Artikelserie: BI Tools im Vergleich – Tableau

Dies ist ein Artikel der Artikel-Serie “BI Tools im Vergleich – Einführung und Motivation“. Solltet ihr gerade erst eingestiegen sein, dann schaut euch ruhig vorher einmal die einführenden Worte und die Ausführungen zur Datenbasis an. Power BI machte den Auftakt und ihr findet den Artikel hier.

Lizenzmodell

Tableau stellt seinen Kunden zu allererst vor die Wahl, wo und von wem die Infrastruktur betrieben werden soll. Einen preislichen Vorteil hat der Kunde bei der Wahl einer selbstverwaltenden Lösung unter Nutzung von Tableau Server. Die Alternative ist eine Cloud-Lösung, bereitgestellt und verwaltet von Tableau. Bei dieser Variante wird Tableau Server durch Tableau Online ersetzt, wobei jede dieser Optionen die gleichen Funktionalitäten mit sich bringen. Bereits das Lizenzmodell definiert unterschiedliche Rollen an Usern, welche in drei verschiedene Lizenztypen unterteilt und unterschiedlich bepreist sind (siehe Grafik). So kann der User die Rolle eines Creators, Explorers oder Viewers einnehmen.Der Creator ist befähigt, alle Funktionen von Tableau zu nutzen, sofern ein Unternehmen die angebotenen Add-ons hinzukauft. Die Lizenz Explorer ermöglicht es dem User, durch den Creator vordefinierte Datasets in Eigenregie zu analysieren und zu visualisieren. Demnach obliegt dem Creator, und somit einer kleinen Personengruppe, die Datenbereitstellung, womit eine Single Source of Truth garantiert werden soll. Der Viewer hat nur die Möglichkeit Berichte zu konsumieren, zu teilen und herunterzuladen. Wobei in Bezug auf Letzteres der Viewer limitiert ist, da dieser nicht die kompletten zugrundeliegenden Daten herunterladen kann. Lediglich eine Aggregation, auf welcher die Visualisierung beruht, kann heruntergeladen werden. Ein Vergleich zeigt die wesentlichen Berechtigungen je Lizenz.

Der Einstieg bei Tableau ist für Organisationen nicht unter 106 Lizenzen (100 Viewer, 5 Explorer, 1 Creator) möglich, und Kosten von mindestens $1445 im Monat müssen einkalkuliert werden.

Wie bereits erwähnt, existieren Leistungserweiterungen, sogennante Add-ons. Die selbstverwaltende Alternative unter Nutzung von Tableau Server (hosted by customer) kann um das Tableau Data Management Add‑on und das Server Management Add‑on erweitert werden. Hauptsächlich zur Serveradministration, Datenverwaltung und -bereitstellung konzipiert sind die Features in vielen Fällen entbehrlich. Für die zweite Alternative (hosted by Tableau) kann der Kunde ebenfalls das Tableau Data Management Add‑on sowie sogenannte Resource Blocks dazu kaufen. Letzteres lässt bereits im Namen einen kapazitätsabhängigen Kostenfaktor vermuten, welcher zur Skalierung dient. Die beiden Add‑ons wiederum erhöhen die Kosten einer jeden Lizenz, was erhebliche Kostensteigerungen mit sich bringen kann. Das Data Management Add‑on soll als Beispiel die Kostenrelevanz verdeutlichen. Es gelten $5,50 je Lizenz für beide Hosting Varianten. Ein Unternehmen bezieht 600 Lizenzen (50 Creator, 150 Explorer und 400 Viewer) und hosted Tableau Server auf einer selbstgewählten Infrastruktur. Beim Zukauf des Add‑ons erhöht sich die einzelne Viewer-Lizenz bei einem Basispreis von $12 um 46%. Eine nicht unrelevante Größe bei der Vergabe neuer Viewer-Lizenzen, womit sich ein jedes Unternehmen mit Wachstumsambitionen auseinandersetzen sollte. Die Gesamtkosten würden nach geschilderter Verteilung der Lizenzen um 24% steigen (Anmerkung: eventuelle Rabatte sind nicht mit einbezogen). Die Tatsache, dass die Zuschläge für alle Lizenzen gelten, kann zumindest kritisch hinterfragt werden.

Ein weiterer, anfangs oft unterschätzter Kostenfaktor ist die Anzahl der Explorer-Lizenzen. Das Verhältnis der Explorer-Lizenzen an der Gesamtanzahl wächst in vielen Fällen mittelfristig nach der Einführungsphase stark an. Häufig wird Tableau als eine neue State of the Art Reporting Lösung mit schönen bunten Bildern betrachtet und dessen eigentliche Stärke, die Generierung von neuen Erkenntnissen mittels Data Discovery, wird unterschätzt. Hier kommt die Explorer Lizenz ins Spiel, welche ca. das Dreifache einer Viewer Lizenz kostet und den User befähigt, tiefer in die Daten einzusteigen.

Nichtdestotrotz kann man behaupten, dass das Lizenzmodell sehr transparent ist. Tableau selbst wirbt damit, dass keine versteckten Kosten auf den Kunden zukommen. Das Lizenzmodell ist aber nicht nur auf die Endkunden ausgerichtet, sondern bietet mit Tableau Server auch ein besonders auf Partner ausgerichtetes Konzept an. Serviceanbieter können so Lizenzen erwerben und in das eigene Angebot zu selbst gewählten Konditionen aufnehmen. Eine Server Instanz reicht aus, da das Produkt auch aus technischer Sicht mit sogenannten Sites auf verschiedene Stakeholder ausgerichtet werden kann.

Community & Features von anderen Entwicklern

Die Bedeutung einer breiten Community soll hier noch einmal hervorgehoben werden. Für Nutzer ist der Austausch über Probleme und Herausforderungen sowie technischer und organisatorischer Art äußerst wichtig, und auch der Softwarehersteller profitiert davon erheblich. Nicht nur, dass der Support teilweise an die eigenen Nutzer abgegeben wird, auch kann der Anbieter bestehende Features zielgerichteter optimieren und neue Features der Nachfrage anpassen. Somit steht die Tableau Community der Power BI Community in nichts nach. Zu den meisten Themen wird man schnell fündig in diversen Foren wie auch auf der Tableau Webseite. Es existiert die klassische Community Plattform, aber auch eine Tableau Besonderheit: Tableau Public. Es handelt sich hierbei um eine kostenlose Möglichkeit eine abgespeckte Version von Tableau zu nutzen und Inhalte auf der gleichnamigen Cloud zu veröffentlichen. Ergänzend sind etliche Lernvideos auf den einschlägigen Seiten fast zu jedem Thema zu finden und komplettieren das Support-Angebot.

Zusätzlich bietet Tableau sogenannte Admin-Tools aus eigenem Hause an, welche als Plug ins eingebunden werden können. Tableau unterscheidet dabei zwischen Community Supported Tools (z.B. TabMon) und Tableau Supported Tools (z.B. Tabcmd).

Ebenfalls bietet Tableau seit der Version 2018.2 dritten Entwicklern eine sogenannte Extensions API an und ermöglicht diesen damit, auf Basis der Tableau-Produkte eigene Produkte zu entwickeln. Erst kürzlich wurde mit Sandboxed Extensions in der Version 2019.4 ein wesentlicher Schritt hin zu einer höheren Datensicherheit gemacht, so dass es zukünftig zwei Gruppen von Erweiterungen geben wird. Die erste und neue Gruppe Sandboxed Extensions beinhaltet alle Erweiterungen, bei denen die Daten das eigene Netzwerk bzw. die Cloud nicht verlassen. Alle übrigen Erweiterungen werden in der zweiten Gruppe Network-Enabled Extensions zusammengefasst. Diese kommunizieren wie gehabt mit der Außenwelt, um den jeweiligen Service bereitzustellen.

Grundsätzlich ist Tableau noch zurückhaltend, wenn es um Erweiterungen des eigenen Produktportfolios geht. Deshalb ist die Liste mit insgesamt 37 Erweiterungen von 19 Anbietern noch recht überschaubar.

Daten laden & transformieren

Bevor der Aufbau der Visualisierungen beginnen kann, müssen die Daten fehlerfrei in Logik und in Homogenität in das Tool geladen werden. Zur Umsetzung dieser Anforderungen bietet sich ein ETL Tool an, und mit der Einführung von Tableau Prep Builder im April 2018 gibt der Softwareentwickler dem Anwender ein entsprechendes Tool an die Hand. Die Umsetzung ist sehr gut gelungen und die Bedienung ist sogar Analysten ohne Kenntnisse von Programmiersprachen möglich. Natürlich verfügen die zur Visualisierung gedachten Tools im Produktsortiment (Tableau Desktop, Server und Online) ebenfalls über (gleiche) Werkzeuge zur Datenmanipulierung. Jedoch verfügt Tableau Prep Builder dank seiner erweiterten Visualisierungen zur Transformation und Zusammenführung von Daten über hervorragende Werkzeuge zur Überprüfung und Analyse der Datengrundlage sowie der eigenen Arbeit.

Als Positivbeispiel ist die Visualisierung zu den JOIN-Operationen hervorzuheben, welche dem Anwender auf einen Blick zeigt, wie viele Datensätze vom JOIN betroffen sind und letztendlich auch, wie viele Datensätze in die Output-Tabelle eingeschlossen werden (siehe Grafik).

Zur Datenzusammenführung dienen klassische JOIN- und UNION-Befehle und die Logik entspricht den SQL-Befehlen. Das Ziel dabei ist die Generierung einer Extract-Datei und somit einer zweidimensionalen Tabelle für den Bau von Visualisierungen.

Exkurs – Joins in Power BI:

Erst bei der Visualisierung führt Power BI (im Hintergrund) die Daten durch Joins verschiedener Tabellen zusammen, sofern man vorher ein Datenmodell fehlerfrei definiert hat und die Daten nicht bereits mittels Power Query zusammengeführt hat.

Alternativ können auch diverse Datenquellen in das Visualisierungstool geladen und entsprechend des Power BI-Ansatzes Daten zusammengeführt werden. Dieses sogenannte Data Blending rückt seit der Einführung von Tableau Prep Builder immer mehr in den Hintergrund und Tableau führt die User auch hin zu einer weiteren Komponente: Tableau Prep Conductor. Es ist Bestandteil des bereits erwähnten, kostenpflichtigen Tableau Data Management Add-ons und ergänzt die eingeschränkte Möglichkeit, in Tableau Prep Builder automatisierte Aktualisierungen zu planen.

Kalkulationen können, wie auch bei Power BI, teilweise über ein Userinterface (UI) getätigt werden. Jedoch bietet das UI weniger Möglichkeiten, die wirklich komplizierten Berechnungen vorzunehmen, und der User wird schneller mit der von Tableau entwickelten Sprache konfrontiert. Drei Kategorien von Berechnungen werden unterschieden:

  • Einfache Berechnungen
  • Detailgenauigkeits-Ausdrücke (Level of Detail, LOD)
  • Tabellenberechnungen

Es gibt zwei wesentliche Fragestellungen bei der Auswahl der Berechnungsmethode.

1. Was soll berechnet werden? => Detailgenauigkeit?

Diese Frage klingt auf den ersten Blick simpel, kann aber komplexe Ausmaße annehmen. Tableau gibt hierzu aber einen guten Leitfaden für den Start an die Hand.

2. Wann soll berechnet werden?

Die Wahl der Berechnungsmethode hängt auch davon ab, wann welche Berechnung von der Software durchgeführt wird. Die Reihenfolge der Operationen zeigt die folgende Grafik.

Man braucht einiges an Übung, bis man eine gewisse Selbstsicherheit erlangt hat. Deshalb ist ein strukturiertes Vorgehen für komplexe Vorhaben ratsam.

Daten laden & transformieren: AdventureWorks2017Dataset

Wie bereits im ersten Artikel beschrieben, ist es nicht sehr sinnvoll, ein komplettes Datenmodell in ein BI-Tool zu laden, insbesondere wenn man nur wenige Informationen aus diesem benötigt. Ein für diese Zwecke angepasster View in der Datenbasis wäre aus vielerlei Hinsicht näher an einem Best Practice-Vorgehen. Nicht immer hat man die Möglichkeit, Best Practice im Unternehmen zu leben => siehe Artikel 1 der Serie.

Erst durch die Nutzung von Tableau Prep wurde die komplexe Struktur der Daten deutlich. In Power BI fiel bei der Bereitstellung der Tabellen nicht auf, dass die Adressdaten zu den [Store Contact] nicht in der Tabelle [Adress] zu finden sind. Erst durch die Nutzung von Tableau Prep und einer Analyse zu den Joins, zeigte das Fehlen zuvor genannter Adressen für Stores auf. Weiterhin zeigte die Analyse des Joins von Handelswaren und dazugehöriger Lieferanten auch eine m:n Beziehung auf und somit eine Vervielfachung der Datensätze der output Tabelle.

Kurzum: Tableau Prep ist ein empfehlenswertes Tool, um die Datenbasis schnell zu durchdringen und aufwendige Datenbereitstellungen vorzunehmen.

Daten visualisieren

Erwartungsgemäß sind im Vergleich zwischen Tableau und Power BI einige Visualisierungen leichter und andere dagegen schwerer aufzubauen. Grundsätzlich bieten beide Tools einige vorprogrammierte Visualisierungsobjekte an, welche ohne großen Aufwand erstellt werden können. Interessant wird es beim Vergleich der Detailgenauigkeit der Visualisierungen, wobei es nebensächlich ist, ob es sich dabei um ein Balken- oder Liniendiagramm handelt.

Hands on! Dazu lädt Tableau ein, und das ist auch der beste Weg, um sich mit der Software vertraut zu machen. Für einen einfacheren Start sollte man sich mit zwei wesentlichen Konzepten vertraut machen:

Reihenfolge der Operationen

Yep! Wir hatten das Thema bereits. Ein Blick auf die Grafik beim Basteln einzelner Visualisierungen kann helfen! Jeder Creator und Explorer sollte sich vorher mit der Reihenfolge von Operationen vertraut machen. Das Konzept ist nicht selbsterklärend und Fehler fallen nicht sofort auf. Schaut einmal HIER rein! Tableau hat sich eine Stunde Zeit genommen, um das Konzept anhand von Beispielen zu erklären.

Starre Anordnung von Elementen

Visualisierungen werden erst in einem extra Arbeitsblatt entworfen und können mit anderen Arbeitsblättern in einem Dashboard verbaut werden. Die Anordnung der Elemente auf dem Dashboard kann frei erfolgen und/oder Elemente werden in einer Objekthierarchie abgelegt. Letzteres eignet sich gut für den Bau von Vorlagen und ist somit eine Stärke von Tableau. Das Vorgehen dabei ist nicht trivial, das heißt ein saloppes Reinschmeißen von Visualisierungen führt definitiv nicht zum Ziel.
Tim erklärt ziemlich gut, wie man vorgehen kann => HIER.

Tableau ist aus der Designperspektive limitiert, weshalb das Endergebnis, das Dashboard,  nicht selten sehr eckig und kantig aussieht. Einfache visuelle Anpassungen wie abgerundete Kanten von Arbeitsblättern/Containern sind nicht möglich. Designtechnisch hat Tableau daher noch Luft nach oben!

Fazit

Der Einstieg für kleine Unternehmen mit Tableau ist nur unter sehr hohem Kostenaufwand möglich, aufgrund von preisintensiven Lizenzen und einer Mindestabnahme an Lizenzen. Aber auch bei einem hohen Bedarf an Lizenzen befindet sich Tableau im höheren Preissegment. Jedoch beinhalten Tableaus Lizenzgebühren bereits Kosten, welche bei der Konkurrenz erst durch die Nutzung ersichtlich werden, da bei ihnen die Höhe der Kosten stärker von der beanspruchten Kapazität abhängig ist. Tableau bietet seinen Kunden damit eine hohe Transparenz über ein zwar preisintensives, aber sehr ausgereiftes Produktportfolio.

Tableau legt mit einer lokalen Option, welche die gleichen Funktionalitäten beinhaltet wie die cloudbasierte Alternative, ein Augenmerk auf Kunden mit strengen Data Governance-Richtlinien. Sandboxed Extensions sind ein weiteres Beispiel für das Bewusstsein für eine hohe Datensicherheit. Jedoch ist das Angebot an Extensions, also das Angebot dritter Entwickler, ausbaufähig. Eine breit aufgestellte Community bietet nicht nur dritten Entwicklern eine gute Geschäftsgrundlage, sondern auch Nutzern zu fast jedem Thema eine Hilfestellung.

Tableau Prep Builder => TOP!

Mit diesem Tool kann die Datengrundlage super einfach analysiert werden und Datenmanipulationen sind einfach durchzuführen. Die Syntax und die Verwendung von Berechnungen bedarf einiger Übung, aber wenn man die wesentlichen Konzepte verstanden hat, dann sind Berechnungen schnell erstellt.

Ein Dashboard kann zu 90 % in fast jedem Tool gleich aussehen. Der Weg dorthin ist oft ein anderer und je nach Anforderung bei einem Tool leichter als bei einem anderen. Tableau bietet ein komplexes Konzept, sodass auch die außergewöhnlichsten Anforderungen erfüllt werden können. Jedoch ist das zugrundliegende Design oft sehr kantig und nicht immer zeitgemäß.

Fortsetzung folgt… MicroStrategy

Stop processing the same mistakes! Four steps to business & IT alignment

Digitization. Agility. Tech-driven. Just three strategy buzzwords that promise IT transformation and business alignment, but often fade out into merely superficial change. In fact, aligning business and IT still vexes many organizations because company leaders often forget that transformation is not a move from A to B, or even from A to Z––it’s a move from a fixed starting point, to a state of continual change.


Read this article in German:

Mit den richtigen Prozessen zum Erfolg: vier Schritte zum Business-IT Alignment

 


Within this state of perpetual flux, adaptive technology is necessary, not only to keep up with industry developments but also with the expansion of technology-enabled customer experiences. After all, alignment assumes that business and technology are separate entities, when in fact they are inextricably linked!

Metrics that matter: From information technology to business technology

Information technology is continuing to challenge the way companies organize their business processes, communicate with customers and potential customers, and deliver services. Although there is no single dominant reorganization strategy, common company structures lean towards decentralizing IT, shifting it closer to end-users and melding the knowledge-base with business strategy. Business-IT alignment is more than ever vital for market impact and growth.

This tactic means as business goals pivot, IT can more readily respond with permanent solutions to support and maintain enterprise momentum. In turn, technological advances and improvements are hardwired into current and future strategies and initiatives. As working ecosystems replace strict organizational structures, the traditional question “Which department do you work in?” has been replaced by, “How do you work?”

But how does IT prove its value and win the trust of the C-suite? Well, according to Gartner, almost 20% of companies have already invested in tools capable of monitoring business-relevant metrics, with this number predicted to reach 60% by 2021. The problem is many infrastructure and operations (I&O) leaders don’t know where to begin when initiating an IT monitoring strategy.

Reach beyond the everyday: Four challenges to alignment

With this, CIOs are under mounting pressure to address digital needs that grow and transform, as well as to renovate the operational environment with new functions. They also must still demonstrate how IT is meeting a given business strategy. So looking forward, no matter how big or small your business is, technology can deliver tangible and intangible benefits (like speed and performance) to hit revenue and operational targets efficiently, and meet your customers’ expectations of innovation.

Put simply, having a good technological infrastructure enriches the culture, efficiency, and relationships of your business.

Business and IT alignment: The rate of change

This continuous strategic loop means enterprises function better, make more profit, and see better ROI because they achieve their goals with less effort. And while there may be no standard way to align successfully, an organization where IT and business strategy are in lock-step can further improve agility and operational efficiencies. This battle of the ‘effs’, efficiency vs. effectiveness, has never been so critical to business survival.

In fact, successful companies are those that dive deeper; such is the importance of this synergy. Amazon and Apple are prime examples—technology and technological innovation is embedded and aligned within their operational structure. In several cases, they created the integral technology and business strategies themselves!

Convergence and Integration

These types of aligned companies have also increased the efficiency of technology investments and significantly reduced the financial and operational risks associated with business and technical change.

However, if this rate of change and business agility is as fast as we continually say, we need to be talking about convergence and integration, not just alignment. In other words, let’s do the research and learn, but empower next-level thinking so we can focus on the co-creation of “true value” and respond quickly to customers and users.

Granular strategies

Without this granular strategy, companies may spend too much on technology without ever solving the business challenges they face, simply due to differing departmental objectives, cultures, and incentives. Simply put, business-IT alignment integrates technology with the strategy, mission, and goals of an organization. For example:

  • Faster time-to-market
  • Increased profitability
  • Better customer experience
  • Improved collaboration
  • Greater industry and IT agility
  • Strategic technological transformation

Hot topic

View webinar recording Empowering Collaboration Between Business and IT, with Fabio Gammerino, Signavio Pre-Sales Consultant.

The power of process: Four steps to better business-IT alignment

While it may seem intuitive, many organizations struggle to achieve the elusive goal of business-IT alignment. This is not only because alignment is a cumbersome and lengthy process, but because the overall process is made up of many smaller sub-processes. Each of these sub-processes lacks a definitive start and endpoint. Instead, each one comprises some “learn and do” cycles that incrementally advance the overall goal.

These cycles aren’t simple fixes, and this explains why issues still exist in the modern digital world. But by establishing a common language, building internal business relationships, ensuring transparency, and developing precise corporate plans of action, the bridge between the two stabilizes.

Four steps to best position your business-IT alignment strategy:

  1. Plan: Translate business objectives into measurable IT services, so resources are effectively allocated to maximize turnover and ROI – This step requires ongoing communication between business and IT leaders.
  2. Model: IT designs infrastructure to increase business value and optimize operations – IT must understand business needs and ensure that they are implementing systems critical to business services.
  3. Manage: Service is delivered based on company objectives and expectations – IT must act as a single point-of-service request, and prioritize those requests based on pre-defined priorities.
  4. Measure: Improvement of cross-organization visibility and service level commitments – While metrics are essential, it is crucial that IT ensures a business context to what they are measuring, and keeps a clear relationship between the measured parameter and business goals.

Signavio Says

Temporarily rotating IT employees within business operations is a top strategy in reaching business-IT alignment because it circulates company knowledge. This cross-pollination encourages better relationships between the IT department and other silos and broadens skill-sets, especially for entry-level employees. Better knowledge depth gives the organization more flexibility with well-rounded employees who can fill various roles as demand arises.

Get in touch

Discover how Signavio can lead your business to IT transformation and operational excellence with the  Signavio Business Transformation Suite. Try it for yourself by registering now for a free 30-day trial.

How Data Analytics In The Cloud Transforms Your Business

Businesses have started to turn to cloud-based technology to solve their growing data problems. But before we dive deep into the reason behind it, let’s look at some reasons why data analytics is such a powerful tool. It all falls back to businesses like Netflix, Amazon, Google, and Facebook. All of these businesses are using data analytics to understand their customers and are making an absolute fortune. They also have so much data coming in that they needed to mitigate it somehow, so they turned to the cloud.

Let’s use Netflix as an example here. They have over 115 million subscribers and have become the absolute king of the online streaming industry. Their rise to the top was no fluke. They developed state-of-the-art methods of data analytics and then gathered the information needed to provide the right entertainment to the right people.

Amazon uses data to learn about its customers. They analyze all behavior on their website and then target customers based on that data.

Cloud-based technologies are designed to reduce costs associated with older data analytical methods. Businesses like Netflix, Amazon, Google, and Facebook have all started underpinning the cloud because they know it’s the future. They based their entire business models around it.

But smaller businesses still have a long way to go. Only 40% of businesses are using data as the core piece of their business strategy.

Now let’s look at some ways that data analytics has transformed business.

It Gave Birth to Strategic Analytics

Strategic analytics is the backbone of your entire data plan. It is a detailed analysis of the entire system that is used to determine how you are funneling customers into your system. It will reveal weak points and show you the strengths so that you can develop data-driven strategies moving forward. It also helps you understand the behavior of your market.

Strategic analytics follows a three-step process:

  1. Identify your business model’s strengths and weaknesses in comparison with your competition.
  2. Diagnose all of your business processes to determine areas that might need to be improved.
  3. Analyze individuals within the company to make sure you are properly using them. You would be surprised at the number of businesses wasting their employees’ talents on inefficient tasks.

At the end of it all, your business should be able to determine areas of your marketing where you can pull out more value, as well as data that you need to start gathering.

Fuel your Decisions with Platform Analytics

The goal here is to combine data analytics with your decision-making processes so that your business operates more efficiently at its very core. If money is the lifeblood of your business, then decisions are the heart that keeps that money flowing. So think of analytics as a healthy diet. It keeps every area of your business healthy and operating at peak efficiency. Platform analytics asks some important questions like:

  • How can data analytics be efficiently added to our everyday business processes?
  • Are there any areas that we can automate that will improve efficiency?
  • What will back end systems benefit from learning more about our customers?

In most cases, businesses will find that the cloud will enhance their overall data plan, no matter which point they have reached in their growth. Think of it like checking your blood pressure. If there are problems, then you know that you’ll need a diagnosis.

Helps Businesses Transform their Model

Businesses will need to use data in parallel with their model to stay caught up with the changing times as we move forward. In layman’s terms, businesses need to update their core business processes in a way so that it uses data to create opportunities. This opens up a whole new world for their customers, products, and services.

Companies that can forecast using data will see improvements across the board – from their recruitment to their marketing. But there is a specific data-centric approach that must be taken.

  • Must possess an overall vision that includes data and capitalizes on the opportunities presented.
  • Develop a culture that is centered on data and is not afraid to experiment with it.
  • Leverage new technologies to manage their data. Right now, the latest technology is cloud-based so businesses must learn to leverage it.
  • Use data to build trust with consumers.
  • Find innovative ways to gain insight into upcoming trends and tap into there as quickly as possible.

Management of Enterprise Information

Enterprise information management (known as EIM) is an important part of data-driven processes. Most data in businesses is stored in an unmanaged location like a server or some other in-house database. Cloud-based technologies have created a more secure way to store data, but you will still need a data management system in place.

By developing agile data management systems, you will be able to gather and distribute data more efficiently. EIM systems allow businesses to:

  • Streamline all of their processes in a way that simplifies everyone’s job.
  • Improve collaboration among different teams.
  • Improve the productivity of employees.

Creates a Data-Centric Business

This is the most important factor in business today, and it’s the reason why all businesses must start using the latest data analytics strategies. The more useful data a business can generate, the more of an advantage they are going to have. Again, look at leaders like Netflix and Amazon to see this in action. They are generating essential information from everyone who browses their systems. Their entire business models are centered on data, and it’s the number one reason why they are at the top of their respective industries.

Insight, optimization, and innovation are the three main categories of data analytics.

Final Thoughts

The Research Optimus Team understands that having the right data migration system is going to benefit all businesses, both large and small. It’s why their focus has turned to cloud-based technologies. Could-enabled businesses gain a competitive advantage over those who are still relying on older data technologies.

Business moves at supersonic speeds now so if you are not staying current with the latest technology, then you are going to fall behind.

 

Wie funktioniert Natural Language Processing in der Praxis? Ein Überblick

Natural Language Processing (NLP,auf Deutsch auch als Computerlinguistik bezeichnet) gilt als ein Teilbereich des Machine Learning und der Sprachwissenschaften.

Beim NLP geht es vom Prinzip um das Extrahieren und Verarbeiten von Informationen, die in den natürlichen Sprachen enthalten sind. Im Rahmen von NLP wird die natürliche Sprache durch den Rechner in Zahlenabfolgen umgewandelt. Diese Zahlenabfolgen kann wiederum der Rechner benutzen, um Rückschlüsse auf unsere Welt zu ziehen. Kurz gesagt erlaubt NLP dem Computer unsere Sprache in ihren verschiedenen Formen zu verarbeiten. 

Eine ausführlichere Definition von NLP wurde auf dem Data Science Blog von Christopher Kipp vorgenommen. 

In diesem Beitrag werde ich dagegen einen Überblick über die spezifischen Schritte im NLP als Prozess darstellen, denn NLP erfolgt in mehreren Phasen, die aufeinander Folgen und zum Teil als Kreislauf verstanden werden können. In ihren Grundlagen ähneln sich diese Phasen bei jeder NLP-Anwendung, sei es Chatbot Erstellung oder Sentiment Analyse.

1. Datenreinigung / Normalisierung 

In dieser Phase werden die rohen Sprachdaten aus ihrem ursprünglichen Format entnommen, sodass am Ende nur reine Textdaten ohne Format erhalten bleiben. 

Beispielsweise können die Textdaten für unsere Analyse aus Webseiten stammen und nach ihrer Erhebung in HTML Code eingebettet sein.

Das Bild zeigt eine Beispielseite. Der Text hier ist noch in einen HTML Kontext eingebettet. Der erste Schritt muss daher sein, den Text von den diversen HTML-Tags zu bereinigen. 

 

2. Tokenisierung und Normalisierung (Tokenizing and Normalizing) 

Nach dem ersten Schritt steht als Ergebnis idealerweise reiner Text da, der aber auch Sprachelemente wie Punkte, Kommata sowie Groß- und Kleinschreibung beinhaltet. 

Hier kommt der nächste Schritt ins Spiel – die Entfernung der Interpunktion vom Text. Der Text wird auf diese Weise auf seine Wort-Bestandteile (sog. Tokens) reduziert. 

Zusätzlich zu diesem Schritt kann auch Groß- und Kleinschreibung entfernt werden (Normalisierung). Dies spart vor allem die Rechenkapazität. 

So wird aus folgendem Abschnitt:

Auf diese Weise können wir die Daten aggregieren und in Subsets analysieren. Wir müssen nicht immer das ganze Machine Learning in Hadoop und Spark auf dem gesamten Datensatz starten.

folgender Text 

auf diese weise können wir die daten aggregieren und in subsets analysieren wir müssen nicht immer das ganze machine learning in hadoop und spark auf dem gesamten datensatz starten

 

3. Füllwörterentfernung / Stop words removal 

Im nächsten Schritt entfernen wir die sogenannten Füllwörter wie „und“, „sowie“, „etc.“. In den entsprechenden Python Bibliotheken sind die gängigen Füllwörter bereits gespeichert und können leicht entfernt werden. Trotzdem ist hier Vorsicht geboten. Die Bedeutung der Füllwörter in einer Sprache verändert sich je nach Kontext. Aus diesem Grund ist dieser Schritt optional und die zu entfernenden Füllwörter müssen kontextabhängig ausgewählt werden. 

Nach diesem Schritt bleibt dann in unserem Beispiel folgender Text erhalten: 

können daten aggregieren subsets analysieren müssen nicht immer machine learning hadoop spark datensatz starten

 

4. Pats of speech (POS) 
Als weiterer Schritt können die Wörter mit ihrer korrekten Wortart markiert werden. Der Rechner markiert sie entsprechend als Verben, Nomen, Adjektive etc. Dieser Schritt könnte für manche Fälle der Grundformreduktion/Lemmatization notwendig sein (dazu sogleich unten).

 

5. Stemming und Lemmatization/Grundformreduktion

In weiteren Schritten kann weiter das sogenannte Stemming und Lemmatization folgen. Vom Prinzip werden hier die einzelnen Wörter in ihre Grundform bzw. Wörterbuchform gebracht. 

Im Fall von Stemming werden die Wörter am Ende einfach abgeschnitten und auf den Wortstamm reduziert. So wäre zum Beispiel das Verb „gehen“, „geht“ auf die Form „geh“ reduziert. 

Im Fall der Lemmatization bzw. Grundformreduktion werden die Wörter in ihre ursprüngliche Wörterbuchform gebracht: das Verb „geht“ wäre dann ins „gehen“ transformiert. 

Parts of Speech, Stemming als auch Lemmatising sind vorteilhaft für die Komplexitätsreduktion. Sie führen deswegen zu mehr Effizienz und schnellerer Anwendbarkeit. Dies geschieht allerdings auf Kosten der Präzision. Die auf diese Weise erstellten Listen können dann im Fall einer Suchmaschine weniger relevante Ergebnisse liefern.

Nachfolgende Schritte beim NLP transformieren den Text in mathematische Zahlenfolgen, die der Rechner verstehen kann. Wie wir in diesem Schritt vorgehen, hängt stark davon ab, was das eigentliche Ziel des Projektes sei. Es gibt ein breites Angebot an Python Paketen, die die Zahlenbildung je nach Projektziel unterschiedlich gestalten

 

6a. Bag of Words Methoden in Python (https://en.wikipedia.org/wiki/Bag-of-words_model)

Zu den Bag of Words Methoden in Python gehört das sogenannte TF-IDF Vectorizer. Die Transformationsmethode mit dem TF-IDF eignet sich beispielsweise zum Bau eines Spamdetektors, da der TF-IDF Vectorizer die Wörter im Kontext des Gesamtdokumentes betrachtet.

 

6b. Word Embeddings Methoden in Python: Word2Vec, GloVe (https://en.wikipedia.org/wiki/Word_embedding)

Wie der Name bereits sagt transformiert Word2Vec die einzelnen Wörter zu Vektoren (Zahlenfolgen). Dabei werden ähnliche Wörter zu ähnlichen Vektoren transformiert. Die Methoden aus der Word Embeddings Kiste eignen sich zum Beispiel besser, um einen Chatbot zu erstellen. 

Im letzten Schritt des NLP können wir die so prozessierte Sprache in die gängigen Machine Learning Modelle einspeisen. Das Beste an den oben erwähnten NLP Techniken ist die Transformation der Sprache in Zahlensequenzen, die durch jeden ML Algorithmus analysiert werden können. Die weitere Vorgehensweise hängt hier nur noch vom Ziel des Projektes ab. 

Dies ist ein Überblick über die notwendigen (und optionalen) Schritte in einem NLP Verfahren. Natürlich hängt die Anwendung vom jeweiligen Use Case ab. Die hier beschriebenen NLP Phasen nehmen viele Ungenauigkeiten in Kauf, wie zum Beispiel die Reduzierung der Wörter auf Wortstämmen bzw. den Verzicht auf Großschreibung. Bei der Umsetzung in der Praxis müssen immer Kosten und Nutzen abgewogen werden und das Verfahren dem besonderen Fall angepasst werden. 

Quellen:
  • Mandy Gu: „Spam or Ham: Introduction to Natural Language Processing Part 2“ https://towardsdatascience.com/spam-or-ham-introduction-to-natural-language-processing-part-2-a0093185aebd
  • Christopher D. Manning, Prabhakar Raghavan & Hinrich Schütze: „Introduction to Information Retrieval”, Cambridge University Press, https://nlp.stanford.edu/IR-book/
  • Hobson Lane, Cole Howard, Hannes Max Hapke: „Natural Language Processing in Action. Understanding, analyzing, and generating text with Python.” Manning Shelter Island

Mit den richtigen Prozessen zum Erfolg: vier Schritte zum Business-IT Alignment

Digitalisierung, Agilität, Tech-basiert: Sowohl in der IT-Transformation als auch im Business-Alignment stecken diese drei strategischen Schlagworte. Häufig sorgen sie jedoch nur für oberflächliche Veränderungen. Tatsächlich ist die Abstimmung von Business und IT für viele Unternehmen nach wie vor eine Herausforderung. Die Transformation ist schließlich keine einmalige Umstellung von A auf B, sondern ein dauerhafter Zustand der ständigen Veränderungen.


Read this article in English:

Stop processing the same mistakes! Four mistakes to business & IT alignment


Für ein erfolgreiches Business-IT Alignment benötigen Unternehmen vor allem adaptive Technologien. Nur so können sie mit den Entwicklungen in der Branche und dem zunehmend geforderten Kundenerlebnis auf Technologiebasis Schritt halten. Alignment bedeutet also, die bis dato als getrennt wahrgenommenen Bereiche Business und Technologie miteinander zu verbinden.

Von der Informations- zur Business-Technologie

Ob es um die Organisation von Geschäftsprozessen, die Kommunikation mit Kunden oder die Erbringung von Dienstleistungen geht: Informationstechnologie sorgt in all diesen Bereichen für Veränderungen. Dabei ist die Abstimmung von Business und IT für den Markteinfluss und das Wachstum mehr denn je von entscheidender Bedeutung. Auch wenn es keine vorherrschende Reorganisationsstrategie gibt, tendieren die meisten Unternehmen dazu, ihre IT zu dezentralisieren. Dadurch wird sie näher an die Endnutzer gebracht, die Wissensbasis verschmilzt zudem häufig mit der Geschäftsstrategie. 

Bei dieser Taktik stehen die Geschäftsziele im Mittelpunkt: Die IT kann die Dynamik des Unternehmens schneller mit permanenten Lösungen unterstützen und aufrechterhalten. Technologischer Fortschritt und Verbesserungen werden wiederum in aktuelle und zukünftige Strategien und Initiativen integriert. Besonders erfolgreiche Unternehmen zeichnen sich dadurch aus, dass sie strenge Organisationsstrukturen hinter sich lassen – die traditionelle Frage „In welcher Abteilung arbeiten Sie?“ wird zu „Wie arbeiten Sie?“.

Aber wie beweist die IT ihren Wert und gewinnt das Vertrauen der C-Suite? Laut Gartner haben fast 20% der Unternehmen bereits in Tools investiert, mit denen geschäftsrelevante Kennzahlen überwacht werden können. Bis 2021 sollen es voraussichtlich 60% sein. Das Problem ist jedoch, dass viele I&O-Führungskräfte nicht wissen, wo sie ansetzen sollen, wenn sie eine IT-Überwachungsstrategie initiieren. 

Vier Herausforderungen des Business-IT Alignments

CIOs stehen unter dem zunehmenden Druck, die wachsenden und sich verändernden digitalen Anforderungen zu erfüllen. Zugleich sollen sie auch die Betriebsumgebung mit neuen Funktionen ausstatten und nachweisen, dass die IT einer bestimmten Geschäftsstrategie entspricht. Unabhängig von der Größe eines Unternehmens gilt: Zukunftsorientierten Organisationen kann die Technologie konkrete Vorteile (wie Geschwindigkeit und Leistung) bieten, um operative und Umsatzziele effizient zu erreichen und die Innovationserwartungen ihrer Kunden zu erfüllen. Eine gute technologische Infrastruktur bereichert die Kultur, Effizienz und Kundenbeziehungen eines Unternehmens.

Von 0 auf 100: Business- und IT Alignment

Wer eine kontinuierliche Strategie implementiert, wird mit einer besser funktionierenden Organisation, mehr Gewinn und einem besseren ROI belohnt. Schließlich erreicht man seine Ziele mit weniger Aufwand und agiert dadurch effizienter. Natürlich gibt es keine Standardmethode für eine erfolgreiche Abstimmung. Eine Organisation, in der sich die IT- und Geschäftsstrategie im Einklang befindet, kann ihre Flexibilität und betriebliche Effizienz mit einer maßgeschneiderten Strategie deutlich verbessern. Dieser Kampf zwischen Effizienz und Effektivität war noch nie so entscheidend für das Überleben von Unternehmen wie heute.

In der Tat sind es vor allem erfolgreiche Unternehmen, die sich umfassend mit den Zusammenhängen zwischen IT und Business befassen und die Bedeutung dieser Synergie verstehen. Hervorragende Beispiele hierfür sind Amazon und Apple. Bei beiden Konzernen sind Technologie und technologische Innovation integraler Bestandteil der Betriebsstruktur. In einigen Fällen haben sie ihre Technologie- und Geschäftsstrategien sogar selbst entwickelt.

Konvergenz und Integration

Viele erfolgreiche Unternehmen haben die Effizienz ihrer Technologieinvestitionen gesteigert und die finanziellen und operativen Risiken, die mit geschäftlichen und technologischen Veränderungen einhergehen, erheblich reduziert.

Wenn das Tempo von Veränderungen und geschäftlicher Agilität derart hoch ist, muss man jedoch auch die Konvergenz und Integration einbeziehen und nicht nur die Abstimmung von IT und Business. Mit anderen Worten: Unternehmen müssen ihre Denkweise verändern und auf eine neue Ebene bringen, sodass sich alle Mitarbeiter auf die gemeinsame Schaffung von „echtem Mehrwert“ konzentrieren und schnell auf Kunden und Nutzer reagieren können.

Granulare Strategien

Fehlt eine granulare Strategie, können abweichende Abteilungsziele, Kulturen und Anreize dazu führen, dass Unternehmen zu viel Geld für Technologie ausgeben, ohne dadurch ihre geschäftlichen Herausforderungen zu lösen. Einfacher ausgedrückt: Beim Business-IT Alignment sollte die Technologie in die Strategie, Mission und Ziele eines Unternehmens integriert werden, um folgende Ziele zu erreichen: 

  • Schnellere Markteinführungszeit
  • Höhere Rentabilität
  • Besseres Kundenerlebnis
  • Bessere Zusammenarbeit
  • Mehr Unternehmens- und IT-Agilität
  • Strategische, technologische Transformation

Hot Topic

Sehen Sie sich die Webinaraufzeichnung Empowering Collaboration Between Business and IT mit Fabio Gammerino, Signavio Pre-Sales Consultant, an.

Das Potenzial von Prozessen: vier Schritte zum optimalen Business-IT Alignment

Business-IT Alignment erscheint vielen Organisationen als intuitiver Prozess. Dennoch haben  viele Unternehmen Schwierigkeiten, dieses hochgesteckte Ziel auch tatsächlich zu erreichen. Das liegt nicht nur daran, dass die Abstimmung von IT und Fachbereichen ein aufwendiger und langwieriger Prozess ist. 

Darüber hinaus besteht der Gesamtprozess aus vielen kleineren Teilprozessen. Diese Teilprozesse haben keinen definitiven Start- und Endpunkt, sondern beinhalten einige Lern- und Umsetzungszyklen, die das Gesamtziel schrittweise vorantreiben. Sie sind also keine simplen Lösungen. Durch den Aufbau einer gemeinsamen Sprache und abteilungsübergreifender Beziehungen, die Gewährleistung von Transparenz und die Entwicklung präziser, unternehmensweiter Maßnahmepläne wird eine Brücke zwischen den beiden Bereichen geschaffen.

Vier Schritte zur optimalen Positionierung Ihrer Business-IT Alignment-Strategie:

  1. Planen: Wandeln Sie Geschäftsziele in messbare IT-Services um, sodass Ressourcen effektiv zur Verbesserung von Umsatz und ROI genutzt werde können – dieser Schritt erfordert eine kontinuierliche Kommunikation zwischen den Unternehmens- und IT-Verantwortlichen.
  2. Modellieren: Die IT-Abteilung entwirft eine Infrastruktur zur Optimierung und Verbesserung der geschäftlichen Prozesse. Die IT-Abteilung muss die geschäftlichen Anforderungen verstehen und sicherstellen, dass sie Systeme implementiert, die für das Unternehmen von entscheidender Bedeutung sind.
  3. Verwalten: Der Service erfolgt auf Basis der Unternehmensziele und -erwartungen. Die IT muss als zentraler Ansprechpartner für Serviceanfragen fungieren und auf diese Anfragen entsprechend der vordefinierten Prioritäten eingehen.
  4. Messen: Verbesserung der organisationsweiten Transparenz und der Service Level Commitments. Obgleich Kennzahlen von entscheidender Bedeutung sind, ist es weitaus wichtiger, dass die IT einen Geschäftskontext für die von ihnen gemessenen Daten und eine klare Beziehung zwischen den gemessenen Parametern und den Geschäftszielen sicherstellt.

Die Meinung von Signavio

Die vorübergehende Rotation von IT-Mitarbeitern innerhalb des Unternehmens ist eine der Hauptstrategien für die Ausrichtung von Business und IT, da hierdurch internes Wissen im Unternehmen geteilt wird. Diese Wissensweitergabe sorgt für eine bessere Beziehung zwischen der IT-Abteilung und anderen Unternehmensbereichen und erweitert die Kompetenzen, insbesondere bei neuen Mitarbeitern. Profunde Kenntnisse geben der Organisation mehr Flexibilität, gut ausgebildete Mitarbeiter bei Bedarf in anderen Rollen einzusetzen.

 

Kontaktieren Sie uns

Erfahren Sie, wie Signavio mit der Signavio Business Transformation Suite Ihr Unternehmen bei der IT-Transformation und operativen Exzellenz unterstützen kann. 

Daten als Frühwarnsystem einsetzen

In der klassischen Business Intelligence haben Unternehmen jahrelang Daten in Data Warehouses gesammelt und analysiert, um aus der Vergangenheit Lehren für die Zukunft zu ziehen. Zu seiner Zeit war das eine Revolution, aber da es sich dabei vor allem um Daten aus Transaktionssystemen handelte, war der Nutzen begrenzt. Erst mit der Verbreitung des IoT und von Sensoren, die permanent Daten liefern, konnten auch Gründe für Fehler oder Maschinenausfälle ausgelesen werden. Und wenn diese Gründe bestimmten Mustern folgen, liegt es nahe, einzugreifen, bevor ein Problem auftritt – das ist der Grundgedanke hinter dem Konzept von Predictive Analytics.

Großes bisher meist ungenutztes Potential

Systeme, die Risiken und Abweichungen als Frühwarnsystem erkennen, besitzen ein enormes wirtschaftliches Potential. In der Produktion beispielsweise können Maschinen länger reibungsfrei laufen und auch die IT-Infrastruktur profitiert. Predictive Analytics verändern aber auch die Unternehmensführung von Grund auf: Wenn Entscheidungen nur noch auf Basis von Daten anstatt von einem „Bauchgefühl” getroffen werden, verändert sich auch das Machtgefälle zugunsten der IT.

Wenn Entscheider sich nur noch auf Daten verlassen sollen/wollen und ihr Bauchgefühl ausschalten müssen, dann führt das zu einer Art “kultureller Überforderung” wie die Studie „Predictive Analytics 2018“ von IDG Research Services zeigt. Aber den meisten von ihnen ist klar, dass an dem Thema auf lange Sicht kein Weg vorbei führt. Zum Zeitpunkt der Befragung, die schon etwas zurückliegt, stuften bereits 47 Prozent der Unternehmen die Relevanz von Predictive Analytics als sehr hoch (18 Prozent) oder hoch (29 Prozent) ein. Über ein Drittel war aber bereits der Überzeugung, das Predictive Analytics spätestens 2021 eine sehr wichtige Rolle spielen wird.

Intelligenz in den Workflow bringen

Für Managed-Cloud-Unternehmen wie Adacor gewinnt Predictive Analytics in zweierlei Hinsicht an Bedeutung. Zum einen lassen sich damit Prozesse verbessern, mit denen bereits in der Vergangenheit Themen wie das Management von Server-Log-Daten oder CPU-Auslastungen automatisiert und vorausschauend gesteuert wurden.

Für Private Cloud Services, der maßgeschneiderten Erweiterung von internen Rechenzentren bedeutet dies, Teile des Live-Monitorings nach und nach in ein Predictive-Monitoring umzuwandeln und so auf mögliche Ausfälle oder Beeinträchtigungen von Servern im Vorfeld zu reagieren, um so auch den Ausfall für den Kunden zu verhindern. In einem einfachen Beispiel bewertet ein Deep-Learning Modell, ob auf einem beliebigen System die Festplattenfüllstände in der Zukunft stabil verlaufen werden oder ob mit instabilem Verhalten zu rechnen ist. Wird Stabilität erwartet, dann kann ein simpleres Vorhersagemodell diese Stabilität nutzen und die Füllstände vorhersagen. Ist mit instabilem Verhalten zu rechnen, dann wissen die Administratoren, dass sie ein besonderes Auge auf das entsprechende System werfen sollten. So wird durch vergleichsweise einfache Predictive-Monitoring Methoden bereits eine deutlich erhöhte Ausfallsicherheit der Systeme gewährleistet.

Neben stark individualisierten Cloud-Lösungen werden in Zukunft standardisierte Angebote immer mehr nachgefragt werden, die durch Predictive-Analytic-Tools „intelligenter” werden. Übersetzt bedeutet das, maschinelles Lernen nach Möglichkeit automatisch auf neue Prozesse anzuwenden und so Server bzw. die Cloud noch leistungsfähiger und sicherer zu machen.

Size matters

Die Studie zeigte, dass vor allem große Unternehmen Ressourcen für Analytics-Projekte bereitstellen. Über ein Drittel von ihnen hatte bereits Analytics-Projekte umgesetzt, mehr als die Hälfte davon im Bereich Predictive Analytics. Kleine und mittelständische Firmen hingegen verfügten noch wenig über umfangreiche Analytics-Systeme. Die Ergebnisse aus den Predictive-Analytics-Projekten beeinflussen im Wesentlichen auch die Management-Entscheidungen. 94 Prozent der Firmen, die Predictive Analytics anwenden, steuern über die Auswertungen Prozesse vor allem im IT-Bereich, im strategischen Management sowie in Produktion und Fertigung. Die großen Unternehmen sind also größtenteils schon dabei, sich die Vorteile zu nutzen zu machen. Bei mittelständischen und kleineren Unternehmen besteht noch deutlicher Nachholbedarf. Schon die technischen Voraussetzungen genügen häufig nicht den Anforderungen.

Fast alle Branchen können profitieren

Das erstaunt, denn Predictive Analytics kann in vielen Bereichen als eine Art Frühwarnsystem eingesetzt werden. Es hilft nicht nur dabei, Maschinenausfälle bei Produktionsunternehmen durch vorausschauende Wartungen zu minimieren. Es kann zum Beispiel auch den Vertrieb von Handelsunternehmen optimieren. In der Medizin kommen bereits Methoden zum Einsatz, durch die sich Risikofaktoren schneller identifizieren und die Behandlung von Krankheiten insgesamt verbessern lässt. Versicherungen und auch Finanzinstitute kalkulieren ihre Produkte und Prämien seit jeher erfolgreich auf Basis von Wahrscheinlichkeitsanalysen und Hochrechnungen. Auch im Bereich der Betrugsprävention werden entsprechend Methoden und Tools verstärkt eingesetzt, um Kriminellen das Handwerk zu legen.

Man sieht, es lohnt sich für Unternehmen, die Daten sammeln, ihre Strategie an die neuen Technologien anzupassen. Die aktuellen Möglichkeiten zur Analyse und Aggregierung von Daten und Informationen sind extrem groß. Es kommt darauf an, Muster in den „Big Data” zu erkennen und diese richtig zu interpretieren – anstatt dieselben Fehler immer und immer wieder zu machen.

“Saubere Ablage“ bringt Unternehmen nicht weiter

Unternehmen, die Daten sammeln, um diese lediglich sauber abzulegen und zu archivieren, sollten Ihre Strategie an die neuen Möglichkeiten des Predictive Analytics anpassen. Die aktuellen Möglichkeiten zur Auswertung und zur Verdichtung von Daten zu Informationen und somit zur Generierung von Wissen sind extrem groß. Nur wer Muster im großen Reich der Daten erkennt und diese auch richtig interpretieren kann, wird kann mit Predicitve Analytics ein Frühwarnsystem zu seinen Gunsten aufbauen.

Getting started with the top eCommerce use cases

Nowadays, almost all the projects in eCommerce companies are data-dependent and everyone wants to leverage data science techniques to mine as much information as they can from that data. From tracking their customer’s shopping behavior to recommending them what to buy, from finding new leads for their market to calculating their lifetime value, from improving customer experience to increase their profitability. When we navigate through any website, we leave our traces and companies track these touchpoints to get insights about how we behave online. Companies sometimes have different landing pages based on the gender of the user.

This post will be focused on some of the use cases in marketing which are gaining attention over the past few years. I have been associated with different eCommerce companies as a data science consultant.

Upcoming months has a lot to offer as I will be writing blogs about the following use cases:

  1. Multi-touch attribution: A data-driven approach
  2. Introduction to Recommendation engines
  3. How Important is Customer Lifetime Value?
  4. Customer Segmentation
  5. Dynamic Pricing

 

If you are interested in reading the success story for the Multi-touch attribution project you can find it here.

Artikelserie: BI Tools im Vergleich – Power BI von Microsoft

 

Den Auftakt dieser Artikelserie zum Vergleich von BI-Tools macht die Softwarelösung Power BI von Microsoft. Solltet ihr gerade erst eingestiegen sein, dann schaut euch ruhig vorher einmal die einführenden Worte und die Ausführungen zur Datenbasis an.

Lizenzmodell

Power BI ist in seinem Kern ein Cloud-Dienst und so ist auch die Ausrichtung des Lizenzmodells. Der Bezug als Stand-Alone SaaS ist genauso gut möglich, wie auch die Nutzung von Power BI im Rahmen des Serviceportfolios Office 365 von Microsoft. Zusätzlich besteht aber auch die Möglichkeit die Software lokal, also on premise laufen zu lassen. Beachten sollten man aber die eingeschränkte Funktionalität gegenüber der cloudbasierten Alternative.

Power BI Desktop, das Kernelement des Produktportfolios, ist eine frei verfügbare Anwendung. Damit schafft Microsoft eine geringe Einstiegsbarriere zur Nutzung der Software. Natürlich gibt es, wie auf dem Markt üblich, Nutzungsbeschränkungen, welche den User zum Kauf animieren. Interessanterweise liegen diese Limitierungen nicht in den wesentlichen Funktionen der Software selbst, also nicht im Aufbau von Visualisierungen, sondern vor allem in der beschränkten Möglichkeit Dashboards in einem Netzwerk zu teilen. Beschränkt auch deshalb, weil in der freien Version ebenfalls die Möglichkeit besteht, die Dashboards teilen zu können, indem eine Datei gespeichert und weiter versendet werden kann. Microsoft rät natürlich davon ab und verweist auf die Vorteile der Power BI Pro Lizenz. Dem ist i.d.R. zuzustimmen, da (wie im ersten Artikel näher erläutert) ein funktionierendes Konzept zur Data Governance die lokale Erstellung von Dashboards und manuelle Verteilung nicht erlauben würde. Sicherlich gibt es Firmen die Lizenzkosten einsparen wollen und funktionierende Prozesse eingeführt haben, um eine Aktualität und Korrektheit der Dashboards zu gewährleisten. Ein Restrisiko bleibt! Demgegenüber stehen relativ geringe Lizenzkosten mit $9,99 pro Monat/User für eine Power BI Pro Lizenz, nutzt man die cloud-basierte Variante mit dem Namen Power BI Service. Das Lizenzmodell ist für den Einstieg mit wenigen Lizenzen transparent gestaltet und zudem besteht keine Verpflichtung zur Abnahme einer Mindestmenge an Lizenzen, also ist der Einstieg auch für kleine Unternehmen gut möglich. Das Lizenzmodell wird komplexer bei intensivierter Nutzung der Cloud (Power BI Service) und dem zeitgleichen Wunsch, leistungsfähige Abfragen durchzuführen und große Datenmengen zu sichern. Mit einer Erweiterung der Pro Lizenz auf die Power BI Premium Lizenz, kann der Bedarf nach höheren Leistungsanforderungen gedeckt werden. Natürlich sind mit diesem Upgrade Kapazitätsgrenzen nicht aufgehoben und die Premium Lizenz kann je nach Leistungsanforderungen unterschiedliche Ausprägungen annehmen und Kosten verursachen. Microsoft hat sogenannte SKU´s definiert, welche hier aufgeführt sind. Ein Kostenrechner steht für eine Kostenschätzung online bereit, wobei je nach Anforderung unterschiedliche Parameter zu SKU`s (Premium P1, P2, P3) und die Anzahl der Pro Lizenzen wesentliche Abweichungen zum kalkulierten Preis verursachen kann. Die Kosten für die Premium P1 Lizenz belaufen sich auf derzeit $4.995 pro Monat und pro Speicherressource (Cloud), also i.d.R. je Kunde. Sollte eine cloud-basierte Lösung aus Kosten, technischen oder sogar Data Governance Gründen nicht möglich sein, kann der Power BI Report Server auf einer selbst gewählten Infrastruktur betrieben werden. Eine Premium Lizenz ermöglicht die lokale Bereitstellung der Software.

Anmerkung: Sowohl die Pro als auch die Premium Lizenz umfassen weitere Leistungen, welche in Einzelfällen ähnlich bedeutend sein können.

Um nur einige wenige zu nennen:

  • Eingebettete Dashboards auf Webseiten oder anderer SaaS Anwendungen
  • Nutzung der Power BI mobile app
  • Inkrementelle Aktualisierung von Datenquellen
  • Erhöhung der Anzahl automatischer Aktualisierungen pro Tag (Pro = 8)
  • u.v.m.

Community & Features von anderen Entwicklern

Power BI Benutzer können sich einer sehr großen Community erfreuen, da diese Software sich laut Gartner unter den führenden BI Tools befindet und Microsoft einen großen Kundenstamm vorzuweisen hat. Dementsprechend gibt es nicht nur auf der Microsoft eigenen Webseite https://community.powerbi.com/ eine Vielzahl von Themen, welche erörtert werden, sondern behandeln auch die einschlägigen Foren Problemstellungen und bieten Infomaterial an. Dieser große Kundenstamm bietet eine attraktive Geschäftsgrundlage für Entwickler von Produkten, welche komplementär oder gar substitutiv zu einzelnen Funktionen von Power BI angeboten werden. Ein gutes Beispiel für einen ersetzenden Service ist das Tool PowerBI Robots, welches mit Power BI verbunden, automatisch generierte E-Mails mit Screenshots von Dashboards an beliebig viele Personen sendet. Da dafür keine Power BI Pro Lizenz benötigt wird, hebelt dieser Service die wichtige Veröffentlichungsfunktion und damit einen der Hauptgründe für die Beschaffung der Pro Lizenz teilweise aus. Weiterhin werden Features ergänzt, welche noch nicht durch Microsoft selbst angeboten werden, wie z.B. die Erweiterung um ein Process Mining Tool namens PAFnow. Dieses und viele weitere Angebote können auf der Marketplace-Plattform heruntergeladen werden, sofern man eine Pro Lizenz besitzt.

Daten laden: Allgemeines

Ein sehr großes Spektrum an Datenquellen wird von Power BI unterstützt und fast jeder Nutzer sollte auf seinen Datenbestand zugreifen können. Unterstützte Datenquellen sind natürlich diverse Textdateien, SaaS verschiedenster Anbieter und Datenbanken jeglicher Art, aber auch Python, R Skripte sowie Blank Queries können eingebunden werden. Ebenfalls besteht die Möglichkeit mit einer ODBC-Schnittstelle eine Verbindung zu diversen, nicht aufgelisteten Datenquellen herstellen zu können. Ein wesentlicher Unterschied zwischen den einzelnen Datenquellen besteht in der Limitierung, eine direkte Verbindung aufsetzen zu können, eine sogenannte DirectQuery. In der Dokumentation zu Datenquellen findet man eine Auflistung mit entsprechender Info zur DirectQuery. Die Alternative dazu ist ein Import der Daten in Kombination mit regelmäßig durchgeführten Aktualisierungen. Mit Dual steht dem Anwender ein Hybrid aus beiden Methoden zur Verfügung, welcher in besonderen Anwendungsfällen sinnvoll sein kann. Demnach können einzelne Tabellen als Dual definiert und die im Folgenden beschriebenen Vorteile beider Methoden genutzt werden.

Import vs DirectQuery

Welche Verbindung man wählen sollte, hängt von vielen Faktoren ab. Wie bereits erwähnt, besteht eine Limitierung von 8 Aktualisierungen pro Tag und je Dataset bei importierten Datenquellen, sofern man nur eine Pro Lizenz besitzt. Mit der Nutzung einer DirectQuery besteht diese Limitierung nicht. Ebenfalls existiert keine Beschränkung in Bezug auf die Upload-Größe von 1GB je Dataset. Eine stetige Aktualität der Reports ist unter der Einstellung DirectQuery selbst redend.

Wann bringt also der Import Vorteile?

Dieser besteht im Grunde in den folgenden technischen Limitierungen von DirectQuery:

  • Es können nicht mehr als 1 Mio. Zeilen zurückgegeben werden (Aggregationen wiederum können über mehr Zeilen laufen).
  • Es können nur eingeschränkt Measures (Sprache DAX) geschrieben werden.
  • Es treten Fehler im Abfrageeditor bei übermäßiger Komplexität von Abfragen auf.
  • Zeitintelligenzfunktionen sind nicht verfügbar.

Daten laden: AdventureWorks2017Dataset

Wie zu erwarten, verlief der Import der Daten reibungslos, da sowohl die Datenquelle als auch das Dataset Produkte von Microsoft sind. Ein Import war notwendig, um Measures unter Nutzung von DAX anzuwenden. Power BI ermöglichte es, die Daten schnell in das Tool zu laden.

Beziehungen zwischen Datentabellen werden durch die Software entweder aufgrund von automatischer Erkennung gleicher Attribute über mehrere Tabellen hinweg oder durch das Laden von Metadaten erkannt. Aufgrund des recht komplexen und weit verzweigten Datasets schien dieses Feature im ersten Moment von Vorteil zu sein, erst in späteren Visualisierungsschritten stellte sich heraus, dass einige Verbindungen nicht aus den Metadaten geladen wurden, da eine falsch gesetzte Beziehung durch eine automatische Erkennung gesetzt wurde und so die durch die Metadaten determinierte Beziehung nicht übernommen werden konnte. Lange Rede kurzer Sinn: Diese Automatisierung ist arbeitserleichternd und nützlich, insbesondere für Einsteiger, aber das manuelle Setzen von Beziehungen kann wenig auffällige Fehler vermeiden und fördert zugleich das eigene Verständnis für die Datengrundlage. Microsoft bietet seinen Nutzer an, diese Features zu deaktivieren. Das manuelle Setzen der Beziehungen ist über das Userinterface (UI) im Register „Beziehungen“ einfach umzusetzen. Besonders positiv ist die Verwirklichung dieses Registers, da der Nutzer ein einfach zu bedienendes Tool zur Strukturierung der Daten erhält. Ein Entity-Relationship-Modell (ERM) zeigt das Resultat der Verknüpfung und zugleich das Datenmodel gemäß dem Konzept eines Sternenschemas.

Daten transformieren

Eines der wesentlichen Instrumente zur Transformierung von Daten ist Power Query. Diese Software ist ebenfalls ein etablierter Bestandteil von Excel und verfügt über ein gelungenes UI, welches die Sprache M generiert. Ca. 95% der gewünschten Daten Transformationen können über das UI durchgeführt werden und so ist es in den meisten Fällen nicht notwendig, M schreiben zu müssen. Durch das UI ermöglicht Power Query, wesentliche Aufgaben wie das Bereinigen, Pivotieren und Zusammenführen von Daten umzusetzen. Aber es ist von Vorteil, wenn man sich zumindest mit der Syntax auskennt und die Sprache in groben Zügen versteht. Die Sprache M wie auch das UI, welches unter anderem die einzelnen Bearbeitungs-/Berechnungsschritte aufzeigt, ist Workflow-orientiert. Das UI ist gut strukturiert, und Nutzer finden schnellen Zugang zur Funktionsweise. Ein sehr gut umgesetztes Beispiel ist die Funktion „Spalten aus Beispielen“. In nur wenigen Schritten konnten der Längen- und Breitengrad aus einer zusammengefassten Spalte getrennt werden. Den erzeugten M-Code und den beschriebenen Workflow seht ihr in der folgenden Grafik.

Das Feature zur Zusammenführung von Tabellen ist jedoch problematisch, da das UI von Power Query dem Nutzer keine vorprogrammierten Visualisierungen o.ä. an die Hand gibt, um die Resultate überprüfen zu können. Wie bei dem Beispiel Dataset von Microsoft, welches mit über 70 Tabellen eine relativ komplexe Struktur aufweist, können bei unzureichender Kenntnis über die Struktur der Datenbasis Fehler entstehen. Eine mögliche Folge können die ungewollte Vervielfachung von Zeilen (Kardinalität ist „viele zu viele“) oder gar das Fehlen von Informationen sein (nur eine Teilmenge ist in die Verknüpfung eingeschlossen). Zur Überprüfung der JOIN Ergebnisse können die drei genannten Register (siehe obige Grafik) dienen, aber ein Nutzer muss sich selbst ein eigenes Vorgehen zur Überwachung der korrekten Zusammenführung überlegen.

Nachdem die Bearbeitung der Daten in Power Query abgeschlossen ist und diese in Power BI geladen werden, besteht weiterhin die Möglichkeit, die Daten unter Nutzung von DAX zu transformieren. Insbesondere Measures bedienen sich ausschließlich dieser Sprache und ein gutes Auto-Fill-Feature mit zusätzlicher Funktionsbeschreibung erleichtert das Schreiben in DAX. Dynamische Aggregationen und etliche weitere Kalkulationen sind denkbar. Nachfolgend findet ihr einige wenige Beispiele, welche auch im AdventureWorks Dashboard Anwendung finden:

Measures können komplexe Formen annehmen und Power BI bietet eine sehr gute Möglichkeit gebräuchliche Berechnungen über sogenannte Quickmeasures (QM) vorzunehmen. Ähnlich wie für die Sprache M gibt es ein UI zur Erstellung dieser, ohne eine Zeile Code schreiben zu müssen. Die Auswahl an QM ist groß und die Anwendungsfälle für die einzelnen QM sind vielfältig. Als Beispiel könnt ihr euch das Measure „Kunden nach Year/KPI/Category“ im bereitgestellten AdventureWorks Dashboard anschauen, welches leicht abgewandelt auf Grundlage des QM „Verkettete Werteliste“ erstellt wurde. Dieses Measure wurde als dynamischer Titel in das Balkendiagramm eingebunden und wie das funktioniert seht ihr hier.

Daten visualisieren

Der letzte Schritt, die Visualisierung der Daten, ist nicht nur der wichtigste, sondern auch der sich am meisten unterscheidende Schritt im Vergleich der einzelnen BI-Tools. Ein wesentlicher Faktor dabei ist die Arbeitsabfolge in Bezug auf den Bau von Visualisierungen. Power BI ermöglicht dem Nutzer, einzelne Grafiken in einem UI zu gestalten und in dem selbigen nach Belieben anzuordnen. Bei Tableau und Looker zum Beispiel werden die einzelnen Grafiken in separaten UIs gestaltet und in einem weiteren UI als Dashboard zusammengesetzt. Eine Anordnung der Visualisierungen ist in Power BI somit sehr flexibel und ein Dashboard kann in wenigen Minuten erstellt werden. Verlieren kann man sich in den Details, fast jede visuelle Vorstellung kann erfüllt werden und in der Regel sind diese nur durch die eigene Zeit und das Know-How limitiert. Ebenfalls kann das Repertoire an Visualisierungen um sogenannte Custom Visualizations erweitert werden. Sofern man eine Pro Lizenz besitzt, ist das Herunterladen dieser Erweiterungen unter AppSource möglich.

Eine weitere Möglichkeit zur Anreicherung von Grafiken um Detailinformationen, besteht über das Feature Quickinfo. Sowohl eine schnell umsetzbare und somit wenig detaillierte Einbindung von Details ist möglich, aber auch eine aufwendigere Alternative ermöglicht die Umsetzung optisch ansprechender und sehr detaillierter Quickinfos.

Das Setzen von Filtern kann etliche Resultate und Erkenntnisse mit sich bringen. Dem Nutzer können beliebige Ansichten bzw. Filtereinstellungen in sogenannten Bookmarks gespeichert werden, sodass ein einziger Klick genügt. In dem AdventureWorks Dashboard wurde ein nützliches Bookmark verwendet, welches dem Zurücksetzen aller Filter dient.

Erstellt man Visualisierungen im immer gleichen Format, dann lohnt es sich ein eigenes Design in JSON-Format zu erstellen. Wenn man mit diesem Format nicht vertraut ist, kann man eine Designvorlage über das Tool Report Theme Generator V3 sehr einfach selbst erstellen.

Existiert ein Datenmodell und werden Daten aus verschiedenen Tabellen im selben Dashboard zusammengestellt (siehe auch Beispiel Dashboard AdventureWorks), dann werden entsprechende JOIN-Operationen im Hintergrund beim Zusammenstellen der Visualisierung erstellt. Ob das Datenmodell richtig aufgebaut wurde, ist oft erst in diesem Schritt erkennbar und wie bereits erwähnt, muss sich ein jeder Anwender ein eigenes Vorgehen überlegen, um mit Hilfe dieses Features die vorausgegangenen Schritte zu kontrollieren.

Warum braucht Power BI eine Python Integration?

Interessant ist dieses Feature in Bezug auf Machine Learning Algorithmen, welche direkt in Power BI integriert werden können. Python ist aber auch für einige Nutzer eine gern genutzte Alternative zu DAX und M, sofern man sich mit diesen Sprachen nicht auseinandersetzen möchte. Zwei weitere wesentliche Gründe für die Nutzung von Python sind Daten zu transformieren und zu visualisieren, unter Nutzung der allseits bekannten Plots. Zudem können weitere Quellen eingebunden werden. Ein Vorteil von Python ist dessen Repertoire an vielen nützlichen Bibliotheken wie pandas, matplotlib u.v.m.. Jedoch ist zu bedenken, dass die Python-Skripte zur Datenbereinigung und zur Abfrage der Datenquelle erst durch den Data Refresh in Power BI ausgeführt werden. In DAX geschriebene Measures bieten den Vorteil, dass diese mehrmals verwendet werden können. Ein Python-Skript hingegen muss kopiert und demnach auch mehrfach instandgehalten werden.

Es ist ratsam, Python in Power BI nur zu nutzen, wenn man an die Grenzen von DAX und M kommt.

Fazit

Das Lizenzmodel ist stark auf die Nutzung in der Cloud ausgerichtet und zudem ist die Funktionalität der Software, bei einer lokalen Verwendung (Power Bi Report Server) verglichen mit der cloud-basierten Variante, eingeschränkt. Das Lizenzmodell ist für den Power BI Neuling, welcher geringe Kapazitäten beansprucht einfach strukturiert und sehr transparent. Bereits kleine Firmen können so einen leichten Einstieg in Power BI finden, da auch kein Mindestumsatz gefordert ist.

Gut aufbereitete Daten können ohne großen Aufwand geladen werden und bis zum Aufbau erster Visualisierungen bedarf es nicht vieler Schritte, jedoch sind erste Resultate sehr kritisch zu hinterfragen. Die Kontrolle automatisch generierter Beziehungen und das Schreiben von zusätzlichen DAX Measures zur Verwendung in den Visualisierungen sind in den meisten Fällen notwendig, um eine korrekte Darstellung der Zahlen zu gewährleisten.

Die Transformation der Daten kann zum großen Teil über unterschiedliche UIs umgesetzt werden, jedoch ist das Schreiben von Code ab einem gewissen Punkt unumgänglich und wird auch nie komplett vermeidbar sein. Power BI bietet aber bereits ein gut durchdachtes Konzept.

Im Großen und Ganzen ist Power BI ein ausgereiftes und sehr gut handhabbares Produkt mit etlichen Features, ob von Microsoft selbst oder durch Drittanbieter angeboten. Eine große Community bietet ebenfalls Hilfestellung bei fast jedem Problem, wenn dieses nicht bereits erörtert wurde. Hervorzuheben ist der Kern des Produkts: die Visualisierungen. Einfach zu erstellende Visualisierungen jeglicher Art in einem ansprechenden Design grenzen dieses Produkt von anderen ab.

Fortsetzung: Tableau wurde als zweites Tool dieser Artikelserie näher beleuchtet.

Artikelserie: BI Tools im Vergleich – Datengrundlage

Dieser Artikel wird als Fortsetzung des ersten Artikels, einer Artikelserie zu BI Tools, die Datengrundlage erläutern.

Als Datengrundlage sollen die Trainingsdaten – AdventureWorks 2017 – von Microsoft dienen und Ziel soll es sein, ein möglichst gleiches Dashboard in jedem dieser Tools zu erstellen.

Bei der Datenbasis handelt es sich bereits um ein relationales Datenbankmodel mit strukturierten Daten, welches als Datei-Typ .bak zur Verfügung steht. Die Daten sind bereits bereinigt und normalisiert, sowie bestehen auch bereits Beziehungen zwischen den Tabellen. Demnach fallen sowohl aufwendige Datenbereinigungen weg, als auch der Aufbau eines relationalen Datenmodells im Dashboard. In den meisten Tools ist beides möglich, wenn auch nicht das optimale Programm. Vor allem sollte vermieden werden Datenbereinigungen in BI Tools vorzunehmen. Alle Tools bieten einem die Möglichkeit strukturierte und unstrukturierte Daten aus verschiedensten Datenquellen zu importieren. Die Datenquelle wird SQL Server von Microsoft sein, da die .bak Datei nicht direkt in die meisten Dashboards geladen werden kann und zudem auf Grund der Datenmenge ein kompletter Import auch nicht ratsam ist. Aus Gründen der Performance sollten nur die für das Dashboard relevanten Daten importiert werden. Für den Vergleich werden 15 von insgesamt 71 Tabellen importiert, um Visualisierungen für wesentliche Geschäftskennzahlen aufzubauen. Die obere Grafik zeigt das Entity-Relationship-Modell (ERM) zu den relevanten Tabellen. Die Datengrundlage eignet sich sehr gut für tiefer gehende Analysen und bietet zugleich ein großes Potential für sehr ausgefallene Visualisierungen. Im Fokus dieser Artikelserie soll aber nicht die Komplexität der Grafiken, sondern die allgemeine Handhabbarkeit stehen. Allgemein besteht die Gefahr, dass die Kernaussagen eines Reports in den Hintergrund rücken bei der Verwendung von zu komplexen Visualisierungen, welche lediglich der Ästhetik dienlich sind.

Eine Beschränkung soll gelten: So soll eine Manipulation von Daten lediglich in den Dashboards selbst vorgenommen werden. Bedeutet das keine Tabellen in SQL Server geändert oder Views erstellt werden. Gehen wir einfach Mal davon aus, dass der Data Engineer Haare auf den Zähnen hat und die Zuarbeit in jeglicher Art und Weise verwehrt wird.

Also ganz nach dem Motto: Help yourself! 😉

Daten zum Üben gibt es etliche. Einfach Mal Github, Kaggle oder andere Open Data Quellen anzapfen. Falls ihr Lust habt, dann probiert euch doch selber einmal an den Dashboards. Ihr solltet ein wenig Zeit mitbringen, aber wenn man erstmal drin ist macht es viel Spaß und es gibt immer etwas neues zu entdecken! Das erste Dashboard und somit die Fortsetzung dieser Artikelserie wird  Power BI als Grundlage haben.

Hier ein paar Links um euch startklar zu machen, falls das Interesse in euch geweckt wurde.

Dataset: AdventureWorks 2017

MS SQL Server

MS SSMS

MS Power BI (Desktop)

AI For Advertisers: How Data Analytics Can Change The Maths Of Advertising?

All Images Credit: Freepik

The task of understanding a customer’s journey and designing your marketing strategy accordingly can be difficult in this data-driven world. Today, the customer expresses their needs in myriad forms of requests.

Consumers express their needs and want attitudes, and values in various forms through search, comments, blogs, Tweets, “likes,” videos, and conversations and access such data across many channels like web, mobile, and face to face. Volume, variety, velocity and veracity of the data accumulated through these customer interactions are huge.

BigData and data analytics can be leveraged to understand several phases of the customer journey. There are risks involved in using Artificial Intelligence for the marketing data analysis of data breach and even manipulation. But, AI do have brighter prospects when it comes to marketing and advertiser applications.

As the CEO of a technology firm Chop Dawg and marketer, Joshua Davidson puts it, “AI-powered apps are going to be the future for us, and there are several industries that are ripe for this.” The mobile-first strategy of many enterprises has powered the use of AI for digital marketing and developing technologies and innovations to power industries with intelligent systems.

How AI and Machine learning are affecting customer journeys?

Any consumer journey begins with the recognition of a problem and then stages like initial consideration, active evaluation, purchase, and postpurchase come through up till the consumer journey is over. The need for identifying the purchasing and need patterns of the consumers and finding the buyer personas to strategize the marketing for them.

Need and Want Recognition:

Identifying a need is quite difficult as it is the most initial level of a consumer’s journey and it is more on the category level than at a brand level. Marketers and advertisers are relying on techniques like market research, web analytics, and data mining to build consumer profiles and buyer’s persona for understanding the needs and influencing the purchase of products. AI can help identify these wants and needs in real-time as the consumers usually express their needs and wants online and help build profiles more quickly.

AI technologies offered by several firms help in consumer profiling. Firms like Microsoft offers Azure that crunches billions of data points in seconds to determine the needs of consumers. It then personalizes web content on specific platforms in real-time to align with those status-updates. Consumer digital footprints are evolving through social media status updates, purchasing behavior, online comments and posts. Ai tends to update these profiles continuously through machine learning techniques.

Initial Consideration:

A key objective of advertising is to insert a brand into the consideration set of the consumers when they are looking for deliberate offerings. Advertising includes increasing the visibility of brands and emphasize on the key reasons for consideration. Advertisers currently use search optimization, paid search advertisements, organic search, or advertisement retargeting for finding the consideration and increase the probability of consumer consideration.

AI can leverage machine learning and data analytics to help with search, identify and rank functions of consumer consideration that can match the real-time considerations at any specific time. Take an example of Google Adwords, it analyzes the consumer data and helps advertisers make clearer distinctions between qualified and unqualified leads for better targeting.

Google uses AI to analyze the search-query data by considering, not only the keywords but also context words and phrases, consumer activity data and other BigData. Then, Google identifies valuable subsets of consumers and more accurate targeting.

Active Evaluation: 

When consumers narrow it down to a few choices of brands, advertisers need to insert trust and value among the consumers for brands. A common technique is to identify the higher purchase consumers and persuade them through persuasive content and advertisement. AI can support these tasks using some techniques:

Predictive Lead Scoring: Predictive lead scoring by leveraging machine learning techniques of predictive analytics to allow marketers to make accurate predictions related to the intent of purchase for consumers. A machine learning algorithm runs through a database of existing consumer data, then recognize trends and patterns and after processing the external data on consumer activities and interests, creates robust consumer profiles for advertisers.

Natural Language Generation: By leveraging the image, speech recognition and natural language generation, machine learning enables marketers to curate content while learning from the consumer behavior in real-time scenarios and adjusts the content according to the profiles on the fly.

Emotion AI: Marketers use emotion AI to understand consumer sentiment and feel about the brand in general. By tapping into the reviews, blogs or videos they understand the mood of customers. Marketers also use emotion AI to pretest advertisements before its release. The famous example of Kelloggs, which used emotion AI to help devise an advertising campaign for their cereal, eliminating the advertisement executions whenever the consumer engagement dropped.

Purchase: 

As the consumers decide which brands to choose and what it’s worth, advertising aims to move them out of the decision process and push for the purchase by reinforcing the value of the brand compared with its competition.

Advertisers can insert such value by emphasizing convenience and information about where to buy the product, how to buy the product and reassuring the value through warranties and guarantees. Many marketers also emphasize on rapid return policies and purchase incentives.

AI can completely change the purchase process through dynamic pricing, which encompasses real-time price adjustments on the basis of information such as demand and other consumer-behavior variables, seasonality, and competitor activities.

Post-Purchase: 

Aftersales services can be improved through intelligent systems using AI technologies and machine learning techniques. Marketers and advertisers can hire dedicated developers to design intelligent virtual agents or chatbots that can reinforce the value and performance of a brand among consumers.

Marketers can leverage an intelligent technique known as Propensity modeling to identify the most valuable customers on the basis of lifetime value, likelihood of reengagement, propensity to churn, and other key performance measures of interest. Then advertisers can personalize their communication with these customers on the basis of these data.

Conclusion:

AI has shifted the focus of advertisers and marketers towards the customer-first strategies and enhanced the heuristics of customer engagement. Machine learning and IoT(Internet of Things) has already changed the way customer interact with the brands and this transition has come at a time when advertisers and marketers are looking for new ways to tap into the customer mindset and buyer’s persona.

All Images Credit: Freepik