Data Driven Thinking

Daten gelten als vierter Produktionsfaktor – diese Erkenntnis hat sich mittlerweile in den meisten Führungsetagen durchgesetzt. Während das Buzzword Big Data gerade wieder in der Senke verschwindet, wird nun vor allem von der Data Driven Company gesprochen, oder – im Kontext von I4.0 – von der Smart Factory.
Entsprechend haben die meisten Konzerne in den Aufbau einer Big-Data-Infrastruktur investiert und auch die größeren Mittelständler beginnen allmählich damit, einen Anfang zu setzen. Für den Anfang bedarf es jedoch gar nicht erst eine neue IT-Infrastruktur oder gar eine eigene Data Science Abteilung, ein richtiger Start zum datengetriebenen Unternehmen beginnt mit dem richtigen Mindset – ein Bewusst sein für Datenpotenziale.

Data Driven Thinking

Auch wenn es spezielle Lösungsanbieter anders verkaufen, ist nicht etwa eine bestimmte Datenbank oder eine bestimmte Analysemethodik für die Bewerkstelligung der Digitalisierung notwendig, sondern die datengetriebene Denkweise. In den Datenbeständen der Unternehmen und jenen aus weiteren bisher unerschlossenen Datenquellen stecken große Potenziale, die erkannt werden wollen. Es ist jedoch nicht notwendig, gleich als ersten Schritt jegliche Potenziale in Daten erkennen zu müssen, denn es ist viel hilfreicher, für aktuelle Problemstellungen die richtigen Daten zu suchen, in denen die Antworten für die Lösungen stecken könnten.

Data Driven Thinking oder auch kurz Data Thinking, wie angeblich von einem der ersten Chief Data Officer als solches bezeichnet und auch von meinem Chief Data Scientist Kollegen Klaas Bollhoefer beworben, ist die korrekte Bezeichnung für das richtige Mindset, mit dem sowohl aktuelle Probleme als auch deren Lösungen aus Daten heraus besser identifiziert werden können. Hierfür braucht man auch kein Data Scientist zu sein, es reicht bereits ein in den Grundzügen ausgeprägtes Bewusstsein für die Möglichkeiten der Datenauswertung – Ein Skill, der zeitnah für alle Führungskräfte zum Must-Have werden wird!

Data Scientists als Design Thinker

Was gerade in Europa vordergründig kritisiert wird: Es treffen traditionelle Denkmuster auf ganz neue Produkte und Dienste, mit immer schnelleren Entwicklungsprozessen und tendenziell kürzeren Lebenszyklen – eine zum Scheitern verurteilte Kombination und sicherlich auch einer der Gründe, warum us-amerikanische und auch chinesische Internetunternehmen hier die Nase vorn haben.

Ein zeitgemäßer Ansatz, der im Produktmanagement bereits etabliert ist und genau dort das letzte Quäntchen Innovationskraft freisetzt, ist Design Thinking. Dabei handelt es sich um einen iterativen Ideenfindungs und -validierungsprozess, bei dem die Wünsche und Bedürfnisse der Anwender durchgängig im Fokus stehen, im Hintergrund jedoch steht ein interdisziplinäres Team, dass ein Geschäftsmodell oder einen Geschäftsprozess unter Berücksichtigung des Kundenfeedbacks designed. Nutzer und Entwickler müssen dabei stets im engen Austausch stehen. Erste Ideen und Vorschläge werden bereits möglichst früh vorgestellt, damit bereits lange vor der Fertigstellung das Feedback der Anwender in die weitere Realisierung einfließen kann. Somit orientiert sich die gesamte Entwicklungsphase am Markt – Zu spät erkannte Fehlentwicklungen und Flops lassen sich weitgehend vermeiden. Design Thinker stellen dem Nutzer gezielte Fragen und analysieren dessen Abläufe (und nichts anderes tut ein Data Scientist, er beobachtet seine Welt jedoch viel umfassender, nämlich über jegliche zur Verfügung stehende Daten).

Der Design Thinking Prozess führt crossfunktionale Arbeitsgruppen durch  sechs  Phasen:

In der ersten Phase, dem Verstehen, definiert die Arbeitsgruppe den Problemraum. In der darauffolgenden Phase des Beobachtens ist es entscheidend, die Aktivitäten im Kontext, also vor Ort, durchzuführen und Anwender in ihrem jeweiligen Umfeld zu befragen. In der dritten Phase werden die gewonnenen Erkenntnisse zusammengetragen. In der nachfolgenden Phase der Ideenfindung entwickelt das Team zunächst eine  Vielzahl von Lösungsoptionen. Abschließend werden beim Prototyping, in der fünften Phase, konkrete Lösungen entwickelt, die in der letzten Phase an den Zielgruppen auf ihren Erfolg getestet werden.

Beim Design Thinking mag es zwar eine grundsätzliche Vorgabe für den Ablauf der Ideenfindung und -erprobung geben – der eigentliche Mehrwert steckt jedoch in der dafür nötigen Denkweise und der Einstellung gegenüber dem Experimentieren sowie die Arbeit in einem interdisziplinären Team.

Data Driven Business Cycle

Data Driven Thinking überträgt diesen Ansatz auf die Mehrwert-Generierung unter Einsatz von Datenanalytik und leistet einen Transfer dieser systematischen Herangehensweise an komplexe Problemstellungen im Hinblick auf die Realisierung dafür angesetzter Big Data Projekte. Design Thinking unter Nutzung von Big Data ist überaus mächtig, wenn es darum geht, kundenorientierte Produkte und Prozesse zu entwickeln. Im Data Driven Business Cycle werden für immer neue Ideen und Fragestellungen:

  1. Daten generiert und gesammelt
  2. Daten gesichert, verwaltet und aufbereitet
  3. Daten analysiert
  4. daraus Erkenntnisse gezogen

Aus diesen sich iterativ kreisenden Prozessen der Datennutzung entsteht ein Data Pool (oftmals auch als Data Lake bezeichnet), der immer wieder zum für die Beantwortung von Fragen genutzt werden kann.

Prinzipien des maschinellen Lernen verstehen lernen

Data Driven Thinking entsteht mit dem Bewusstsein für die Potenziale, die in Daten liegen. Noch wirkungsvoller wird diese Denkweise, wenn auch ein Bewusstsein für die Möglichkeiten der Datenauswertung vorhanden ist.

„Kinder, die heute nicht programmieren können, sind die Analphabeten der Zukunft.“ schimpfte Vorzeige-Unternehmer Frank Thelen kürzlich in einer Politik-Talkrunde und bekräftigte damit meine noch davor verkündete Meinung “Karriere ohne Programmier-Erfahrung wird nahezu undenkbar”, denn “Systeme der künstlichen Intelligenz werden in der Zukunft unseren Einkauf und die Warenlieferung übernehmen, unsere Autos fahren, unsere Buchhaltung erledigen, unser Geld optimal auf den Finanzmärkten anlegen und unsere Krankheiten frühzeitig diagnostizieren und die bestmögliche medizinische Behandlung vorgeben.”

Jetzt muss niemand zum Experten für die Entwicklung künstlicher Systeme werden, um hier schritthalten zu können. Ein grundsätzliches Verständnis von den unterschiedlichen Prinzipien des maschinellen Lernen kann jedoch dabei helfen, solche Systeme und die dazugehörigen Chancen und Risiken besser einschätzen zu können, denn diese werden uns in Alltag und Beruf vermehrt begegnen, dabei einen entscheidenden Einfluss auf den Erfolg des Data Driven Business ausüben.

 

Data Leader Guide – Call for Papers

Connected Industry e. V., der Verband für Digitalisierung und Vernetzung, sammelt wegweisende Anwendungsfälle rund um Digitalisierung und Data Science und fasst diese in einem Leitfaden zusammen, dem Data Leader Guide 2016.

data-leader-guide-cover

Welche Inhalte kommen in den Data Leader Guide?

Der Data Leader Guide konzentriert sich auf Anwendungsfälle aus dem deutschsprachigen Wirtschaftsraum D/A/CH. In diesem Data Leader Guide werden vornehmlich die praktisch umgesetzten Use Cases / Business Cases von Anwender-Unternehmen aus den Branchen Industrie/Produktion, Dienstleistungen, Finanzen und Handel praxisorientiert beschrieben.

Was ist das Ziel des Data Leader Guide?

Anhand greifbarer Erfahrungswerte soll Entscheidern, Entwicklern und sonstigen Interessenten eine Orientierung und der Zugang zu dieser komplexen Materie erleichtert werden. Von besonderem Nutzen ist dabei der branchenübergreifende Blickwinkel des Leitfadens, da der Wissenstransfer von anderen Industrien gerade bei Big Data nicht hoch genug eingeschätzt werden kann.

Wann wird der Data Leader Guide 2016 erscheinen?

Pünktlich zum Data Leader Day am 17. November 2016. Die Ausgaben werden als Druckversion sowie als digitale Version erscheinen.

Warum sollte Ihre Anwendungsfall bzw. Projekt nicht fehlen?

Ihr Projekt wird zum Aushängeschild für die Innovationskraft und des Fortschritts Ihres Unternehmens. Darüber hinaus unterstreicht es die Attraktivität Ihres Unternehmens für qualifizierten Nachwuchs aus dem IT- und ingenieurswissenschaftlichen Bereich. Schließlich ist die Aufnahme Ihres Anwendungsfalles in den Data Leader Guide eine der seltenen Möglichkeiten, diesen auch öffentlich zu präsentieren und somit die Leistung des gesamten Projekt-Teams zu würdigen.

Call for Papers

So bringen Sie Ihren Anwendungsfall in den Data Leader Guide:

Sie sind Geschäftsführer, CIO oder ein Mitarbeiter mit Verantwortung für ein Projekt mit starkem Bezug zur Digitalisierung, Big Data, Data Science oder Industrie 4.0? Dann sollten Sie Ihr Projekt für einen Eintrag in den Data Leader Guide von Connected Industry bewerben. Genauere Informationen, wie Sie Ihren Anwendungsfall (Use Case / Business Case) in den Data Leader Guide 2016 bringen, finden Sie über diesen Direktlink zum Connected Industry e.V.

Data Leader Day

Unser Event für Big Data Anwender – Data Leader Day

Mit Stolz und Freude darf ich verkünden, dass wir ausgehend von unserer Data Science Blog Community den Data Leader Day am 17. November in Berlin maßgeblich mitorganisieren werden!

Der große DataLeaderDay am 17. November 2016 in Berlin bringt das Silicon Valley nach Deutschland. Die Konferenz fokussiert dabei auf die beiden Megatrends in der Digitalwirtschaft: Data Science und Industrie 4.0. Erleben Sie auf dem Data Leader Day was jetzt möglich ist – von Pionieren und hochrangigen Anwendern.
dataleaderday-teilnehmer-logos

www.dataleaderday.com

Ein vielfältiges Programm mit Keynote, Präsentationen sowie Use & Business Cases zeigt Ihnen aus der Praxis, wie Sie die Digitalisierung im Unternehmen umsetzen und als neues Wertschöpfungsinstrument einsetzen können. Und das Wichtigste: Sie erleben, welche Wettbewerbsvorteile Sie mit diesen Technologien verwirklichen können. Der Networking-Hub bietet zudem viele Möglichkeiten um Spitzenkräfte zu treffen und um sich über neueste Technologien, Methoden und Entwicklungen auszutauschen.

Zielgruppe – und was Euch erwartet

Auf dem Event werden Entscheider in Führungsposition ihre erfolgreichen Big Data & Data Science Anwendungen präsentieren. Es wird für unterschiedliche Branchen und Fachbereiche viele Erfolgsstories geben, die Mut machen, selbst solche oder ähnliche Anwendungsfälle anzugehen. Ihr werdet mit den Entscheidern networken können!

– Persönliche Vermittlung für ein Karrieregespräch gesucht? Sprecht mich einfach an! –

Unser Data Leader Day richtet sich an Führungskräfte, die von der Digitalisierung bereits profitieren oder demnächst profitieren wollen, aber auch an technische Entwickler, die neue Impulse für erfolgreiche Big Data bzw. Smart Data Projekte mitnehmen möchten. Das Event ist exklusiv und nicht – wie sonst üblich – von Vertrieblern zum Verkauf designed, sondern von Anwendern für Anwender gemacht.

Ort, Programm und Agenda

Aktuelle Informationen zum Event finden sich auf der Event-Seite: www.dataleaderday.com

 

 

Fortbildungsangebote für Data Science und Data Engineering

Der Artikel “Was macht ein Data Scientist? Und was ein Data Engineer?” ist einer der beliebtesten dieser Plattform und immer wieder werde ich gefragt, wo man sich denn zum Data Scientist oder zum Data Engineer ausbilden lassen kann. Meine Antwort lautet meistens: Mit Selbststudium und Learning-by-Doing kann man sehr viel erreichen!

Es gibt jedoch viele Fortbildungsangebote, die einem Lerner das Lernen zwar nicht abnehmen, dieses jedoch didaktisch aufbereiten und modulweise vermitteln. Diejenigen Angebote, von denen wir von Teilnehmern hören, dass sie tatsächlich ihr Geld oder die Mühe wert sein sein sollen, nehmen wir von nun an in unseren Fortbildungskatalog auf.

[button link=”https://www.data-science-blog.com/ausbildung-fortbildung-studium-data-science/” icon=”link” color=”silver” text=”dark” window=”yes”]Zum Fortbildungskatalog![/button]

Master-Studium

Die beste Möglichkeit, Data Scientist oder Data Engineer zu werden, ist von Anfang an das richtige Studium auszuwählen, am besten bereits den Bachelor-Studiengang darauf ausgerichtet zu haben. Soweit mit bekannt, gibt es aber noch keinen Bachelor-Studiengang direkt für Data Science und das ist auch gut so, denn Data Science würde ich eher als Spezialisierung sehen, im Bachelor-Studium geht es aber um Grundwissen und das lernen von akademischer Methodik. Es gibt jedoch bereits ein breites Angebot an Master-Studiengängen, die direkt auf Data Science oder (Big) Data Engineering abzielen und die gute Nachricht: Diese Master-Studiengänge sind zugänglich für sehr viele Bachelor-Studiengänge, meistens mindestens für Bachelor-Absolventen der Mathematik, Informatik oder Ingenieurwissenschaften und sehr häufig auch für Absolventen der Wirtschafts- und Geisteswissenschaften. Voraussetzung sind meistens nur nachgewiesene Kenntnisse über die Grundlagen der Programmierung und der Statistik. Der diese Master-Studiengänge gerade erst angelaufen sind, der Trend jedoch viele Studierende verspricht, könnte für den Zugang jedoch eine sehr gute Bachelor-Abschlussnote Pflicht werden!

Ein Master-Studium mit Spezialisierung auf Data Science oder Big Data ist mit Sicherheit ein Aushängeschild für den eigenen Lebenslauf und ein Gewinn für die Glaubwürdigkeit, wenn man seine Karriere in der angewandten Datenwissenschaft plant.

Zertifikate – Frontalunterricht und Online-Kurse

Für wen ein Master-Studium irgendwie zu spät oder aus anderen Gründen nicht infrage kommt, reine Selbststudium mit einem guten Buch aber auch nicht reicht, kann eines der vielen Fortbildungsangebote mit Aussicht auf ein Zertifikat nutzen. Es gibt diverse Anbieter von Zertifizierungen zum Data Scientist oder Data Engineer.

Einige Angebote finden überwiegend vor Ort beim Anbieter statt, was von vielen Lernern bevorzugt wird, um dem Lernen und den Prüfungen nicht ausweichen zu können. Ein solches Beispiel ist das Zertifikatsprogramm der Fraunhofer ACADEMY.
Es gibt aber weit mehr Angebote, die rein online stattfinden. Meistens wird hier frontal über eine Sammlung von Videos gelehrt. Das wohl bekannteste Angebot an Video-Lehrgängen hat sicherlich Coursera.org.
Einige Anbieter gehen jedoch noch weiter, setzen daher nicht nur auf Videos, sondern vor allem auf richtig gute interaktive Online-Kurse, bei der jede Lektion eine praktische Übung bzw. kleine Prüfung über eine Entwicklungsumgebung in der Cloud darstellt. Solch ein Angebot bietet beispielsweise der interaktive Lehrgang von DataQuest.io.