Geschriebene Artikel über Big Data Analytics

DS-GVO: Wie das moderne Data-Warehouse Unternehmen entlastet

Artikel des Blog-Sponsors: Snowflake

Viele Aktivitäten, die zur Einhaltung der DS-GVO-Anforderungen beitragen, liegen in den Händen der Unternehmen selbst. Deren IT-Anbieter sollten dazu beitragen, die Compliance-Anforderungen dieser Unternehmen zu erfüllen. Die SaaS-Anbieter eines Unternehmens sollten zumindest die IT-Sicherheitsanforderungen erfüllen, die sich vollständig in ihrem Bereich befinden und sich auf die Geschäfts- und Datensicherheit ihrer Kunden auswirken.

Snowflake wurde von Grund auf so gestaltet, dass die Einhaltung der DS-GVO erleichtert wird – und von Beginn darauf ausgelegt, enorme Mengen strukturierter und semistrukturierter Daten mit der Leichtigkeit von Standard-SQL zu verarbeiten. Die Zugänglichkeit und Einfachheit von SQL gibt Organisationen die Flexibilität, alle unter der DS-GVO erforderlichen Aktualisierungen, Änderungen oder Löschungen nahtlos vorzunehmen. Snowflakes Unterstützung für semistrukturierte Daten kann die Anpassung an neue Felder und andere Änderungen der Datensätze erleichtern. Darüber hinaus war die Sicherheit von Anfang an von grundlegender Bedeutung für Architektur, Implementierung und Betrieb von Snowflakes Data-Warehouse-as-a-Service.

Ein Grundprinzip der DS-GVO

Ein wichtiger Faktor für die Einhaltung der DS-GVO ist, zu verstehen, welche Daten eine Organisation besitzt und auf wen sie sich beziehen. Diese Anforderung macht es nötig, dass Daten strukturiert, organisiert und einfach zu suchen sind.

Die relationale SQL-Datenbankarchitektur von Snowflake bietet eine erheblich vereinfachte Struktur und Organisation, was sicherstellt, dass jeder Datensatz einen eindeutigen und leicht identifizierbaren Speicherort innerhalb der Datenbank besitzt. Snowflake-Kunden können auch relationalen Speicher mit dem Variant-Spaltentyp von Snowflake für semistrukturierte Daten kombinieren. Dieser Ansatz erweitert die Einfachheit des relationalen Formats auf die Schema-Flexibilität semistrukturierter Daten.

Snowflake ist noch leistungsfähiger durch seine Fähigkeit, massive Nebenläufigkeit zu unterstützen. Bei größeren Organisationen können Dutzende oder sogar Hunderte nebenläufiger Datenänderungen, -abfragen und -suchvorgänge zu einem bestimmten Zeitpunkt auftreten. Herkömmliche Data-Warehouses können nicht zu einem bestimmten Zeitpunkt über einen einzelnen Rechen-Cluster hinaus skaliert werden, was zu langen Warteschlangen und verzögerter Compliance führt. Snowflakes Multi-Cluster-Architektur für gemeinsam genutzte Daten löst dieses Problem, indem sie so viele einzigartige Rechen-Cluster bereitstellen kann, wie für einen beliebigen Zweck nötig sind, was zu einer effizienteren Workload-Isolierung und höherem Abfragedurchsatz führt. Jeder Mitarbeiter kann sehr große Datenmengen mit so vielen nebenläufigen Benutzern oder Operationen wie nötig speichern, organisieren, ändern, suchen und abfragen.

Rechte von Personen, deren Daten verarbeitet werden („Datensubjekte“)

Organisationen, die von der DS-GVO betroffen sind, müssen sicherstellen, dass sie Anfragen betroffener Personen nachkommen können. Einzelpersonen haben jetzt erheblich erweiterte Rechte, um zu erfahren, welche Art von Daten eine Organisation über sie besitzt, und das Recht, den Zugriff und/oder die Korrektur ihrer Daten anzufordern, die Daten zu löschen und/oder die Daten an einen neuen Provider zu übertragen. Bei der Bereitstellung dieser Dienste müssen Organisationen ziemlich schnell reagieren, in der Regel innerhalb von 30 Tagen. Daher müssen sie ihre Geschäftssysteme und ihr Data-Warehouse schnell durchsuchen können, um alle personenbezogenen Daten zu finden, die mit einer Person in Verbindung stehen, und entsprechende Maßnahmen ergreifen.

Organisationen können in großem Umfang von der Speicherung aller Daten in einem Data-Warehouse-as-a-Service mit vollen DML- und SQL-Fähigkeiten profitieren. Dies erleichtert das (mühevolle) Durchsuchen getrennter Geschäftssysteme und Datenspeicher, um die relevanten Daten zu finden. Und das wiederum hilft sicherzustellen, dass einzelne Datensätze durchsucht, gelöscht, eingeschränkt, aktualisiert, aufgeteilt und auf andere Weise manipuliert werden können, um sie an entsprechende Anfragen betroffener Personen anzupassen. Außerdem können Daten so verschoben werden, dass sie der Anforderung einer Anfrage zum „Recht auf Datenübertragbarkeit“ entsprechen. Von Anfang an wurde Snowflake mit ANSI-Standard-SQL und vollständiger DML-Unterstützung entwickelt, um sicherzustellen, dass diese Arten von Operationen möglich sind.

Sicherheit

Leider erfordern es viele herkömmliche Data-Warehouses, dass sich Unternehmen selbst um die IT-Sicherheit kümmern und diese mit anderen Services außerhalb des Kernangebots kombiniert wird. Außerdem bieten sie manchmal noch nicht einmal standardmäßige Verschlüsselung.

Als Data-Warehouse, das speziell für die Cloud entwickelt wurde und das Sicherheit als zentrales Element bietet, umfasst Snowflake unter anderem folgende integrierte Schutzfunktionen:

  • Minimaler Betriebsaufwand: Weniger Komplexität durch automatische Performance, Sicherheit und Hochverfügbarkeit, sodass die Infrastruktur nicht optimiert werden muss und kein Tuning nötig ist.
  • Durchgängige Verschlüsselung: Automatische Verschlüsselung aller Daten jederzeit (in ruhendem und bewegtem Zustand).
  • Umfassender Schutz: Zu den Sicherheitsfunktionen zählen Multi-Faktor-Authentifizierung, rollenbasierte Zugriffskontrolle, IP-Adressen-Whitelisting, zentralisierte Authentifizierung und jährliche Neuverschlüsselung verschlüsselter Daten.
  • Tri-Secret Secure: Kundenkontrolle und Datenschutz durch die Kombination aus einem vom Kunden, einem von Snowflake bereitgestellten Verschlüsselungsschlüssel und Benutzerzugangsdaten.
  • Unterstützung für AWS Private Link: Kunden können Daten zwischen ihrem virtuellen privaten Netzwerk und Snowflake übertragen, ohne über das Internet gehen zu müssen. Dadurch ist die Konnektivität zwischen den Netzwerken sicher und einfacher zu verwalten.
  • Stärkere unternehmensinterne Datenabgrenzung dank Snowflake Data Sharing: Organisationen können die Datenfreigabefunktionen von Snowflake nutzen, um nicht personenbezogene Daten mit anderen Abteilungen zu teilen, die keinen Zugriff benötigen – indem sie strengere Sicherheits- und DS-GVO-Kontrollen durchsetzen.
  • Private Umgebung: Unternehmen können eine dedizierte, verwaltete Snowflake- Instanz in einer separaten AWS Virtual Private Cloud (VPC) abrufen.

Rechenschaftspflicht

Was die Komplexität weiter erhöht: Organisationen müssen auch sicherstellen, dass sie und die Organisationen und Tools, mit denen sie arbeiten, Compliance nachweisen können. Snowflake prüft und verfeinert seine IT-Sicherheitspraxis regelmäßig mit peniblen Penetrationstests. Snowflakes Data-Warehouse-as-a-Service ist zertifiziert nach SOC 2 Type II, ist PCI-DSS-konform und unterstützt HIPAA-Compliance. Um Anfragen von Personen, deren Daten verarbeitet werden („Datensubjekte“), zu entsprechen, können Kunden genutzte Daten überprüfen.

Zusätzlich zu diesen Standardfunktionen und -validierungen schützt Snowflake seine Kunden auch durch den Datenschutznachtrag („Data Protection Addendum“), der genau auf die Anforderungen der DS-GVO abgestimmt ist. Snowflake hält sich außerdem an penibel vertraglich festgelegte Sicherheitsverpflichtungen („contractual security commitments“), um effizientere Transaktionen und eine vereinfachte Sorgfaltspflicht zu ermöglichen.

Fazit

Im Rahmen der Europäischen Datenschutz-Grundverordnung müssen Unternehmen technische Maßnahmen ergreifen, mit deren Hilfe sie den Anforderungen ihrer Kunden in Bezug auf Datenschutz und Schutz der Privatsphäre gerecht werden können. Snowflake bietet hier nicht nur den Vorteil, alle wichtigen Kundendaten an einem einzigen Ort zu speichern, sondern ermöglicht auch das schnelle Auffinden und Abrufen dieser Daten, sodass Unternehmen im Bedarfsfall schnell aktiv werden können.

Machine Learning vs Deep Learning – Wo liegt der Unterschied?

Machine Learning gehört zu den Industrie-Trends dieser Jahre, da besteht kein Zweifel. Oder war es Deep Learning? Oder Artificial Intelligence? Worin liegt da eigentlich der Unterschied? Dies ist Artikel 1 von 6 der Artikelserie –Einstieg in Deep Learning.

Machine Learning

Maschinelles Lernen (ML) ist eine Sammlung von mathematischen Methoden der Mustererkennung. Diese Methoden erkennen Muster beispielsweise durch bestmögliche, auf eine bestmögliche Entropie gerichtete, Zerlegung von Datenbeständen in hierarchische Strukturen (Entscheidungsbäume). Oder über Vektoren werden Ähnlichkeiten zwischen Datensätzen ermittelt und daraus trainiert (z. B. k-nearest-Neighbour, nachfolgend einfach kurz: k-nN) oder untrainiert (z.B. k-Means) Muster erschlossen.

Algorithmen des maschinellen Lernens sind tatsächlich dazu in der Lage, viele alltägliche oder auch sehr spezielle Probleme zu lösen. In der Praxis eines Entwicklers für Machine Learning stellen sich jedoch häufig Probleme, wenn es entweder zu wenige Daten gibt oder wenn es zu viele Dimensionen der Daten gibt. Entropie-getriebene Lern-Algorithmen wie Entscheidungsbäume werden bei vielen Dimensionen zu komplex, und auf Vektorräumen basierende Algorithmen wie der k-nächste-Nachbarn-Algorithmus sind durch den Fluch der Dimensionalität in ihrer Leistung eingeschränkt.


Der Fluch der Dimensionalität

Datenpunkte sind in einem zwei-dimensionalen Raum gut vorstellbar und auch ist es vorstellbar, das wir einen solchen Raum (z. B. ein DIN-A5-Papierblatt) mit vielen Datenpunkten vollschreiben. Belassen wir es bei der Anzahl an Datenpunkten, nehmen jedoch weitere Dimensionen hinzu (zumindest die 3. Dimension können wir uns noch gut vorstellen), werden die Abstände zwischen den Punkten größer. n-dimensionale Räume können gewaltig groß sein, so dass Algorithmen wie der k-nN nicht mehr gut funktionieren (der n-dimensionale Raum ist einfach zu leer).


Auch wenn es einige Konzepte zum besseren Umgang mit vielen Dimensionen gibt (z. B. einige Ideen des Ensemble Learnings)

Feature Engineering

Um die Anzahl an Dimensionen zu reduzieren, bedienen sich Machine Learning Entwickler statistischer Methoden, um viele Dimensionen auf die (wahrscheinlich) nützlichsten zu reduzieren: sogenannte Features. Dieser Auswahlprozess nennt sich Feature Engineering und bedingt den sicheren Umgang mit Statistik sowie idealerweise auch etwas Fachkenntnisse des zu untersuchenden Fachgebiets.
Bei der Entwicklung von Machine Learning für den produktiven Einsatz arbeiten Data Scientists den Großteil ihrer Arbeitszeit nicht an der Feinjustierung ihrer Algorithmen des maschinellen Lernens, sondern mit der Auswahl passender Features.

Deep Learning

Deep Learning (DL) ist eine Disziplin des maschinellen Lernes unter Einsatz von künstlichen neuronalen Netzen. Während die Ideen für Entscheidungsbäume, k-nN oder k-Means aus einer gewissen mathematischen Logik heraus entwickelt wurden, gibt es für künstliche neuronale Netze ein Vorbild aus der Natur: Biologische neuronale Netze.

Prinzip-Darstellung eines künstlichen neuronalen Netzes mit zwei Hidden-Layern zwischen einer Eingabe- und Ausgabe-Schicht.

Wie künstliche neuronale Netze im Detail funktionieren, erläutern wir in den nächsten zwei Artikeln dieser Artikelserie, jedoch vorab schon mal so viel: Ein Eingabe-Vektor (eine Reihe von Dimensionen) stellt eine erste Schicht dar, die über weitere Schichten mit sogenannten Neuronen erweitert oder reduziert und über Gewichtungen abstrahiert wird, bis eine Ausgabeschicht erreicht wird, die einen Ausgabe-Vektor erzeugt (im Grunde ein Ergebnis-Schlüssel, der beispielsweise eine bestimmte Klasse ausweist: z. B. Katze oder Hund). Durch ein Training werden die Gewichte zwischen den Neuronen so angepasst, dass bestimmte Eingabe-Muster (z. B. Fotos von Haustieren) immer zu einem bestimmten Ausgabe-Muster führen (z. B. “Das Foto zeigt eine Katze”).

Der Vorteil von künstlichen neuronalen Netzen ist die sehr tiefgehende Abstraktion von Zusammenhängen zwischen Eingabe-Daten und zwischen den abstrahierten Neuronen-Werten mit den Ausgabe-Daten. Dies geschieht über mehrere Schichten (Layer) der Netze, die sehr spezielle Probleme lösen können. Aus diesen Tatsachen leitet sich der übergeordnete Name ab: Deep Learning

Deep Learning kommt dann zum Einsatz, wenn andere maschinelle Lernverfahren an Grenzen stoßen und auch dann, wenn auf ein separates Feature Engineering verzichtet werden muss, denn neuronale Netze können über mehrere Schichten viele Eingabe-Dimensionen von selbst auf die Features reduzieren, die für die korrekte Bestimmung der Ausgabe notwendig sind.

Convolutional Neuronal Network

Convolutional Neuronal Networks (CNN) sind neuronale Netze, die vor allem für die Klassifikation von Bilddaten verwendet werden. Sie sind im Kern klassische neuronale Netze, die jedoch eine Faltungs- und eine Pooling-Schicht vorgeschaltet haben. Die Faltungsschicht ließt den Daten-Input (z. B. ein Foto) mehrfach hintereinander, doch jeweils immer nur einen Ausschnitt daraus (bei Fotos dann einen Sektor des Fotos), die Pooling-Schicht reduzierte die Ausschnittsdaten (bei Fotos: Pixel) auf reduzierte Informationen. Daraufhin folgt das eigentliche neuronale Netz.

CNNs sind im Grunde eine spezialisierte Form von künstlichen neuronalen Netzen, die das Feature-Engineering noch geschickter handhaben.

Deep Autoencoder

Gegenwärtig sind die meisten künstlichen neuronalen Netze ein Algorithmen-Modell für das überwachte maschinelle Lernen (Klassifikation oder Regression), jedoch kommen sie auch zum unüberwachten Lernen (Clustering oder Dimensionsreduktion) zum Einsatz, die sogenannten Deep Autoencoder.

Deep Autoencoder sind neuronale Netze, die im ersten Schritt eine große Menge an Eingabe-Dimensionen auf vergleichsweise wenige Dimensionen reduzieren. Die Reduktion (Encoder) erfolgt nicht abrupt, sondern schrittweise über mehrere Schichten, die reduzierten Dimensionen werden zum Feature-Vektor. Daraufhin kommt der zweite Teil des neuronalen Netzes zum Einsatz: Die reduzierten Dimensionen werden über weitere Schichten wieder erweitert, die ursprünglichen Dimensionen als abstrakteres Modell wieder rekonstruiert (Decoder). Der Sinn von Deep Autoencodern sind abstrakte Ähnlichkeitsmodelle zu erstellen. Ein häufiges Einsatzgebiet sind beispielsweise das maschinelle Identifizieren von ähnlichen Bildern, Texten oder akkustischen Signalmustern.

Artificial Intelligence

Artificial Intelligence (AI) oder künstliche Intelligenz (KI) ist ein wissenschaftlicher Bereich, der das maschinelle Lernen beinhaltet, jedoch noch weitere Bereiche kennt, die für den Aufbau einer KI von Nöten sind. Eine künstliche Intelligenz muss nicht nur Lernen, sie muss auch Wissen effizient abspeichern, einordnen bzw. sortieren und abrufen können. Sie muss ferner über eine Logik verfügen, wie sie das Wissen und das Gelernte einsetzen muss. Denken wir an biologische Intelligenzen, ist es etwa nicht so, dass jegliche Fähigkeiten erlernt wurden, einige sind mit der Geburt bereits ausgebildet oder liegen als sogenannter Instinkt vor.

Ein einzelner Machine Learning Algorithmus würde wohl kaum einen Turing-Test bestehen oder einen Roboter komplexe Aufgaben bewältigen lassen. Daher muss eine künstliche Intelligenz weit mehr können, als bestimmte Dinge zu erlernen. Zum wissenschaftlichen Gebiet der künstlichen Intelligenz gehören zumindest:

  • Machine Learning (inkl. Deep Learning und Ensemble Learning)
  • Mathematische Logik
    • Aussagenlogik
    • Prädikatenlogik
    • Default-Logik
    • Modal-Logik
  • Wissensbasierte Systeme
    • relationale Algebra
    • Graphentheorie
  • Such- und Optimierungsverfahren:
    • Gradientenverfahren
    • Breitensuche & Tiefensuche

AI(ML(DL))

Buch-Empfehlungen

Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung (Computational Intelligence) Praxiseinstieg Deep Learning: Mit Python, Caffe, TensorFlow und Spark eigene Deep-Learning-Anwendungen erstellen

Datenmodell: Sternschema 0.2

Ob es unsere Schritte während des Sports sind, Klicks auf Websiten oder auch Geschäftszahlen eines Unternehmens – all diese Informationen werden in Form von Daten gespeichert. Dabei fallen große Mengen an Daten an, die in der Regel in einer relationalen Datenbank gespeichert werden, um sie besonders gut administrieren zu können.
Gerade in einem Unternehmen ist es wichtig, dass mehrere Benutzer parallel und mit wenig Verzögerung Anfragen und Änderungen in den Daten durchführen können. Daher werden viele Datenbanken in Unternehmen als OLTP-Datenbank-Systeme ausgelegt. OLTP steht für Online Transaction Processing, auch Echtzeit-Transaktionsverarbeitung ist dafür optimiert, schnelle und parallele Zugriffe auf Daten in der Datenbank zu gewährleisten.
Möchte man hingegen Daten auswerten und analysieren, sind OLTP-Datenbanken-Systeme weniger geeignet, da sie nicht für diese Art von Anfragen konzipiert worden sind. Um effektiv analytische Befehle an eine Datenbank stellen zu können, werden daher Datenbanken genutzt, die mit einer OLAP-Verarbeitung arbeiten. OLAP ist die Abkürzung für Online Analytical Processing. Im Gegensatz zu OLTP, in welchen die Daten in einem zweidimensionalen Modell gespeichert werden, sind Daten in einem OLAP-System in einer multidimensionalen Struktur untergebracht, welche für die Durchführung komplexer Analysebefehle optimiert ist.
Für Analysen werden oft Daten aus mehreren Datenbanken benötigt, weswegen sie in einem Datenlager – oder auch Data Warehouse genannt – zusammengefasst und gespeichert werden. Ein Data Warehouse, welche auf der OLAP-Verarbeitung basiert, ist somit eine für Analysezwecke optimierte Datenbank.
Es gibt verschiedene Datenmodelle um die Daten in einem Data Warehouse anzulegen. Das verbreiteste Datenmodell für diese Zwecke ist das sogenannte Sternen-Schema (Star Schema). Neben dem Sternen-Schema gibt es auch die sogenannten Galaxy- und Snowflake-Schemen, die wiederum eine Erweiterung des zuerst genannten Datenmodells sind. In diesem Artikel werden wir das Sternschema näher beleuchten.

Aufbau und Funktionsweise

Bei einem Sternschema werden die Daten grundlegend in zwei Gruppen unterteilt:

  • Fakten, manchmal auch Metriken, Messwerte oder Kennzahlen genannt, sind die zu verwaltenden bzw. die zu analysierenden Daten und werden fortlaufend in der Faktentabelle gespeichert. Beispielhaft für Fakten sind Umsätze sowie Verkaufszahlen eines Unternehmens. Sie haben stets eine numerische Form.
  • Dimensionen sind die Attribute bzw. Eigenschaften der Fakten und beschreiben sozusagen die Fakten im Detail. Diese werden in Dimensionstabellen gelistet. Jeder Dimensionsdatensatz bzw. jede Zeile einer Dimensionstabelle wird durch Primärschlüssel eindeutig identifiziert. Diese Schlüssel werden in der Faktentabelle als Fremdschlüssel gespeichert und somit sind Dimensions- und Faktentabelle miteinander verknüpft.

Beispiel: Max Mustermann, 25 Jahre alt, wohnhaft in Musterstadt hat eine Kaffeemaschine mit dem Namen ‘Musterpresso’ am 01.01.2018 um 15:00:00 gekauft.

Wie in der Abbildung dargestellt, werden die Details, als Attribute dargestellt, vom Kunden wie Namen, Alter oder Wohnort in der Dimensionstabelle “Kunde” gespeichert und mit dem Primärschlüssel (in diesem Beispiel “1111”) gekennzeichnet. Dieser wird in der Faktentabelle als Fremdschlüssel gespeichert. Analog zu den Daten vom Kunden werden auch Dimensionstabellen für die Größen

  • Bestellung,
  • Produkt,
  • Produktkategorie und
  • Zeit gebildet.

Die Fakten, welche in diesem Beispiel der Umsatz von Max Mustermann ein Fakt wäre, können nun mithilfe der Fremdschlüssel

  • Kunden ID,
  • Bestellung ID,
  • Produkt ID,
  • Produktkategorie ID und
  • Zeit

aus der Faktentabelle aufgerufen werden.

Bei der Bildung von Tabellen ist es möglich, dass identische Werte mehrfach gespeichert werden. Dabei können Redundanzen und Anomalien in der Datenbank enstehen, welche zusätzlich einen erhöhten Speicherbedarf erfordern. Um dies zu verhindern werden Tabellen normalisiert. Bei einer Normalisierung einer Tabelle bzw. einer Tabellenstruktur wird es angestrebt, Redundanzen bis auf ein Maximum zu reduzieren. Je nach Grad der Normalisierung können diese in verschiedene Normalformen (1NF -2NF-3NF-BCNF-4NF-5NF) unterteilt werden.

Die Normalisierung in eine höhere Normalform hat jedoch zur Folge, dass die Abfrage-Performance abnimmt. Da das Sternschema-Modell darauf ausgelegt ist Leseoperationen effizient durchzuführen, sind Faktentabellen in der dritten Normalform (3NF) abgespeichert, da alle Redundanzen in dieser Form beseitigt worden sind und dennoch eine hohe Performance gewährleistet. Dimensionstabellen sind hingegen nur bis zur zweiten Normalform (2NF) optimiert. Es werden also bewusst Redundanzen und ein erhöhter Speicherbedarf in den Dimensionstabellen für eine schnelle Abfrage der Daten in Kauf genommen.

Vor- und Nachteile

Wie bereits erwähnt, sind Dimensionstabellen im Sternschema nicht vollständig normalisiert. Damit nimmt man zugunsten höherer Performance mögliche Anomalien und auch einen erhöhten Speicherbedarf in Kauf. Durch das einfache Modell ist dafür jedoch eine intuitive Bedienung möglich und auch Veränderungen sowie Erweiterungen des Modell sind leicht realisierbar.

Vorteile Nachteile
Einfaches Modell ermöglicht eine intuitive Bedienung. Durch mehrfaches Speichern identischer Werte steigt die Redundanz in den Dimenionstabellen
Veränderungen und Erweiterungen können leicht umgesetzt werden. Bei häufigen Abfragen sehr großer Dimensionstabellen verschlechtern sich die Antwortzeiten
Durch Verzicht der Normalisierung in den Dimensionstabellen ist die hierarchische Beziehung innerhalb einer Dimension leicht darstellbar Erhöhter Speicherbedarf durch Nicht-Normalisierung der Dimensionstabellen

Zusammenfassung

Das Sternschema ist ein Datenmodell, welches für analytische Zwecke im Data Warehouse und bei OLAP-Anwendungen zum Einsatz kommt. Es ist darauf optimiert, effiziente Leseoperationen zu gewährleisten.
Der Name des Modells beruht auf der sternförmigen Anordnung von Dimensionstabellen um die Faktentabelle, wobei die Dimensionstabellen die Attribute der Fakten beinhalten und in den Faktentabellen die zu analysierenden Größen gespeichert sind. Charakteristisch ist dabei, dass die Dimensionstabellen nicht bis zur dritten Normalform normalisiert sind. Der sich daraus ergebende Vorteil ist die schnelle Verarbeitung von Abfragen. Auch ist die intuitive Bedienung ein positiver Aspekt des einfachen Datenmodells. Jedoch können durch den Verzicht der Normalisierung Redundanzen innerhalb der Dimensionstabellen durch mehrfache Speicherung von identischen Werten entstehen. Ebenfalls ist bei häufigen Anfragen von großen Dimensionstabellen ein verschlechtertes Antwortverhalten feststellbar.
Daher sind sie vor allem dann effektiv, wenn

  • schnelle Anfrageverarbeitungen notwendig sind,
  • sich schnell ändernde Datenstrukturen (der Original-Daten) vorliegen,
  • Dimensionstabellen in ihrer Größe überschaubar bleiben,
  • und ein breites Spektrum an Benutzern Zugriff auf die Daten benötigt.

Ständig wachsende Datenflut – Muss nun jeder zum Data Scientist werden?

Weltweit rund 163 Zettabyte – so lautet die Schätzung von IDC für die Datenmenge weltweit im Jahr 2025. Angesichts dieser kaum noch vorstellbaren Zahl ist es kein Wunder, wenn Anwender in Unternehmen sich überfordert fühlen. Denn auch hier muss vieles analysiert werden – eigene Daten aus vielen Bereichen laufen zusammen mit Daten Dritter, seien es Dienstleister, Partner oder gekaufter Content. Und all das wird noch ergänzt um Social Content – und soll dann zu sinnvollen Auswertungen zusammengeführt werden. Das ist schon für ausgesprochene Data Scientists keine leichte Aufgabe, von normalen Usern ganz zu schweigen. Doch es gibt eine gute Nachricht dabei: den Umgang mit Daten kann man lernen.

Echtes Datenverständnis – Was ist das?

Unternehmen versuchen heute, möglichst viel Kapital aus den vorhandenen Daten zu ziehen und erlauben ihren Mitarbeitern kontrollierten, aber recht weit gehenden Zugriff. Das hat denn auch etliche Vorteile, denn nur wer Zugang zu Daten hat, kann Prozesse beurteilen und effizienter gestalten. Er kann mehr Informationen zu Einsichten verwandeln, Entwicklungen an den realen Bedarf anpassen und sogar auf neue Ideen kommen. Natürlich muss der Zugriff auf Informationen gesteuert und kontrolliert sein, denn schließlich muss man nicht nur Regelwerken wie Datenschutzgrundverordnung gehorchen, man will auch nicht mit den eigenen Daten dem Wettbewerb weiterhelfen.

Aber davon abgesehen, liegt in der umfassenden Auswertung auch die Gefahr, von scheinbaren Erkenntnissen aufs Glatteis geführt zu werden. Was ist wahr, was ist Fake, was ein Trugschluss? Es braucht einige Routine um den Unsinn in den Daten erkennen zu können – und es braucht zuverlässige Datenquellen. Überlässt man dies den wenigen Spezialisten im Haus, so steigt das Risiko, dass nicht alles geprüft wird oder auf der anderen Seite Wichtiges in der Datenflut untergeht. Also brauchen auch solche Anwender ein gewisses Maß an Datenkompetenz, die nicht unbedingt Power User oder professionelle Analytiker sind. Aber in welchem Umfang? So weit, dass sie fähig sind, Nützliches von Falschem zu unterscheiden und eine zielführende Systematik auf Datenanalyse anzuwenden.

Leider aber weiß das noch nicht jeder, der mit Daten umgeht: Nur 17 Prozent von über 5.000 Berufstätigen in Europa fühlen sich der Aufgabe gewachsen – das sagt die Data-Equality-Studie von Qlik. Und für Deutschland sieht es sogar noch schlechter aus, hier sind es nur 14 Prozent, die glauben, souverän mit Daten umgehen zu können. Das ist auch nicht wirklich ein Wunder, denn gerade einmal 49 Prozent sind (in Europa) der Ansicht, ausreichenden Zugriff auf Daten zu haben – und das, obwohl 85 Prozent glauben, mit höherem Datenzugriff auch einen besseren Job machen zu können.

Mit Wissens-Hubs die ersten Schritte begleiten

Aber wie lernt man denn nun, mit Daten richtig oder wenigstens besser umzugehen? Den Datenwust mit allen Devices zu beherrschen? An der Uni offensichtlich nicht, denn in der Data-Equality-Studie sehen sich nur 10 Prozent der Absolventen kompetent im Umgang mit Daten. Bis der Gedanke der Datenkompetenz Eingang in die Lehrpläne gefunden hat, bleibt Unternehmen nur die Eigenregie  – ein „Learning by Doing“ mit Unterstützung. Wie viel dabei Eigeninitiative ist oder anders herum, wieviel Weiterbildung notwendig ist, scheint von Unternehmen zu Unternehmen unterschiedlich zu sein. Einige Ansätze haben sich jedoch schon bewährt:

  • Informationsveranstaltungen mit darauf aufbauenden internen und externen Schulungen
  • Die Etablierung von internen Wissens-Hubs: Data Scientists und Power-User, die ihr Know-how gezielt weitergeben: ein einzelne Ansprechpartner in Abteilungen, die wiederum ihren Kollegen helfen können. Dieses Schneeball-Prinzip spart viel Zeit.
  • Eine Dokumentation, die gerne auch informell wie ein Wiki oder ein Tutorial aufgebaut sein darf – mit der Möglichkeit zu kommentieren und zu verlinken. Nützlich ist auch ein Ratgeber, wie man Daten hinterfragt oder wie man Datenquellen hinter einer Grafik bewertet.
  • Management-Support und Daten-Incentives, die eine zusätzliche Motivation schaffen können. Dazu gehört auch, Freiräume zu schaffen, in denen sich Mitarbeiter mit Daten befassen können – Zeit, aber auch die Möglichkeit, mit (Test-)Daten zu spielen.

Darüber hinaus aber braucht es eine Grundhaltung, die sich im Unternehmen etablieren muss: Datenkompetenz muss zur Selbstverständlichkeit werden. Wird sie zudem noch spannend gemacht, so werden sich viele Mitarbeiter auch privat mit der Bewertung und Auswertung von Daten beschäftigen. Denn nützliches Know-how hat keine Nutzungsgrenzen – und Begeisterung steckt an.

Wieviele Trainungsbeispiele benötigen Lernverfahren? (1/2)

Kurz nach der Jahrtausendwende begann das Zeitalter der digitalen Daten. Seitdem übertrifft die Menge der digitalen Daten die der Analogen [HL11] und dem Maschinellen Lernen stehen enorme Datenmengen zur Verfügung. Unter dem Buzzword „big data“ wird dabei meist nur das reine Volumen gesehen, andere Faktoren, wie die Frequenz mit der die Daten zu verarbeiten sind und die Variabilität der Formate werden oft vernachlässigt, obwohl auch solche Daten unter „big data“ zusammengefasst werden. Betrachtet man das Volumen dann spielen zwei Faktoren eine zentrale Rolle, die das „big“ von „big data“ ausmachen: die Anzahl der Beispieldatensätze und – und dies wird häufig übersehen – die Anzahl der Eigenschaften mit denen die Beispieldaten beschrieben werden.
Wenn von „big data“ gesprochen wird, wird dabei oft angenommen, dass genügend Datensätze vorhanden sind. Für bestimmte Anwendungen jedoch, müssen die Daten in unterschiedliche Gruppen unterschieden werden, um beim Lernen nicht Äpfel und Birnen in einen Topf zu werfen. In solchen Fällen kann es leicht passieren, dass pro Gruppe zu wenig Beispieldaten vorhanden sind und die Frage an Bedeutung gewinnt: „Reichen die Datensätze eigentlich aus, um ein Vorhersagemodel mit einer gewissen Mindestgüte zu lernen?“.
Leider gibt es bisher keine einfache Antwort auf diese Frage, da diese neben der Anzahl der Eigenschaften – der Dimensionalität – der Daten, von der Struktur des Datenraums, der Verteilung der Daten in diesem Raum, dem verwendeten Lernverfahren, der Ausdrucksfähigkeit seiner Hypothesenrepräsentation und seiner endgültigen Parametrisierung abhängt. In der “Computational Learning Theory” wurden jedoch Ansätze zur Abschätzungen von Untergrenzen erarbeitet, die, unter der Annahme idealer Lernverfahren, zu mindestens eine Aussage über die benötigte Mindestmenge an Trainingsdaten gestatten.
Ziel dieses Beitrags ist es auf möglichst anschauliche Art und Weise anhand eines praktischen Beispiels zu zeigen, welchen Einfluss die Dimensionalität der Daten auf die Abschätzung der Anzahl der benötigten Beispiele für das Erlernen von Vorhersagemodellen – genauer einfachen Klassifikationsmodellen[1] – hat und welche Methoden hierfür existieren. In diesem ersten Teil liegt das Hauptaugenmerk auf endlichen Daten- und Hypothesenräumen und wir werden sehen, dass selbst für eine kleine Anzahl von Eigenschaften – sprich Dimensionen – nützliche Aussagen nur für sehr einfache Hypothesenrepräsentationen möglich sind. Im zweiten Teil werden wir einen Abschätzungsansatz betrachten, der die „Unterscheidungsstärke“ unterschiedlicher Lernverfahren berücksichtigt und mit dem auch Abschätzungen für unendliche Daten- und Hypothesenräume möglich werden.

Anwendungsbeispiel

Betrachten wir das Beispiel eines Online-Shops, der Produkte über das Internet verkauft und dessen Produkte klassifiziert werden sollen. Wie die Produkte klassifiziert werden sollen ist für unsere Betrachtungen unerheblich, was wir aber im Kopf haben sollten: der Absatz unterschiedlicher Produkte folgt einer Potenzverteilung. Eine kleine Zahl von Produkten wird sehr häufig verkauft, so dass für sie viele Datensätze existieren (solche Produkte werden gewöhnlicher Weise in konventionellen Geschäften vertrieben, die nur begrenzte Lagerkapazitäten haben). Der Großteil der Produkte wird jedoch eher seltener umgesetzt (auch als „long tail“ bezeichnet), so dass die Anzahl ihrer Datensätze gering ist; u.U. so gering, dass für sie keine verlässlichen Vorhersagemodelle erlernbar sind.

Zur Illustration gehen wir davon aus, dass in dem Online-Shop Produkte von 500 Marken verkauft werden und diese Produkte neben ihrer Marke durch ihre Größe (10 mögliche Werte), ihre Farbe (20 mögliche Werte), die ersten drei Ebenen der Google Produktkategorien (auf der dritten Ebene 500 mögliche Werte) und ihren Preis (im Bereich 0,49 – 100 €) beschrieben werden.

In diesem Kontext besitzt die Antwort auf die Frage: „Wie viele Daten werden überhaupt für ein Lernverfahren benötigt?“ offensichtlich konkreten Nutzen,

  • da wir abschätzen können, ob für ein konkretes Produkt überhaupt ein sinnvolles Vorhersagemodell erlernbar ist,
  • da wir aus der Abschätzung auf die Dauer der Datensammlung schließen können und
  • um ggf. die Daten von selten verkauften Produkten inhaltlich oder zeitlich zu aggregieren.

Was uns vorweg klar sein sollte

Die Daten, die wir zum Erlernen von Vorhersagemodellen verwenden, werden durch Eigenschaften (normalerweise als Feature, in der Statistik auch als Variablen bezeichnet) beschrieben. Die Eigenschaften werden in beobachtete und abhängige Eigenschaften (im Maschinellen Lernen auch als Label bezeichnet) unterschieden. Die Wertebereiche der Eigenschaften können in endliche und unendliche Wertebereich unterschieden werden.

Wir können nicht erwarten, dass ein Lernverfahren ein 100%ig korrektes Modell erlernt. Lernverfahren versuchen durch einen induktiven Schluss aus Daten ein Vorhersagemodell zu ermitteln. Da die zur Verfügung stehende Datenmenge immer begrenzt sein wird und die Daten damit realistischer Weise unvollständig sein werden, Messfehler und Inkonsistenzen enthalten können, kann auch ein erlerntes Modell niemals 100%ig korrekt sein.

Viele unterschiedliche Modelle können konsistent mit den verfügbaren Daten sein. Ziel des Lernverfahrens ist es daher mit den verfügbaren Daten das bestmögliche Vorhersagemodell zu ermitteln.

Wir müssen in Kauf nehmen, dass unbekannte, zukünftige oder ungewöhnliche Daten zu fehlerhaften Vorhersagen führen. Zum Lernzeitpunkt ist nur ein Ausschnitt aller Daten verfügbar. Zukünftig erhobene Daten können Veränderungen unterliegen oder es können bisher noch nicht gesehene Fälle auftreten, auf die das erlernte Modell nicht mehr richtig passt.

Aus diesen Fakten ergibt sich die einzig realistische Annahme: ein gutes Lernverfahren soll mit großer Wahrscheinlichkeit eine gute Näherung des richtigen Vorhersagemodells erlernen.

Anzahl benötigter Trainingsfälle

Zur Abschätzung der Anzahl benötigter Trainingsfälle – als Beispielkomplexität (sample complexity) bezeichnet – wurden in der Computational Learning Theory unterschiedliche Ansätze entwickelt. Diese Ansätze beschreiben für idealisierte Lernverfahren unter welchen Bedingungen probabilistisch, approximativ, korrektes Lernen (PAC learning) effizient möglich ist. Grundlegend für die Einsetzbarkeit dieser Ansätze ist die Unterscheidung, ob das Lernen in einem endlichen oder unendlichen Hypothesenraum erfolgt, und ob das Lernverfahren konsistente Hypothesen oder nur näherungsweise Hypothesen, z.B. beim Vorliegen von Messfehlern, zu den Daten erlernen kann.

Endliche Datenräume

Sofern die Daten nur durch nominelle Eigenschaften mit endlichen Wertebereichen beschrieben werden[2], lässt sich die Größe des Datenraums relativ einfach bestimmen. Die folgende Tabelle beschreibt für die wichtigsten nominellen Eigenschaftstypen Größenfaktoren, die im Folgenden zur vereinheitlichten Darstellung verwendet werden:

Type
t
Fehlende Werte (NA) ? Größe des Wertebereichs
n
Größenfaktor g(t)
Boolean Nein 2 2
Boolean Ja 2 3
Nominal (Menge) Nein n_t n_t
Nominal (Menge) Ja n_t n_t+1

Die Größe eines endlichen d-dimensionalen Datenraums D kann allgemein mit folgender Formel bestimmt werden |D| = \prod_{i=1}^d{g(t_i)}.

Das Lernproblem besteht darin: aus einer Teilmenge von Trainingsbeispielen S  aus dem Datenraum D, i.e. S \subset D, die ein Trainer dem Lernverfahren vorgibt, um Zielkonzept c zu erlernen, eine Hypothese aus dem Hypothesenraum h \in H des Lernverfahrens zu ermitteln, welche (möglichst) alle positiven Beispiel S_p  umfasst und (möglichst) alle negativen Beispiele S_n  ausschließt.

Einfache Hypothesenrepräsentation

Die einfachste Hypothesenrepräsentation, in der Lernen, welches über einfaches Erinnern hinausgeht, sinnvoll ist, sind Disjunktionen von Bool’schen Eigenschaften. Eine Beispielanwendung für die diese Repräsentation Sinn macht, ist das Erkennen von Spam-Emails anhand des Vorliegens unterschiedlicher alternativer Eigenschaften, die Spam-Emails charakterisieren. Der Hypothesenraum dieser Sprache besitzt eine Größe von |H| = 2^d [FoDS18]. Ein Beispiel für ein verbreitetes Lernverfahren, das eine Hypothesenrepräsentation dieses Typs nutzt, ist Naive Bayes.

Beliebige nominelle Eigenschaften können durch One-Hot- oder Dummy-Encoding als Bool’sche Variablen kodiert werden. Damit ergibt sich zum Erlernen von Disjunktionen kodierter, Bool’scher Eigenschaften die Größe des Hypothesenraums als |H| = 2^{\sum_{i=1}^d{g(t_i)}}.

Um unser Produktbeispiel in dieser Sprache zu repräsentieren, müssen die Eigenschaften geeignet kodiert werden, z.B. durch One-Hot- oder Dummy-Encoding, bei dem jeder Wert einer Eigenschaft durch eine neue bool’sche Variable kodiert wird. Hieraus ergeben sich im Fall von One-Hot-Encoding 500+10+20+500+9941=10.971 und im Fall von Dummy-Encoding 499+9+19+499+9940=10.966 neue Bool’sche Eigenschaften.

Eigenschaftsvektoren (Feature-Vektoren, bzw. Konjunktionen von Eigenschaften) stellen die nächstkomplexere Repräsentationssprache dar, die, solange sie nicht um ein Konstrukt zur Verallgemeinerung erweitert wird, sehr unspektakulär ist, da Beispiele mit ihr lediglich erinnert werden. Erst wenn ein „don’t care“-Symbol, wie z.B. „?“, für beliebige Eigenschaftswerte hinzugefügt wird, wird die extremste Form von Generalisierung möglich, die von einzelnen Werten gleich auf alle Werte generalisiert [ML97]. Durch das „don’t care“-Symbol wird der Größenfaktor g um einen weiteren Wert erhöht. Für diese Repräsentation beträgt die Größe des Hypothesenraums  über rein bool‘schen Eigenschaften (inkl. „don’t care“)  |H| = 3^d und für allgemeine endliche Eigenschaften|H| = \prod_{i=1}^d{(g(t_i)+1)}. Diese Repräsentation ist sehr eingeschränkt und erlaubt es nur einzelne und keine kombinierten Konzepte zu erlernen. Sie ist daher eigentlich nur von theoretischem Interesse und wird – soweit bekannt – in keinem praktisch eingesetzten Lernverfahren genutzt.

Interessanter ist eine Verallgemeinerung dieser Repräsentationssprache, die k-CNF (konjunktive Normalform), die aus einer Konjunktion von Disjunktionen der Länge k besteht, die sowohl polynomielle Beispiel- als auch Zeitkomplexität besitzt [ML97] und für die ein effizienter Algorithmus existiert. Diese Repräsentation lässt sich auch auf einen d-dimensionalen Eigenschaftsvektor übertragen, in dem für jede Eigenschaft Generalisierungen über beliebige Teilmengen erlaubt werden. Die Größe des Hypothesenraums dieser Sprache beträgt |H| = \prod_{i=1}^d{2^{g(t_i)}} = 2^{\sum_{i=1}^d{g(t_i)}}. Mit dieser Sprache können alle Eigenschaften zwar separat auf beliebige Teilmengen generalisiert werden, Korrelationen zwischen Eigenschaften werden jedoch nicht berücksichtigt.

Für Repräsentationssprachen, die keinerlei Einschränkungen machen, besitzt der Hypothesenraum für Daten mit d bool‘schen Eigenschaften eine Größe von |H| = 2^{2^d}. Auf beliebige endliche Eigenschaften übertragen, kann diese Aussage zu |H| = 2^{|D|} = 2^{\prod_{i=1}^d{g(t_i)}} verallgemeinert werden.

Wie aus diesen Abschätzungen ersichtlich wird, hat die Dimensionalität d der Daten einen direkten Einfluss auf die Größe des Hypothesenraums und damit auf die Anzahl der von einem Lernverfahren zu berücksichtigenden Konzepte.

Realistische Hypothesenrepräsentation

Bis auf einfache Disjunktionen bool’scher Eigenschaften, sind einfache Hypothesenrepräsentationen entweder zu ausdrucksschwach, so dass nützliche Konzepte kaum ausdrückbar sind, oder zu ausdrucksstark, so dass Lernen in vertretbarer nicht-exponentieller Zeit nicht möglich ist. Die gängigen Lernverfahren, wie k-Nearest Neighbors, Naive Bayes, Decision Trees, Random Forrests, AdaBoost, XGBoost, Logistic Regression, Support Vector Machines und Neuronale Netze, etc. beschränken durch spezifische Annahmen (inductive bias) den Hypothesenraum, um so nützliche Konzepte in vernünftiger Zeit zu erlernen.

Leider lassen sich nur für wenige der real eingesetzten Verfahren Abschätzungen für die Größe des Hypothesenraums finden.

Verfahren |H| Parameter
Boolean-coded Naive Bayes 2^{\sum_{i=1}^d{g(t_i)}}
Boolean-coded Decision Trees[3] 2^{\sum_{i=1}^d{g(t_i)}}
Boolean-coded Decision Trees with limited depth [4] 2(2^k-1)(1+log_2{⁡\sum_{i=1}^d{g(t_i)}} ) +1 k = Tiefenbegrenzung

Lernen eines zu allen Trainingsdaten konsistenten Konzepts (aka Overfitting)

Unter der Annahme eines idealen Lernalgorithmus, kann die Größe des Hypothesenraums dazu verwendet werden die Anzahl der Trainingsdaten m die ein „konsistenter Lernalgorithmus“[5] benötigt, um ein beliebiges Konzept mit einem maximalen Fehler \epsilon und einer Unsicherheit \delta (bzw. einer Wahrscheinlichkeit von 1 - \delta ) zu erlernen, abgeschätzt werden mit[6]

    \[m \geq \frac{1}{\epsilon}(ln{(|H|)} + ln{(\frac{1}{\delta})})\]

Nehmen wir für unser Beispielszenario an Produkt A wird stündlich im Durchschnitt 100 mal verkauft und Produkt B wird jeden Tag im Schnitt nur 10 mal verkauft.  Zur Vereinfachung nehmen wir weiter an, die Produkte werden jeden Tag – egal ob Wochentag oder Wochenende – nur zwischen 6:00 und 20:00 Uhr verkauft. Pro Monat erhalten wir für Produkt A 42.000 Datensätze und für Produkt B 300 Datensätze.

Der Datenraum D hat eine Größe von |D| = 500*10*20*500*9941 \approx 497 Mrd. Punkten. Mit einer einfachen bool’schen Kodierung ergibt sich d = 500+10+20+500+9951 = 10.971 und |H| = 2^{10.961}.

Wollten wir Datensätze dieser Produkte mit einem Fehler \epsilon von maximal 10% und einer maximalen Unsicherheit \delta = 5% – wie auch immer – klassifizieren, so würden wir für den Einsatz von Naive Bayes oder unbegrenzten DecisionTrees mindestens 76.145 Datensätze benötigen. Weder die monatlichen Daten von Produkt A noch Produkt B würden ausreichen.

Mit einem tiefenbeschränkten Entscheidungsbaum-Verfahren mit 5 Stufen, sind, ungeachtet der Qualität des Lernergebnisses, die Daten von Produkt A und B ausreichend, um die Anforderungen an \epsilon und \delta einzuhalten, da nur mindestens 91 Datensätze benötigt werden.

Ein, dieser Abschätzung zugrundeliegender, idealer Lernalgorithmus, ist jedoch für praktische Anwendungen unrealistisch, da er zwar für die Trainingsdaten ein konsistentes Konzept ermitteln würde, welches aber bei unbekannten, neuen Daten versagen kann. Der angenommene Lernalgorithmus unterliegt der „Überanpassung“ (overfitting).

Nichts desto trotz ist diese Abschätzungsformel hilfreich, da sie eine Aussage erlaubt, wie viele Trainingsbeispiele im besten Fall ausreichen, um mit einem idealen Lernverfahren ein Konzept mit einem maximalen Fehler von \epsilon und einer Unsicherheit von höchstens \delta zu erlernen, das in der genutzten Hypothesenrepräsentation ausdrückbar ist.

Agnostisches Lernen eines Konzeptes, das möglichst gut zu den Trainingsdaten passt

Überanpassung wollen wir in der Regel vermeiden, damit die erlernten Vorhersagemodelle auch auf unbekannte, fehlerbehaftete oder teilweise inkonsistente Daten anwendbar sind. Anders ausgedrückt: das zu erlernende Konzept c kann etwas außerhalb des Hypothesenraums liegen, der durch das eingesetzte Lernverfahren erfasst wird. Dies bedeutet, dass wir im Hypothesenraum des Lernverfahrens nur eine Näherung c' erlernen können, die möglichst gut sein sollte. Solch ein – als agnostisch bezeichnetes – Lernverfahren muss daher bestrebt sein den Fehler zwischen den Trainingsdaten und dem Fehler der sich durch das Erlernen der Näherung c' ergibt möglichst klein zu halten.

Auch hierfür kann, unter der Annahme eines idealen Lernalgorithmus, die Größe des Hypothesenraums dazu verwendet werden die Anzahl der Trainingsdaten m die ein „agnostisches Lernverfahren“ benötigt, um eine gute Näherung an das zu erlernende Konzept in einem endlichen Hypothesenraum mit einem maximalen Fehler \epsilon und einer Unsicherheit \delta (bzw. einer Wahrscheinlichkeit von 1 - \delta) zu erlernen, abgeschätzt werden mit[6]

    \[m \geq \frac{1}{2\epsilon^2}(ln{(|H|)} + ln{(\frac{2}{\delta})})\]

Auf das Beispiel angewendet müsste sich – unter der Annahme gleicher Rahmenbedingungen – die Mindestzahl von Trainingsbeispielen auf m = 490 belaufen. D.h. die Daten von Produkt A könnten zum Lernen der Klassifikation verwendet werden, die Datenmenge für Produkt B wäre jedoch nicht ausreichend.

Folgerung

Mit diesem ersten Beitrag haben wir anhand eines kleinen realen Beispiels gezeigt, wie sich für einen idealen Lernalgorithmus über die Betrachtung der Größe endlicher Hypothesenräume, die Mindestanzahl der benötigten Trainingsbeispiel abschätzen lässt.

Auch wenn es sich hierbei um eine idealisierte Betrachtung handelt, erlauben solche Abschätzungen Aussagen darüber, wann Lernverfahren nur mit einem größeren Fehler behaftet einsetzbar sind.

Diese Betrachtung erstreckte sich bisher nur über endliche Eigenschaften und berücksichtigt die Komplexität der Hypothesenrepräsentation – eine der wesentlichen Eigenschaften eines Lernverfahrens – noch nicht. Dies wird Thema des zweiten Teils sein, in dem wir sehen werden, wie sich Abschätzung auf der Basis der – sogenannten – Vapnik-Chervonenkis-Dimension (VC-Dimension) für viele gängige Klassen von Lernverfahren einsetzen lassen.

Fußnoten

[1] Wir betrachten hierbei nur rein binäre, binomiale resp. Bool’sche Klassifikationsprobleme, deren Aussagen sich jedoch auch auf multinomiale Klassifikation und reell-wertige Vorhersagemodelle übertragen lassen (siehe [ESL09], Seite 238).

[2] Unendlich, überabzählbare Eigenschaften lassen sich in Abhängigkeit vom Anwendungsproblem und der erforderlichen Genauigkeit oft diskretisieren und als ordinale Daten oder Intervalle ganzer Zahlen repräsentieren, wie z.B. Alter, Körpergröße, Längen, Temperatur, und Zeitintervalle usw., wenn es ausreichend ist diese mit einer Genauigkeit von Jahren, cm, mm, Zehntelgrad oder Sekunden zu erfassen.

[3] Vollausgebaute Decision Trees unterliegen der Gefahr der „Überanpassung“ (overfitting) und werden in der Regel gestutzt, um dies zu vermeiden. Die Abschätzung stellt daher die Obergrenze dar.

[4] http://www.cs.cmu.edu/~guestrin/Class/10701/slides/learningtheory-bigpicture.pdf  und https://www.autonlab.org/_media/tutorials/pac05.pdf (Letzter Zugriff: 10.3.2018)

[5] Ein „konsistenter Lernalgorithmus“ erlernt Hypothesen, die – wann immer möglich – perfekt zu den Trainingsdaten passen [ML97].

[6] Details zur Ableitung der beschriebenen Untergrenzen finden sich u.a. in [ML97], [FoML12] oder [FoDS18].

Referenzen

[HL11] „The World’s Technological Capacity to Store, Communicate, and Compute Information“, M. Hilbert, P. López, Science 332, 60, 2011, http://www.uvm.edu/pdodds/files/papers/others/2011/hilbert2011a.pdf (letzter Zugriff: 14. März 2018)

[ESL09] “The Elements of Statistical Learning”, T. Hastie, R. Tibshirani, J. Friedman, 2nd Edition, Springer, 2009.

[ML97] „Machine Learning“, T. Mitchell, McGraw-Hill, 1997.

[FoML12] „Foundations of Machine Learning“, M. Mohri, A. Rostamizadeh, A. Talwalkar, The MIT Press, 2012.

[FoDS18] „Foundations of Data Science“, A. Blum, J. Hopcroft, R. Kannan, Cornell University, https://www.cs.cornell.edu/jeh/book.pdf, Jan. 4th, 2018 (letzter Zugriff: 14. März 2018)

Distributed Computing – MapReduce Algorithmus

Sollen große Datenmengen analysiert werden, ist die Hardware eines leistungsfähigen Computers schnell überfordert und die Analysezeiten werden zu lang. Die Lösung zur Bewältigung von Big Data Analytics sind Konzepte des verteilten Rechnens (Distributed Computing).

Vertikale Skalierung – Der Klassiker der leistungsstarken Datenverarbeitung

Die meisten Unternehmen setzen heute noch auf leistungsstarke und aufrüstbare Einzelserver. Sollten Datenmengen größer und Analysen rechenaufwändiger werden, werden Festplatten (Storage), Arbeitsspeicher (RAM) und Prozessoren (CPU) aufgerüstet oder der Server direkt durch einen leistungsstärkeren ersetzt.

Diese Form der sogenannten vertikalen Skalierung (Vergrößerung der Server-Komponenten) ist für viele Unternehmen heute noch gängige Praxis, auch weil sie leicht zu administrieren ist und sie mit nahezu jeder Software funktioniert. Jedoch sind der Erweiterbarkeit gewisse Grenzen gesetzt und auch der Wechsel zu noch leistungsfähigerer Hardware würde den Einsatz von neuester High-End-Hardware bedeuten, der Kostenanstieg wäre exponentiell. Ferner bedarf es einer durchdachten Backup-Strategie mit gespiegelten Festplatten oder einem ganzen Backup-Server.

Leistungsstarke Server sind teuer und können zwar große Datenmengen weitaus schneller auswerten als Consumer-Computer, jedoch sind auch sie eher nicht dazu in der Lage, Big Data zu verarbeiten, also beispielsweise 100 Terabyte Daten binnen Sekunden statistisch auszuwerten.

Horizontale Skalierung – Skalierbare Speicher-/Rechenleistung

Ein alternatives Konzept zur vertikalen Skalierung ist die horizontale Skalierung. Dabei werden mehrere Computer, die im Vergleich oftmals über nur mittelmäßige Leistungsmerkmale verfügen, über ein Computer-Netzwerk verbunden und parallel angesteuert.

Der große Vorteil der horizontalen Skalierung ist der kostengünstige Einstieg, denn praktisch könnte bereits mit einem einzelnen Computer (Node) begonnen werden und dann nach und nach mit weiteren Nodes die Leistungsfähigkeit des Clusters (Verbund von Nodes) linear gesteigert werden. Ungefähr linear wachsen auch die Kosten an, so dass diese weitaus besser planbar sind. Cluster können weitaus höhere Leistungen erreichen als es einzelne Server könnten, daher gibt die horizontale Skalierung als diejenige, die sich für Big Data Analytics eignet, denn sie ermöglicht verteiltes Rechnen (Distributed Computing). Mit einem ausreichend großen Cluster lassen sich auch 100 Terabyte und mehr in wenigen Augenblicken statistisch auswerten.

Ferner ermöglichen horizontale Lösungen integrierte Backup-Strategien, indem jeder Node des Clusters über ein Backup der Daten eines anderen Nodes verfügt. Verfügt ein Node sogar über mehrere Backups, lässt sich eine sehr hohe Ausfallsicherheit – Datenverfügbarkeit im Cluster – erzielen.

Jedoch gibt es auch Nachteile der horizontalen Skalierung: Die Administration eines Clusters ist weitaus herausfordernder als ein einzelner Server, egal wie leistungsstark dieser sein mag. Auch Bedarf es viel räumlichen Platz für einen (oder gar mehrere) Cluster. Die Kompatibilität der Nodes sollte auch für die nächsten Jahr gesichert sein und nicht zuletzt ist es eine große Hürde, dass die einzusetzende Software (Datenbank- und Analyse-Software) für den Einsatz auf Clustern geeignet sein muss. Verbreite Software-Lösungen für verteiltes Speichern und Rechnen kommen beispielsweise von der Apache Foundation als Open Source Software: Hadoop, Spark und Flink.

Map Reduce Processing

Damit verteiltes Rechnung funktioniert, bedarf es der richtigen Software, die wiederum Algorithmen einsetzt, die sich dafür eignen. Der bekannteste und immer noch am weitesten verbreitete Algorithmus ist MapReduce. MapReduce ist ein sehr einfacher Algorithmus und dürfte von der grundsätzlichen Vorgehensweise jedem Software-Entwickler oder Analyst vertraut sein. Das Prinzip entspricht dem folgenden SQL-Statement, dass die am häufigsten vorkommende Sprache aus dem Datensatz (Tabelle Customers) abfragt:

Es gibt eine Tabelle (es könnte eine Tabelle in einer relationalen Datenbank sein oder eine CSV-Datei), die durch eine SELECT-Query abgefragt (map), groupiert (combine) und sortiert (sort). Dieser Schritt kann vereinfacht als Map-Funktion betrachtet werden, die in einer Liste Paaren aus Schlüssel (Keys) und Werten (Values) resultiert. Ist diese Liste vorhanden, kann diese auf die gewünschten Ergebnisse entspechend einer Logik (z. B. max(), min(), mean(), sum()) auf wenige oder nur einen einzigen Wert reduziert werden (Reduce-Funktion). Zu beachten ist dabei, dass der Map-Prozess sehr viel speicher- und rechen-aufwändiger als der Reduce-Prozess ist. Führen wir diese Abfrage auf einer Maschine aus, fassen wir die beiden Abfragen als ein Statement aus:

SELECT TOP 1 [Language], COUNT(*)
FROM Customers
GROUP BY [Language]
ORDER BY COUNT(*) DESC

Betrachten wir jedoch die einzelnen Schritte, können wir sie wieder zumindest in einen Map- und einen Reduce-Schritt unterteilen. Diese Aufteilung machen wir uns für das verteilte Rechnen zunutze: Wenn jeder Computer (Node; oft auch Client Node oder Data Node) einen Teil der Daten besitzt, kann jeder Node für sich einen Map-Prozess durchführen, die Ergebnisse dann an einen Master-Node (oder in Hadoop-Sprache: Name Node) senden, der den Reduce-Prozess durchführt. Der Großteil der Aufgabe findet somit auf dem Cluster statt, nur der simple Reduce-Schritt auf einem einzelnen Computer.

Oftmals reicht ein parallel ablaufender Map-Prozess auf dem Cluster nicht aus, um Daten effizient auswerten zu können. Die Maßgabe sollte stets sein, den Reduce-Aufwand so gering wie möglich zu halten und soviel Arbeit wie möglich auf den Cluster zu verlagern. Daher sollte jeder Node im Cluster soweit aggregieren wie möglich: Dafür gibt es den Combine-Schritt.

Die zuvor erwähnte SQL-Abfrage als MapReduce würde bedeuten, dass ein Node über den Datensatz verfügt (und andere Nodes über weitere Datensätze) und jeder Node für sich seine Daten über einen Map-Prozess herausarbeitet, über einen Combine-Prozess aggregiert und die Aggregationsergebnisse an den Master-Node (Name Node) sendet. Hat der Master-Node alle Ergebnisse erhalten, berechnet dieser daraus das Endergebnis (Reduce).

Zusammenfassung: Map Reduce

MapReduce ist der bekannteste Algorithmus zur verteilten Verarbeitung von Daten und eignet sich für die Durchführung von komplexen Datenanalysen. Liegen Datensätze auf mehreren Computern (Client Nodes) vor, läuft der Algorithmus in der Regel in drei Schritten ab:

  1. Map – Selektierung der Datensätze auf den Computern im gewünschten Format und Durchführung einer Berechnung, beispielsweise der Bildung einer Summe. Dieser Schritt ist ermöglich das Prinzip Schema on Read, das aus Hadoop ein Tool zur Verarbeitung von unstrukturierten Daten macht.
  2. Combine – Durchführung einer Aggregation, die ebenfalls auf jeden Client Node durchgeführt wird, zur Zusammenfassung von Map-Ergebnissen.
  3. Reduce – Aggregation aller Ergebnisse auf dem zentralen Rechner (Name Node)

MapReduce ist dazu geeignet, unstrukturierte Daten zu verarbeiten, denn das Format der Daten wird über einen Map-Algorithmus bestimmt, der sehr flexibel programmiert werden kann. MapReduce ist kein eng definierter Algorithmus, sondern eine Hülle, die mit Inhalt befüllt werden muss. So müssen MapReduce-Algorithmen individuell über eine Programmiersprache wie Java, Scala oder Python programmiert werden.

Ein Beispiel eines in Java programmierten Word-Count-Algorithmus nach der MapReduce-Logik in Hadoop findet sich hier:

1. 	package org.myorg;
2. 	
3. 	import java.io.IOException;
4. 	import java.util.*;
5. 	
6. 	import org.apache.hadoop.fs.Path;
7. 	import org.apache.hadoop.conf.*;
8. 	import org.apache.hadoop.io.*;
9. 	import org.apache.hadoop.mapred.*;
10. 	import org.apache.hadoop.util.*;
11. 	
12. 	public class WordCount {
13. 	
14. 	   public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {  // Map-Process on Cluster
15. 	     private final static IntWritable one = new IntWritable(1);
16. 	     private Text word = new Text();
17. 	
18. 	     public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
19. 	       String line = value.toString();
20. 	       StringTokenizer tokenizer = new StringTokenizer(line);
21. 	       while (tokenizer.hasMoreTokens()) {
22. 	         word.set(tokenizer.nextToken());
23. 	         output.collect(word, one);
24. 	       }
25. 	     }
26. 	   }
27. 	
28. 	   public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {  // Reduce-Process on Name Node
29. 	     public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
30. 	       int sum = 0;
31. 	       while (values.hasNext()) {
32. 	         sum += values.next().get();
33. 	       }
34. 	       output.collect(key, new IntWritable(sum));
35. 	     }
36. 	   }
37. 	
38. 	   public static void main(String[] args) throws Exception {  // Setting up the MapReduce-Job "wordcount"
39. 	     JobConf conf = new JobConf(WordCount.class);
40. 	     conf.setJobName("wordcount");
41. 	
42. 	     conf.setOutputKeyClass(Text.class);
43. 	     conf.setOutputValueClass(IntWritable.class);
44. 	
45. 	     conf.setMapperClass(Map.class);
46. 	     conf.setCombinerClass(Reduce.class);
47. 	     conf.setReducerClass(Reduce.class);
48. 	
49. 	     conf.setInputFormat(TextInputFormat.class);
50. 	     conf.setOutputFormat(TextOutputFormat.class);
51. 	
52. 	     FileInputFormat.setInputPaths(conf, new Path(args[0]));
53. 	     FileOutputFormat.setOutputPath(conf, new Path(args[1]));
54. 	
55. 	     JobClient.runJob(conf);
57. 	   }
58. 	}

MapReduce und Advanced Analytics

MapReduce spielt seine Vorteile auf Computer-Clustern aus und eignet sich sehr zur Analyse von Daten nach dem Schema on Read. Für kompliziertere Analysealgorithmen ist MapReduce jedoch nur bedingt geeignet, denn bereits einfache Join-Anweisungen benötigen mehrere MapReduce-Ketten.

Während statistische Auswertungen und Join-Anweisungen mit MapReduce noch gut möglich sind, werden Algorithmen des maschinellen Lernens schwierig bis kaum möglich, da diese viele Iterationen, z. B. zur Anpassung von Gewichten, benötigen.

Machine Learning: Online vs Offline

Das ist Artikel 4 von 4 aus der Artikelserie – Was ist eigentlich Machine Learning?

Die Begriffe online und offline sind mit vielen Bedeutungen versehen und so ist – wie bei vielen Unterscheidungsmöglichkeiten des maschinellen Lernens – die Verwirrung vorprogrammiert. Diese Unterscheidung betrifft die Trainingsphasen der parametrischen Verfahren des maschinellen Lernens.

Offline Learning

Mit Offline Learning ist nicht gemeint, dass der Algorithmus nicht ans Internet angebunden ist, sondern dass es sich bei der Trainingsprozedure um eine Stapelverarbeitung handelt. Daher wird manchmal auch vom Batch Learning gesprochen. Beim Batch Learning werden die Parameter bzw. das Modell erst angepasst, nachdem der gesamte Batch (Stapel an Datensätzen) das Training durchlaufen hat. Die gewöhnliche Gradientenmethode als ein Optimierungsverfahren ist das Gradientenabstiegsverfahren als Stapelverarbeitung. Dabei wird der Gradient, der die Richtung für die Anpassung der Gewichtungen der Funktionsparameter vorgibt, anhand der gesamten Trainingsdatenmenge berechnet.

Der Vorteil dieser Vorgehensweise ist, dass das Training als Prozess sehr schnell läuft und die Funktionsparameter direkt aus dem gesamten Datenbestand heraus bestimmt werden.

Demgegenüber steht der Nachteil, dass der ganze Stapel in den Arbeitsspeicher geladen werden muss, was eine entsprechend leistungsfähige Hardware voraussetzt. Soll das Lern-System für das Training live an einer Datenquelle (z. B. ein Data Stream aus dem Social Media) angebunden werden, müssen die Daten erstmal gespeichert werden (Bildung des Stapels), bevor sie verarbeitet und dann verworfen werden können, was den dafür nötigen Speicherplatz bedingt.

Online Learning

Beim Online-Learning wird nicht über einen Stapel (Batch) trainiert, sondern jeder einzelne Datensatz (aus einer großen Menge an Datensätzen oder live hinzugefügte Datensätze) wird dem Training einzeln hinzugefügt, trainiert und umgehend in eine Parameteranpassung (Modellanpassung) umgesetzt. Dies lässt sich beispielsweise mit der stochastischen Gradientenmethode realsieren, die iterativ arbeiten und den Gradienten zur Gewichtungsanpassung für jeden einzelnen Datensatz bestimmt, statt einen ganzen Batch zu verarbeiten und daraus einen Fehler zu berechnen. Online-Learning ist ein inkrementell arbeitendes Lernen, welches das Modell kontinuierlich – nämlich nach jedem Datensatz (Sample) – anpasst.

Die Optimierung läuft somit – wenn auf eine große Datenmenge angewendet wird – natürlich langsamer und ist eher nicht geeignet, wenn ein Training schnell verlaufen muss oder eine große Datenmenge die Hardware sowieso schon auslastet. Dafür wird das Modell beim Online-Learning in Echtzeit trainiert, wenn neue Daten zur Verfügung stehen. Neu hinzugefügte Daten fließen sofort ins Modell ein, so kann ein Lern-System als ein Live-System gleich auf Änderungen reagieren und die Trainingsdaten wieder verworfen werden (da sie bereits ins Training eingeflossen sind).

Mini-Batch-Verfahren

Während beim Online Learning alle Datensätze einzeln durchgegangen werden (dauert lange) und beim Offline Learning der gesamte Stapel an Datensätzen durchgearbeitet wird (viel Speicherplatzbedarf), ist der sogenannte Mini-Batch der Mittelweg. Wie der Name bereits andeutet, wird ein kleinerer Stapel (z. B. 50 Datensätze) gesammelt und verarbeitet.

Einstieg in Deep Learning – Artikelserie

Deep Learning gilt als ein Teilgebiet des maschinellen Lernens (Machine Learning), welches wiederum ein Teilgebiet der künstlichen Intelligenz (Artificial Intelligence) ist. Machine Learning umfasst alle (teilweise äußerst unterschiedliche) Methoden der Klassifikation oder Regression, die die Maschine über ein vom Menschen begleitetes Training selbst erlernt. Darüber hinaus umfasst Machine Learning auch unüberwachte Methoden zum Data Mining in besonders großen und vielfältigen Datenmengen.

Deep Learning ist eine Unterform des maschinellen Lernens und macht im Grunde nichts anderes: Es geht um antrainierte Klassifikation oder Regression. Seltener werden Deep Learning Algorithmen auch als unüberwachter Lernenmechanismus verwendet, zum Lernen von Rauschen zur Erkennung von Mustern (Data Mining). Deep Learning bezeichnet den Einsatz von künstlichen neuronalen Netzen, die gegenüber anderen Verfahren des maschinellen Lernens häufig überlegen sind und diesen gegenüber auch andere Vor- und Nachteile besitzen.

Im Rahmen dieser Artikelserie erscheinen im Laufe der kommenden Monate folgende Artikel:

  1. Machine Learning vs Deep Learning – Wo liegt der Unterschied?
  2. Funktionsweise künstlicher neuronaler Netze
  3. Training eines Neurons mit dem Gradientenverfahren
  4. Fehler-Rückführung mit der Backpropagation
  5. Künstliches neuronales Netz in Python (erscheint demnächst)
  6. Künstliches neuronales Netz mit dem TensorFlow-Framework (erscheint demnächst)

Buchempfehlungen

Seit 2016 arbeite ich mich in Deep Learning ein und biete auch Seminare und Workshops zu Machine Learning und Deep Learning an, dafür habe ich eine ausführliche Einarbeitung und ein immer wieder neu auflebendes Literaturstudium hinter mir. Unter Anderen habe ich folgende Bücher für mein Selbststudium verwendet und nutze ich auch Auszugsweise für meine Lehre:


Praxiseinstieg Machine Learning mit Scikit-Learn und TensorFlow: Konzepte, Tools und Techniken für intelligente Systeme (Animals)

Neuronale Netze selbst programmieren: Ein verständlicher Einstieg mit Python

Praxiseinstieg Deep Learning: Mit Python, Caffe, TensorFlow und Spark eigene Deep-Learning-Anwendungen erstellen

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional)

 

Process-Mining: Es werde Licht

Anzeige

Nur wer seine Prozesse kennt, kann sie optimieren

Gewachsene und in verschiedenen Systemen umgesetzte Prozesse sind meist nicht definiert und dokumentiert. Wer hat einen Prozess wann, warum und wofür angelegt? Nach welchem Schema verläuft er? Gibt es verschiedene Prozessvarianten, die durch unterschiedliche Parameter gesteuert sind? Diese Fragen können viele Unternehmen nicht beantworten und ihre betrieblichen Abläufe nicht optimieren – mit der Folge, dass sie weder ihre Transparenz steigern noch die Kosten senken und von Wettbewerbsvorteilen profitieren können.

Ohne transparente, aktuelle und einheitliche Prozessdokumentation ist der Aufwand zur Aneignung des Prozesswissens unnötig hoch – zumal die Intransparenz sehr teuer ist. Insbesondere für Unternehmen im Finance-Umfeld ist eine transparente, aktuelle Dokumentation Pflicht. Nur so können Wirtschaftsprüfer oder Revisionsabteilungen Unregelmäßigkeiten und Verstöße gegen Compliance-Richtlinien in Prozessen identifizieren und nachweisen, dass Firmen normative Vorgaben wie die Mindestanforderungen an das Risikomanagement (MaRisk) der BaFin (Bundesanstalt für Finanzdienstleistungsaufsicht) einhalten.

Prozesse sichtbar machen

Durchblick gewährt das Process-Mining. Es macht die in Technik verborgenen Prozesse sichtbar. Als Bestandteil des Business-Process-Managements (BPM) ermöglicht es, Prozesse aus ihren digitalen Spuren in ERP-, CRM- oder proprietären Systemen zu rekonstruieren und auszuwerten. Viele Unternehmen wissen nicht, wie viele digitale Abläufe es gibt, wie sie chronologisch vonstattengehen, wie sie zusammenhängen, welche Prozessvariante wie viele Anwender wie häufig durchlaufen – und was das kostet. Ausgangspunkt des Process-Minings ist eine Sammlung der Prozessschritte. Mit statistischen Modellen lässt sich dann der Kernprozess ermitteln, der als Basis für alle Prozessabläufe Abweichungen offenbart.

Beispiel: Bestellanforderung in SAP anlegen

Der Standardprozess ist einfach: Bestellanforderung ins SAP-System eingeben, an Prozessfreigeber senden, von ihm prüfen und freigeben lassen. Die Realität könnte aber so sein: Mitarbeiter A bittet Mitarbeiter B per E-Mail, den Prozess einer Bestellanforderung in SAP anzulegen. Also sammelt Mitarbeiter B Informationen in einer Excel-Liste und legt sie auf dem Server ab – und weicht damit vom Standard ab. Da Mitarbeiter B die Freigabe des Vorgesetzten von A benötigt, fragt er ihn per E-Mail, ob er die Bestellung auslösen darf – eine weitere Abweichung. Nach Freigabe schickt Mitarbeiter B die Bestellung an den Lieferanten, ohne den Prozess in SAP anzulegen – schließlich drängt die Zeit. Die Folge: Im ERP-System fehlen Bestellanforderung und Freigabe. Wieso und warum, ist im Nachhinein nicht mehr nachvollziehbar.

Prozesse visualisieren und modellieren

Licht ins Dunkel bringt die Prozessvisualisierung. Sind Prozesse in Dashboards, Diagrammen, Tabellen und Tachoelementen dargestellt, können Unternehmen einfach nachvollziehen, wie Prozesse samt Varianten ablaufen und wie sie verknüpft sind. Auf Basis der Visualisierung ist es möglich, einzelne Abläufe zu modellieren: Man überträgt Prozessabläufe in ein standardisiertes Modell, das Prozessinformationen wie In- und Outputs, beteiligte Rollen, Dokumente und IT-Systeme beinhaltet. Umfangreiche Analysen und Simulationen erlauben dann, Prozesse zu bewerten und Optimierungspotenziale aufzudecken. Ist nachvollziehbar, wie ein Gesamtprozess mit allen Varianten abläuft, können Unternehmen Modifikationen abbauen und einen effizienten Prozess definieren.

Prozesse freigeben, versionieren und publizieren

Neben der Prozessvisualisierung sollte die Process-Mining-Lösung auch die Prozessfreigabe unter Berücksichtigung der Governance-Vorgaben unterstützen. Das erlaubt, Mitarbeitern Rollen wie Prozesseigner, -freigeber oder -prüfer zuzuweisen und eine automatisierte Freigabe zu etablieren. Sind die Daten sauber versioniert und zentral abgelegt, ist für eine lückenlose Dokumentation gesorgt. Um die Mitarbeiter entsprechend zu informieren, sollte das Tool eine einfache Publizierung unterstützen und Informationen zu Risiken, Kennzahlen und IT-Systemen bereitstellen. Außerdem sollten sich Mitarbeiter in die Prozessgestaltung einbringen können.

Informationen auslesen und auswerten – auch in der Cloud

Um eine Prozessdokumentation automatisiert zu erstellen, braucht es einen Algorithmus, der prozessrelevante Informationen aus allen IT-Systemen und Applikationen in das BPM-Tool einspielt. Über Konnektoren zu SAP ERP, Microsoft Dynamics CRM und proprietären IT-Lösungen lässt es sich an Bestandssysteme nahtlos anbinden. Das erlaubt, Informationen zielführend abzugleichen, bedarfsgerecht aufzubereiten und gewinnbringend zu nutzen. Idealerweise ist eine Process-Mining-Software fester Bestandteil eines BPM-Systems (BPMS), das die Prozessplanung, -ausführung, -analyse und -optimierung unterstützt. Eine Monitoring-Komponente sollte es gestatten, Kennzahlen zu erfassen, zu überwachen und auszuwerten. Für maximale Flexibilität ist gesorgt, wenn sich das BPM-System in der Cloud betreiben und bedarfsgerecht anpassen lässt. So können Anwender auf zyklische Lastspitzen mit einem individuellen Ressourcenmanagement reagieren.

Augen auf bei der Anbieter-Auswahl

Neben dem Funktionsumfang ist auch der IT-Dienstleister wichtig. Idealerweise bietet er eine BPM-Suite mit Process-Mining als Teilkomponente. Ein großer, internationaler IT-Systemintegrator mit Erfahrung in allen Branchen hat die nötige Manpower und Erfahrung für komplexe BPM-Projekte. Im Idealfall bietet er Unternehmen State-of-the-art-Technologie und stellt ihnen kompetente, erfahrene Prozessberater zur Seite, die sie in technischen Belangen wie Setup, Integration und Inbetriebnahme sowie dem Auslesen der Daten aus IT-Systemen unterstützen – für eine zielführende Prozessoptimierung und ein wirksames Change-Management. Wenn der Dienstleister über das BPM-Projekt hinaus wertvolle Hilfestellung leistet, können Unternehmen dank Process-Mining wettbewerbsfähiger, innovativer und damit langfristig erfolgreicher werden.

Maschinelles Lernen: Parametrisierte und nicht-parametrisierte Verfahren

Das ist Artikel 3 von 4 aus der Artikelserie – Was ist eigentlich Machine Learning?

Maschinelle Lernverfahren können voneinander unterschiedlich abgegrenzt werden, die den meisten Einsteigern bekannte Abgrenzung ist die zwischen überwachten und unüberwachten Verfahren. Eine weitere Abgrenzung zwischen den Lernverfahren, die weit weniger bekannt und verständlich ist, und um die es in diesem Artikel der Reihe gehen soll, ist die Unterscheidung in parametrisierte und nicht parametrisierte Lernverfahren. Gleich vorweg: Parametrisiert und nicht-parametrisierte bezieht sich auf das Modell (Trainingsergebnis), nicht auf die Algorithmen selbst (also nicht Parameter wie k-Werte, Iterations-, Gewichtungs- oder Regularisierungs-Parameter).

Parametrisierte Lernverfahren (parametric learning)

Parametrisierte Lernverfahren sind solche, die über ein Training mit sogenannten Trainingsdaten eine Funktion mit festen Parametern entwickeln, beispielsweise y = f(x) = x³ * a + x² * b + x *c + d. Diese Funktion hat dank einer festgesetzten Anzahl an Parametern eine feste Struktur, und genau dieser Fakt der Parameter-Struktur-Bestimmung a-priori macht das Lernverfahren zu einem parametrischen Lernverfahren. Nach dem Training stehen die Sturkur und die Parameter-Werte fest, beispielsweise y = x³ * 32 + x² * -4 + x * 2 + 102. Diese Funktion beschreibt den Zusammenhang zwischen dem Input x und dem Output y. Am einfachsten kann man sich das Prinzip des parametrischen Lernens demnach mit der Regression vorstellen: Eine Gerade oder eine Kurve wird über ein Trainingslauf durch eine Punktwolke gezogen und daraus die Funktion abgeleitet. Bei der Prädiktion wird diese Funktion dann dazu verwendet, mit den neuen Input-Werten den Output zu berechnen.

Mit dem Festsetzen der Struktur der Funktion bereits vor dem Training sind einige Vor- und Nachteile verbunden:

Parametrische Lernverfahren sind manchmal etwas einfacher zu verstehen, da sich das Modell durchweg als “feste” Formel betrachten lässt. Dieser Vorteil ist jedoch gleichermaßen eine Einschränkung, denn parametrische Verfahren sind eher dazu geeignet, einfachere Zusammenhänge (mit nicht all zu vielen Dimensionen) zu berechnen. Dafür läuft das Training und vor allem die Prädiktion bei parametrischen Verfahren sehr viel schneller ab, als es bei nicht-parametrischen Verfahren der Fall ist, immerhin müssen die Eingabewerte bei der Prädiktion nur in die Funktion mit bekannter Struktur eingefügt und ausgerechnet werden. Man kann sich also merken: Beim parametrischen Lernen stehen die Parameter vorher fest, beim Training werden nur die “richtigen” Werte für die Parameter gefunden.

Schlussendlich kann generell gesagt werden, dass parametrische Funktionen weniger Datenpunkte als nicht-parametrische Lernverfahren benötigen und bei weniger Daten bessere Ergebnisse liefern. Bei sehr großen Datenmengen werden parametrische Funktionen eher schlechter gegenüber nicht-parametrischen Verfahren und neigen etwas zur Unteranpassung.

Zu den parametrischen Lernverfahren gehören:

  • Lineare und nicht-lineare Regression
  • Lineare Diskriminazanalyse
  • Logistische Regression
  • Naive Bayes Klassifikation
  • einfache künstliche neuronale Netze (z. B. MLP)
  • lineare Support Vector Machines (SVM)

Nicht-parametrisierte Lernverfahren (nonparametric learning)

Spricht man vom nicht-parametrisierten Lernen, ist die Verwirrung eigentlich vorprogrammiert, denn es bedeutet keinesfalls, dass es keine Parameter gibt, ganz im Gegenteil! Nicht-parametrische Verfahren arbeiten in aller Regel mit sehr viel mehr Parametern als die parametrischen Verfahren. Und nicht-parametrische Verfahren sind häufig dann im Einsatz, wenn die Anzahl an Daten und Dimensionen sehr groß ist und wenn nicht klar ist, welche Dimensionen voneinander unabhängig sind, aber in Abhängigkeit mit dem Klassifikations-/Regressionsergebnis stehen.

Auch nicht-parametrische Lernverfahren entwickeln eine Funktion, die den Zusammenhang zwischen dem Input und dem Output beschreibt. Jedoch wird die Struktur der Funktion vor dem Training nicht konkret über eine bestimmte Anzahl an Parametern festgelegt. Die Anzahl an Parametern wird erst zur Laufzeit des Trainings bestimmt und hier könnte jede neue Zeile in der Tabelle der Trainingsdaten einen neuen Parameter bedeuten (also beispielsweise dazu führen, dass ein neuer Ast eines Entscheidungsbaumes entsteht – oder auch nicht!).

Die Modellstruktur wird nicht über eine Funktion mit festen Parametern festgelegt, sondern bei jeder Prädiktion aus den Daten ermittelt. Tendenziell neigen nicht-parametrisierte Verfahren etwas mehr zur Überanpassung als parametrisierte Verfahren.

Zu den nicht-parametrisierten Lernverfahren gehören:

  • k-nächste Nachbarn Klassifikation/Regression
  • Entscheidungsbaum Klassifikation/Regression
  • Nicht-lineare Support Vector Machines (RBF Kernel SVM)

Kleiner Abgleich des Verständnisses

Der Unterschied zwischen parametrisierten und nicht-parametrisierten Verfahren wird so häufig falsch verstanden, dass es sich lohnt, etwas Zeit in eine kleine Wiederholung zu investieren, jedoch aus der FAQ-Perspektive:

Warum ist die Regressionsanalyse ein parametrisiertes Lernverfahren?

Bei der klassischen Regressionsrechnung müssen wir noch vor dem Training festlegen, über welche Funktion wir trainieren wollen. Eine lineare Funktion wie y = x * a + b? Oder doch lieber eine nicht-lineare Funktion wie y = x² * a + x * b + c? Die Struktur der Funktion, mit der wir die Punktwolke beschreiben möchten und mit der wir dann im Nachgang Prädiktionen auf Basis von neuer x-Werte berechnen möchten, muss vor dem Training bestimmt werden.

Warum ist die k-nächste-Nachbarn-Bestimmung ein nicht-parametrisiertes Lernverfahren?

Hierbei handelt es sich um ein Lernen durch Ähnlichkeitsanalyse. Es werden gelabelte Datenpunkte gesammelt und erst bei der Prädiktion wird die multidimensionale Ähnlichkeit des neuen Datenpunktes mit den bekannten Datenpunkten bestimmt (Matrizen-Bildung über Distanzen zwischen den Datenpunkten im multidimensionalen Vektorraum). Das Modell lässt sich vorher nicht mal adäquat bestimmen.

Das Modell liegt sozusagen in den Daten. Der k-nächste-Nachbarn-Algorithmus (k-nN) zählt deshalb übrigens nicht nur zum nicht-parametrisierten Lernen, sondern ist darüber hinaus auch noch ein instanzbasiertes Lernen (Lazy Learning).

Warum sind Entscheidungsbäume nicht-parametrisierte Lernverfahren?

Entscheidungsbäume entwerfen Funktionen, die eine auf das Ergebnis bezogene Datenverteilung beschreiben. Jedoch wird vor der Entstehung dieses Modells (also vor dem Training) nicht die Anzahl der Parameter vorgegeben. Zwar ist es üblich, eine maximale Tiefe des Baumes vorzugeben (auch um Überanpassung zu vermeiden),  das Modell (die Struktur des Baumes) hängt jedoch von den Daten ab.

Warum ist Naive Bayes Klassifikation ein parametrisiertes Lernverfahren?

Naive Bayes Klassifikation gilt grundsätzlich als ein parametrisches Lernverfahren. Der Klassifikator errechnet eine Wahrscheinlichkeit, einer bestimmten Klasse zugehörig zu sein, über ein Produkt aus Wahrscheinlichkeiten des Auftretens voneinander (naive) unabhängiger Eingaben (x1, x2,… xn), in der Regel als multinominales Vokabular. Jede Eingabe (eindeutiges Element aus dem Vokabular) ist im Grunde eine Dimension und stellt einen Parameter dar, der im Vorfeld bekannt sein muss.

Es gibt allerdings auch Abwandlungen des Naive Bayes Klassifikators, bei denen mit Dichteschätzungen (1D Kernel Dichteschätzung) gerechnet wird, dann haben wir es wiederum mit Parametern zutun, die erst während der Trainingsphase entstehen.

Warum können Support Vector Machines sowohl parametrisierte als auch nicht-parametrisierte Lernverfahren darstellen?

Bei der linearen SVM werden die Werte der Parameter einer linearen Funktion (= feste Anzahl an Parametern) berechnet, die zwei Klassen linear trennt. Bei der nicht-linearen Klassentrennung funktioniert das leider nicht so einfach und es müssen kompliziertere Verfahren verwendet werden. Die bekannteste ist die Radial Basis Function Kernel-basierte SVM. Bei dieser RBF Kernel SVM wird eine Matrix über berechnete Distanzen zwischen den Datenpunkten erstellt und als Parameter verwendet. Da diese Parameter-Anzahl von den Daten abhängt, haben wir es mit einer nicht-parametrisierten Methode zutun (ähnlich wie beim k-nN).