Posts

Buzzword Bingo: Data Science – Teil I

Rund um das Thema Data Science gibt es unglaublich viele verschiedene Buzzwords, die Ihnen sicherlich auch schon vielfach begegnet sind. Sei es der Begriff Künstliche Intelligenz, Big Data oder auch Deep Learning. Die Bedeutung dieser Begriffe ist jedoch nicht immer ganz klar und häufig werden Begriffe auch vertauscht oder in missverständlichen Zusammenhängen benutzt. Höchste Zeit also, sich einmal mit den genauen Definitionen dieser Begriffe zu beschäftigen!

Buzzword Bingo: Data Science – Teil 1: Künstliche Intelligenz, Algorithmen & Maschinelles Lernen

Im ersten Teil unserer dreiteiligen Reihe „Buzzword Bingo Data Science“ beschäftigen wir uns zunächst mit den drei Begriffen „Künstliche Intelligenz“, „Algorithmus“ und „Maschinelles Lernen“.

Künstliche Intelligenz

Der im Bereich der Data Science u. a. am häufigsten genutzte Begriff ist derjenige der „Künstlichen Intelligenz“. Viele Menschen denken bei dem Begriff sofort an hochspezialisierte Maschinen à la „The Matrix“ oder „I, Robot“. Dabei ist der Begriff deutlich älter als viele denken. Bereits 1956 wurde der englische Begriff “artificial intelligence” zum ersten Mal in einem Workshop-Titel am US-amerikanischen Dartmouth College genutzt.

Heutzutage besitzt der Begriff der künstlichen Intelligenz keine allgemeingültige Definition. Es handelt sich bei künstlicher Intelligenz grundsätzlich um ein Teilgebiet der Informatik, das sich mit der Automatisierung von intelligentem Verhalten befasst. Es geht also darum, dass ein Computerprogramm auf eine Eingabe eine intelligente Reaktion zeigt. Zu beachten ist hierbei, dass eine künstliche Intelligenz nur ein scheinbar intelligentes Verhalten zeigen kann. Künstliche Intelligenz wird heutzutage sehr weit gefasst und kann vieles umfassen: von klassischen, regelbasierten Algorithmen bis hin zu selbstlernenden künstlichen neuronalen Netzen.

Das zentrale Forschungsziel ist die Entwicklung einer sogenannten Allgemeinen Künstlichen Intelligenz, also einer Maschine, die in der Lage sein wird, autonom beliebige Probleme zu lösen. Es gibt eine fortlaufende Debatte darüber, ob dieses Ziel jemals erreicht werden kann bzw. ob es erreicht werden sollte.

In den vergangenen Jahren ist auch die sogenannte xAI (engl. Explainable AI; erklärbare künstliche Intelligenz) in den Mittelpunkt der Forschungsinteressen gerückt. Dabei geht es um die Problematik, dass künstliche Intelligenzen sogenannte Black Boxen sind. Das bedeutet, dass ein menschlicher User die Entscheidung einer künstlichen Intelligenz üblicherweise nicht nachvollziehen kann. Eine xAI wäre im Vergleich jedoch eine Glass Box, die Entscheidungen einer solchen künstlichen Intelligenz wären für Menschen also nachvollziehbar.

Algorithmen

Algorithmen sind klar definierte, vorgegebene Prozeduren, mit denen klar definierte Aufgaben gelöst werden können. Dabei kann der Lösungsweg des Algorithmus entweder durch Menschen vorgegeben, also programmiert werden oder Algorithmen lernen durch Methoden des maschinellen Lernens selbstständig den Lösungsweg für eine Prozedur.

Im Bereich der Data Science bezeichnen wir mit Algorithmen kleine Programme, die scheinbar intelligent handeln. Dementsprechend stecken auch hinter künstlichen Intelligenzen Algorithmen. Werden Algorithmen mit klar definierten Eingaben versorgt, führen sie somit zu einem eindeutigen, konstanten Ergebnis. Dabei gilt aber leider auch der Grundsatz der Informatik „Mist rein, Mist raus“. Ein Algorithmus kann immer nur auf sinnvolle Eingaben sinnvolle Ausgaben erzeugen. Die Komplexität von Algorithmen kann sehr vielfältig sein und je komplexer ein solcher Algorithmus ist, desto „intelligenter“ erscheint er oftmals.

Maschinelles Lernen

Maschinelles Lernen ist ein Überbegriff für eine Vielzahl von Verfahren, mit denen ein Computer oder eine künstliche Intelligenz automatisch Muster in Daten erkennt. Beim maschinellen Lernen wird grundsätzlich zwischen dem überwachten und unüberwachten Lernen unterschieden.

Beim überwachten Lernen lernt ein Algorithmus den Zusammenhang zwischen bekannten Eingabe- und Ausgabewerten. Nachdem dieser Zusammenhang vom Algorithmus erlernt wurde, kann dieses maschinelle Modell dann auf neue Eingabewerte angewandt und somit unbekannte Ausgabewerte vorhergesagt werden. Beispielsweise könnte mithilfe einer Regression zunächst der Zusammenhang zwischen Lufttemperatur und dem Wochentag (jeweils bekannte Eingabewerte) sowie der Anzahl der verkauften Eiskugeln (für die Vergangenheit bekannte Ausgabewerte) in einem Freibad untersucht werden. Sobald dieser Zusammenhang einmal ausreichend genau bestimmt worden ist, kann er auch für die Zukunft fortgeschrieben werden. Das bedeutet, es wäre dann möglich, anhand des nächsten Wochentages sowie der vorhergesagten Lufttemperatur (bekannte Eingabewerte für die Zukunft) die Anzahl der verkauften Eiskugeln (unbekannte Ausgabewerte für die Zukunft) zu prognostizieren und somit die Absatzmenge genauer planen zu können.

Beim unüberwachten Lernen auf der anderen Seite sind nur Eingabedaten vorhanden, es gibt keine den Eingabedaten zugehörigen Ausgabedaten. Hier wird dann mit Methoden wie beispielsweise dem Clustering versucht, verschiedene Datenpunkte anhand ihrer Eigenschaften in verschiedene Gruppen aufzuteilen. Beispielsweise könnte ein Clustering-Algorithmus verschiedene Besucher:innen eines Webshops in verschiedene Gruppen einteilen: Es könnte beispielsweise eine Gruppe von Besucher:innen geben, die sehr zielstrebig ein einzelnes Produkt in den Warenkorb legen und ihren Kauf direkt abschließen. Andere Besucher:innen könnten allerdings viele verschiedene Produkte ansehen, in den Warenkorb legen und am Ende nur wenige oder vielleicht sogar gar keine Käufe tätigen. Wieder andere Kund:innen könnten unter Umständen lediglich auf der Suche nach Artikeln im Sale sein und keine anderen Produkte ansehen.

Aufgrund ihres Nutzungsverhaltens auf der Website könnte ein Clustering-Algorithmus mit ausreichend aufbereiteten Daten nun all diese Kund:innen in verschiedene Gruppen oder Cluster einteilen. Was der Algorithmus jedoch nicht leisten kann ist zu erklären, was die erkannten Cluster genau bedeuten. Hierfür braucht es nach wie vor menschliche Intelligenz gepaart mit Fachwissen.

6 Faktoren, wie Process Mining Projekte zum Erfolg werden

Zuerst wollte ich diesen Artikel mit “6 Gründe, warum Process Mining Projekt scheitern” betiteln, das würde dann aber doch etwas zu negativ klingen. Kein Process Mining Projekt muss scheitern oder überhaupt in Verzögerungen geraten, denn das lässt sich mit etwas Erfahrung und der richtigen Einstellung zum Projekt immer verhindern.

Process Mining - Process Flow ChartNach dutzenden Process Mining Projekten mit unterschiedlichen Rahmenbedingungen gebe ich hier nun sechs handfeste Hinweise, wie Process Mining Projekte generell zum Erfolg werden:

1. Richtige Erwartungshaltung setzen und kommunizieren

Dieser Punkt mag banal klingen, das ist jedoch nicht der Fall. Ich habe schon einige Process Mining Projekte gesehen, die deswegen gescheitert sind, weil dem Vorstand oder anderen Entscheidern gegenüber falsche Versprechungen abgegeben wurden. Tatsächlich werden Process Mining Projekte oft mit ambitionierten Zielen gestartet, wie dem Herabsenken von Prozesskosten um konkrete 10% oder dem Reduzieren der Durchlaufzeit eines bestimmten Prozesses um 20%. Es sei den Entscheidern nicht zu verübeln, dass Budgets gestrichen und Projekte eingestampft werden, wenn diese konkreten Versprechen nicht realisiert werden können.

Dabei können exakt diese Ziele oftmals doch erreicht werden, nur nicht gleich bei den ersten Projektiterationen, denn oft fehlen Datenpunkte, die wichtige Prozessaktivitäten in operativen Prozessketten dokumentieren. Das Event Log kann anfangs – gerade für exotischere Prozesse in weniger verbreiteten IT-Systemen – oft noch nicht sofort vollständig erstellt werden.

Aber eben genau diese Lücken in der Prozessdatenerfassung sind ein “Finding”, denn sie zeigen erst auf, an welchen Stellen es blinde Flecken in der Daten- und Prozesstransparenz noch gibt. Somit ist im Process Mining auch der Weg der datenbasierten Prozesstransparenz ein oder sogar DAS große Ziel.

Konkretes Beispiel: Eine Krankenversicherung wollte die Prozesse der Reha-Bewilligung für ihre Versicherte analysieren. Unter Einsatz eines umfangreichen Process Mining Tools sollten die Prozesse tiefgehend analysiert und unnötige Prozessschleifen identifizieren, aber auch den Prozess abkürzen, indem Ausschlusspunkte frühzeitig im Prozess entdeckt werden. Das war das Versprechen an den Vorstand, der das Budget einfror, auf Grund nicht erreichter Ziele.

In der Tat gab es bei der Rekonstruktion der Prozesse aus den Legacy-Systemen, die über Jahrzehnte von der IT der Krankenkasse selbst entwickelt wurden, viele Lücken in den Daten und somit blinde Flecken in der Prozessen. Die Aufdeckung aber genau dieser Lücken führt dazu, dass diese geschlossen werden können und die vollständige Transparenz über Daten damit erst hergestellt wird. Erst dann, im zweiten Schritt, können die Prozesse ausführlich genug auf Optimierungspotenziale untersucht werden.

Process Mining nicht zu betreiben, weil die Prozesse nicht lückenlos getrackt werden, ist im Grunde unterlassene Hilfeleistung gegenüber des Unternehmens.

2. Process Mining als Methode, nicht als Tool verstehen

Viele Process Mining Projekte drehen sich vor allem um die Auswahl und die Einführung der richtigen Process Mining Tools. Auf das richtige Tool zu setzen, ist natürlich ein wichtiger Aspekt im Process Mining Projekt. Abhängig davon, ob es sich beim Vorhaben der Prozessanalyse um eine einmalige Angelegenheit oder ein tägliches Monitoring von Prozessen handelt, kommen unterschiedliche Tools in die Vorauswahl. Auch ob beispielsweise bereits ein BI-System etabliert ist und ob ein ausgeklügeltes Berechtigungskonzept für die Prozessanalysen notwendig ist, spielen für die Auswahl eine Rolle, sowie viele weitere Faktoren.

Dennoch sollte nicht vergessen werden, dass Process Mining in erster Linie kein Tool, sondern eine Analysemethodik ist, bei der es im ersten Abschnitt um die Rekonstruktion der Prozesse aus operativen IT-Systemen in ein resultierendes Prozessprotokoell (Event Log) geht, im zweiten Schritt um eine (im Kern) Graphenanalyse zur Visualisierung der Prozessflüsse mit weiteren Analyse-/Reporting-Elementen. Wird diese Perspektive auf Process Mining nicht aus den Augen verloren, können Unternehmen viele Kosten sparen, denn es erlaubt die Konzentration auf lösungsorientierte Konzepte.

Konkretes Beispiel: Ein Unternehmen plante die Einführung von Process Mining über einen marktführenden Tool-Anbieter. Nahezu alle Ressourcen wurden für die Tool-Einführung allokiert, das eigentliche Vorhaben schien rein in der Tool-Einführung aufgehen zu müssen, bis Projektanforderungen sogar zu Gunsten des auserwählten Tools angepasst wurden, um es realisieren zu können.
Zudem kann das Unternehmen noch vor der umfangreichen Tool-Einführung, erste Schritte oder Zumindest erste Machbarkeitstests mit einem günstigeren Tool durchführen, oder sogar gänzlich kostenlos z. B. mit PM4Py (Python Package für Process Mining).

Oftmals sind die Tools der Marktführer auf Grund der Preismodelle schädlich für die Durchdringung von Process Mining im Unternehmen, denn nicht alle Abteilungen verfügen über die notwendigen Budgets und gerade experimentelle Projekte finden keinen Sponsor. Umso wichtiger ist es, diese Analysetechnik als Methodik zu verstehen, die auch mit einem Tool-Mix funktionieren kann. Ich kenne mehrere Unternehmen, die aus verschiedenen Gründen nicht ein, nicht zwei, sondern gleich mehrere Tools im Unternehmen im Einsatz haben.

3. Auf Unabhängigkeit und Wiederverwendbarkeit setzen

Wie zuvor bereits erwähnt, kann für ein Unternehmen ein Mix aus mehreren Tools infrage kommen und eigentlich sollte dieser Punkt sich um die richtige Tool-Auswahl drehen. Der Markt für Process Mining Software Tools in einem turbulenten Umfeld, die Tools, Funktionsumfänge und Konditionen ändern sich häufig und sind noch nicht vollends ausgereift. Viele der höherpreisigen Process Mining Tools wollen die Erstellung des Event Logs übernehmen und setzen dabei meistens auf vorgefertigte SQL-Skripte, die in der Plattform (also dem Tool) laufen und dort an kundenindividuelle Prozesse (z. B. durch ERP-Customizing) angepasst werden können.

Wie bereits erwähnt, besteht das Verfahren für Process Mining aus zwei Abschnitten, der erste ist die Erstellung des Event Logs, der zweite die eigentliche Analyse im Process Mining Tool, in welches das Event Log geladen wird. Soll das Tool auch den ersten Abschnitt übernehmen, steckt viel unternehmensindividuelles Prozess-Know-How im Tool, welches nicht für andere Tools verwendet werden kann. Es entsteht eine Abhängigkeit vom Tool, eine Migration zu einem anderen Tool wird schwieriger.

Konkretes Beispiel: Ein Unternehmen starten einen Proof of Concept für die Einführung eines Process Mining Tools, dabei wird ein Budget i.H.v. hundertausenden bereit gestellt, um drei Tools von unterschiedlichen Software-Herstellern gegeneinander antreten zu lassen. Die Tools sollen jeweils eine Gesamtlösung darstellen und Process Mining komplett liefern können, inklusive Event Logs.

Das Unternehmen könnte sich den Proof of Concept zum überwiegenden Teil sparen, wenn der erste Abschnitt des Process Minings – die Erstellung der Event Logs – vom Unternehmen selbst durchgeführt werden würde. Die Tools der Anbieter würden dann nur noch der eigentlichen Analyse der Event Logs dienen, die Anforderungen verringern sich und die Tools werden austauschbarer.

Unternehmen können Event Logs selbst herstellen und in ein Data Warehouse speisen, die dann alle Process Mining Tools mit Prozessdaten versorgen können. Die investierten Aufwände in Process Mining würden somit nachhaltiger (weil länger nutzbar) werden und die Abhängigkeit von bestimmter Software würde sich auf ein Minimum reduzieren, wir riskieren keinen neuen Aufwand für Migration von einem Anbieter zum nächsten. Übrigens können die Event Logs dann auch in andere Tools z. B. für Business Intelligence (BI) geladen und anderweitig analysiert werden.

4. Den richtigen Fokus setzen

Für Process Mining sollte nicht nur im Generellen eine realistische Erwartungshaltung kommuniziert werden, sondern auch im Speziellen, durch Selektion der besten Prozesse für den Start der Process Mining Vorhaben. Auf den ersten Blick sind das sicherlich die Prozesse, die aus Führungssicht als besonders kritisch betrachtet werden, für manche Unternehmen mögen das besondere Prozesse der Logistik sein, der Wareneinkauf bzw. die Materialbereitstellung, bei anderen Unternehmen vielleicht bestimmte Verwaltungs- oder Genehmigungsprozesse. Es sind meistens Prozesse, die entweder eine besondere Kostenbedeutung für das Unternehmen haben oder für die Kundenbindung wichtig sind. Da ist es verständlich, dass erste Projekte sich exakt diesen Prozessen widmen.

Konkretes Beispiel: Ein Unternehmen der Werkzeugmaschinen-Branche plant einen erstmaligen Einsatz von Process Mining. Der für das Unternehmen besonders kritische Prozess ist die Fertigung und Montage von Maschinen, denn hier liegen die größten Potenziale verborgen. Das Vorhaben gerät jedoch schnell ins Stocken, denn die Erhebung der Daten nicht nur aus ERP- und MES-Systemen, sondern auch von Machinen und Arbeitsplätzen erweist sich als zeitaufwändig.

Das Unternehmen startet eine zweite Kampagne zur Untersuchung eines Einkaufsprozesses, das zwar geringere Potenziale bietet, jedoch schneller und reibungsloser durchführbar ist. Das Projekt wird zum Erfolg und motiviert die Geschäftsführung, mehr Aufwände für Process Mining auch für schwieriger zu untersuchende Prozesse freizugeben.

Sofern Process Mining noch nicht im Unternehmen etabliert ist, sollten Sie die “low hanging Fruits” finden, damit Ihre Initiative zu einem nachhaltigen Erfolg für das ganze Unternehmen werden kann, beginnen Sie möglichst nicht gleich mit der größten “Baustelle”.

5. Datenanforderung und Datenrestriktionen frühzeitig klären

Dass der Erfolg Ihrer Process Mining Initiative auch vom zu analysierenden Prozess abhängt und damit auch die Datenverfügbarkeit vorab untersucht worden sein sollte, hatten wir schon erörtert. Aber selbst für gängigere Prozesse verzögern sich Process Mining Vorhaben auf eigentlich vermeidbarer Weise, weil die Anforderung an die Daten nicht vorab festgelegt worden sind. In der Tat ist die Definition der Datenanforderung, also welche Datentabellen mit Filterung auf Spalten und Zeilen für das Event Log benötigt werden, vorab manchmal gar nicht so einfach, besonders bei exotischeren Quellsystemen. Es sollte zumindest jedoch die grobe Anforderung beschrieben werden, unter Nennung der Datenbanken und einer Metabeschreibung, um welche Daten es geht. Auch deswegen, um den Datenschutzbeauftragten und sonstige Genehmiger frühzeitig einbinden zu können. Bei gängigen Quellsystemen und Standardprozessen (z. B. Procure to Pay oder Order to Cash eines SAP ERPs) kann die Anforderung bereits früh auf hohem Detaillevel vorab geschehen.

Konkretes Beispiel: Ein Unternehmen hat gerade sein Process Mining Projekt gestartet, steckt jedoch seit Tagen in der Datenbeschaffung fest. Die IT-Systemintegratoren weigern sich, Daten ohne genaue Anforderung aus den Quellsystemen zu exportieren oder einen API-Zugang bereit zu stellen und die Freigabe des Datenschutzbeauftragten sowie der IT-Sicherheit fehlen.

Neben der Anforderungsdefinition sollte also auch die Kommunikation mit den Administratoren der Quellsysteme frühzeitig erfolgen.

6. Das Big Picture vor Augen haben

Insbesondere wenn Process Mining nicht nur eine einmalige Ad-Hoc Analyse bleiben, sondern unternehmensweit eingeführt werden soll, sollte eine verlässliche, integrative und nachhaltige Architektur überlegt werden. Process Mining ist – wir wiederholen uns – eine Methodik, die mit Business Intelligence, Data Science (Machine Learning) und RPA in Verbindung gebracht werden kann.

Konkretes Beispiel: Eine Fachabteilung eines Unternehmens führte ein Process Mining Tool als eigenständige Lösung ein, um Prozesse hinsichtlich ihrer Automatisierbarkeit zu untersuchen. Dabei werden NLP-Algorithmen aus dem Machine Learning bei der Datenextraktion aus Texten eine Rolle spielen. Das ausgewählte Process Mining Tool wurde auch auf Grund seiner inhouse-Lösung für Machine Learning ausgesucht. In einer benachbarten Abteilung ist bereits ein RPA-Tool im Einsatz und auf der globalen Unternehmensebene ist ein bestimmtes BI-Tool der Standard für Reporting und Datenanalysen.

Statt vieler Einzellösungen, könnte die Fachabteilung das konzernweite BI-Tool mit Process Mining Erweiterung (Plugin zum BI-Tool, z. B. für Qlik Sense oder Power BI erhältlich) nutzen und dabei auch die RPA-Lösung mit dieser verbinden. Ein Data Warehouse für BI ist ebenfalls vorhanden und könnte ggf. zu einem für Process Mining erweitert werden. Für den Einsatz von Machine Learning können Data Scientists die Daten im Process Mining Data Warehouse zum Training verwenden und Prädiktionsergebnisse direkt in dieses zurückspielen.

Achten Sie auf die Gesamtarchitektur. Process Mining kann für sich alleine stehen, es kann jedoch auch sinnvoll sein, eine Datenstrategie zu entwickeln, die das Projekt im Kontext vorhandener Daten-Initiativen betrachtet und einen integrativen Ansatz erlaubt.

Wie kann man sich zum/r Data Scientist ausbilden lassen?

Anzeige

Das allgegenwärtige Internet und die Digitalisierung haben heutzutage viele Veränderungen in den Geschäften überall auf der Welt mit sich gebracht. Aus diesem Grund wird Data Science immer wichtiger.

In der Data Science werden große Datenmengen an Informationen aus allen Arten von Quellen gesammelt, sowohl aus strukturierten als auch aus unstrukturierten Daten. Dazu werden Techniken und Theorien aus verschiedenen Bereichen der Statistik, der Informationswissenschaft, der Mathematik und der Informatik verwendet.

Datenexperten und -expertinnen, d. h. Data Scientists, beschäftigen sich genau mit dieser Arbeit. Wenn Du Data Scientist werden möchten, kannst Du eine große Karriere in der Data Science beginnen, indem Du Dich für eine beliebige geeignete Weiterbildung einschreibst, der Deinem Talent, Deinen Interessen und Deinen Fähigkeiten in einigen der wichtigsten Data-Science-Kurse entspricht.

Was machen Data Scientists?

Zunächst einmal ist es wichtig zu verstehen, was man eigentlich unter dem Begriff „Data Scientist” versteht. Data Scientist ist lediglich ein neuer Beruf, der in vielen Artikeln häufig zusammen mit dem der Data Analysts beschrieben wird, weil die erforderlichen Grundfertigkeiten recht ähnlich sind. Vor allem müssen Data Scientists die Fähigkeit haben, Daten aus MySQL-Datenbanken zu extrahieren, Pivot-Tabellen in Excel zu verwalten, Datenbankansichten zu erstellen und Analytics zu verwalten.

Data Scientists werden viele Stellen in Unternehmen angeboten, die mit der zunehmenden Verfügbarkeit von Daten konfrontiert sind und Personen brauchen, die ihnen bei der Entwicklung der Infrastruktur helfen, die sie zur Verwaltung der Daten benötigen. Oft handelt es sich um Unternehmen, die ihre ersten Schritte in diesem Bereich machen. Dafür benötigen sie eine Person mit grundlegenden Fähigkeiten in der Softwaretechnik, um den gesamten Prozess voranzutreiben.

Dann gibt es stark datenorientierte Unternehmen, für diejenigen Daten sozusagen Rohprodukt und Rohstoff darstellen. In diesen Unternehmen werden Datenanalyse und maschinelles Lernen recht intensiv betrieben, wodurch Personen mit guten mathematischen, statistischen oder sogar physikalischen Fähigkeiten benötigt werden.

Es gibt auch Unternehmen, die keine Daten als Produkt haben, aber ihre Zukunft auf sie und ihre Sinne planen und abstimmen. Diese Unternehmen werden immer mehr und brauchen sowohl Data Scientists mit grundlegenden Fähigkeiten als auch Data Scientists mit speziellen Kenntnissen, von Visualisierung bis hin zu Machine Learning.

Kompetenzen der Data Scientists

Die Grundlagen sind zunächst für alle, die im Bereich der Data Science arbeiten, dieselben. Unabhängig von den Aufgaben, die Data Scientists zu erfüllen haben, muss man grundlegende Softwaretechnik beherrschen.

Selbstverständlich müssen Data Scientists mit Programmiersprachen wie R oder Python und mit Datenbanksprachen wie SQL umgehen können. Sie bedienen sich dann statistischer, grundlegender Fähigkeiten um zu bestimmen, welche Techniken für die zu erreichenden Ziele am besten geeignet sind.

Ebenso sind beim Umgang mit großen Datenmengen und in sogenannten „datengetriebenen” Kontexten Techniken und Methoden des maschinellen Lernens wichtig: KNN-Algorithmen (Nächste-Nachbarn-Klassifikation für Mustererkennung), Random Forests oder Ensemble Techniken kommen hier zum Einsatz.

Entscheidend ist, die für den jeweiligen Kontext am besten geeignete Technik unterscheiden zu können, und dies bevor man die verschiedenen Werkzeuge beherrscht.

Die lineare Algebra und die multivariate Berechnung sind auch unerlässlich. Sie bilden die Grundlage für viele der oben beschriebenen Fähigkeiten und können sich als nützlich erweisen, wenn das mit den Daten arbeitende Team beschließt, intern eigene Implementierungen zu entwickeln.

Eins ist noch entscheidend. In einer idealen Welt werden die Daten korrekt identifiziert, da sie vollständig und kohärent sind. In der realen Welt muss sich der Data Scientist mit unvollkommenen Daten auseinandersetzen, d. h. mit fehlenden Werten, Inkonsistenzen und unterschiedlichen Formatierungen. Hier kann man von Munging sprechen, d. h. von der Tätigkeit, die sogenannten Rohdaten in Daten umzuwandeln, die ein einheitliches Format haben und somit in den Prozess der Aufnahme und Analyse einbezogen werden können.

Wenn Daten als wesentlich für Geschäftsentscheidungen sind, reicht es nicht aus, eine Person zu haben, die sie verarbeiten, analysieren und aufnehmen kann. Die Visualisierung und Kommunikation von Daten ist ebenso zentral. Daten zu visualisieren und zu kommunizieren bedeutet, anderen die angewandten Techniken und die erzielten Ergebnisse zu beschreiben. Daher ist es wichtig zu wissen, wie man Visualisierungswerkzeuge wie ggplot oder D3.js verwendet.

Ausbildungsmöglichkeiten und Bootcamps, um Data Scientist zu werden

Kurz gesagt gibt es zwei gängige Wege, um Data Scientist zu werden.

  • Auf der einen Seite kann man einen Universitätslehrgang absolvieren. Diese Art von Studiengang führt zu einem spezialisierten Abschluss, der nach einem dreijährigen Bachelorabschluss in Informatik, Mathematik oder Statistik absolviert werden kann. In den letzten Jahren wurden diese neuen Studiengänge an den europäischen Universitäten immer häufiger angeboten.
  • Auf der anderen Seite kann man sich für eine Weiterbildung zum/r Data Scientist anmelden, zum Beispiel eine Weiterbildung von DataScientest. Als national und international anerkannte Ausbildungsorganisation bietet DataScientest eine Weiterbildung zum/r Data Scientist an, die sich an Personen mit einem Bachelorabschluss und Kenntnissen in Kommunikation wendet. Ihr großer Vorteil ist die persönliche Betreuung, die allen Teilnehmer und Teilnehmerinnen angeboten wird, sowie ein Fernstudium, das 85% individuelles Coaching und 15% Masterclasses umfasst. Alles läuft über eine sichere Plattform, damit jeder Teilnehmer und jede Teilnehmerin codieren, Daten erforschen usw. können.

Bei dieser DataScientest-Weiterbildung haben die Lernenden die Wahl zwischen einer weitgehenden Ausbildung (10 Stunden pro Woche) oder einer Bootcamp-Ausbildung (35 Stunden pro Woche). 

Das am Ende des Kurses erworbene Zertifikat wird von der Pariser Universität La Sorbonne anerkannt.   

Data Science mit Python - Buchempfehlung 2021

Data Science mit Python – Aktuelle Buchempfehlungen

Als Dozent für Data Science und Python Programmierung für Hochschulen und Unternehmen (Mitarbeiter-Training) werde ich natürlich immer wieder zu Literatur-Empfehlungen in deutscher Sprache gefragt. Aus aktuellem Anlass gebe ich hiermit eine Empfehlung von Büchern, die ich auch für meine Trainingserklärungen und -beispiele verwende oder einfach generell empfehlen kann.


Das Buch Praktische Statistik für Data Scientists: 50+ essenzielle Konzepte mit R und Python (Animals) ist aktuell eines meiner Lieblinge unter den Büchern, die Statistik methodisch nicht zu trocken, aber auch nicht zu beispielorientiert erklären, sondern eine flüssig lesbare Erläuterung zu den wichtigsten Prinzipien der Statistik von der deskriptiven, induktiven und explorativen Statistik bis hin zu Machine Learning bieten. Dazu gibt es Programmiercode in R und Python, was ich an dieser Stelle eher bemängle als bewundere. Dennoch ein sehr ordentlich geschriebenes und beinahe flüssig lesbares Buch mit tollen Erklärungen.

 

 


Das Buch Einführung in Data Science: Grundprinzipien der Datenanalyse mit Python (Animals) kenne ich nur aus der ersten Auflage, die zweite wird jedoch sicher nicht schlechter sein. Dieses Buch sticht mit seiner Methodenorientiertheit hervor, denn hier geht es um die Erläuterung von Prinzipien der Data Science (Statistik, Machine Learning) mit Python, jedoch ohne besonders auf bestehende Bibliotheken zu setzen. Es geht um die Grundprinzipien der Data Science mit didaktischem Mehrwert und verleitet ein Gefühl dafür, wie die Algorithmen funktionieren.

 

 


Wer ganz auf das Wissen rund um Machine Learning setzen möchte, liegt mit dem Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-Learn: Das umfassende Praxis-Handbuch für Data Science, Deep Learning und Predictive Analytics (mitp Professional) richtig. Es setzt hingegen sehr auf die Nutzung der Bibliotheken Scikit-Learn und Tensorflow, erklärt dabei die Verfahrensweise von Lernalgorithmen der Klassifikation und Regression sowie des unüberwachten maschinellen Lernens recht ausführlich und mit sehr erklärenden Abbildungen. Insbesondere wird hier auf die grundlegenden Prinzipien des Deep Learnings vom MLP zum CNN eingegangen. Es schlägt die Brücke von Python für Machine Learning zu Python für Deep Learning.

 


Wenn es schnell gehen soll mit dem Einstieg in Machine Learning mit Python, könnte Data Science mit Python: Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn (mitp Professional) eine gute Wahl sein. Auf besonders ausführliche Erklärungen über die Algorithmen des machinellen Lernens muss man hier weitgehend verzichten, dafür sind die Beispiele, gelöst mit den typischen Python-Bibliotheken sehr umfangreich und sofort anwendbar. Dieses Buch ist etwas mehr eines über die Bibliotheken in Python für Data Science als über die dahinter liegenden Methoden.

 

 


Alternativ zum vorgenannten Buch gibt es vom konkurrierendem Verlag Datenanalyse mit Python: Auswertung von Daten mit Pandas, NumPy und IPython (Animals). Dieses eignet sich besonders zum einfachen Erlernen der Funktionsweisen der Methoden und Datenstrukturen in Python Numpy, Pandas und Matplotlib. Die klassische Datenanalyse mit deskriptiver Statistik steht hier mehr im Vordergrund als Machine Learning, sorgt jedoch auch dafür, dass die Datenanalyse mit Python sehr ausführlich erklärt wird. Es ist ebenfalls etwas mehr ein Python-Buch als ein Buch über Verfahrensweisen der Data Science. Es eignet sich meiner Meinung nach besonders gut für Python-Lerner, die es bisher gewohnt waren, Daten in SQL zu analysieren und nun auf Pandas umsteigen möchten.

 


Alle Buchempfehlungen basieren auf meiner Erfahrung als Dozent. Ich habe alle Bücher intensiv gelesen und genutzt.
Die Links sind sogenannte Affiliate-Links. Wenn Du als Leser auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekomme ich als Inhaber des Data Science Blogs eine Provision, ohne dass sich der Kaufpreis des Artikels ändert. Ich versichere, dass jegliche Einnahmen nach Steuer zu 100% wieder in den Data Science Blog investiert werden.

Zusatz-Studium „Data Science and Big Data“ an der TU Dortmund

Anzeige
Jetzt anmelden für das weiterbildendes Studium „Data Science and Big Data“ an der Technischen Universität Dortmund!

Im Februar 2022 startet das berufsbegleitenden weiterbildende Studium „Data Science and Big Data“ an der Technischen Universität Dortmund zum 6. Mal.
Renommierte Wissenschaftlerinnen und Wissenschaftlern vermitteln Ihnen die neuesten datenwissenschaftlichen Erkenntnisse und zeigen, wie dieses Wissen praxisnah im eigenen Big-Data Projekt umgesetzt werden kann. Von der Analyse über das Management bis zur zielgerichteten Darstellung der Ergebnisse lernen Sie dabei Methoden der Disziplinen Statistik, Informatik und Journalistik kennen.

Das weiterbildende Studium richtet sich an alle Personen, die über einen natur-  oder ingenieurwissenschaftlich/ statistische Studienhintergrund verfügen oder aufgrund ihrer mehrjährigen Berufserfahrung mit Fragestellungen zum Thema Datenanalyse vertraut sind.

Mögliche Berufsgruppen sind:

  • Data Analyst
  • Consultant/ Unternehmensberater
  • Business Analyst
  • Software-Entwickler

Das weiterbildende Studium umfasst 10 Veranstaltungstage über eine Dauer von 10 Monaten (Kursabschluss: November 2022). Die Kosten betragen 6.900 € (zahlbar in 3 Raten). Bewerbungsschluss ist der 29. November 2021. Weitere Informationen und Hinweise zur Anmeldung finden Sie unter: https://wb.zhb.tu-dortmund.de/zertifikatskurse/data-science-and-big-data/

Bewerbungsformular für Zusatzstudium an der TU Dortmund

Bewerbungsformular (Download)

 

Bei Fragen können Sie sich gerne an den zuständigen Bildungsreferenten Daniel Neubauer wenden: daniel.neubauer@tu-dortmund.de oder 0231/755-6632

Process Mining mit Celonis – Artikelserie

Der erste Artikel dieser Artikelserie Process Mining Tools beschäftigt sich mit dem Anbieter Celonis. Das 2011 in Deutschland gegründete Unternehmen ist trotz wachsender Anzahl an Wettbewerbern zum Zeitpunkt der Veröffentlichung dieses Artikels der eindeutige Marktführer im Bereich Process Mining.

Celonis Process Mining – Teil 1 der Artikelserie

Celonis Process Mining ist 2011 als reine On-Premise-Lösung gestartet und seit 2018 auch als Cloud-Lösuung zu haben. Übersicht zu den vier verschiedenen Produktversionen der Celonis Process Mining Lösungen:

Celonis Snap Celonis Enterprise Celonis Academic Celonis Consulting
Lizenz:  Kostenfrei Kostenpflichtige Lösungspakete Kostenfrei Consulting Lizenz on Demand
Zielgruppe:  Für kleine Unternehmen und Einzelanwender Für mittel- und große Unternehmen Für akademische Einrichtungen und Studenten Für Berater
Datenquellen: ServiceNow, CSV/XLS -Datei Beliebig (On-Premise- und Cloud – Anbindungen) ServiceNow, CSV/XLS/XES –Datei oder Demosysteme Beliebig (On-Premise- und Cloud – Anbindungen)
Datenvolumen: Limitiert auf 500 MB Event-Log-Daten Unlimitierte Datenmengen (Größte Installation 50 TB) Unlimitierte Datenmengen Unlimitierte Datenmengen (Größte Installation 30 TB
Architektur: Cloud & On-Premise Cloud & On-Premise Cloud & On-Premise Cloud & On-Premise

Dieser Artikel bezieht sich im weiteren Verlauf auf die Celonis Enterprise Version, wenn nicht anders gekennzeichnet. Spezifische Unterschiede unter den einzelnen Produkten und weitere Informationen können auf der Website von Celonis entnommen werden.

Bedienbarkeit und Anpassungsfähigkeit der Analysen

In Sachen Bedienbarkeit punktet Celonis mit einem sehr übersichtlichen und einsteigerfreundlichem Userinterface. Jeder der mit BI-Tools wir z.B. „Power-BI“ oder „Tableau“ gearbeitet hat, wird sich wahrscheinlich schnell zurechtfinden.

Userinterface Celonis

Abbildung 1: Userinterface von Celonis. Über die Reiter kann direkt von der Analyse (Process Analytics) zu den ETL-Prozessen (Event Collection) gewechselt werden.

Das Erstellen von Analysen funktioniert intuitiv und schnell, auch weil die einzelnen Komponentenbausteine lediglich per drag & drop platziert und mit den gewünschten Dimensionen und KPI’s bestückt werden müssen.

Process Analytics im Process Explorer

Abbildung 2: Typische Analyse im Edit Modus. Neue Komponenten können aus dem Reiter (rechts im Bild) mittels drag & drop auf der Dashboard Bearbeitungsfläche platziert werden.

Darüber hinaus bietet Celonis mit seinem kostenlosen Programm „Celonis Acadamy“ einen umfangreichen und leicht verständlichen Pool an Trainingseinheiten für die verschiedenen User-Rollen: „Snap“, „Executive“, „Business User“, „Analyst“ und „Data Engineer“. Einsteiger finden sich nach der Absolvierung der Grundkurse etwa nach vier Stunden in dem Tool zurecht.

Conformance Analyse In Celonis

Abbildung 3: Conformance Analyse In Celonis. Es kann direkt analysiert werden, welche Art von Verstößen welche Auswirkungen haben und mit welcher Häufigkeit diese auftreten.

Die Definition von eigenen KPIs erfolgt mittels übersichtlichem Code Editor. Die verwendete proprietäre und patentierte Programmiersprache lautet PQL (Process Query Language) , dessen Syntax stark an SQL angelehnt ist und alle prozessrelevanten Berechnungen ermöglicht. Noch einsteigerfreundlicher ist der Visual Editor, in welchem KPIs alternativ mit zahlreicher visueller Unterstützung und über 130 mathematischen Operatoren erstellt werden können – ganz ohne Coding Erfahrung.
Mit Hilfe von über 30 Komponenten lassen sich alle üblichen Charts und Grafiken erstellen. Ich hatte das Gefühl, dass die Auswahl grundsätzlich ausreicht und dem Erkenntnisgewinn nicht im Weg steht. Dieses Gefühl rührt nicht zuletzt daher, dass die vorgefertigten Features, wie zum Beispiel „Conformance“ direkt und ohne Aufwand implementiert werden können und bemerkenswerte Erkenntnisse liefern. Kurzum: Ja es ist vieles vorgefertigt, aber hier wurde mit hohen Qualitätsansprüchen vorgefertigt!

Celonis Code Editor vs Visual Editor

Abbildung 4: Coder Editor (links) und Visual Editor (rechts). Während im Code Editor mit PQL geschrieben werden muss, können Einsteiger im Visual Editor visuelle Hilfestellungen nehmen, um KPIs zu definieren.

Diese Flexibilität erscheint groß und bedient mehrere Zielgruppen, beginnend bei den Einsteigern. Insbesondere da das Verständnis für den Code Editor und somit für PQL durch die Arbeit mit dem Visual Code Editor gefördert wird. Wer SQL-Kenntnisse mitbringt, wird sehr schnell ohne Probleme KPIs im Code Editor definieren können. Erfahrenen Data Engineers stünde es dennoch frei, die Entwicklungsarbeit auf die Datenbankebene zu verschieben.

Celonis Visual Editor

Abbildung 5: Mit Hilfe zahlreicher Möglichkeiten können Einsteiger im Visual Editor visuelle Hilfestellungen nehmen, um individuelle KPIs zu definieren.

Nachdem die ersten Analysen erstellt wurden, steht der Prozessanalyse nichts mehr im Wege. Während sich per Knopfdruck auf alle visualisierten Datenpunkte filtern lässt, unterstützt auch hier Celonis zusätzlich mit zahlreichen sogenannten ‘Auswahlansichten’, um die Entdeckung unerwünschter oder betrügerischer Prozesse so einfach wie das Googeln zu machen.

Predefined dashboard apps

Abbildung 6: Die anwenderfreundlichen Auswahlarten ermöglichen es dem Benutzer, einfach mit wenigen Klicks nach Unregelmäßigkeiten oder Mustern in Transaktionen zu suchen und diese eingehend zu analysieren.

Integrationsfähigkeit

Die Celonis Enterprise Version ist sowohl als Cloud- und On-Premise-Lösung verfügbar. Die Cloud-Lösung bietet die folgenden Vorteile: Zum einen zusätzliche Leistungen wieCloud Connectoren, einer sogenannten Action Engine die jeden einzelnen Mitarbeiter in einem Unternehmen mit datengetriebenen nächstbesten Handlungen unterstützt, intelligenter Process Automation, Machine Learning und AI, einen App Store sowie verschiedene Boards. Diese Erweiterungen zeigen deutlich den Anspruch des Münchner Process Mining Vendors auf, neben der reinen Prozessanalyse Unternehmen beim heben der identifizierten Potentiale tatkräftig zu unterstützen. Darüber hinaus kann die Cloud-Lösung punkten mit, einer schnellen Amortisierung, bedarfsgerechter Skalierbarkeit der Kapazitäten sowie einen noch stärkeren Fokus auf Security & Compliance. Darüber hinaus  erfolgen regelmäßig Updates.

Celonis Process Automation

Abbildung 7: Celonis Process Automation ermöglicht Unternehmen ihre Prozesse auf intelligente Art und Weise so zu automatisieren, dass die Zielerreichung der jeweiligen Fachabteilung im Fokus stehen. Auch hier trumpft Celonis mit über 30+ vorgefertigten Möglichkeiten von der Automatisierung von Kommunikation, über Backend Automatisierung in Quellsystemen bis hin zu Einbindung von RPA Bots und vielem mehr.

Der Schwenk von Celonis scheint in Richtung Cloud zu sein und es bleibt abzuwarten, wie die On-Premise-Lösung zukünftig aussehen wird und ob sie noch angeboten wird. Je nach Ausgangssituation gilt es hier abzuwägen, welche der beiden Lösungen die meisten Vorteile bietet. In jedem Fall wird Celonis als browserbasierte Webanwendung für den Endanwender zur Verfügung gestellt. Die folgende Abbildung zeigt eine beispielhafte Celonis on-Premise-Architektur, bei welcher der User über den Webbrowser Zugang erhält.

Celonis bringt eine ausreichende Anzahl an vordefinierten Datenschnittstellen mit, wodurch sowohl gängige on-Premise Datenbanken / ERP-Systeme als auch Cloud-Dienste, wie z. B. „ServiceNow“ oder „Salesforce“ verbunden werden können. Im „App Store“ können zusätzlich sogenannte „prebuild Process-Connectors“ kostenlos erworben werden. Diese erstellen die Verbindung und erzeugen das Datenmodell (Extract and Transform) für einen Standard Prozess automatisch, so dass mit der Analyse direkt begonnen werden kann. Über 500 vordefinierte Analysen für Standard Prozesse gibt es zusätzlich im App Store. Dadurch kann die Bearbeitungszeit für ein Process-Mining Projekt erheblich verkürzt werden, vorausgesetzt das benötigte Datenmodel weicht im Kern nicht zu sehr von dem vordefinierten Model ab. Sollten Schnittstellen mal nicht vorhanden sein, können Daten auch als CSV oder XLS Format importiert werden.

Celonis App Store

Abbildung 8: Der Celonis App Store beinhaltet über 100 Prozesskonnektoren, über 500 vorgefertigte Analysen und über 80 Action Engine Fähigkeiten die kostenlos mit der Cloud Lizenz zur Verfügung stehen

Auch wenn von einer 100%-Cloud gesprochen wird, muss für die Anbindung von unternehmensinternen on-premise Datenquellen (z. B. lokale Instanzen von SAP ERP, Oracle ERP, MS Dynamics ERP) ein sogenannter Extractor on-premise installiert werden.

Celonis Extractors

Abbildung 9: Celonis Extractor muss für die Anbindung von On-Premise Datenquellen ebenfalls On-Premise installiert werden. Dieser arbeitet wie ein Gateway zur Celonis Intelligent Business Cloud (IBC). Die IBC enthält zudem einen eigenen Extratctor für die Anbindung von Daten aus anderen Cloud-Systemen.

Celonis bietet in der Enterprise-Ausführung zudem ein umfassendes Benutzer-Berechtigungsmanagement, so dass beispielsweise für Analysen im Einkauf die Berechtigungen zwischen dem Einkaufsleiter, Einkäufern und Praktikanten im Einkauf unterschieden werden können. Auch dieser Punkt ist für viele Unternehmen eine Grundvoraussetzung für einen eventuellen unternehmensweiten Roll-Out.

Skalierbarkeit

In Punkto großen Datenmengen kann Celonis sich sehen lassen. Allein für „Uber“ verarbeitet die Cloud rund 50 Millionen Datensätze, wobei ein einzelner mehrere Terabyte (TB) groß sein kann. Der größte einzelne Datenblock, den Celonis analysiert, beträgt wohl etwas über 50 TB. Celonis bietet somit Process Mining, zeitgerecht im Bereich Big Data an und kann daher auch viele große renommierten Unternehmen zu seinen Kunden zählen, wie zum Beispiel Siemens, ABB oder BMW. Doch wie erweiterbar und flexibel sind die erstellten Datenmodelle? An diesem Punkt konnte ich keine Schwierigkeiten feststellen. Celonis bietet ein übersichtlich gestaltetes Userinterface, welches das Datenmodell mit seinen Tabellen und Beziehungen sauber darstellt. Modelliert wird mit SQL-Befehlen, wodurch eine zusätzliche Abfragesprache entfällt. Der von Celonis gewählte SQL-Dialekt ist Vertica. Dieser ist keineswegs begrenzt und bietet die ausreichende Tiefe, welche an dieser Stelle benötigt wird. Die Erweiterbarkeit sowie die Flexibilität der Datenmodelle wird somit ausschließlich von der Arbeit des Data Engineer bestimmt und in keiner Weise durch Celonis selbst eingeschränkt. Durch das Zurückgreifen auf die Abfragesprache SQL, kann bei der Modellierung auf eine sehr breite Community zurückgegriffen werden. Darüber hinaus können bestehende SQL-Skripte eingefügt und leicht angepasst werden. Und auch die Suche nach einem geeigneten Data Engineer gestaltet sich dadurch praktisch, da SQL eine der meistbeherrschten Abfragesprachen ist.

Zukunftsfähigkeit

Machine Learning umfasst Data Mining und Predictive Analytics und findet vermehrt den Einzug ins Process Mining. Auch ist es längst ein wesentlicher Bestandteil von Celonis. So basiert z. B. das Feature „Conformance“ auf Machine Learning Algorithmen, welche zu den identifizierten Prozessabweichungen den Einfluss auf das Geschäft berechnen. Aber auch Lösungen zu den Identifizierten Problemen werden von Verfahren des maschinellen Lernens dem Benutzer vorgeschlagen. Was zusätzlich in Sachen Machine Learning von Celonis noch bereitgestellt wird, ist die sogenannte Machine-Learning-Workbench, welche in die Intelligent Business Cloud integriert ist. Hier können eigene Anwendungen mit Machine Learning auf Basis der Event-Log Daten entwickelt und eingesetzt werden, um z. B. Vorhersagen zu Lieferzeiten treffen zu können.

Task Mining ist einer der nächsten Schritte im Bereich Process Mining, der den Detailgrad für Analysen von Prozessen bis hin zu einzelnen Aufgaben auf Mausklick-Ebene erhöht. Im Oktober 2019 hatte Celonis bereits angekündigt, dass die Intelligent Business Cloud um eben diese neue Technik der Datenerhebung und -analyse erweitert wird. Die beiden Methoden Prozess Analyse und Task Mining ergänzen sich ausgezeichnet. Stelle ich in der Prozess Analyse fest, dass sich eine bestimmte Aktivität besonders negativ auf meine gewünschte Performance auswirkt (z. B. Zeit), können mit Task Mining diese Aktivität genauer untersuchen und die möglichen Gründe sehr granular betrachten. So kann ich evtl. feststellen das Mitarbeiter bei einer bestimmten Art von Anfrage sehr viel Zeit in Salesforce verbringen, um Informationen zu sammeln. Hier liegt also viel Potential versteckt, um den gesamten Prozess zu verbessern. In dem z.B. die Informationsbeschaffung erleichtert wird oder evtl. der Anfragetyp optimiert wird, kann dieses Potential genutzt werden. Auch ist Task Mining die ideale Grundlage zur Formulierung von RPA-Lösungen.

Ebenfalls entscheidend für die Zukunftsfähigkeit von Process Mining ist die Möglichkeit, Verknüpfungen zwischen unterschiedlichen Geschäftsprozesse zu erkennen. Häufig sind diese untrennbar miteinander verbunden und der Output eines Prozesses bildet den Input für einen anderen. Mit prozessübergreifenden Multi-Event Logs bietet Celonis die Möglichkeit, genau diese Verbindungen aufzuzeigen. So entsteht ein einheitliches Prozessmodell für das gesamte Unternehmen. Und das unter bestimmten Voraussetzungen auch in nahezu Echtzeit.

Werden die ersten Entwicklungen im Bereich Machine Learning und Task Mining von Celonis weiter ausgebaut, ist Celonis weiterhin auf einem zukunftssicheren Weg. Unternehmen, die vor allem viel Wert auf Enterprise-Readiness und eine intensive Weiterentwicklung legen, dürften mit Celonis auf der sicheren Seite sein.

Preisgestaltung

Die Preisgestaltung der Enterprise Version wird von Celonis nicht transparent kommuniziert. Angeboten werden verschiedene kostenpflichtige Lösungspakete, welche sich aus den Anforderungen eines Projektes ergeben.  Generell stufe ich die Celonis Enterprise Version als Premium Produkt ein. Dies liegt auch daran, weil die Basisausführung der Celonis Enterprise Version bereits sehr umfänglich ist und neben der Software Subscription standardmäßig auch mit Wartung und Support kommt. Zusätzlich steckt mittlerweile sehr viel Entwicklungsarbeit in der Celonis Process Mining Plattform, welche weit über klassische Process Discovery Solutions hinausgeht.  Für kleinere Unternehmen mit begrenztem Budget gibt es daher zwischen der kostenfreien Snap Version und den Basis Paketen der Enterprise Version oft keine Interimslösung.

Fazit

Insgesamt stellt Celonis ein unabhängiges und leistungsstarkes Process Mining Tool in der Cloud bereit. Gehört die Cloud zur Unternehmensstrategie, ist man bei Celonis an der richtigen Adresse. Die „prebuild Process-Connectors“ und die vordefinierten Analysen können ein Process Mining Projekt signifikant beschleunigen und somit die Time-to-Value lukrativ verkürzen. Die Analyse Tools sind leicht bedienbar und schaffen dank integrierter Machine Learning Algorithmen Optimierungspotentiale. Positiv ist auch zu bewerten, dass Celonis ohne speziellen Syntax auskommt und mittelmäßige SQL-Fähigkeiten somit völlig ausreichend sind, um Prozessanalysen vollumfänglich durchzuführen. Diesen vielen positiven Aspekten steht eigentlich nur die hohe Preisgestaltung für die Enterprise Version gegenüber. Ob diese im Einzelfall gerechtfertigt ist, sollte situationsabhängig evaluiert werden. Sicherlich richtet sich Celonis Enterprise in erster Linie an größere Unternehmen, welche komplexe Prozesse mit hohen Datenvolumina analysieren möchte.  Mit Celonis-Snap können jedoch auch kleine Unternehmen und Start-ups einen begrenzten Einblick in dieses gut gelungene Process Mining Tool erhalten.

Interview: Data Science in der Finanzbranche

Interview mit Torsten Nahm von der DKB (Deutsche Kreditbank AG) über Data Science in der Finanzbranche

Torsten Nahm ist Head of Data Science bei der DKB (Deutsche Kreditbank AG) in Berlin. Er hat Mathematik in Bonn mit einem Schwerpunkt auf Statistik und numerischen Methoden studiert. Er war zuvor u.a. als Berater bei KPMG und OliverWyman tätig sowie bei dem FinTech Funding Circle, wo er das Risikomanagement für die kontinentaleuropäischen Märkte geleitet hat.

Hallo Torsten, wie bist du zu deinem aktuellen Job bei der DKB gekommen?

Die Themen Künstliche Intelligenz und maschinelles Lernen haben mich schon immer fasziniert. Den Begriff „Data Science“ gibt es ja noch gar nicht so lange. In meinem Studium hieß das „statistisches Lernen“, aber im Grunde ging es um das gleiche Thema: dass ein Algorithmus Muster in den Daten erkennt und dann selbstständig Entscheidungen treffen kann.

Im Rahmen meiner Tätigkeit als Berater für verschiedene Unternehmen und Banken ist mir klargeworden, an wie vielen Stellen man mit smarten Algorithmen ansetzen kann, um Prozesse und Produkte zu verbessern, Risiken zu reduzieren und das Kundenerlebnis zu verbessern. Als die DKB jemanden gesucht hat, um dort den Bereich Data Science weiterzuentwickeln, fand ich das eine äußerst spannende Gelegenheit. Die DKB bietet mit über 4 Millionen Kunden und einem auf Nachhaltigkeit fokussierten Geschäftsmodell m.E. ideale Möglichkeiten für anspruchsvolle aber auch verantwortungsvolle Data Science.

Du hast viel Erfahrung in Data Science und im Risk Management sowohl in der Banken- als auch in der Versicherungsbranche. Welche Rolle siehst du für Big Data Analytics in der Finanz- und Versicherungsbranche?

Banken und Versicherungen waren mit die ersten Branchen, die im großen Stil Computer eingesetzt haben. Das ist einfach ein unglaublich datengetriebenes Geschäft. Entsprechend haben komplexe Analysemethoden und auch Big Data von Anfang an eine große Rolle gespielt – und die Bedeutung nimmt immer weiter zu. Technologie hilft aber vor allem dabei Prozesse und Produkte für die Kundinnen und Kunden zu vereinfachen und Banking als ein intuitives, smartes Erlebnis zu gestalten – Stichwort „Die Bank in der Hosentasche“. Hier setzen wir auf einen starken Kundenfokus und wollen die kommenden Jahre als Bank deutlich wachsen.

Kommen die Bestrebungen hin zur Digitalisierung und Nutzung von Big Data gerade eher von oben aus dem Vorstand oder aus der Unternehmensmitte, also aus den Fachbereichen, heraus?

Das ergänzt sich idealerweise. Unser Vorstand hat sich einer starken Wachstumsstrategie verschrieben, die auf Automatisierung und datengetriebenen Prozessen beruht. Gleichzeitig sind wir in Dialog mit vielen Bereichen der Bank, die uns fragen, wie sie ihre Produkte und Prozesse intelligenter und persönlicher gestalten können.

Was ist organisatorische Best Practice? Finden die Analysen nur in deiner Abteilung statt oder auch in den Fachbereichen?

Ich bin ein starker Verfechter eines „Hub-and-Spoke“-Modells, d.h. eines starken zentralen Bereichs zusammen mit dezentralen Data-Science-Teams in den einzelnen Fachbereichen. Wir als zentraler Bereich erschließen dabei neue Technologien (wie z.B. die Cloud-Nutzung oder NLP-Modelle) und arbeiten dabei eng mit den dezentralen Teams zusammen. Diese wiederum haben den Vorteil, dass sie direkt an den jeweiligen Kollegen, Daten und Anwendern dran sind.

Wie kann man sich die Arbeit bei euch in den Projekten vorstellen? Was für Profile – neben dem Data Scientist – sind beteiligt?

Inzwischen hat im Bereich der Data Science eine deutliche Spezialisierung stattgefunden. Wir unterscheiden grob zwischen Machine Learning Scientists, Data Engineers und Data Analysts. Die ML Scientists bauen die eigentlichen Modelle, die Date Engineers führen die Daten zusammen und bereiten diese auf und die Data Analysts untersuchen z.B. Trends, Auffälligkeiten oder gehen Fehlern in den Modellen auf den Grund. Dazu kommen noch unsere DevOps Engineers, die die Modelle in die Produktion überführen und dort betreuen. Und natürlich haben wir in jedem Projekt noch die fachlichen Stakeholder, die mit uns die Projektziele festlegen und von fachlicher Seite unterstützen.

Und zur technischen Organisation, setzt ihr auf On-Premise oder auf Cloud-Lösungen?

Unsere komplette Data-Science-Arbeitsumgebung liegt in der Cloud. Das vereinfacht die gemeinsame Arbeit enorm, da wir auch sehr große Datenmengen z.B. direkt über S3 gemeinsam bearbeiten können. Und natürlich profitieren wir auch von der großen Flexibilität der Cloud. Wir müssen also z.B. kein Spark-Cluster oder leistungsfähige Multi-GPU-Instanzen on premise vorhalten, sondern nutzen und zahlen sie nur, wenn wir sie brauchen.

Gibt es Stand heute bereits Big Data Projekte, die die Prototypenphase hinter sich gelassen haben und nun produktiv umgesetzt werden?

Ja, wir haben bereits mehrere Produkte, die die Proof-of-Concept-Phase erfolgreich hinter sich gelassen haben und nun in die Produktion umgesetzt werden. U.a. geht es dabei um die Automatisierung von Backend-Prozessen auf Basis einer automatischen Dokumentenerfassung und -interpretation, die Erkennung von Kundenanliegen und die Vorhersage von Prozesszeiten.

In wie weit werden unstrukturierte Daten in die Analysen einbezogen?

Das hängt ganz vom jeweiligen Produkt ab. Tatsächlich spielen in den meisten unserer Projekte unstrukturierte Daten eine große Rolle. Das macht die Themen natürlich anspruchsvoll aber auch besonders spannend. Hier ist dann oft Deep Learning die Methode der Wahl.

Wie stark setzt ihr auf externe Vendors? Und wie viel baut ihr selbst?

Wenn wir ein neues Projekt starten, schauen wir uns immer an, was für Lösungen dafür schon existieren. Bei vielen Themen gibt es gute etablierte Lösungen und Standardtechnologien – man muss nur an OCR denken. Kommerzielle Tools haben wir aber im Ergebnis noch fast gar nicht eingesetzt. In vielen Bereichen ist das Open-Source-Ökosystem am weitesten fortgeschritten. Gerade bei NLP zum Beispiel entwickelt sich der Forschungsstand rasend. Die besten Modelle werden dann von Facebook, Google etc. kostenlos veröffentlicht (z.B. BERT und Konsorten), und die Vendors von kommerziellen Lösungen sind da Jahre hinter dem Stand der Technik.

Letzte Frage: Wie hat sich die Coronakrise auf deine Tätigkeit ausgewirkt?

In der täglichen Arbeit eigentlich fast gar nicht. Alle unsere Daten sind ja per Voraussetzung digital verfügbar und unsere Cloudumgebung genauso gut aus dem Home-Office nutzbar. Aber das Brainstorming, gerade bei komplexen Fragestellungen des Feature Engineering und Modellarchitekturen, finde ich per Videocall dann doch deutlich zäher als vor Ort am Whiteboard. Insofern sind wir froh, dass wir uns inzwischen auch wieder selektiv in unseren Büros treffen können. Insgesamt hat die DKB aber schon vor Corona auf unternehmensweites Flexwork gesetzt und bietet dadurch per se flexible Arbeitsumgebungen über die IT-Bereiche hinaus.

Data Science für Smart Home im familiengeführten Unternehmen Miele

Dr. Florian Nielsen ist Principal for AI und Data Science bei Miele im Bereich Smart Home und zuständig für die Entwicklung daten-getriebener digitaler Produkte und Produkterweiterungen. Der studierte Informatiker promovierte an der Universität Ulm zum Thema multimodale kognitive technische Systeme.

Data Science Blog: Herr Dr. Nielsen, viele Unternehmen und Anwender reden heute schon von Smart Home, haben jedoch eher ein Remote Home. Wie machen Sie daraus tatsächlich ein Smart Home?

Tatsächlich entspricht das auch meiner Wahrnehmung. Die bloße Steuerung vernetzter Produkte über digitale Endgeräte macht aus einem vernetzten Produkt nicht gleich ein „smartes“. Allerdings ist diese Remotefunktion ein notwendiges Puzzlestück in der Entwicklung von einem nicht vernetzten Produkt, über ein intelligentes, vernetztes Produkt hin zu einem Ökosystem von sich ergänzenden smarten Produkten und Services. Vernetzte Produkte, selbst wenn sie nur aus der Ferne gesteuert werden können, erzeugen Daten und ermöglichen uns die Personalisierung, Optimierung oder gar Automatisierung von Produktfunktionen basierend auf diesen Daten voran zu treiben. „Smart“ wird für mich ein Produkt, wenn es sich beispielsweise besser den Bedürfnissen des Nutzers anpasst oder über Assistenzfunktionen eine Arbeitserleichterung im Alltag bietet.

Data Science Blog: Smart Home wiederum ist ein großer Begriff, der weit mehr als Geräte für Küchen und Badezimmer betrifft. Wie weit werden Sie hier ins Smart Home vordringen können?

Smart Home ist für mich schon fast ein verbrannter Begriff. Der Nutzer assoziiert hiermit doch vor allem die Steuerung von Heizung und Rollladen. Im Prinzip geht es doch um eine Vision in der sich smarte, vernetzte Produkt in ein kontextbasiertes Ökosystem einbetten um den jeweiligen Nutzer in seinem Alltag, nicht nur in seinem Zuhause, Mehrwert mit intelligenten Produkten und Services zu bieten. Für uns fängt das beispielsweise nicht erst beim Starten des Kochprozesses mit Miele-Geräten an, sondern deckt potenziell die komplette „User Journey“ rund um Ernährung (z. B. Inspiration, Einkaufen, Vorratshaltung) und Kochen ab. Natürlich überlegen wir verstärkt, wie Produkte und Services unser existierendes Produktportfolio ergänzen bzw. dem Nutzer zugänglicher machen könnten, beschränken uns aber hierauf nicht. Ein zusätzlicher für uns als Miele essenzieller Aspekt ist allerdings auch die Privatsphäre des Kunden. Bei der Bewertung potenzieller Use-Cases spielt die Privatsphäre unserer Kunden immer eine wichtige Rolle.

Data Science Blog: Die meisten Data-Science-Abteilungen befassen sich eher mit Prozessen, z. B. der Qualitätsüberwachung oder Prozessoptimierung in der Produktion. Sie jedoch nutzen Data Science als Komponente für Produkte. Was gibt es dabei zu beachten?

Kundenbedürfnisse. Wir glauben an nutzerorientierte Produktentwicklung und dementsprechend fängt alles bei uns bei der Identifikation von Bedürfnissen und potenziellen Lösungen hierfür an. Meist starten wir mit „Design Thinking“ um die Themen zu identifizieren, die für den Kunden einen echten Mehrwert bieten. Wenn dann noch Data Science Teil der abgeleiteten Lösung ist, kommen wir verstärkt ins Spiel. Eine wesentliche Herausforderung ist, dass wir oft nicht auf der grünen Wiese starten können. Zumindest wenn es um ein zusätzliches Produktfeature geht, das mit bestehender Gerätehardware, Vernetzungsarchitektur und der daraus resultierenden Datengrundlage zurechtkommen muss. Zwar sind unsere neuen Produktgenerationen „Remote Update“-fähig, aber auch das hilft uns manchmal nur bedingt. Dementsprechend ist die Antizipation von Geräteanforderungen essenziell. Etwas besser sieht es natürlich bei Umsetzungen von cloud-basierten Use-Cases aus.

Data Science Blog: Es heißt häufig, dass Data Scientists kaum zu finden sind. Ist Recruiting für Sie tatsächlich noch ein Thema?

Data Scientists, hier mal nicht interpretiert als Mythos „Unicorn“ oder „Full-Stack“ sind natürlich wichtig, und auch nicht leicht zu bekommen in einer Region wie Gütersloh. Aber Engineers, egal ob Data, ML, Cloud oder Software generell, sind der viel wesentlichere Baustein für uns. Für die Umsetzung von Ideen braucht es nun mal viel Engineering. Es ist mittlerweile hinlänglich bekannt, dass Data Science einen zwar sehr wichtigen, aber auch kleineren Teil des daten-getriebenen Produkts ausmacht. Mal abgesehen davon habe ich den Eindruck, dass immer mehr „Data Science“- Studiengänge aufgesetzt werden, die uns einerseits die Suche nach Personal erleichtern und andererseits ermöglichen Fachkräfte einzustellen die nicht, wie früher einen PhD haben (müssen).

Data Science Blog: Sie haben bereits einige Analysen erfolgreich in Ihre Produkte integriert. Welche Herausforderungen mussten dabei überwunden werden? Und welche haben Sie heute noch vor sich?

Wir sind, wie viele Data-Science-Abteilungen, noch ein relativ junger Bereich. Bei den meisten unserer smarten Produkte und Services stecken wir momentan in der MVP-Entwicklung, deshalb gibt es einige Herausforderungen, die wir aktuell hautnah erfahren. Dies fängt, wie oben erwähnt, bei der Berücksichtigung von bereits vorhandenen Gerätevoraussetzungen an, geht über mitunter heterogene, inkonsistente Datengrundlagen, bis hin zur Etablierung von Data-Science- Infrastruktur und Deploymentprozessen. Aus meiner Sicht stehen zudem viele Unternehmen vor der Herausforderung die Weiterentwicklung und den Betrieb von AI bzw. Data- Science- Produkten sicherzustellen. Verglichen mit einem „fire-and-forget“ Mindset nach Start der Serienproduktion früherer Zeiten muss ein Umdenken stattfinden. Daten-getriebene Produkte und Services „leben“ und müssen dementsprechend anders behandelt und umsorgt werden – mit mehr Aufwand aber auch mit der Chance „immer besser“ zu werden. Deshalb werden wir Buzzwords wie „MLOps“ vermehrt in den üblichen Beraterlektüren finden, wenn es um die nachhaltige Generierung von Mehrwert von AI und Data Science für Unternehmen geht. Und das zu Recht.

Data Science Blog: Data Driven Thinking wird heute sowohl von Mitarbeitern in den Fachbereichen als auch vom Management verlangt. Gerade für ein Traditionsunternehmen wie Miele sicherlich eine Herausforderung. Wie könnten Sie diese Denkweise im Unternehmen fördern?

Data Driven Thinking kann nur etabliert werden, wenn überhaupt der Zugriff auf Daten und darauf aufbauende Analysen gegeben ist. Deshalb ist Daten-Demokratisierung der wichtigste erste Schritt. Aus meiner Perspektive geht es darum initial die Potenziale aufzuzeigen, um dann mithilfe von Daten Unsicherheiten zu reduzieren. Wir haben die Erfahrung gemacht, dass viele Fachbereiche echtes Interesse an einer daten-getriebenen Analyse ihrer Hypothesen haben und dankbar für eine daten-getriebene Unterstützung sind. Miele war und ist ein sehr innovatives Unternehmen, dass „immer besser“ werden will. Deshalb erfahren wir momentan große Unterstützung von ganz oben und sind sehr positiv gestimmt. Wir denken, dass ein Schritt in die richtige Richtung bereits getan ist und mit zunehmender Zahl an Multiplikatoren ein „Data Driven Thinking“ sich im gesamten Unternehmen etablieren kann.

Zertifikatsstudium „Data Science and Big Data“ 2021 an der TU Dortmund

Anzeige

Komplexe Daten aufbereiten und analysieren, um daraus zukünftige Entwicklungen abzulesen: das lernen Sie im berufsbegleitenden Zertifikatsstudium „Data Science and Big Data“ an der TU Dortmund.

Jetzt bewerben!

Data Science & Big Data 2021

Die Zielgruppe sind Fachkräfte, die sich in ihrer Berufspraxis mit Fragestellungen zum Thema Datenanalyse und Big Data befassen, jedoch nun tiefergehende Kenntnisse in dem Themenfeld erhalten möchten. Von der Analyse über das Management bis zur zielgerichteten Darstellung der Ergebnisse lernen die Teilnehmenden dabei Methoden der Disziplinen Statistik, Informatik und Journalistik kennen.

Renommierte Wissenschaftlerinnen und Wissenschaftler vermitteln den Teilnehmerinnen und Teilnehmern die neuesten datenwissenschaftlichen Erkenntnisse und zeigen, wie dieses Wissen praxisnah im eigenen Big-Data Projekt umgesetzt werden kann.

Die nächste Studiengruppe startet im Februar 2021, der Bewerbungsschluss ist am 2. November 2020. Die Anzahl der verfügbaren Plätze ist begrenzt, eine rechtzeitige Bewerbung lohnt sich daher.

Nähere Informationen finden Sie unter: http://www.zhb.tu-dortmund.de/datascience

Interview – Machine Learning in Marketing und CRM

Interview mit Herrn Laurenz Wuttke von der datasolut GmbH über Machine Learning in Marketing und CRM.

Laurenz Wuttke ist Data Scientist und Gründer der datasolut GmbH. Er studierte Wirtschaftsinformatik an der Hochschule Hannover und befasst sich bereits seit 2011 mit Marketing- bzw. CRM-Systemen und der Datenanalyse. Heute ist er Dozent für Big Data im Marketing an der Hochschule Düsseldorf und unterstützt Unternehmen dabei, durch den Einsatz von künstlicher Intelligenz, individuell auf die Kundenbedürfnisse tausender Kunden einzugehen. Damit jeder Marketing Manager jedem Kunden das richtige Angebot zur richtigen Zeit machen kann.

Data Science Blog: Herr Wuttke, Marketing gilt als einer der Pionier-Bereiche der Unternehmen für den Einstieg in Big Data Analytics. Wie etabliert ist Big Data und Data Science heute im Marketing?  

Viele Unternehmen in Deutschland erkennen gerade Chancen und den Wert ihrer Daten. Dadurch investieren die Unternehmen in Big Data Infrastruktur und Data Science Teams.

Gleichzeitig denke ich, wir stehen im Marketing gerade am Anfang einer neuen Daten-Ära. Big Data und Data Science sind im Moment noch ein Thema der großen Konzerne. Viele kleine und mittelständische Unternehmen haben noch viele offene Potentiale in Bezug auf intelligente Kundenanalysen.

Durch stetig steigende Preise für die Kundenakquise, wird die Erhaltung und Steigerung einer guten Kundenbindung immer wichtiger. Und genau hier sehe ich die Vorteile durch Data Science im Marketing. Unternehmen können viel genauer auf Kundenbedürfnisse eingehen, antizipieren welches Produkt als nächstes gekauft wird und so ihr Marketing zielgenau ausrichten. Dieses „personalisierte Marketing“ führt zu einer deutlich stärkeren Kundenbindung und steigert langfristig Umsätze.

Viele amerikanische Unternehmen machen es vor, aber auch deutsche Unternehmen wie Zalando oder AboutYou investieren viel Geld in die Personalisierung ihres Marketings. Ich denke, die Erfolge sprechen für sich.

Data Science Blog: Ein häufiges Anliegen für viele Marketing Manager ist die treffsichere Kundensegmentierung nach vielerlei Kriterien. Welche Verbesserungen sind hier möglich und wie können Unternehmen diese erreichen?

Kundensegmentierungen sind ein wichtiger Bestandteil vieler Marketingstrategien. Allerdings kann man hier deutlich weitergehen und Marketing im Sinne von „Segments of One“ betreiben. Das bedeutet wir haben für jeden einzelnen Kunden eine individuelle „Next Best Action und Next Best Offer“.

Somit wird jeder Kunde aus Sicht des Marketings individuell betrachtet und bekommt individuelle Produktempfehlungen sowie Marketingmaßnahmen, welche auf das jeweilige Kundenbedürfnis zugeschnitten sind.

Dies ist auch ein wichtiger Schritt für die Marketingautomatisierung, denn wir können im Marketing schlichtweg keine tausenden von Kunden persönlich betreuen.

Data Science Blog: Sind die Kundencluster dann erkannt, stellt sich die Frage, wie diese besser angesprochen werden können. Wie funktioniert die dafür notwendige Kundenanalyse?

Ganz unterschiedlich, je nach Geschäftsmodell und Branche fällt die Kundenanalyse anders aus. Wir schauen uns unterschiedliche Merkmale zum historischen Kaufverhalten, Demografie und Produktnutzung an. Daraus ergeben sich in der Regel sehr schnell Kundenprofile oder Personas, die gezielt angesprochen werden können.

Data Science Blog: Oft werden derartige Analyse-Vorhaben auf Grund der Befürchtung, die relevanten Daten seien nicht verfügbar oder die Datenqualität sei einer solchen Analyse nicht würdig, gar nicht erst gestartet. Sind das begründete Bedenken?

Nein, denn oft kommen die Daten, die für eine Kundenanalyse oder die Vorhersage von Ergebnissen braucht, aus Datenquellen wie z.B. den Transaktionsdaten. Diese Daten hat jedes Unternehmen in guter Qualität vorliegen.

Natürlich werden die Analysen besser, wenn weitere Datenquellen wie bspw. Produktmetadaten, Kundeneigenschaften oder das Klickverhalten zur Verfügung stehen, aber es ist kein Muss.

Aus meiner Praxiserfahrung kann ich sagen, dass hier oft ungenutzte Potentiale schlummern.

Data Science Blog: Wie ist da eigentlich Ihre Erfahrung bzgl. der Interaktion zwischen Marketing und Business Intelligence? Sollten Marketing Manager ihre eigenen Datenexperten haben oder ist es besser, diese Ressourcen zentral in einer BI-Abteilung zu konzentrieren?

Aus meiner Sicht funktioniert moderenes Marketing heute nicht mehr ohne valide Datenbasis. Aus diesem Grund ist die Zusammenarbeit von Marketing und Business Intelligence unersetzbar, besonders wenn es um Bestandskundenmarketing geht. Hier laufen idealerweise alle Datenquellen in einer 360 Grad Kundensicht zusammen.

Dies kann dann auch als die Datenquelle für Machine Learning und Data Science verwendet werden. Alle wichtigen Daten können aus einer strukturierten 360 Grad Sicht zu einer Machine Learning Datenbasis (ML-Feature Store) umgewandelt werden. Das spart enorm viel Zeit und viel Geld.

Zu Ihrer zweiten Frage: Ich denke es gibt Argumente für beide Konstrukte, daher habe ich da keine klare Präferenz. Mir ist immer wichtig, dass der fachliche Austausch zwischen Technik und Fachbereich gut funktioniert. Ziele müssen besprochen und gegeben falls angepasst werden, um immer in die richtige Richtung zu gehen. Wenn diese Voraussetzung mit einer guten Data Science Infrastruktur gegeben ist, wird Data Science für wirklich skalierbar.

Data Science Blog: Benötigen Unternehmen dafür eine Customer Data Platform (CDP) oder zumindest ein CRM? Womit sollten Unternehmen beginnen, sollten sie noch ganz am Anfang stehen?

Eine Customer Data Platform (CDP) ist von Vorteil, ist aber kein Muss für den Anfang. Ein guts CRM-System oder gute gepflegte Kundendatenbank reicht zunächst für den Anfang.

Natürlich bietet eine CDP einen entscheidenden Vorteil durch die Zusammenführung von der Online- und der CRM-Welt. Das Klickverhalten hat einen enormen Einfluss auf die analytischen Modelle und hilft dabei, Kunden immer besser zu verstehen. Das ist besonders wichtig in unserer Zeit, da wir immer weniger direkten Kundenkontakt haben und zukünftig wird dieser auch noch weiter abnehmen.

Zusammengefasst: Wer diese Kundendaten intelligent miteinander verknüpft hat einen großen Vorteil.

Data Science Blog: Wie integrieren Sie App- und Webtracking in Ihre Analysen?

Trackingdaten aus Apps und Webseiten sind ein wichtiger Bestandteil unserer Machine Learning Modelle. Sie geben wichtige Informationen über das Kundenverhalten preis. So können die Trackingdaten gute Merkmale für Anwendungsfälle wie Churn Prediction, Customer Lifetime Value und Next Best Offer sein.

Häufig sind die Trackingdaten von unterschiedlichen Anbietern (Google Analytics, Piwik etc.) leicht anders in ihrer Struktur, dafür haben wir uns einen intelligenten Ansatz überlegt, um diese zu vereinheitlichen und in unseren Modellen anzuwenden.

Data Science Blog: Zurück zum Kunden. Seine Bedürfnisse stehen bei erfolgreichen Unternehmen im Fokus stehen. Einige Geschäftsmodelle basieren auf Abonnements oder Mitgliedschaften. Wie können Sie solchen Unternehmen helfen?

Abonnements und Subscriptions sind ein großer Trend: Der Kunde wird zum Nutzer und es fallen viele Kundendaten an, die gesammelt werden können. Viele unserer Kunden haben subscription- oder vertragsbasierte Geschäftsmodelle, was ich persönlich sehr interessante Geschäftsmodelle finde.

Diese haben häufig die Herausforderung ihre Kunden langfristig zu binden und eine gesunde Kundenbindung aufzubauen. Die Akquisition ist meistens sehr teuer und die Kundenabwanderung oder Customer Churn zu reduzieren damit ein strategisches Ziel. Wirklich erfolgreich werden diese dann, wenn die Churn Rate geringgehalten wird.

Die Lösung für eine niedrige Kundenabwanderung, neben einem guten Produkt und gutem Kundenservice, ist eine Churn Prediction und darauf aufbauende Churn Prevention Maßnahmen. Wir nehmen uns dazu das historische Kundenverhalten, schauen uns die Kündiger an und modellieren daraus eine Vorhersage für die Kundenabwanderung. So können Unternehmen abwanderungsgefährdete Kunden schon frühzeitig erkennen und entsprechend handeln. Das hat den entscheidenden Vorteil, dass man nicht einen schon verlorenen Kunden erneut gewinnen muss.

Es gibt aber auch Möglichkeiten schon weit vor der eigentlichen Churn-Gefahr anzusetzen, bei drohender Inaktivität. So haben wir für einen großen Fitness-App-Anbieter ein Alarmsystem entwickelt, das Kunden automatisiert Engagement-Kampagnen versendet, um bei drohender Inaktivität, den Kunden auf die Angebote aufmerksam zu machen. Sie kennen das von der Netflix-App, welche Ihnen jeden Abend einen guten Tipp für das Fernsehprogramm bereitstellt.

Data Science Blog: Gehen wir mal eine Ebene höher. So mancher CMO hat mit dem CFO den Deal, jährlich nur einen bestimmten Betrag ins Marketing zu stecken. Wie hilft Data Science bei der Budget-Verteilung auf die Bestandskunden?

Da gibt es eine einfache Lösung für „Customer Lifetime Value Prognosen“. Durch Machine Learning wird für jeden einzelnen Kunden eine Umsatz-Vorhersage für einen bestimmten Zeitraum getroffen. So kann das Bestandkundenmarketing das Marketingbudget ganz gezielt einsetzen und nach dem Kundenwert steuern. Ich gebe Ihnen ein Beispiel: Kundenreaktivierung im Handel. Sie haben ein bestimmtes Budget und können nicht jedem Kunden eine Reaktivierungsmaßnahme zukommen lassen. Wenn Sie einen gut berechneten Customer Lifetime Value haben, können Sie sich so auf die wertigen Kunden konzentrieren und diese reaktivieren.

Data Science Blog: Mit welchen Technologien arbeiten Sie bevorzugt? Welche Tools sind gerade im Kontext von analytischen Aufgaben im Marketing besonders effizient?

Wir haben uns in den letzten Jahren besonders auf Python und PySpark fokussiert. Mit der Entwicklung von Python für Data Science konnten die anderen Umgebungen kaum mithalten und somit ist Python aus meiner Sicht derzeit die beste Umgebung für unsere Lösungen.

Auch die Cloud spielt eine große Rolle für uns. Als kleines Unternehmen haben wir uns bei datasolut auf die AWS Cloud fokussiert, da wir gar nicht in der Lage wären, riesige Datenbestände unserer Kunden zu hosten.

Vor allem von dem hohen Automatisierungsgrad in Bezug auf Datenverarbeitung und Machine Learning bietet AWS alles, was das Data Science Herz begehrt.

Data Science Blog: Was würden Sie einem Junior Marketing Manager und einem Junior Data Scientist für den Ausbau seiner Karriere raten? Wie werden diese jungen Menschen zukünftig beruflich erfolgreich?

Dem Junior Marketing Manager würde ich immer raten, dass er sich Datenanalyse-Skills erarbeiten soll. Aber vor allem sollte er verstehen, was mit Daten alles möglich ist und wie diese eingesetzt werden können. Auch in meiner Vorlesung zu „Big Data im Marketing“ an der Hochschule Düsseldorf unterrichte ich Studierende, die auf Marketing spezialisiert sind. Hier gebe ich stets diesen Ratschlag.

Bei den Junior Daten Scientist ist es andersherum. Ich sehe in der Praxis immer wieder Data Scientists, die den Transfer zwischen Marketing und Data Science nicht gut hinbekommen. Daher rate ich jedem Data Scientist, der sich auf Marketing und Vertrieb fokussieren will, dass hier fachliches Know-How essentiell ist. Kein Modell oder Score hat einen Wert für ein Unternehmen, wenn es nicht gut im Marketing eingesetzt wird und dabei hilft, Marketingprozesse zu automatisieren.

Ein weiterer wichtiger Aspekt ist, dass sich Data Science und Machine Learning gerade rasant ändern. Die Automatisierung (Stichwort: AutoML) von diesen Prozessen ist auf der Überholspur, dass zeigen die großen Cloudanbieter ganz deutlich. Auch wir nutzen diese Technologie schon in der Praxis. Was der Algorithmus aber nicht übernehmen kann, ist der Transfer und Enablement der Fachbereiche.

Data Science Blog: Zum Schluss noch eine Bitte: Was ist Ihre Prophezeiung für die kommenden Jahre 2021/2022. What is the next big thing in Marketing Analytics?

Es gibt natürlich viele kleinere Trends, welche das Marketing verändern werden. Ich denke jedoch, dass die größte Veränderung für die Unternehmen sein wird, dass es einen viel großflächigeren Einsatz von Machine Learning im Marketing geben wird. Dadurch wird der Wettbewerb härter und für viele Unternehmen wird Marketing Analytics ein essentieller Erfolgsfaktor sein.