tipps würden Sie einem Prozessmanager geben, der sich in die Thematik einarbeiten möchte?

Prof. Scheer: Die Grundvoraussetzung für die Einführung von Process Mining ist ein gutes Verständnis aller Aspekte des Geschäftsmodells.  Darauf aufbauend sollte ein guter Überblick der Unternehmensprozesse und ihrer Ausprägung in den verschiedenen Unternehmensbereichen vorhanden sein. Immer wichtiger wird in diesem Zusammenhang das Thema der verschiedenen Arten von Daten und wie sie entlang der Prozesse entstehen bzw. angewendet werden. Hierbei sind für Process Mining insbesondere zwei Arten von Daten relevant:  Kennzahlen, die bei der Ausführung der Prozesse entstehen, die sog. Prozesskennzahlen oder Process KPIs. Neben den Process KPIs können mit Process Mining fachliche Daten, die während der Ausführung der Prozesse erfasst oder manipuliert werden, betrachtet werden. Mit den Process Mining Produkten von Scheer können beide Arten von Daten analysiert werden. Der Einstieg in die Datenanalyse erfolgt über das Process Analytics Dashboard. Weitergehende Informationen zu den Details der Prozesse liefert dann das Modul Process Explorer.

Process Mining: Innovative Analyse von Datenspuren für Audit und Forensik

Step-by-Step:

Neue Möglichkeiten zur Aufdeckung von Compliance-Verstößen mit Process Analytics

Im Zuge der fortschreitenden Digitalisierung findet derzeit ein enormer Umbruch der alltäglichen Arbeit hin zur lückenlosen Erfassung aller Arbeitsschritte in IT-Systemen statt. Darüber hinaus sehen sich Unternehmen mit zunehmend verschärften Regulierungsanforderungen an ihre IT-Systeme konfrontiert.

Der unaufhaltsame Trend hin zur vernetzten Welt („Internet of Things“) wird die Möglichkeiten der Prozesstransparenz noch weiter vergrößern – jedoch werden bereits jetzt viele Prozesse im Unternehmensbereich über ein oder mehrere IT-Systeme erfasst. Jeder Mitarbeiter, aber auch jeder automatisiert ablaufende Prozess hinterlässt viele Datenspuren in IT-Backend-Systemen, aus denen Prozesse rückwirkend oder in Echtzeit nachgebildet werden können. Diese umfassen sowohl offensichtliche Prozesse, wie etwa den Eintrag einer erfassten Bestellung oder Rechnung, als auch teilweise verborgene Prozesse, wie beispielsweise die Änderung bestimmter Einträge oder Löschung dieser Geschäftsobjekte. 


english-flagRead this article in English:
“Process Analytics – Data Analysis for Process Audit & Improvement”


1 Das Verständnis von Process Analytics

Process Analytics ist eine datengetriebene Methodik der Ist-Prozessanalyse, die ihren Ursprung in der Forensik hat. Im Kern des dieser am Zweck orientierten Analyse steht das sogenannte Process Mining, eine auf die Rekonstruktion von Prozessen ausgerichtetes Data Mining. Im Zuge der steigenden Bedeutung der Computerkriminalität wurde es notwendig, die Datenspuren, die potenzielle Kriminelle in IT-Systemen hinterließen, zu identifizieren und zu analysieren, um das Geschehen so gut wie möglich zu rekonstruieren.

Mit dem Trend hin zu Big Data Analytics hat Process Analytics nicht nur neue Datengrundlagen erhalten, sondern ist als Analysemethode weiterentwickelt worden. Zudem ermöglicht die Visualisierung dem Analysten oder Berichtsempfänger ein tief gehendes Verständnis auch komplexerer Geschäftsprozesse.

Während in der konventionellen Prozessanalyse vor allem Mitarbeiterinterviews und Beobachtung der Mitarbeiter am Schreibtisch durchgeführt werden, um tatsächlich gelebte Prozesse zu ermitteln, ist Process Analytics eine führende Methode, die rein faktenbasiert und damit objektiv an die Prozesse herangeht. Befragt werden nicht die Mitarbeiter, sondern die IT-Systeme, die nicht nur alle erfassten Geschäftsobjekte tabellenorientiert abspeichern, sondern auch im Hintergrund – unsichtbar für die Anwender – jegliche Änderungsvorgänge z. B. an Bestellungen, Rechnungen oder Kundenaufträgen lückenlos mit einem Zeitstempel (oft Sekunden- oder Millisekunden-genau) protokollieren.

2 Die richtige Auswahl der zu betrachtenden Prozesse

Heute arbeitet nahezu jedes Unternehmen mit mindestens einem ERP-System. Da häufig noch weitere Systeme eingesetzt werden, lässt sich klar herausstellen, welche Prozesse nicht analysiert werden können: Solche Prozesse, die noch ausschließlich auf Papier und im Kopf der Mitarbeiter ablaufen, also typische Entscheiderprozesse auf oberster, strategischer Ebene, die nicht in IT-Systemen erfasst und dementsprechend nicht ausgewertet werden können. Operative Prozesse werden hingegen in der Regel nahezu lückenlos in IT-Systemen erfasst und operative Entscheidungen protokolliert.

Zu den operativen Prozessen, die mit Process Analytics sehr gut rekonstruiert und analysiert werden können und gleichermaßen aus Compliance-Sicht von höchstem Interesse sind, gehören beispielsweise Prozesse der:

  • Beschaffung
  • Logistik / Transport
  • Vertriebs-/Auftragsvorgänge
  • Gewährleistungsabwicklung
  • Schadensregulierung
  • Kreditgewährung

Process Analytics bzw. Process Mining ermöglicht unabhängig von der Branche und dem Fachbereich die größtmögliche Transparenz über alle operativen Geschäftsprozesse. Für die Audit-Analyse ist dabei zu beachten, dass jeder Prozess separat betrachtet werden sollte, denn die Rekonstruktion erfolgt anhand von Vorgangsnummern, die je nach Prozess unterschiedlich sein können. Typische Vorgangsnummern sind beispielsweise Bestell-, Auftrags-, Kunden- oder Materialnummern.

3 Auswahl der relevanten IT-Systeme

Grundsätzlich sollte jedes im Unternehmen eingesetzte IT-System hinsichtlich der Relevanz für den zu analysierenden Prozess untersucht werden. Für die Analyse der Einkaufsprozesse ist in der Regel nur das ERP-System (z. B. SAP ERP) von Bedeutung. Einige Unternehmen verfügen jedoch über ein separates System der Buchhaltung (z.B. DATEV) oder ein CRM/SRM (z. B. von Microsoft), die dann ebenfalls einzubeziehen sind.

Bei anderen Prozessen können außer dem ERP-/CRM-System auch Daten aus anderen IT-Systemen eine entscheidende Rolle spielen. Gelegentlich sollten auch externe Daten integriert werden, wenn diese aus extern gelagerten Datenquellen wichtige Prozessinformationen liefern – beispielsweise Daten aus der Logistik.

4 Datenaufbereitung

Vor der datengetriebenen Prozessanalyse müssen die Daten, die auf Prozessaktivitäten direkt oder indirekt hindeuten, in den Datenquellen identifiziert, extrahiert und aufbereitet werden. Die Daten liegen in Datenbanktabellen und Server-Logs vor und werden über ein Data Warehousing Verfahren zusammengeführt und in ein Prozessprotokoll (unter den Process Minern i.d.R. als Event Log bezeichnet) umformuliert.

Das Prozessprotokoll ist in der Regel eine sehr große und breite Tabelle, die neben den eigentlichen Prozessaktivitäten auch Parameter enthält, über die sich Prozesse filtern lassen, beispielsweise Informationen über Produktgruppen, Preise, Mengen, Volumen, Fachbereiche oder Mitarbeitergruppen.

5 Prüfungsdurchführung

Die eigentliche Prüfung erfolgt visuell und somit intuitiv vor einem Prozessflussdiagramm, das die tatsächlichen Prozesse so darstellt, wie sie aus den IT-Systemen extrahiert werden konnten.

Process Mining – Beispielhafter Process Flow mit Fluxicon Disco (www.fluxicon.com)

Das durch die Datenaufbereitung erstellte Prozessprotokoll wird in eine Datenvisualisierungssoftware geladen, die dieses Protokoll über die Vorgangsnummern und Zeitstempel in einem grafischen Prozessnetzwerk darstellt. Die Prozessflüsse werden also nicht modelliert, wie es bei den Soll-Prozessen der Fall ist, sondern es „sprechen“ die IT-Systeme.

Die Prozessflüsse werden visuell dargestellt und statistisch ausgewertet, so dass konkrete Aussagen über die im Hinblick auf Compliance relevante Prozess-Performance und -Risiken getroffen werden können.

6 Abweichung von Soll-Prozessen

Die Möglichkeit des intuitiven Filterns der Prozessdarstellung ermöglicht auch die gezielte Analyse von Ist-Prozessen, die von den Soll-Prozessverläufen abweichen.

Die Abweichung der Ist-Prozesse von den Soll-Prozessen wird in der Regel selbst von IT-affinen Führungskräften unterschätzt – mit Process Analytics lassen sich nun alle Abweichungen und die generelle Prozesskomplexität auf ihren Daten basierend untersuchen.

6 Erkennung von Prozesskontrollverletzungen

Die Implementierung von Prozesskontrollen sind Bestandteil eines professionellen Internen Kontrollsystems (IKS), die tatsächliche Einhaltung dieser Kontrollen in der Praxis ist jedoch häufig nicht untersucht oder belegt. Process Analytics ermöglicht hier die Umgehung des Vier-Augen-Prinzips bzw. die Aufdeckung von Funktionstrennungskonflikten. Zudem werden auch die bewusste Außerkraftsetzung von internen Kontrollmechanismen durch leitende Mitarbeiter oder die falsche Konfiguration der IT-Systeme deutlich sichtbar.

7 Erkennung von bisher unbekannten Verhaltensmustern

Nach der Prüfung der Einhaltung bestehender Kontrollen, also bekannter Muster, wird Process Analytics weiterhin zur Neuerkennung von bislang unbekannten Mustern in Prozessnetzwerken, die auf Risiken oder gar konkrete Betrugsfälle hindeuten und aufgrund ihrer bisherigen Unbekanntheit von keiner Kontrolle erfasst werden, genutzt. Insbesondere durch die – wie bereits erwähnt – häufig unterschätzte Komplexität der alltäglichen Prozessverflechtung fallen erst durch diese Analyse Fraud-Szenarien auf, die vorher nicht denkbar gewesen wären. An dieser Stelle erweitert sich die Vorgehensweise des Process Mining um die Methoden des maschinellen Lernens (Machine Learning), typischerweise unter Einsatz von Clustering, Klassifikation und Regression.

8 Berichterstattung – auch in Echtzeit möglich

Als hocheffektive Audit-Analyse ist Process Analytics bereits als iterative Prüfung in Abständen von drei bis zwölf Monaten ausreichend. Nach der erstmaligen Durchführung werden bereits Compliance-Verstöße, schwache oder gar unwirksame Kontrollen und gegebenenfalls sogar Betrugsfälle zuverlässig erkannt. Die Erkenntnisse können im Nachgang dazu genutzt werden, um die Schwachstellen abzustellen. Eine weitere Durchführung der Analyse nach einer Karenzzeit ermöglicht dann die Beurteilung der Wirksamkeit getroffener Maßnahmen.

In einigen Anwendungsszenarien ist auch die nahtlose Anbindung der Prozessanalyse mit visuellem Dashboard an die IT-Systemlandschaft zu empfehlen, so dass Prozesse in nahezu Echtzeit abgebildet werden können. Diese Anbindung kann zudem um Benachrichtigungssysteme ergänzt werden, so dass Entscheider und Revisoren via SMS oder E-Mail automatisiert über aktuellste Prozessverstöße informiert werden. Process Analytics wird somit zum Realtime Analytics.

Fazit

Process Analytics ist im Zuge der Digitalisieurng die hocheffektive Methodik aus dem Bereich der Big Data Analyse zur Aufdeckung Compliance-relevanter Tatbestände im gesamten Unternehmensbereich und auch eine visuelle Unterstützung bei der forensischen Datenanalyse.

 

Die fünf Schritte zur Datenstrategie

Big Data ist allgegenwärtig – die Datenrevolution bietet in nahezu allen Branchen vielfältige Nutzungsmöglichkeiten. Bevor Sie jedoch investieren, sollten Sie sehr sorgfältig analysieren, welche Strategie auf Ihr Unternehmen exakt zugeschnitten ist: Ihre Datenstrategie.

Der Artikel Unternehmen brauchen eine Datenstrategie erläutert, wozu Unternehmen eine Datenstrategie erarbeiten sollten, dieser Artikel skizziert eine erprobte Vorgehensweise dafür. Diese Vorgehensweise basiert auf der  Strategiearbeit  unseres Teams, erhebt jedoch keinen Anspruch auf Vollständigkeit. Das überlegte Ausformulieren einer Datenstrategie ist eine individuelle Arbeit und so fällt es vielen Führungskräften und Mitarbeitern schwer, hierfür eine strukturierte Vorgehensweise zu finden.

Data Driven Thinking spielt bei der Formulierung der Datenstrategie eine wesentliche Rolle: Es ist die, an das Design Thinking angelehnte, Denkweise, Daten zu nutzen, um Fragen zu beantworten und damit verbundene Probleme zu lösen. Geübten Data Thinkern fällt das Durchdenken einer Datenstrategie relativ leicht. Für gedankliche Neueinsteiger in dieses Thema soll die folgende Vorgehensweise eine Hilfe bieten, denn aus meiner Erfahrung zeigten sich bisher folgende fünf Schritte als besonders erfolgskritisch. Diese Schritte sind einer Reihenfolge von der Vision bis zur Datenstrategie vorgegeben, mit dem Ziel, anfänglich ein Bewusstsein dafür zu schaffen, welche Datenquellen zur Verfügung stehen und welche Art von Daten in denen enthalten sind.

Die fünf Schritte zur Datenstrategie

1. Die Vision [Kick-Off]

Jedes Unternehmen benötigt eine individuelle Datenstrategie, die auf die spezielle Ausgangssituation und den gesetzten Unternehmenszielen zugeschnitten ist. Jede Datenstrategie hat eine klare Standortbestimmung und verfolgt oder unterstützt eine bestimmte Vision für das Unternehmen, an der die zu erstellende Datenstrategie auszurichten ist. Der Kick-Off zur Datenstrategie geht u.a. folgenden Fragen nach: Wie sieht die Marktsituation aus? Wie genau funktionieren die Geschäftsmodelle und welche Vision sehen die involvierten Mitarbeiter für ihr Unternehmen?

2. Die Datenquellen

Zum Data Driven Thinking gehört es, Daten zu finden, die Antworten auf Ihre Fragen liefern. Ebenso funktioniert es, vorhandene Daten zu betrachten und daraus Lösungsideen zu entwickeln. Eine Grundvoraussetzung für die Beantwortung von Fragen mit Daten ist es, dass alle verfügbaren Datenquellen gut dokumentiert wurden und die Mitarbeiter Kenntnis sowohl über die Datenquellen als auch über deren Dokumentation haben. Ist das nicht der Fall, ist dies der erste wichtige Schritt zur Erstellung einer Datenstrategie.

Dafür brauchen Sie Ihre IT-Administratoren, einen guten Data Engineer (Was ist ein Data Engineer? Und was ein Data Scientist?) und Ihre, für die Datenstrategie abgestellten Mitarbeiter aus den Fachbereichen.

Das Ergebnis ist die Gewissheit, über welche Daten Sie bereits verfügen und über welche Sie verfügen könnten, würden Sie es wünschen. Zudem werden mit den Datenquellen verbundene Fragen geklärt: Wie sieht es mit der Datensicherheit und dem Datenschutz aus? Nur so betrachten Sie Ihre Datenpotenziale in den weiteren Schritten ganzheitlich und rechtssicher.

3. Die Konzeptionierung der Informationsgewinnung

Sowohl in der Informatik als auch in der Managementlehre ist bekannt, dass aus Daten Informationen werden, wenn die einzelnen Datenpunkte miteinander verknüpft werden. Dennoch hapert es bei den meisten Unternehmen gerade an dieser Stelle. Bisher werden gerade einmal 1% aller Daten genutzt. Daten zu nutzen bedeutet dabei konkret, diese in Informationsflüsse umzuwandeln. Der Schritt der Konzeptionierung der Informationsgewinnung ist ein Ideenprozess darüber, wie – je nach Detailgrad – ganze Datenquellen oder auch nur einzelne Datentabellen innerhalb von Datenbanken miteinander verknüpft werden können – so wie es bisher noch nicht der Fall ist. Es ist ein gedanklicher Prozess des Data Engineering, mit der Fragestellung: Welche Informationsflüsse haben wir bereits und welche Datenquellen erschaffen neue Informationsflüsse (ggf. wenn sie miteinander verknüpft werden)?

Dafür brauchen Sie Ihre Mitarbeiter aus den Fachbereichen, den Data Engineer und idealerweise ab diesen Schritt einen Data Scientist.

Das Ergebnis ist eine Beschreibung der neuen Informationsgewinnung durch Zugriff auf bestimmte Daten.

4. Die Konzeptionierung der Wissensgenerierung

Werden Informationen in einem bestimmten Kontext betrachtet, entsteht Wissen. Im Kontext der Geschäftssitutation Ihres Unternehmens entsteht für Ihr Geschäft relevantes Wissen. In diesem Schritt der Erstellung Ihrer Datenstrategie wird beleuchtet, welche Informationen zur Wissensgenerierung von besonderem Interesse sein könnten und welches Wissen Sie über welche Informationen generieren.

Dafür brauchen Sie Ihren Data Scientist und Ihre Mitarbeiter aus den Fachbereichen

Als Ergebnis werden Analyseverfahren beschrieben, die die Generierung eines gewünschten Wissens (z. B. über Ihre Kunden, Lieferanten, Produkte oder besondere Ereignisse) wahrscheinlich machen (Data Mining) bis hin zur Errichtung eines Assistenzsystems (datengestützte Entscheidungsfindung) oder eines autonomen Systems (datengetriebene Entscheidungsfindung).

Übrigens: Data Driven Thinking ermöglicht Ihnen, bisher als nahezu unlösbar betrachtete Probleme doch noch zu lösen. Diese datengetriebene Denkweise wird für Führungskräfte der Zukunft unverzichtbar und gilt gegenwärtig als Karriere-Turbo in Richtung Führungsetage.

5. Die Planung der Umsetzung

Nachdem nun ein Bewusstsein dafür entstanden ist, welche Daten zur Verfügung stehen, wie aus ihnen Informationen erschaffen und Geschäftswissen zu generieren ist, kommt nun die Frage auf, wie dieses Gedankenkonstrukt in die Realität umzusetzen ist. Für die Umsetzung sind nun eine Menge Fragen zu klären, wie beispielsweise: Welche Tools sollen verwendet werden? Welches Team (Skillset) wird benötigt? Sollen Lösungen eingekauft oder selbst realisiert werden?

Dafür brauchen Sie Ihre Mitarbeiter aus den Fachbereichen, Ihren Data Scientist (Data Mining, Machine Learning) sowie – wenn Sie die Wissensgenerierung automatisieren möchten – erfahrene Software Entwickler.

Als Ergebnis erhalten Sie einen Plan, wie Ihre Datenstrategie technisch realisiert werden soll.

6. Die Datenstrategie [Resultat]

Nachdem Sie alle Fragen von der Vision bis zur konkreten Umsetzungsplanung beantwortet haben, fehlt nur noch die Ausformulierung Ihrer Ideen, Konzepte und der zu erwartenden Ergebnisse für jeden verständlich als ein Dokument namens Datenstrategie. Diese Datenstrategie soll Ihren Plan transparent machen und ist die Grundlage dafür, Ihre Mitarbeiter, Partner und letztendlich auch Ihre Vorgesetzten von Ihrer Strategie zu überzeugen.


Mein Vortrag zur Datenstrategie am Data Leader Day 2017

Am Data Leader Day am 09. November 2017 in Berlin erläutere ich als Keynote “Wie Sie für Ihr Unternehmen die richtige Datenstrategie entwickeln!”
Führungskräfte von Unternehmen wie Otto, Allianz, Deutsche Bahn und  SAP ergänzen mit ihren eigenen Erfahrungen hinsichtlich Big Data Projekten zur Geschäftsoptimierung. Jetzt hier Tickets sichern und dabei sein!

 

Unternehmen brauchen eine Datenstrategie

Viele Unternehmen stecken gerade in der Digitalisierung fest, digitalisieren Prozesse und Dokumente, vernetzen immer mehr Maschinen und Endgeräte, und generieren dabei folglich immer mehr Daten. Aber auch ungeachtet der aktuellen Digitalisierungs- und Vernetzungsinitiativen verfügen Unternehmen bereits längst über einen wahren Datenschatz in Ihren ERP-, CRM- und sonstigen IT-Systemen. Hinzu kommt ein beinahe unerschöpfliches Datenpotenzial aus externen Quellen hinzu, insbesondere dem Social Media, den Finanzportalen und behördlichen Instituten (Open Data).

Nur die wenigsten Unternehmen – jene dürfen wir ohne Zweifel zu den Gewinnern der Digitalisierung zählen – verfügen über eine konkrete Strategie, wie Daten aus unternehmensinternen und -externen Datenquellen zur Geschäftsoptimierung genutzt werden können: Die Datenstrategie.

Was ist eine Datenstrategie?

Die Datenstrategie ist ein ausformulierter und zielorientierter Verfahrensplan, um Daten in Mehrwert zu verwandeln. Er bringt während seiner Formulierung alle nötigen Funktionsbereichen zusammen, also IT-Administratoren, kaufmännische Entscheider und natürlich Data Scientists bzw. Datenexperten (welche genaue Berufsbezeichnung auch immer damit verbunden sein mag).

Die Datenstrategie ist ein spezieller Business Plan zur gewinnorientierten Datennutzung. In ihr werden klare Ziele und Zeitvorgaben (kurz-, mittel-, langfristig) definiert, der voraussichtliche Ressourcen-Einsatz und die Rahmenbedingungen benannt. Dazu gehören sowohl die technischen (Hardware, Software) als auch die rechtlichen Rahmen (Datenschutz, Datensicherheit, Urheberrecht usw.). Die Datenstrategie die Herausforderungen nachvollziehbar heraus und stellt im Abgleich fest, ob die bestehende Belegschaft im aktuellen Zustand die nötigen Kapazitäten und Qualifikationen hat bzw. ob Maßnahmen zum Erwerb von Know-How (Qualifizierung, Recruiting) ergriffen werden sollten.

Wozu braucht ein Unternehmen eine Datenstrategie?

Viele Unternehmen – ich bin zumindest mit vielen solcher Unternehmen im Gespräch – wissen oft nicht, wie sie am Trend zur Datennutzung partizipieren können, bevor es der Wettbewerb tut bzw. man für neue Märkte unzureichend / zu spät vorbereitet ist. Sie wissen, dass es Potenziale für die Nutzung von Daten gibt, jedoch nicht, welche Tragweite derartige Projekte hinsichtlich des Einsatzes und des Ergebnisses haben werden. Diesen Unternehmen fehlt eine Datenstrategie als ein klarer Fahrplan, um über Datenanalyse die bestehenden Geschäfte zu optimieren. Und möglicherweise auch, um neue Geschäftsmöglichkeiten zu erschließen.

Demgegenüber steht eine andere Art von Unternehmen: Diese sind bereits seit Jahren in die Nutzung von Big Data eingestiegen und haben nun viele offene Baustellen, verschiedene neue Tools und eine große Vielfalt an Projektergebnissen. Einige dieser Unternehmen sehen sich nunmehr mit einer Komplexität konfrontiert, für die der Wunsch nach Bereinigung aufkommt. Hier dient die Datenstrategie zur Fokussierung der Ressourcen auf die individuell besten, d.h. gewinnträchtigsten bzw. nötigsten Einsatzmöglichkeiten, anstatt alle Projekte auf einmal machen.

Zusammenfassend kann demnach gesagt werden, dass eine Datenstrategie dazu dient, sich nicht in Big Data bzw. Data Science Projekte zu verrennen oder mit den falschen Projekten anzufangen. Die Strategie soll Frustration vermeiden und schon vom Ansatz her dafür sorgen, dass die nächst höhere Etage – bis hin zum Vorstand – Big Data Projekte nicht für sinnlos erklärt und die Budgets streicht.

Wie entsteht eine Datenstrategie?

Ein ganz wesentlicher Punkt ist, dass die Datenstrategie kein Dokument wird, welches mühsam nur für die Schublade erstellt wurde. Der Erfolg entsteht schließlich nicht auf schönen Strategiefolien, sondern aus zielgerichteter Hands-on-Arbeit. Zudem ist es erfolgskritisch, dass die Datenstrategie für jeden beteiligten Mitarbeiter verständlich ist und keine Beraterfloskeln enthält, jedoch fachlich und umsetzungsorientiert bleibt. Im Kern steht sicherlich in der Regel eine Analysemethodik (Data Science), allerdings soll die Datenstrategie alle relevanten Fachbereiche im Unternehmen mitnehmen und somit ein Gemeinschaftsgefühl (Wir-Gefühl) erschaffen, und keinesfalls die Erwartung vermitteln, die IT mache da schon irgendwas. Folglich muss die Datenstrategie gemeinschaftlich entwickelt werden, beispielsweise durch die Gründung eines Komitees, welches aus Mitarbeitern unterschiedlichster Hintergründe besetzt ist, die der Interdisziplinität gerecht wird. Eine entsprechend nötige Interdisziplinität des Teams bringt übrigens – das wird häufig verschwiegen – auch Nachteile mit sich, denn treffen die führenden Köpfe aus den unterschiedlichen Fachbereichen aufeinander, werden Vorschläge schnell abgehoben und idealistisch, weil sie die Erwartungen aller Parteien erfüllen sollen. Eine gute Datenstrategie bleibt jedoch auf dem Boden und hat realistische Ziele, sie orientiert sich an den Gegebenheiten und nicht an zukünftigen Wunschvorstellungen einzelner Visionäre.

Idealerweise wird die Entwicklung der Datenstrategie von jemanden begleitet, der sowohl Erfahrung in Verarbeitung von Daten als auch vom Business hat, und der über explizite Erfahrung mit Big Data Projekten verfügt. Gerade auch das Einbeziehen externer Experten ermöglicht, dass indirekt durch den Erfahrungseinfluss aus bereits gemachten Fehlern in anderen Unternehmen gelernt werden kann.


Mehr dazu im nächsten Artikel: Die fünf Schritte zur Datenstrategie! 

The Future of CRM Systems

Growth comes hand in hand with technology advancement. Today CRM software help in handling all customer data including buying habits for as long as they are attached to the company. With all the data collected, what next? How can CRM systems make things better? Most companies find themselves with a lot of data on their hands but fewer tools to capitalize on it.

To have a glimpse at the future of CRM systems, we ought to recognize the problems businesses have now. The critical issue for most companies is to offer personalized communication and products. What should we expect from these systems in the future? Why the need for improved CRM systems?

Retaining customers is easier than pitching new ones. Your clients also become an essential marketing tool. Most of the referrals you get will be from proud customers. With this said, there is the need of a system that enables a business to offer targeted information and products to the customers.

Systems that can Collect all Customer Data even from Other Markets

At the moment, your client information is only based on what you have collected internally. But wouldn’t you want to have a sneak preview of what your customer’s buying habits are outside your business? This will help you come up with relevant data that will meet customer needs. When there is a centralized unit that collects customer data from several sources and shares appropriately, business owners benefit more from the information they garner.

The Birth of Intelligent Units for Business Owners

In the future, we see business owners accessing software or multiple units that can bring order in data collection, analyzing and grouping. With all the data collected, companies are overwhelmed when it comes to utilization. Intelligent systems can analyze and even recommend proper usage of each set of data. This means customized products, recommendations, and appropriate sales formulas.

With all the data collected, businesses are overwhelmed when coming up with sales campaigns. Most of the effort is not recognized because it is not unique to customer needs. Many clients don’t even open emails from shopping outlets because they deem it as a waste of time. It is time to change this notion.

The Need to Use Different Marketing Channels

What if based on the customer data you have collected, you can reach clients through various means? Technology allows a person to use different devices all at the same time. Mobile marketing has not been delved into exhaustively, yet mobile devices are more popular nowadays because of the convenience they bring along. Some people no longer use PCs. When systems target mobile devices, chances of getting a better response are higher.

Social Media Integration

How can you profit from your clients’ social trends? Marketing can be easier when CRMs take into account social media habits. These should be customer specific with approaches that are both friendly, engaging and to the point.

Personalized Services

CRMs in the future will be able to detect customer preferences, styles, and tastes. What is your favorite color? How do you like your products packaged? Have you changed your address? Future systems will be able to detect this quickly and even update business data. No more wrong shipments or guessing what your customers would prefer? The systems will even be able to identify future buying trends that companies can use to their advantage. Customer understanding is vital when offering personalized services.

Customer Involvement

Through improved CRM systems customers can find it easier to make recommendations, offer suggestions and even get involved in the developments in the company. The more interactive a business is, the longer the clients will stay around meaning more sales. Systems can periodically interact with customers on given topics such as new product suggestions, the feedback of which can be useful for growth.

Customer interaction is also essential in promoting product knowledge. All the emails, inquiries and questions coming in can be overwhelming, but when a business has artificial intelligent units handling the incoming traffic, things get easier and tailor made to satisfy customer requests.

Sales Automation

In the future, the need to go through every order and dispatch will be a thing of the past. Systems will automatically detect orders, specifications and make appropriate shipments. This will make things easier and even reduce time spent on each order. CRMs will be able to work on multiple orders efficiently without human supervision. This will enhance a 24-hour working economy. The intelligent units will work day and night meaning that most business operations will go on past the regular working hours without having to employ more staff.

Efficient CRM use will reduce operating costs for most businesses. The need to have many employees or bigger operational space will go down. Customer expectations will be met which will mean better relations. This will result in a vibrant economy.

Ways AI & ML Are Changing How We Live

From Amazon’s Alexa, a personal assistant that can do anything from making your to-do list to giving a wide range of real-time information about the world around you, to Google’s DeepMind that has very recently made headlines for possibly being able to predict the future, AI and ML are the biggest development in human history.

Machine Learning Used by Hospitals

We hear a lot about Artificial Intelligence (AI) in the realm of insurance Big Data, but there isn’t much buzz around how AI and ML are revolutionising hospitals. The national health expenditures were around $3.4 trillion and estimated to increase from 17.8 percent of GDP to 19.9 percent between 2015 and 2025. By 2021, industry analysts have predicted that the AI health market will reach $6.6 billion. By 2026, such increases in AI technology in the healthcare sector will save the economy around $150 billion annually.

Some of the most popular Artificial Intelligence applications used in hospitals now are:

  • Predictive Health Trackers – Technology that has the ability to monitor patients’ health status using real-time data collection. One such technology is the Health and Environmental Tracker (HET) which can predict if someone is about to have an asthma attack.
  • Chatbots – It isn’t only retail customer service that uses chatbots to deal with consumers. Now hospitals have automated physicians that inquire and route clinicians to the right specialists.
  • Predictive AnalyticsCleveland Clinics have partnered with Microsoft (Cortana) while John Hopkins has partnered up with GE in order to create Machine Learning technology that has the ability to monitor patients and prevent patient emergencies before they happen. It does this by analysing data for primary indicators of potential risks.

Cognitive Marketing – Content Marketing on Steroids

Customer experience and content marketing are terms often tossed around in the world of business and advertising these days. Why do we bring them up now, you ask? Well, things are about to be kicked into sixth gear, thanks to Cognitive Marketing. To explain what that is, let’s go back a bit: remember when Google’s DeepMind AlphaGo bested the top human player at the game? This wasn’t some computer beating a bored office clerk at the game of Solitaire. In order to achieve that victory, Google’s AI had to “actually show its cognitive capability to ‘think’ like humans, because to win the game, ‘intuition’ was needed rather than just ‘logical reasoning’.” Similar algorithm-powered AI’s are enabling machines to learn and grow on their own. Soon, they’ll reach the potential to create content for marketeers at a massive scale. Not only that, but they’ll always deliver the right content, to the right kind of audience, at just the right time.

More Ways Than One: How Retail Is Harnessing AI & ML

  1. Developing Store That Don’t Need Checkout Lines

Tech companies and online retail giants such as Amazon want to create cashier-free stores, at least they are trying to. Last year Amazon launched its Amazon Go which uses sensors and hundreds of cameras to track what customers pick up and then charge the amount to an application on their smart phone, put simply. But only months into the experiment Amazon has said they need to work out some kinks in the system. As of now, Amazon Go’s system can only handle 20 or so customers at a time.

Among other issues, The Guardian, citing an unnamed source, wrote in an article, stated “…if an item has been moved from its specific spot on the shelf.”  Located in Seattle, Washington, Amazon Go is now running in “beta mode” only for Amazon employees as it tests its systems. And these tests are showing that Amazon’s attempt at a cashier-free brick-and-mortar convenience store is far from ready for the real world. A Journal report stated, “For now, the technology functions flawlessly only if there are a small number of customers present, or when their movements are slow.”

  1. Could Drones Be Delivering Goods to Your Home One Day?

Imagine ordering something online from, let’s say, Amazon, and it arrives at your door in 30 minutes or so via drone. Does that sound like something out of the movie The Fifth Element? Maybe, but this technology is already is already here.

Amazon Prime Air made its first delivery to a customer via a GPS-guided flying drone on December 7th, 2016. It only took 13 minutes for the drone to deliver the merchandise to the customer. This sort of technology will be a huge game changer for retail. The supply chain industry is headed for a revolution – drone delivery is coming, and retailers who want to keep up really should adopt such technologies.

Even in 2016, consumers were totally ready to accept drone delivery. The Walk Sands Future of Retail 2016 Study showed that 79 percent of US consumers said they would be “very likely” or “somewhat likely” to choose drone delivery if their product could be delivered within an hour. For me, I’d choose it just to see how cool it was. I think it would be pretty rad to have a drone land in my yard with my package, don’t you? Furthermore, other consumers stated they would pay up to $10 for a drone delivery. Lastly, 26 percent of consumers are already expecting to have their packages delivered to them in the next two years or so.

Driverless Delivery Vehicles Already Here as Well

There was a movie I watched some months ago – you most likely heard of it or even watched it. It was the latest movie about Wolverine titled Logan. There was a certain scene that never left my memory (basically because I found it awesome) where Logan and his companions were driving along a freeway full of driverless tractor trailers that had no tractor.

In an article written for pastemagazine.com, Carlos Alvarez of Getty wrote: “… Logan’s writer and director James Mangold’s inclusion of the self-driving trucking machines make it clear that the filmmaker understands the writing on the wall about the future of shipping. It’s a future without truck drivers.” He continues to explain that the movie takes place a little over 10 years from now in 2029.

“The change may well be here long before 2029. It’s only 2017, and already we’re seeing the beginnings of automated trucking taking over the industry. At the 2017 Consumer Electronics Show this January, Peloton Technology demonstrated “platooning,” where trucks are kept in a row on the highway to reduce wind resistance and save fuel. The trucks are controlled by computers on a “Level One” of autonomous driving,” Alvarez continued in his article.

Now in Germany, Mercedes-Benz is has been developing and testing their Actros truck which is fitted with a ‘highway pilot’ system, which acts like an auto-pilot and includes a radar and stereo camera system. So far, German carmaker Daimler has restricted testing on a German autobahn. The autobahn is generally safer than testing in city conditions since the curves are not as steep. Since the tests have started, this autonomous truck has already driven over 20,000 kilometres.

Did I Say Flying Taxis? Huh, Yeah I Did!

But, if you are still not amazed, then I am about to blow your socks off. Dubai has promised to build a fully autonomous public transportation system by 2030, including autonomous flying drone taxis! Now that is really something. And it isn’t a matter of when they’ll be produced and in use because they already are.

Manufactured in China by the drone-making firm EHang, these really freaking cool quad drones on steroids can carry one person weighing up to 100 kilogrammes (I weigh over that, guess I’m walking) plus maybe a backpack or suitcase. They can fly about 30 kilometres (or 19 miles), at a speed of 60 miles per hour, give or take. And, if that isn’t the cool part, you won’t need any lessons on how to fly it. Simply push a button and it flies you from point A to point B. Whether or not you have to give it directions, don’t know. Either way, this is mostly likely the coolest piece of tech out there right now.

Copyright @ CBS Interactive Inc.

Überwachtes vs unüberwachtes maschinelles Lernen

Dies ist Artikel 1 von 4 aus der Artikelserie – Was ist eigentlich Machine Learning?

Der Unterschied zwischen überwachten und unüberwachtem Lernen ist für Einsteiger in das Gebiet des maschinellen Lernens recht verwirrend. Ich halte die Bezeichnung “überwacht” und “unüberwacht” auch gar nicht für besonders gut, denn eigentlich wird jeder Algorithmus (zumindest anfangs) vom Menschen überwacht. Es sollte besser in trainierte und untrainierte Verfahren unterschieden werden, die nämlich völlig unterschiedliche Zwecke bedienen sollen:

Während nämlich überwachte maschinelle Lernverfahren über eine Trainingsphase regelrecht auf ein (!) Problem abgerichtet werden und dann produktiv als Assistenzsystem (bis hin zum Automated Decision Making) funktionieren sollen, sind demgegenüber unüberwachte maschinelle Lernverfahren eine Methodik, um unübersichtlich viele Zeilen und Spalten von folglich sehr großen Datenbeständen für den Menschen leichter interpretierbar machen zu können (was nicht immer funktioniert).

Trainiere dir deinen Algorithmus mit überwachtem maschinellen Lernen

Wenn ein Modell anhand von mit dem Ergebnis (z. B. Klassifikationsgruppe) gekennzeichneter Trainingsdaten erlernt werden soll, handelt es sich um überwachtes Lernen. Die richtige Antwort muss während der Trainingsphase also vorliegen und der Algorithmus muss die Lücke zwischen dem Input (Eingabewerte) und dem Output (das vorgeschriebene Ergebnis) füllen.

Die Überwachung bezieht sich dabei nur auf die Trainingsdaten! Im produktiven Lauf wird grundsätzlich nicht überwacht (und das Lernen könnte sich auf neue Daten in eine ganz andere Richtung entwickeln, als dies mit den Trainingsdaten der Fall war). Die Trainingsdaten

Eine besondere Form des überwachten Lernens ist die des bestärkenden Lernens. Bestärkendes Lernen kommt stets dann zum Einsatz, wenn ein Endergebnis noch gar nicht bestimmbar ist, jedoch der Trend hin zum Erfolg oder Misserfolg erkennbar wird (beispielsweise im Spielverlauf – AlphaGo von Google Deepmind soll bestärkend trainiert worden sein). In der Trainingsphase werden beim bestärkenden Lernen die korrekten Ergebnisse also nicht zur Verfügung gestellt, jedoch wird jedes Ergebnis bewertet, ob dieses (wahrscheinlich) in die richtige oder falsche Richtung geht (Annäherungslernen).

Zu den überwachten Lernverfahren zählen alle Verfahren zur Regression oder Klassifikation, beispielsweise mit Algorithmen wir k-nearest-Neighbour, Random Forest, künstliche neuronale Netze, Support Vector Machines oder auch Verfahren der Dimensionsreduktion wie die lineare Diskriminanzanalyse.

Mit unüberwachtem Lernen verborgene Strukturen identifizieren

Beim unüberwachten Lernen haben wir es mit nicht mit gekennzeichneten Daten zu tun, die möglichen Antworten/Ergebnisse sind uns gänzlich unbekannt. Folglich können wir den Algorithmus nicht trainieren, indem wir ihm die Ergebnisse, auf die er kommen soll, im Rahmen einer Trainingsphase vorgeben (überwachtes Lernen), sondern wir nutzen Algorithmen, die die Struktur der Daten erkunden und für uns Menschen sinnvolle Informationen aus Ihnen bilden (oder auch nicht – denn häufig bleibt es beim Versuch, denn der Erfolg ist nicht garantiert!).Unüberwachte Verfahren des maschinellen Lernens dienen dem Data Mining, also der Erkennung von Inhalten in Daten anhand von sichtbar werdenden Strukturen. Die Verfahren müssen nicht unbedingt mit Datenvisualisierung arbeiten, oft ist das aber der Fall, denn erst die visuellen Strukturen ermöglichen unseren menschlichen Gehirnen die Daten in einen Kontext zu bringen. Mir sind zwei Kategorien des unüberwachten Lernens bekannt, zum einem das Clustering, welches im Grunde ein unüberwachtes Klassifikationsverfahren darstellt, und zum anderen die Dimensionsreduktion PCA (Hauptkomponentenanalyse). Es gibt allerdings noch andere Verfahren, die mir weniger vertraut sind, beispielsweise unüberwacht lernende künstliche neuronale Netze, die Rauschen lernen, um Daten von eben diesem Rauschen zu befreien.

Establish a Collaborative Culture – Process Mining Rule 4 of 4

This is article no. 4 of the four-part article series Privacy, Security and Ethics in Process Mining.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 4 von 4

Perhaps the most important ingredient in creating a responsible process mining environment is to establish a collaborative culture within your organization. Process mining can make the flaws in your processes very transparent, much more transparent than some people may be comfortable with. Therefore, you should include change management professionals, for example, Lean practitioners who know how to encourage people to tell each other “the truth”, in your team.

Furthermore, be careful how you communicate the goals of your process mining project and involve relevant stakeholders in a way that ensures their perspective is heard. The goal is to create an atmosphere, where people are not blamed for their mistakes (which only leads to them hiding what they do and working against you) but where everyone is on board with the goals of the project and where the analysis and process improvement is a joint effort.

Do:

  • Make sure that you verify the data quality before going into the data analysis, ideally by involving a domain expert already in the data validation step. This way, you can build trust among the process managers that the data reflects what is actually happening and ensure that you have the right understanding of what the data represents.
  • Work in an iterative way and present your findings as a starting point for discussion in each iteration. Give people the chance to explain why certain things are happening and let them ask additional questions (to be picked up in the next iteration). This will help to improve the quality and relevance of your analysis as well as increase the buy-in of the process stakeholders in the final results of the project.

Don’t:

  • Jump to conclusions. You can never assume that you know everything about the process. For example, slower teams may be handling the difficult cases, people may deviate from the process for good reasons, and you may not see everything in the data (for example, there might be steps that are performed outside of the system). By consistently using your observations as a starting point for discussion, and by allowing people to join in the interpretation, you can start building trust and the collaborative culture that process mining needs to thrive.
  • Force any conclusions that you expect, or would like to have, by misrepresenting the data (or by stating things that are not actually supported by the data). Instead, keep track of the steps that you have taken in the data preparation and in your process mining analysis. If there are any doubts about the validity or questions about the basis of your analysis, you can always go back and show, for example, which filters have been applied to the data to come to the particular process view that you are presenting.

Was ist eigentlich Machine Learning? Artikelserie

Machine Learning ist Technik und Mythos zugleich. Nachfolgend der Versuch einer verständlichen Erklärung, mit folgenden Artikeln:

Machine Learning ist nicht neu, aber innovativ!

Machine Learning oder maschinelles Lernen ist eine Bezeichnung, die dank industrieller Trends wie der Industrie 4.0, Smart Grid oder dem autonomen Fahrzeug zur neuen Blüte verhilft. Machine Learning ist nichts Neues und die Algorithmen sind teilweise mehrere Jahrzehnte alt. Dennoch ist Machine Learning ein Innovationsinstrument, denn während früher nur abstrakte Anwendungen, mit vornehmlich wissenschaftlichen Hintergrund, auf maschinellem Lernen setzten, finden entsprechende Algorithmen Einzug in alltägliche industrielle bzw. geschäftliche, medizinische und gesellschaftsorientierte Anwendungen. Machine Learning erhöht demnach sowohl unseren Lebensstandard als auch unsere Lebenserwartung!

Maschinelles Lernen vs künstliche Intelligenz

Künstliche Intelligenz (Artificial Intelligence) ist eine Bezeichnung, die in der Wissenschaft immer noch viel diskutiert wird. Wo beginnt künstliche Intelligenz, wann entsteht natürliche Intelligenz und was ist Intelligenz überhaupt? Wenn diese Wortkombination künstliche Intelligenz fällt, denken die meisten Zuhörer an Filme wie Terminator von James Cameron oder AI von Steven Spielberg. Diese Filme wecken Erwartungen (und Ängste), denen wir mir unseren selbstlernenden Systemen noch lange nicht gerecht werden können. Von künstlicher Intelligenz sollte als mit Bedacht gesprochen werden.

Maschinelles Lernen ist Teilgebiet der künstlichen Intelligenz und eine Sammlung von mathematischen Verfahren zur Mustererkennung, die entweder über generelle Prinzipien (das Finden von Gemeinsamkeiten oder relativen Abgrenzungen) funktioniert [unüberwachtes Lernen] oder durch das Bilden eines Algorithmus als Bindeglied zwischen Input und gewünschten Output aus Trainingsdaten heraus.

Machine Learning vs Deep Learning

Deep Learning ist eine spezielle Form des maschinellen Lernens, die vermutlich in den kommenden Jahren zum Standard werden wird. Gemeint sind damit künstliche neuronale Netze, manchmal auch verschachtelte “herkömmliche” Verfahren, die zum einen mehrere Ebenen bilden (verborgene Schichten eines neuronalen Netzes) zum anderen viel komplexere Zusammenhänge erlernen können, was den Begriff Deep Learning rechtfertigt.

Machine Learning vs Data Mining

Data Mining bezeichnet die Erkenntnisgewinnung aus bisher nicht oder nicht hinreichend erforschter Daten. Unüberwachte Verfahren des maschinellen Lernens, dazu gehören einige Verfahren aus dem Clustering und der Dimensionsreduktion, dienen explizit dem Zweck des Data Minings. Es sind Verfahren, die uns Menschen dabei helfen, vielfältige und große Datenmengen leichter interpretieren zu können. Machine Learning ermöglicht jedoch noch weit mehr als Data Mining.

Scikit-Learn Machine Learning Roadmap

Darstellung der vier Gebiete des Machine Learning: Die scikit-learn-Roadmap. Die Darstellung ist nicht vollständig, sondern umfasst nur die in scikit-learn implementierten Verfahren. Das Original-Bild ist interaktiv und zu finden auf scikit-learn.org