Wie passt Machine Learning in eine moderne Data- & Analytics Architektur?

Einleitung

Aufgrund vielfältiger potenzieller Geschäftschancen, die Machine Learning bietet, arbeiten mittlerweile viele Unternehmen an Initiativen für datengetriebene Innovationen. Dabei gründen sie Analytics-Teams, schreiben neue Stellen für Data Scientists aus, bauen intern Know-how auf und fordern von der IT-Organisation eine Infrastruktur für “heavy” Data Engineering & Processing samt Bereitstellung einer Analytics-Toolbox ein. Für IT-Architekten warten hier spannende Herausforderungen, u.a. bei der Zusammenarbeit mit interdisziplinären Teams, deren Mitglieder unterschiedlich ausgeprägte Kenntnisse im Bereich Machine Learning (ML) und Bedarfe bei der Tool-Unterstützung haben. Einige Überlegungen sind dabei: Sollen Data Scientists mit ML-Toolkits arbeiten und eigene maßgeschneiderte Algorithmen nur im Ausnahmefall entwickeln, damit später Herausforderungen durch (unkonventionelle) Integrationen vermieden werden? Machen ML-Funktionen im seit Jahren bewährten ETL-Tool oder in der Datenbank Sinn? Sollen ambitionierte Fachanwender künftig selbst Rohdaten aufbereiten und verknüpfen, um auf das präparierte Dataset einen populären Algorithmus anzuwenden und die Ergebnisse selbst interpretieren? Für die genannten Fragestellungen warten junge & etablierte Software-Hersteller sowie die Open Source Community mit “All-in-one”-Lösungen oder Machine Learning-Erweiterungen auf. Vor dem Hintergrund des Data Science Prozesses, der den Weg eines ML-Modells von der experimentellen Phase bis zur Operationalisierung beschreibt, vergleicht dieser Artikel ausgewählte Ansätze (Notebooks für die Datenanalyse, Machine Learning-Komponenten in ETL- und Datenvisualisierungs­werkzeugen vs. Speziallösungen für Machine Learning) und betrachtet mögliche Einsatzbereiche und Integrationsaspekte.

Data Science Prozess und Teams

Im Zuge des Big Data-Hypes kamen neben Design-Patterns für Big Data- und Analytics-Architekturen auch Begriffsdefinitionen auf, die Disziplinen wie Datenintegration von Data Engineering und Data Science vonein­ander abgrenzen [1]. Prozessmodelle, wie das ab 1996 im Rahmen eines EU-Förderprojekts entwickelte CRISP-DM (CRoss-Industry Standard Process for Data Mining) [2], und Best Practices zur Organisation erfolgreich arbeitender Data Science Teams [3] weisen dabei die Richtung, wie Unternehmen das Beste aus den eigenen Datenschätzen herausholen können. Die Disziplin Data Science beschreibt den, an ein wissenschaftliches Vorgehen angelehnten, Prozess der Nutzung von internen und externen Datenquellen zur Optimierung von Produkten, Dienstleistungen und Prozessen durch die Anwendung statistischer und mathematischer Modelle. Bild 1 stellt in einem Schwimmbahnen-Diagramm einzelne Phasen des Data Science Prozesses den beteiligten Funktionen gegenüber und fasst Erfahrungen aus der Praxis zusammen [5]. Dabei ist die Intensität bei der Zusammenarbeit zwischen Data Scientists und System Engineers insbesondere bei Vorbereitung und Bereitstellung der benötigten Datenquellen und später bei der Produktivsetzung des Ergebnisses hoch. Eine intensive Beanspruchung der Server-Infrastruktur ist in allen Phasen gegeben, bei denen Hands-on (und oft auch massiv parallel) mit dem Datenpool gearbeitet wird, z.B. bei Datenaufbereitung, Training von ML Modellen etc.

Abbildung 1: Beteiligung und Interaktion von Fachbereichs-/IT-Funktionen mit dem Data Science Team

Mitarbeiter vom Technologie-Giganten Google haben sich reale Machine Learning-Systeme näher angesehen und festgestellt, dass der Umsetzungsaufwand für den eigentlichen Kern (= der ML-Code, siehe den kleinen schwarzen Kasten in der Mitte von Bild 2) gering ist, wenn man dies mit der Bereitstellung der umfangreichen und komplexen Infrastruktur inklusive Managementfunktionen vergleicht [4].

Abbildung 2: Versteckte technische Anforderungen in maschinellen Lernsystemen

Konzeptionelle Architektur für Machine Learning und Analytics

Die Nutzung aller verfügbaren Daten für Analyse, Durchführung von Data Science-Projekten, mit den daraus resultierenden Maßnahmen zur Prozessoptimierung und -automatisierung, bedeutet für Unternehmen sich neuen Herausforderungen zu stellen: Einführung neuer Technologien, Anwendung komplexer mathematischer Methoden sowie neue Arbeitsweisen, die in dieser Form bisher noch nicht dagewesen sind. Für IT-Architekten gibt es also reichlich Arbeit, entweder um eine Data Management-Plattform neu aufzubauen oder um das bestehende Informationsmanagement weiterzuentwickeln. Bild 3 zeigt hierzu eine vierstufige Architektur nach Gartner [6], ausgerichtet auf Analytics und Machine Learning.

Abbildung 3: Konzeptionelle End-to-End Architektur für Machine Learning und Analytics

Was hat sich im Vergleich zu den traditionellen Data Warehouse- und Business Intelligence-Architekturen aus den 1990er Jahren geändert? Denkt man z.B. an die Präzisionsfertigung eines komplexen Produkts mit dem Ziel, den Ausschuss weiter zu senken und in der Produktionslinie eine höhere Produktivitätssteigerung (Kennzahl: OEE, Operational Equipment Efficiency) erzielen zu können: Die an der Produktherstellung beteiligten Fertigungsmodule (Spezialmaschinen) messen bzw. detektieren über zahlreiche Sensoren Prozesszustände, speicherprogrammierbare Steuerungen (SPS) regeln dazu die Abläufe und lassen zu Kontrollzwecken vom Endprodukt ein oder mehrere hochauflösende Fotos aufnehmen. Bei diesem Szenario entsteht eine Menge interessanter Messdaten, die im operativen Betrieb häufig schon genutzt werden. Z.B. für eine Echtzeitalarmierung bei Über- oder Unterschreitung von Schwellwerten in einem vorher definierten Prozessfenster. Während früher vielleicht aus Kostengründen nur Statusdaten und Störungsinformationen den Weg in relationale Datenbanken fanden, hebt man heute auch Rohdaten, z.B. Zeitreihen (Kraftwirkung, Vorschub, Spannung, Frequenzen,…) für die spätere Analyse auf.

Bezogen auf den Bereich Acquire bewältigt die IT-Architektur in Bild 3 nun Aufgaben, wie die Übernahme und Speicherung von Maschinen- und Sensordaten, die im Millisekundentakt Datenpunkte erzeugen. Während IoT-Plattformen das Registrieren, Anbinden und Management von Hunderten oder Tausenden solcher datenproduzierender Geräte („Things“) erleichtern, beschreibt das zugehörige IT-Konzept den Umgang mit Protokollen wie MQTT, OPC-UA, den Aufbau und Einsatz einer Messaging-Plattform für Publish-/Subscribe-Modelle (Pub/Sub) zur performanten Weiterverarbeitung von Massendaten im JSON-Dateiformat. Im Bereich Organize etablieren sich neben relationalen Datenbanken vermehrt verteilte NoSQL-Datenbanken zum Persistieren eingehender Datenströme, wie sie z.B. im oben beschriebenen Produktionsszenario entstehen. Für hochauflösende Bilder, Audio-, Videoaufnahmen oder andere unstrukturierte Daten kommt zusätzlich noch Object Storage als alternative Speicherform in Frage. Neben der kostengünstigen und langlebigen Datenauf­bewahrung ist die Möglichkeit, einzelne Objekte mit Metadaten flexibel zu beschreiben, um damit später die Auffindbarkeit zu ermöglichen und den notwendigen Kontext für die Analysen zu geben, hier ein weiterer Vorteil. Mit dem richtigen Technologie-Mix und der konsequenten Umsetzung eines Data Lake– oder Virtual Data Warehouse-Konzepts gelingt es IT-Architekten, vielfältige Analytics Anwendungsfälle zu unterstützen.

Im Rahmen des Data Science Prozesses spielt, neben der sicheren und massenhaften Datenspeicherung sowie der Fähigkeit zur gleichzeitigen, parallelen Verarbeitung großer Datenmengen, das sog. Feature-Engineering eine wichtige Rolle. Dazu wieder ein Beispiel aus der maschinellen Fertigung: Mit Hilfe von Machine Learning soll nach unbekannten Gründen für den zu hohen Ausschuss gefunden werden. Was sind die bestimmenden Faktoren dafür? Beeinflusst etwas die Maschinenkonfiguration oder deuten Frequenzveränderungen bei einem Verschleißteil über die Zeit gesehen auf ein Problem hin? Maschine und Sensoren liefern viele Parameter als Zeitreihendaten, aber nur einige davon sind – womöglich nur in einer bestimmten Kombination – für die Aufgabenstellung wirklich relevant. Daher versuchen Data Scientists bei der Feature-Entwicklung die Vorhersage- oder Klassifikationsleistung der Lernalgorithmen durch Erstellen von Merkmalen aus Rohdaten zu verbessern und mit diesen den Lernprozess zu vereinfachen. Die anschließende Feature-Auswahl wählt bei dem Versuch, die Anzahl von Dimensionen des Trainingsproblems zu verringern, die wichtigste Teilmenge der ursprünglichen Daten-Features aus. Aufgrund dieser und anderer Arbeitsschritte, wie z.B. Auswahl und Training geeigneter Algorithmen, ist der Aufbau eines Machine Learning Modells ein iterativer Prozess, bei dem Data Scientists dutzende oder hunderte von Modellen bauen, bis die Akzeptanzkriterien für die Modellgüte erfüllt sind. Aus technischer Sicht sollte die IT-Architektur auch bei der Verwaltung von Machine Learning Modellen bestmöglich unterstützen, z.B. bei Modell-Versionierung, -Deployment und -Tracking in der Produktions­umgebung oder bei der Automatisierung des Re-Trainings.

Die Bereiche Analyze und Deliver zeigen in Bild 3 einige bekannte Analysefähigkeiten, wie z.B. die Bereitstellung eines Standardreportings, Self-service Funktionen zur Geschäftsplanung sowie Ad-hoc Analyse und Exploration neuer Datasets. Data Science-Aktivitäten können etablierte Business Intelligence-Plattformen inhaltlich ergänzen, in dem sie durch neuartige Kennzahlen, das bisherige Reporting „smarter“ machen und ggf. durch Vorhersagen einen Blick in die nahe Zukunft beisteuern. Machine Learning-as-a-Service oder Machine Learning-Produkte sind alternative Darreichungsformen, um Geschäftsprozesse mit Hilfe von Analytik zu optimieren: Z.B. integriert in einer Call Center-Applikation, die mittels Churn-Indikatoren zu dem gerade anrufenden erbosten Kunden einen Score zu dessen Abwanderungswilligkeit zusammen mit Handlungsempfehlungen (Gutschein, Rabatt) anzeigt. Den Kunden-Score oder andere Risikoeinschätzungen liefert dabei eine Service Schnittstelle, die von verschiedenen unternehmensinternen oder auch externen Anwendungen (z.B. Smartphone-App) eingebunden und in Echtzeit angefragt werden kann. Arbeitsfelder für die IT-Architektur wären in diesem Zusammenhang u.a. Bereitstellung und Betrieb (skalierbarer) ML-Modelle via REST API’s in der Produktions­umgebung inklusive Absicherung gegen unerwünschten Zugriff.

Ein klassischer Ansatz: Datenanalyse und Machine Learning mit Jupyter Notebook & Python

Jupyter ist ein Kommandozeileninterpreter zum interaktiven Arbeiten mit der Programmiersprache Python. Es handelt sich dabei nicht nur um eine bloße Erweiterung der in Python eingebauten Shell, sondern um eine Softwaresuite zum Entwickeln und Ausführen von Python-Programmen. Funktionen wie Introspektion, Befehlszeilenergänzung, Rich-Media-Einbettung und verschiedene Editoren (Terminal, Qt-basiert oder browserbasiert) ermöglichen es, Python-Anwendungen als auch Machine Learning-Projekte komfortabel zu entwickeln und gleichzeitig zu dokumentieren. Datenanalysten sind bei der Arbeit mit Juypter nicht auf Python als Programmiersprache begrenzt, sondern können ebenso auch sog. Kernels für Julia, R und vielen anderen Sprachen einbinden. Ein Jupyter Notebook besteht aus einer Reihe von “Zellen”, die in einer Sequenz angeordnet sind. Jede Zelle kann entweder Text oder (Live-)Code enthalten und ist beliebig verschiebbar. Texte lassen sich in den Zellen mit einer einfachen Markup-Sprache formatieren, komplexe Formeln wie mit einer Ausgabe in LaTeX darstellen. Code-Zellen enthalten Code in der Programmiersprache, die dem aktiven Notebook über den entsprechenden Kernel (Python 2 Python 3, R, etc.) zugeordnet wurde. Bild 4 zeigt auszugsweise eine Analyse historischer Hauspreise in Abhängigkeit ihrer Lage in Kalifornien, USA (Daten und Notebook sind öffentlich erhältlich [7]). Notebooks erlauben es, ganze Machine Learning-Projekte von der Datenbeschaffung bis zur Evaluierung der ML-Modelle reproduzierbar abzubilden und lassen sich gut versionieren. Komplexe ML-Modelle können in Python mit Hilfe des Pickle Moduls, das einen Algorithmus zur Serialisierung und De-Serialisierung implementiert, ebenfalls transportabel gemacht werden.

 

Abbildung 4: Datenbeschaffung, Inspektion, Visualisierung und ML Modell-Training in einem Jupyter Notebook (Pro-grammiersprache: Python)

Ein Problem, auf das man bei der praktischen Arbeit mit lokalen Jupyter-Installationen schnell stößt, lässt sich mit dem “works on my machine”-Syndrom bezeichnen. Kleine Data Sets funktionieren problemlos auf einem lokalen Rechner, wenn sie aber auf die Größe des Produktionsdatenbestandes migriert werden, skaliert das Einlesen und Verarbeiten aller Daten mit einem einzelnen Rechner nicht. Aufgrund dieser Begrenzung liegt der Aufbau einer server-basierten ML-Umgebung mit ausreichend Rechen- und Speicherkapazität auf der Hand. Dabei ist aber die Einrichtung einer solchen ML-Umgebung, insbesondere bei einer on-premise Infrastruktur, eine Herausforderung: Das Infrastruktur-Team muss physische Server und/oder virtuelle Maschinen (VM’s) auf Anforderung bereitstellen und integrieren. Dieser Ansatz ist aufgrund vieler manueller Arbeitsschritte zeitaufwändig und fehleranfällig. Mit dem Einsatz Cloud-basierter Technologien vereinfacht sich dieser Prozess deutlich. Die Möglichkeit, Infrastructure on Demand zu verwenden und z.B. mit einem skalierbaren Cloud-Data Warehouse zu kombinieren, bietet sofortigen Zugriff auf Rechen- und Speicher-Ressourcen, wann immer sie benötigt werden und reduziert den administrativen Aufwand bei Einrichtung und Verwaltung der zum Einsatz kommenden ML-Software. Bild 5 zeigt den Code-Ausschnitt aus einem Jupyter Notebook, das im Rahmen des Cloud Services Amazon SageMaker bereitgestellt wird und via PySpark Kernel auf einen Multi-Node Apache Spark Cluster (in einer Amazon EMR-Umgebung) zugreift. In diesem Szenario wird aus einem Snowflake Cloud Data Warehouse ein größeres Data Set mit 220 Millionen Datensätzen via Spark-Connector komplett in ein Spark Dataframe geladen und im Spark Cluster weiterverarbeitet. Den vollständigen Prozess inkl. Einrichtung und Konfiguration aller Komponenten, beschreibt eine vierteilige Blog-Serie [8]). Mit Spark Cluster sowie Snowflake stehen für sich genommen zwei leistungsfähige Umgebungen für rechenintensive Aufgaben zur Verfügung. Mit dem aktuellen Snowflake Connector für Spark ist eine intelligente Arbeitsteilung mittels Query Pushdown erreichbar. Dabei entscheidet Spark’s optimizer (Catalyst), welche Aufgaben (Queries) aufgrund der effizienteren Verarbeitung an Snowflake delegiert werden [9].

Abbildung 5: Jupyter Notebook in der Cloud – integriert mit Multi-Node Spark Cluster und Snowflake Cloud Data Warehouse

Welches Machine Learning Framework für welche Aufgabenstellung?

Bevor die nächsten Abschnitte weitere Werkzeuge und Technologien betrachten, macht es nicht nur für Data Scientists sondern auch für IT-Architekten Sinn, zunächst einen Überblick auf die derzeit verfügbaren Machine Learning Frameworks zu bekommen. Aus Architekturperspektive ist es wichtig zu verstehen, welche Aufgabenstellungen die jeweiligen ML-Frameworks adressieren, welche technischen Anforderungen und ggf. auch Abhängigkeiten zu den verfügbaren Datenquellen bestehen. Ein gemeinsamer Nenner vieler gescheiterter Machine Learning-Projekte ist häufig die Auswahl des falschen Frameworks. Ein Beispiel: TensorFlow ist aktuell eines der wichtigsten Frameworks zur Programmierung von neuronalen Netzen, Deep Learning Modellen sowie anderer Machine Learning Algorithmen. Während Deep Learning perfekt zur Untersuchung komplexer Daten wie Bild- und Audiodaten passt, wird es zunehmend auch für Use Cases benutzt, für die andere Frameworks besser geeignet sind. Bild 6 zeigt eine kompakte Entscheidungsmatrix [10] für die derzeit verbreitetsten ML-Frameworks und adressiert häufige Praxisprobleme: Entweder werden Algorithmen benutzt, die für den Use Case nicht oder kaum geeignet sind oder das gewählte Framework kann die aufkommenden Datenmengen nicht bewältigen. Die Unterteilung der Frameworks in Small Data, Big Data und Complex Data ist etwas plakativ, soll aber bei der Auswahl der Frameworks nach Art und Volumen der Daten helfen. Die Grenze zwischen Big Data zu Small Data ist dabei dort zu ziehen, wo die Datenmengen so groß sind, dass sie nicht mehr auf einem einzelnen Computer, sondern in einem verteilten Cluster ausgewertet werden müssen. Complex Data steht in dieser Matrix für unstrukturierte Daten wie Bild- und Audiodateien, für die sich Deep Learning Frameworks sehr gut eignen.

Abbildung 6: Entscheidungsmatrix zu aktuell verbreiteten Machine Learning Frameworks

Self-Service Machine Learning in Business Intelligence-Tools

Mit einfach zu bedienenden Business Intelligence-Werkzeugen zur Datenvisualisierung ist es für Analytiker und für weniger technisch versierte Anwender recht einfach, komplexe Daten aussagekräftig in interaktiven Dashboards zu präsentieren. Hersteller wie Tableau, Qlik und Oracle spielen ihre Stärken insbesondere im Bereich Visual Analytics aus. Statt statische Berichte oder Excel-Dateien vor dem nächsten Meeting zu verschicken, erlauben moderne Besprechungs- und Kreativräume interaktive Datenanalysen am Smartboard inklusive Änderung der Abfragefilter, Perspektivwechsel und Drill-downs. Im Rahmen von Data Science-Projekten können diese Werkzeuge sowohl zur Exploration von Daten als auch zur Visualisierung der Ergebnisse komplexer Machine Learning-Modelle sinnvoll eingesetzt werden. Prognosen, Scores und weiterer ML-Modell-Output lässt sich so schneller verstehen und unterstützt die Entscheidungsfindung bzw. Ableitung der nächsten Maßnahmen für den Geschäftsprozess. Im Rahmen einer IT-Gesamtarchitektur sind Analyse-Notebooks und Datenvisualisierungswerkzeuge für die Standard-Analytics-Toolbox Unternehmens gesetzt. Mit Hinblick auf effiziente Team-Zusammenarbeit, unternehmensinternen Austausch und Kommunikation von Ergebnissen sollte aber nicht nur auf reine Desktop-Werkzeuge gesetzt, sondern Server-Lösungen betrachtet und zusammen mit einem Nutzerkonzept eingeführt werden, um zehnfache Report-Dubletten, konkurrierende Statistiken („MS Excel Hell“) einzudämmen.

Abbildung 7: Datenexploration in Tableau – leicht gemacht für Fachanwender und Data Scientists

 

Zusätzliche Statistikfunktionen bis hin zur Möglichkeit R- und Python-Code bei der Analyse auszuführen, öffnet auch Fachanwender die Tür zur Welt des Maschinellen Lernens. Bild 7 zeigt das Werkzeug Tableau Desktop mit der Analyse kalifornischer Hauspreise (demselben Datensatz wie oben im Jupyter Notebook-Abschnitt wie in Bild 4) und einer Heatmap-Visualisierung zur Hervorhebung der teuersten Wohnlagen. Mit wenigen Klicks ist auch der Einsatz deskriptiver Statistik möglich, mit der sich neben Lagemaßen (Median, Quartilswerte) auch Streuungsmaße (Spannweite, Interquartilsabstand) sowie die Form der Verteilung direkt aus dem Box-Plot in Bild 7 ablesen und sogar über das Vorhandensein von Ausreißern im Datensatz eine Feststellung treffen lassen. Vorteil dieser Visualisierungen sind ihre hohe Informationsdichte, die allerdings vom Anwender auch richtig interpretiert werden muss. Bei der Beurteilung der Attribute, mit ihren Wertausprägungen und Abhängigkeiten innerhalb des Data Sets, benötigen Citizen Data Scientists (eine Wortschöpfung von Gartner) allerdings dann doch die mathematischen bzw. statistischen Grundlagen, um Falschinterpretationen zu vermeiden. Fraglich ist auch der Nutzen des Data Flow Editors [11] in Oracle Data Visualization, mit dem eins oder mehrere der im Werkzeug integrierten Machine Learning-Modelle trainiert und evaluiert werden können: technisch lassen sich Ergebnisse erzielen und anhand einiger Performance-Metriken die Modellgüte auch bewerten bzw. mit anderen Modellen vergleichen – aber wer kann die erzielten Ergebnisse (wissenschaftlich) verteidigen? Gleiches gilt für die Integration vorhandener R- und Python Skripte, die am Ende dann doch eine Einweisung der Anwender bzgl. Parametrisierung der ML-Modelle und Interpretationshilfen bei den erzielten Ergebnissen erfordern.

Machine Learning in und mit Datenbanken

Die Nutzung eingebetteter 1-click Analytics-Funktionen der oben vorgestellten Data Visualization-Tools ist zweifellos komfortabel und zum schnellen Experimentieren geeignet. Der gegenteilige und eher puristische Ansatz wäre dagegen die Implementierung eigener Machine Learning Modelle in der Datenbank. Für die Umsetzung des gewählten Algorithmus reichen schon vorhandene Bordmittel in der Datenbank aus: SQL inklusive mathematischer und statistische SQL-Funktionen, Tabellen zum Speichern der Ergebnisse bzw. für das ML-Modell-Management und Stored Procedures zur Abbildung komplexer Geschäftslogik und auch zur Ablaufsteuerung. Solange die Algorithmen ausreichend skalierbar sind, gibt es viele gute Gründe, Ihre Data Warehouse Engine für ML einzusetzen:

  • Einfachheit – es besteht keine Notwendigkeit, eine andere Compute-Plattform zu managen, zwischen Systemen zu integrieren und Daten zu extrahieren, transferieren, laden, analysieren usw.
  • Sicherheit – Die Daten bleiben dort, wo sie gut geschützt sind. Es ist nicht notwendig, Datenbank-Anmeldeinformationen in externen Systemen zu konfigurieren oder sich Gedanken darüber zu machen, wo Datenkopien verteilt sein könnten.
  • Performance – Eine gute Data Warehouse Engine verwaltet zur Optimierung von SQL Abfragen viele Metadaten, die auch während des ML-Prozesses wiederverwendet werden könnten – ein Vorteil gegenüber General-purpose Compute Plattformen.

Die Implementierung eines minimalen, aber legitimen ML-Algorithmus wird in [12] am Beispiel eines Entscheidungsbaums (Decision Tree) im Snowflake Data Warehouse gezeigt. Decision Trees kommen für den Aufbau von Regressions- oder Klassifikationsmodellen zum Einsatz, dabei teilt man einen Datensatz in immer kleinere Teilmengen auf, die ihrerseits in einem Baum organisiert sind. Bild 8 zeigt die Snowflake Benutzer­oberfläche und ein Ausschnitt von der Stored Procedure, die dynamisch alle SQL-Anweisungen zur Berechnung des Decision Trees nach dem ID3 Algorithmus [13] generiert.

Abbildung 8: Snowflake SQL-Editor mit Stored Procedure zur Berechnung eines Decission Trees

Allerdings ist der Entwicklungs- und Implementierungsprozess für ein Machine Learning Modell umfassender: Es sind relevante Daten zu identifizieren und für das ML-Modell vorzubereiten. Einfach Rohdaten bzw. nicht aggregierten Informationen aus Datenbanktabellen zu extrahieren reicht nicht aus, stattdessen benötigt ein ML-Modell als Input eine flache, meist sehr breite Tabelle mit vielen Aggregaten, die als Features bezeichnet werden. Erst dann kann der Prozess fortgesetzt und der für die Aufgabenstellung ausgewählte Algorithmus trainiert und die Modellgüte bewertet werden. Ist das Ergebnis zufriedenstellend, steht die Implementierung des ML-Modells in der Zielumgebung an und muss sich künftig beim Scoring „frischer Datensätze“ bewähren. Viele zeitaufwändige Teilaufgaben also, bei der zumindest eine Teilautomatisierung wünschenswert wäre. Allein die Datenaufbereitung kann schon bis zu 70…80% der gesamten Projektzeit beanspruchen. Und auch die Implementierung eines ML-Modells wird häufig unterschätzt, da in Produktionsumgebungen der unterstützte Technologie-Stack definiert und ggf. für Machine Learning-Aufgaben erweitert werden muss. Daher ist es reizvoll, wenn das Datenbankmanagement-System auch hier einsetzbar ist – sofern die geforderten Algorithmen dort abbildbar sind. Wie ein ML-Modell für die Kundenabwanderungsprognose (Churn Prediction) werkzeuggestützt mit Xpanse AI entwickelt und beschleunigt im Snowflake Cloud Data Warehouse bereitgestellt werden kann, beschreibt [14] sehr anschaulich: Die benötigten Datenextrakte sind schnell aus Snowflake entladen und stellen den Input für ein neues Xpanse AI-Projekt dar. Sobald notwendige Tabellenverknüpfungen und andere fachliche Informationen hinterlegt sind, analysiert das Tool Datenstrukturen und transformiert alle Eingangstabellen in eine flache Zwischentabelle (u.U. mit Hunderten von Spalten), auf deren Basis im Anschluss ML-Modelle trainiert werden. Nach dem ML-Modell-Training erfolgt die Begutachtung der Ergebnisse: das erstellte Dataset, Güte des ML-Modells und der generierte SQL(!) ETL-Code zur Erstellung der Zwischentabelle sowie die SQL-Repräsentation des ML-Modells, das basierend auf den Input-Daten Wahrscheinlichkeitswerte berechnet und in einer Scoring-Tabelle ablegt. Die Vorteile dieses Ansatzes sind liegen auf der Hand: kürzere Projektzeiten, der Einsatz im Rahmen des Snowflake Cloud Data Warehouse, macht das Experimentieren mit der Zuweisung dedizierter Compute-Ressourcen für die performante Verarbeitung äußerst einfach. Grenzen liegen wiederum bei der zur Verfügung stehenden Algorithmen.

Spezialisierte Software Suites für Machine Learning

Während sich im Markt etablierte Business Intelligence- und Datenintegrationswerkzeuge mit Erweiterungen zur Ausführung von Python- und R-Code als notwendigen Bestandteil der Analyse-Toolbox für den Data Science Prozess positionieren, gibt es daneben auch Machine-Learning-Plattformen, die auf die Arbeit mit künstlicher Intelligenz (KI) zugeschnittenen sind. Für den Einstieg in Data Science bieten sich die oft vorhandenen quelloffenen Distributionen an, die auch über Enterprise-Versionen mit erweiterten Möglichkeiten für beschleunigtes maschinelles Lernen durch Einsatz von Grafikprozessoren (GPUs), bessere Skalierung sowie Funktionen für das ML-Modell Management (z.B. durch Versionsmanagement und Automatisierung) verfügen.

Eine beliebte Machine Learning-Suite ist das Open Source Projekt H2O. Die Lösung des gleichnamigen kalifornischen Unternehmens verfügt über eine R-Schnittstelle und ermöglicht Anwendern dieser statistischen Programmiersprache Vorteile in puncto Performance. Die in H2O verfügbaren Funktionen und Algorithmen sind optimiert und damit eine gute Alternative für das bereits standardmäßig in den R-Paketen verfügbare Funktionsset. H2O implementiert Algorithmen aus dem Bereich Statistik, Data-Mining und Machine Learning (generalisierte Lineare Modelle, K-Means, Random Forest, Gradient Boosting und Deep Learning) und bietet mit einer In-Memory-Architektur und durch standardmäßige Parallelisierung über alle vorhandenen Prozessorkerne eine gute Basis, um komplexe Machine-Learning-Modelle schneller trainieren zu können. Bild 9 zeigt wieder anhand des Datensatzes zur Analyse der kalifornischen Hauspreise die webbasierte Benutzeroberfläche H20 Flow, die den oben beschriebenen Juypter Notebook-Ansatz mit zusätzlich integrierter Benutzerführung für die wichtigsten Prozessschritte eines Machine-Learning-Projektes kombiniert. Mit einigen Klicks kann das California Housing Dataset importiert, in einen H2O-spezifischen Dataframe umgewandelt und anschließend in Trainings- und Testdatensets aufgeteilt werden. Auswahl, Konfiguration und Training der Machine Learning-Modelle erfolgt entweder durch den Anwender im Einsteiger-, Fortgeschrittenen- oder Expertenmodus bzw. im Auto-ML-Modus. Daran anschließend erlaubt H20 Flow die Vorhersage für die Zielvariable (im Beispiel: Hauspreis) für noch unbekannte Datensätze und die Aufbereitung der Ergebnismenge. Welche Unterstützung H2O zur Produktivsetzung von ML-Modellen anbietet, wird an einem Beispiel in den folgenden Abschnitten betrachtet.

Abbildung 9: H2O Flow Benutzeroberfläche – Datenaufbereitung, ML-Modell-Training und Evaluierung.

Vom Prototyp zur produktiven Machine Learning-Lösung

Warum ist es für viele Unternehmen noch schwer, einen Nutzen aus ihren ersten Data Science-Aktivitäten, Data Labs etc. zu ziehen? In der Praxis zeigt sich, erst durch Operationalisierung von Machine Learning-Resultaten in der Produktionsumgebung entsteht echter Geschäftswert und nur im Tagesgeschäft helfen robuste ML-Modelle mit hoher Güte bei der Erreichung der gesteckten Unternehmensziele. Doch leider erweist sich der Weg vom Prototypen bis hin zum Produktiveinsatz bei vielen Initativen noch als schwierig. Bild 10 veranschaulicht ein typisches Szenario: Data Science-Teams fällt es in ihrer Data Lab-Umgebung technisch noch leicht, Prototypen leistungsstarker ML-Modelle mit Hilfe aktueller ML-Frameworks wie TensorFlow-, Keras- und Word2Vec auf ihren Laptops oder in einer Sandbox-Umgebung zu erstellen. Doch je nach verfügbarer Infrastruktur kann, wegen Begrenzungen bei Rechenleistung oder Hauptspeicher, nur ein Subset der Produktionsdaten zum Trainieren von ML-Modellen herangezogen werden. Ergebnispräsentationen an die Stakeholder der Data Science-Projekte erfolgen dann eher durch Storytelling in MS Powerpoint bzw. anhand eines Demonstrators – selten aber technisch schon so umgesetzt, dass anderere Applikationen z.B. über eine REST-API von dem neuen Risiko Scoring-, dem Bildanalyse-Modul etc. (testweise) Gebrauch machen können. Ausgestattet mit einer Genehmigung vom Management, übergibt das Data Science-Team ein (trainiertes) ML-Modell an das Software Engineering-Team. Nach der Übergabe muss sich allerdings das Engineering-Team darum kümmern, dass das ML-Modell in eine für den Produktionsbetrieb akzeptierte Programmiersprache, z.B. in Java, neu implementiert werden muss, um dem IT-Unternehmensstandard (siehe Line of Governance in Bild 10) bzw. Anforderungen an Skalierbarkeit und Laufzeitverhalten zu genügen. Manchmal sind bei einem solchen Extraschritt Abweichungen beim ML-Modell-Output und in jedem Fall signifikante Zeitverluste beim Deployment zu befürchten.

Abbildung 10: Übergabe von Machine Learning-Resultaten zur Produktivsetzung im Echtbetrieb

Unterstützt das Data Science-Team aktiv bei dem Deployment, dann wäre die Einbettung des neu entwickelten ML-Modells in eine Web-Applikation eine beliebte Variante, bei der typischerweise Flask, Tornado (beides Micro-Frameworks für Python) und Shiny (ein auf R basierendes HTML5/CSS/JavaScript Framework) als Technologiekomponenten zum Zuge kommen. Bei diesem Vorgehen müssen ML-Modell, Daten und verwendete ML-Pakete/Abhängigkeiten in einem Format verpackt werden, das sowohl in der Data Science Sandbox als auch auf Produktionsservern lauffähig ist. Für große Unternehmen kann dies einen langwierigen, komplexen Softwareauslieferungsprozess bedeuten, der ggf. erst noch zu etablieren ist. In dem Zusammenhang stellt sich die Frage, wie weit die Erfahrung des Data Science-Teams bei der Entwicklung von Webanwendungen reicht und Aspekte wie Loadbalancing und Netzwerkverkehr ausreichend berücksichtigt? Container-Virtualisierung, z.B. mit Docker, zur Isolierung einzelner Anwendungen und elastische Cloud-Lösungen, die on-Demand benötigte Rechenleistung bereitstellen, können hier Abhilfe schaffen und Teil der Lösungsarchitektur sein. Je nach analytischer Aufgabenstellung ist das passende technische Design [15] zu wählen: Soll das ML-Modell im Batch- oder Near Realtime-Modus arbeiten? Ist ein Caching für wiederkehrende Modell-Anfragen vorzusehen? Wie wird das Modell-Deployment umgesetzt, In-Memory, Code-unabhängig durch Austauschformate wie PMML, serialisiert via R- oder Python-Objekte (Pickle) oder durch generierten Code? Zusätzlich muss für den Produktiveinsatz von ML-Modellen auch an unterstützenden Konzepten zur Bereitstellung, Routing, Versions­management und Betrieb im industriellen Maßstab gearbeitet werden, damit zuverlässige Machine Learning-Produkte bzw. -Services zur internen und externen Nutzung entstehen können (siehe dazu Bild 11)

Abbildung 11: Unterstützende Funktionen für produktive Machine Learning-Lösungen

Die Deployment-Variante „Machine Learning Code-Generierung“ lässt sich gut an dem bereits mit H2O Flow besprochenen Beispiel veranschaulichen. Während Bild 9 hierzu die Schritte für Modellaufbau, -training und -test illustriert, zeigt Bild 12 den Download-Vorgang für den zuvor generierten Java-Code zum Aufbau eines ML-Modells zur Vorhersage kalifornischer Hauspreise. In dem generierten Java-Code sind die in H2O Flow vorgenommene Datenaufbereitung sowie alle Konfigurationen für den Gradient Boosting Machine (GBM)-Algorithmus gut nachvollziehbar, Bild 13 gibt mit den ersten Programmzeilen einen ersten Eindruck dazu und erinnert gleichzeitig an den ähnlichen Ansatz der oben mit dem Snowflake Cloud Data Warehouse und dem Tool Xpanse AI bereits beschrieben wurde.

Abbildung 12: H2O Flow Benutzeroberfläche – Java-Code Generierung und Download eines trainierten Models

Abbildung 13: Generierter Java-Code eines Gradient Boosted Machine – Modells zur Vorhersage kaliforn. Hauspreise

Nach Abschluss der Machine Learning-Entwicklung kann der Java-Code des neuen ML-Modells, z.B. unter Verwendung der Apache Kafka Streams API, zu einer Streaming-Applikation hinzugefügt und publiziert werden [16]. Vorteil dabei: Die Kafka Streams-Applikation ist selbst eine Java-Applikation, in die der generierte Code des ML-Modells eingebettet werden kann (siehe Bild 14). Alle zukünftigen Events, die neue Immobilien-Datensätze zu Häusern aus Kalifornien mit (denselben) Features wie Geoposition, Alter des Gebäudes, Anzahl Zimmer etc. enthalten und als ML-Modell-Input über Kafka Streams hereinkommen, werden mit einer Vorhersage des voraussichtlichen Gebäudepreises von dem auf historischen Daten trainierten ML-Algorithmus beantwortet. Ein Vorteil dabei: Weil die Kafka Streams-Applikation unter der Haube alle Funktionen von Apache Kafka nutzt, ist diese neue Anwendung bereits für den skalierbaren und geschäftskritischen Einsatz ausgelegt.

Abbildung 14: Deployment des generierten Java-Codes eines H2O ML-Models in einer Kafka Streams-Applikation

Machine Learning as a Service – “API-first” Ansatz

In den vorherigen Abschnitten kam bereits die Herausforderung zur Sprache, wenn es um die Überführung der Ergebnisse eines Datenexperiments in eine Produktivumgebung geht. Während die Mehrheit der Mitglieder eines Data Science Teams bevorzugt R, Python (und vermehrt Julia) als Programmiersprache einsetzen, gibt es auf der Abnehmerseite das Team der Softwareingenieure, die für technische Implementierungen in der Produktionsumgebung zuständig sind, womöglich einen völlig anderen Technologie-Stack verwenden (müssen). Im Extremfall droht das Neuimplementieren eines Machine Learning-Modells, im besseren Fall kann Code oder die ML-Modellspezifikation transferiert und mit wenig Aufwand eingebettet (vgl. das Beispiel H2O und Apache Kafka Streams Applikation) bzw. direkt in einer neuen Laufzeitumgebung ausführbar gemacht werden. Alternativ wählt man einen „API-first“-Ansatz und entkoppelt das Zusammenwirken von unterschiedlich implementierten Applikationen bzw. -Applikationsteilen via Web-API’s. Data Science-Teams machen hierzu z.B. die URL Endpunkte ihrer testbereiten Algorithmen bekannt, die von anderen Softwareentwicklern für eigene „smarte“ Applikationen konsumiert werden. Durch den Aufbau von REST-API‘s kann das Data Science-Team den Code ihrer ML-Modelle getrennt von den anderen Teams weiterentwickeln und damit eine Arbeitsteilung mit klaren Verantwortlichkeiten herbeiführen, ohne Teamkollegen, die nicht am Machine Learning-Aspekt des eines Projekts beteiligt sind, bei ihrer Arbeit zu blockieren.

Bild 15 zeigt ein einfaches Szenario, bei dem die Gegenstandserkennung von beliebigen Bildern mit einem Deep Learning-Verfahren umgesetzt ist. Einzelne Fotos können dabei via Kommandozeileneditor als Input für die Bildanalyse an ein vortrainiertes Machine Learning-Modell übermittelt werden. Die Information zu den erkannten Gegenständen inkl. Wahrscheinlichkeitswerten kommt dafür im Gegenzug als JSON-Ausgabe zurück. Für die Umsetzung dieses Beispiels wurde in Python auf Basis der Open Source Deep-Learning-Bibliothek Keras, ein vortrainiertes ML-Modell mit Hilfe des Micro Webframeworks Flask über eine REST-API aufrufbar gemacht. Die in [17] beschriebene Applikation kümmert sich außerdem darum, dass beliebige Bilder via cURL geladen, vorverarbeitet (ggf. Wandlung in RGB, Standardisierung der Bildgröße auf 224 x 224 Pixel) und dann zur Klassifizierung der darauf abgebildeten Gegenstände an das ML-Modell übergeben wird. Das ML-Modell selbst verwendet eine sog. ResNet50-Architektur (die Abkürzung steht für 50 Layer Residual Network) und wurde auf Grundlage der öffentlichen ImageNet Bilddatenbank [18] vortrainiert. Zu dem ML-Modell-Input (in Bild 15: Fußballspieler in Aktion) meldet das System für den Tester nachvollziehbare Gegenstände wie Fußball, Volleyball und Trikot zurück, fragliche Klassifikationen sind dagegen Taschenlampe (Torch) und Schubkarre (Barrow).

Abbildung 15: Gegenstandserkennung mit Machine Learning und vorgegebenen Bildern via REST-Service

Bei Aufbau und Bereitstellung von Machine Learning-Funktionen mittels REST-API’s bedenken IT-Architekten und beteiligte Teams, ob der Einsatzzweck eher Rapid Prototyping ist oder eine weitreichende Nutzung unterstützt werden muss. Während das oben beschriebene Szenario mit Python, Keras und Flask auf einem Laptop realisierbar ist, benötigen skalierbare Deep Learning Lösungen mehr Aufmerksamkeit hinsichtlich der Deployment-Architektur [19], in dem zusätzlich ein Message Broker mit In-Memory Datastore eingehende bzw. zu analysierende Bilder puffert und dann erst zur Batch-Verarbeitung weiterleitet usw. Der Einsatz eines vorgeschalteten Webservers, Load Balancers, Verwendung von Grafikprozessoren (GPUs) sind weitere denkbare Komponenten für eine produktive ML-Architektur.

Als abschließendes Beispiel für einen leistungsstarken (und kostenpflichtigen) Machine Learning Service soll die Bildanalyse von Google Cloud Vision [20] dienen. Stellt man dasselbe Bild mit der Fußballspielszene von Bild 15 und Bild 16 bereit, so erkennt der Google ML-Service neben den Gegenständen weit mehr Informationen: Kontext (Teamsport, Bundesliga), anhand der Gesichtserkennung den Spieler selbst  und aktuelle bzw. vorherige Mannschaftszugehörigkeiten usw. Damit zeigt sich am Beispiel des Tech-Giganten auch ganz klar: Es kommt vorallem auf die verfügbaren Trainingsdaten an, inwieweit dann mit Algorithmen und einer dazu passenden Automatisierung (neue) Erkenntnisse ohne langwierigen und teuren manuellen Aufwand gewinnen kann. Einige Unternehmen werden feststellen, dass ihr eigener – vielleicht einzigartige – Datenschatz einen echten monetären Wert hat?

Abbildung 16: Machine Learning Bezahlprodukt (Google Vision)

Fazit

Machine Learning ist eine interessante “Challenge” für Architekten. Folgende Punkte sollte man bei künftigen Initativen berücksichtigen:

  • Finden Sie das richtige Geschäftsproblem bzw geeignete Use Cases
  • Identifizieren und definieren Sie die Einschränkungen (Sind z.B. genug Daten vorhanden?) für die zu lösende Aufgabenstellung
  • Nehmen Sie sich Zeit für das Design von Komponenten und Schnittstellen
  • Berücksichtigen Sie frühzeitig mögliche organisatorische Gegebenheiten und Einschränkungen
  • Denken Sie nicht erst zum Schluss an die Produktivsetzung Ihrer analytischen Modelle oder Machine Learning-Produkte
  • Der Prozess ist insgesamt eine Menge Arbeit, aber es ist keine Raketenwissenschaft.

Quellenverzeichnis

[1] Bill Schmarzo: “What’s the Difference Between Data Integration and Data Engineering?”, LinkedIn Pulse -> Link, 2018
[2] William Vorhies: “CRISP-DM – a Standard Methodology to Ensure a Good Outcome”, Data Science Central -> Link, 2016
[3] Bill Schmarzo: “A Winning Game Plan For Building Your Data Science Team”, LinkedIn Pulse -> Link, 2018
[4] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.-F. Crespo, D. Dennison: “Hidden technical debt in Machine learning systems”. In NIPS’15 Proceedings of the 28th International Conference on Neural Information Processing Systems – Volume 2, 2015
[5] K. Bollhöfer: „Data Science – the what, the why and the how!“, Präsentation von The unbelievable Machine Company, 2015
[6] Carlton E. Sapp: “Preparing and Architecting for Machine Learning”, Gartner, 2017
[7] A. Geron: “California Housing” Dataset, Jupyter Notebook. GitHub.com -> Link, 2018
[8] R. Fehrmann: “Connecting a Jupyter Notebook to Snowflake via Spark” -> Link, 2018
[9] E. Ma, T. Grabs: „Snowflake and Spark: Pushing Spark Query Processing to Snowflake“ -> Link, 2017
[10] Dr. D. James: „Entscheidungsmatrix „Machine Learning“, it-novum.com ->  Link, 2018
[11] Oracle Analytics@YouTube: “Oracle DV – ML Model Comparison Example”, Video -> Link
[12] J. Weakley: Machine Learning in Snowflake, Towards Data Science Blog -> Link, 2019
[13] Dr. S. Sayad: An Introduction to Data Science, Website -> Link, 2019
[14] U. Bethke: Build a Predictive Model on Snowflake in 1 day with Xpanse AI, Blog à Link, 2019
[15] Sergei Izrailev: Design Patterns for Machine Learning in Production, Präsentation H2O World, 2017
[16] K. Wähner: How to Build and Deploy Scalable Machine Learning in Production with Apache Kafka, Confluent Blog -> Link, 2017
[17] A. Rosebrock: “Building a simple Keras + deep learning REST API”, The Keras Blog -> Link, 2018
[18] Stanford Vision Lab, Stanford University, Princeton University: Image database, Website -> Link
[19] A. Rosebrock: “A scalable Keras + deep learning REST API”, Blog -> Link, 2018
[20] Google Cloud Vision API (Beta Version) -> Link, abgerufen 2018

 

 

 

 

Training eines Neurons mit dem Gradientenverfahren

Dies ist Artikel 3 von 6 der Artikelserie –Einstieg in Deep Learning.

Das Training von neuronalen Netzen erfolgt nach der Forward-Propagation über zwei Schritte:

  1. Fehler-Rückführung über aller aktiver Neuronen aller Netz-Schichten, so dass jedes Neuron “seinen” Einfluss auf den Ausgabefehler kennt.
  2. Anpassung der Gewichte entgegen den Gradienten der Fehlerfunktion

Beide Schritte werden in der Regel zusammen als Backpropagation bezeichnet. Machen wir erstmal einen Schritt vor und betrachten wir, wie ein Neuron seine Gewichtsverbindungen zu seinen Vorgängern anpasst.

Gradientenabstiegsverfahren

Der Gradientenabstieg ist ein generalisierbarer Algorithmus zur Optimierung, der in vielen Verfahren des maschinellen Lernens zur Anwendung kommt, jedoch ganz besonders als sogenannte Backpropagation im Deep Learning den Erfolg der künstlichen neuronalen Netze erst möglich machen konnte.

Der Gradientenabstieg lässt sich vom Prinzip her leicht erklären: Angenommen, man stünde im Gebirge im dichten Nebel. Das Tal, und somit der Weg nach Hause, ist vom Nebel verdeckt. Wohin laufen wir? Wir können das Ziel zwar nicht sehen, tasten uns jedoch so heran, dass unser Gehirn den Gradienten (den Unterschied der Höhen beider Füße) berechnet, somit die Steigung des Bodens kennt und sich entgegen dieser Steigung unser Weg fortsetzt.

Konkret funktioniert der Gradientenabstieg so: Wir starten bei einem zufälligen Theta \theta (Random Initialization). Wir berechnen die Ausgabe (Forwardpropogation) und vergleichen sie über eine Verlustfunktion (z. B. über die Funktion Mean Squared Error) mit dem tatsächlich korrekten Wert. Auf Grund der zufälligen Initialisierung haben wir eine nahe zu garantierte Falschheit der Ergebnisse und somit einen Verlust. Für die Verlustfunktion berechnen wir den Gradienten für gegebene Eingabewerte. Voraussetzung dafür ist, dass die Funktion ableitbar ist. Wir bewegen uns entgegen des Gradienten in Richtung Minimum der Verlustfunktion. Ist dieses Minimum (fast) gefunden, spricht man auch davon, dass der Lernalgorithmus konvergiert.

Das Gradientenabstiegsverfahren ist eine Möglichkeit der Gradientenverfahren, denn wollten wir maximieren, würden wir uns entlang des Gradienten bewegen, was in anderen Anwendungen sinnvoll ist.

Ob als “Cost Function” oder als “Loss Function” bezeichnet, in jedem Fall ist es eine “Error Function”, aber auf die Benennung kommen wir später zu sprechen. Jedenfalls versuchen wir die Fehlerrate zu senken! Leider sind diese Funktionen in der Praxis selten so einfach konvex (zwei Berge mit einem Tal dazwischen).

 

Aber Achtung: Denn befinden wir uns nur zwischen zwei Bergen, finden wir das Tal mit Sicherheit über den Gradienten. Befinden wir uns jedoch in einem richtigen Gebirge mit vielen Bergen und Tälern, gilt es, das richtige Tal zu finden. Bei der Optimierung der Gewichtungen von künstlichen neuronalen Netzen wollen wir die besten Gewichtungen finden, die uns zu den geringsten Ausgaben der Verlustfunktion führen. Wir suchen also das globale Minimum unter den vielen (lokalen) Minima.

Programmier-Beispiel in Python

Nachfolgend ein Beispiel des Gradientenverfahrens zur Berechnung einer Regression. Wir importieren numpy und matplotlib.pyplot und erzeugen uns künstliche Datenpunkte:

import numpy as np
import matplotlib.pyplot as plt


X = 2 * np.random.rand(1000, 1)
y = 5 + 2 * X + np.random.randn(1000, 1)

plt.figure(figsize = (15, 15))
plt.plot(X, y, "b.")
plt.axis([0, 2, 0, 15])
plt.show()

Nun wollen wir einen Lernalgorithmus über das Gradientenverfahren erstellen. Im Grunde haben wir hier es bereits mit einem linear aktivierten Neuron zutun:

Bei der linearen Regression, die wir durchführen wollen, nehmen wir zwei-dimensionale Daten (wobei wir die Regression prinzipiell auch mit x-Dimensionen durchführen können, dann hätte unser Neuron weitere Eingänge). Wir empfangen einen Bias (w_0) der stets mit einer Eingangskonstante multipliziert und somit als Wert erhalten bleibt. Der Bias ist das Alpha \alpha in einer Schulmathe-tauglichen Formel wie y = \beta \cdot x + \alpha.

Beta \beta ist die Steigung, der Gradient, der Funktion.

Sowohl \alpha als auch \beta sind uns unbekannt, versuchen wir jedoch über die Betrachtung unserer Prädiktion durch Berechnung der Formel \^y = \beta \cdot x + \alpha und den darauffolgenden Abgleich mit dem tatsächlichen y herauszufinden. Anfangs behaupten wir beispielsweise einfach, sowohl \beta als auch \alpha seien 0.00. Folglich wird \^y = \beta \cdot x + \alpha ebenfalls gleich 0.00 sein und die Fehlerfunktion (Loss Function) wird maximal sein. Dies war der erste Durchlauf des Trainings, die sogenannte erste Epoche!

Die Epochen (Durchläufe) und dazugehörige Fehlergrößen. Wenn die Fehler sinken und mit weiteren Epochen nicht mehr wesentlich besser werden, heißt es, das der Lernalogorithmus konvergiert.

Als Fehlerfunktion verwenden wir bei der Regression die MSE-Funktion (Mean Squared Error):

MSE = \sum(\^y_i - y_i)^2

Um diese Funktion wird sich nun alles drehen, denn diese beschreibt den Fehler und gibt uns auch die Auskunft darüber, ob wie stark und in welche Richtung sie ansteigt, so dass wir uns entgegen der Steigung bewegen können. Wer die Regeln der Ableitung im Kopf hat, weiß, dass die Ableitung der Formel leichter wird, wenn wir sie vorher auf halbe Werte runterskalieren. Da die Proportionen dabei erhalten bleiben und uns quadrierte Fehlerwerte unserem menschlichen Verstand sowieso nicht so viel sagen (unser Gehirn denkt nunmal nicht exponential), stört das nicht:

MSE = \frac{\frac{1}{2} \cdot \sum(\^y_i - y_i)^2}{n}

MSE = \frac{\frac{1}{2} \cdot \sum(w^T \cdot x_i - y_i)^2}{n}

Wenn die Mathematik der partiellen Ableitung (Ableitung einer Funktion nach jedem Gradienten) abhanden gekommen ist, bitte nochmal folgende Regeln nachschlagen, um die nachfolgende Ableitung verstehen zu können:

  • Allgemeine partielle Ableitung
  • Kettenregel

Ableitung der MSD-Funktion nach dem einen Gewicht w bzw. partiell nach jedem vorhandenen w_j:

\frac{\partial}{\partial w_j}MSE = \frac{\partial}{\partial w} \frac{1}{2} \cdot \sum(\^y - y_i)^2

\frac{\partial}{\partial w_j}MSE = \frac{\partial}{\partial w} \frac{1}{2} \cdot \sum(w^T \cdot x_i - y_i)^2

\frac{\partial}{\partial w_j}MSE = \frac{2}{n} \cdot \sum(w^T \cdot x_i - y_i) \cdot x_{ij}

Woher wir das x_{ij} am Ende her haben? Das ergibt sie aus der Kettenregel: Die äußere Funktion wurde abgeleitet, so wurde aus \frac{1}{2} \cdot \sum(w^T \cdot x_i - y_i)^2 dann \frac{2}{n} \cdot \sum(w^T \cdot x_i - y_i). Jedoch muss im Sinne eben dieser Kettenregel auch die innere Funktion abgeleitet werden. Da wir nach w_j ableiten, bleibt nur x_ij erhalten.

Damit können wir arbeiten! So kompliziert ist die Formel nun auch wieder nicht: \frac{2}{n} \cdot \sum(w^T \cdot x_i - y_i) \cdot x_{ij}

Mit dieser Formel können wir unsere Gewichte an den Fehler anpassen: (f\nabla ist der Gradient der Funktion!)

w_j = w_j - \nabla MSE(w_j)

Initialisieren der Gewichtungen

Die Gewichtungen \alpha und \beta müssen anfänglich mit Werten initialisiert werden. In der Regression bietet es sich an, die Gewichte anfänglich mit 0.00 zu initialisieren.

Bei vielen neuronalen Netzen, mit nicht-linearen Aktivierungsfunktionen, ist das jedoch eher ungünstig und zufällige Werte sind initial besser. Gut erprobt sind normal-verteilte Zufallswerte.

Lernrate

Nur eine Kleinigkeit haben wir bisher vergessen: Wir brauchen einen Faktor, mit dem wir anpassen. Hier wäre der Faktor 1. Das ist in der Regel viel zu groß. Dieser Faktor wird geläufig als Lernrate (Learning Rate) \eta (eta) bezeichnet:

w_j = w_j - \eta \cdot \nabla MSE(w_j)

Die Lernrate \eta ist ein Knackpunkt und der erste Parameter des Lernalgorithmus, den es anzupassen gilt, wenn das Training nicht konvergiert.

Die Lernrate \eta darf nicht zu groß klein gewählt werden, da das Training sonst zu viele Epochen benötigt. Ungeduldige erhöhen die Lernrate möglicherweise aber so sehr, dass der Lernalgorithmus im Minimum der Fehlerfunktion vorbeiläuft und diesen stets überspringt. Hier würde der Algorithmus also sozusagen konvergieren, weil nicht mehr besser werden, aber das resultierende Modell wäre weit vom Optimum entfernt.

Beginnen wir mit der Implementierung als Python-Klasse:

class LinearRegressionGD(object):
    
    def __init__(self, eta = 0.0001, n_iter = 50):
        
        self.eta = eta                  # Lernrate
        self.n_iter = n_iter            # Epochen
        
    def fit(self, X, y):
        
        self.w_ = np.zeros(1 + X.shape[1]) # <- 1 für den Bias + alle weiteren Columns für die Steigungen
                                           # In diesem Beispiel self.w_ = [0.0, 0.] = [Alpha, Beta]
                                           # Dabei initialisieren wir Alpha und Beta mit 0.00-Werten
        
        self.cost_ = []                    # Cost Function (der Verlauf der Loss Function MSE)
        
        for i in range(self.n_iter):       # Für jede Epoche...
            
            output = self.predict(X)       # Die Funktion x * Beta + Alpha ausrechnen  
                                           # Batch-Verfahren, denn wir trainieren jede Epoche mit allen X-Werten

            errors = y.flatten() - output  # y_predicted - y_real

            mse = ((errors ** 2).sum() / 2.0) / len(X)  # Loss Function MSE
            
            self.cost_.append(mse)                      # Loss Function wird Teil der Cost Function
            
            self.w_[1:] += self.eta * X.T.dot(errors)   # Anpassen des Gewichts Beta (und falls es sie gäbe: aller weiteren Gewichte)
            self.w_[0] += self.eta * errors.sum()      # Anpassen des Gewichts Alpha
            
            
            #print(output)
            #print(errors)
            #print("Beta  -> ", self.w_[1:])
            #print("Alpha -> ", self.w_[0])                   
            
        return self
        
    def predict(self, X):
        return np.dot(X, self.w_[1:]) + self.w_[0]      # y = x * Beta + Alpha

Die Klasse sollte so funktionieren, bevor wir sie verwenden, sollten wir die Input-Werte standardisieren:

x_std = (X - X.mean()) / X.std()
y_std = (y - y.mean()) / y.std()

Bei diesem Beispiel mit künstlich erzeugten Werten ist das Standardisieren bzw. das Fehlen des Standardisierens zwar nicht kritisch, aber man sollte es sich zur Gewohnheit machen. Testweise es einfach mal weglassen 🙂

Kommen wir nun zum Einsatz der Klasse, die die Regression via Gradientenabstieg absolvieren soll:

lrGD = LinearRegressionGD()  # Instanziieren
lrGD.fit(x_std, y_std)       # Trainieren (das ".fit()" entspricht dem Wording von scikit-learn, ".train()" wäre mir sonst lieber 🙂

Was tut diese Instanz der Klasse LinearRegressionGD nun eigentlich?

Bildlich gesprochen, legt sie eine Gerade auf den Boden des Koordinatensystems, denn die Gewichtungen werden mit 0.00 initialisiert, y ist also gleich 0.00, egal welche Werte in x enthalten sind. Der Fehler ist dann aber sehr groß (sollte maximal sein, im Vergleich zu zukünftigen Epochen). Die Gewichte werden also angepasst, die Gerade somit besser in die Punktwolke platziert. Mit jeder Epoche wird die Gerade erneut in die Punktwolke gelegt, der Gesamtfehler (über alle x, da wir es hier mit dem Batch-Verfahren zutun haben) berechnet, die Werte angepasst… bis die vorgegebene Zahl an Epochen abgelaufen ist.

Schauen wir uns das Ergebnis des Trainings an:

plt.figure(figsize = (15, 15))
plt.plot(x_std, y_std, "b.")                                # Scatter, wie zuvor!
plt.plot(x_std, lrGD.predict(x_std), "r-", linewidth = 5)   # Regressionsgerade als Linie
plt.show()

Die Linie sieht passend aus, oder? Da wir hier nicht zu sehr in die Theorie der Regressionsanalyse abdriften möchten, lassen wir das testen und prüfen der Akkuratesse mal aus, hier möchte ich auf meinen Artikel Regressionsanalyse in Python mit Scikit-Learn verweisen.

Prüfen sollten wir hingegen mal, wie schnell der Lernalgorithmus mit der vorgegebenen Lernrate eta konvergiert:

plt.figure(figsize = (15, 15))
plt.plot(range(1, lrGD.n_iter + 1), lrGD.cost_)
plt.xlabel('Epochen')
plt.ylabel('Summe quadrierter Abweichungen')
plt.show()

Hier die Verlaufskurve der Cost Function:

Die Kurve zeigt uns, dass spätestens nach 40 Epochen kaum noch Verbesserung (im Sinne der Gesamtfehler-Minimierung) erreicht wird.

Wichtige Hinweise

Natürlich war das nun nur ein erster kleiner Einstieg und wer es verstanden hat, hat viel gewonnen. Denn erst dann kann man sich vorstellen, wie ein einzelnen Neuron eines künstlichen neuronalen Netzes grundsätzlich trainiert werden kann.

Folgendes sollte noch beachtet werden:

  • Lernrate \eta:
    Die Lernrate ist ein wichtiger Parameter. Wer das Programmier-Beispiel bei sich zum Laufen gebracht hat, einfach mal die Lernrate auf Werte zwischen 10.00 und 0.00000001 setzen, schauen was passiert 🙂
  • Globale Minima vs lokale Minima:
    Diese lineare zwei-dimensionale Regression ist ziemlich einfach. Neuronale Netze sind hingegen komplexer und haben nicht einfach nur eine simple konvexe Fehlerfunktion. Hier gibt es mehrere Hügel und Täler in der Fehlerfunktion und die Gefahr ist groß, in einem lokalen, nicht aber in einem globalen Minimum zu landen.
  • Stochastisches Gradientenverfahren:
    Wir haben hier das sogenannte Batch-Verfahren verwendet. Dieses ist grundsätzlich besser als die stochastische Methode. Denn beim Batch verwenden wir den gesamten Stapel an x-Werten für die Fehlerbestimmung. Allerdings ist dies bei großen Daten zu rechen- und speicherintensiv. Dann werden kleinere Unter-Stapel (Sub-Batches) zufällig aus den x-Werten ausgewählt, der Fehler daraus bestimmt (was nicht ganz so akkurat ist, wie als würden wir den Fehler über alle x berechnen) und der Gradient bestimmt. Dies ist schon Rechen- und Speicherkapazität, erfordert aber meistens mehr Epochen.

Buchempfehlung

Die folgenden zwei Bücher haben mir bei der Erstellung dieses Beispiels geholfen und kann ich als hilfreiche und deutlich weiterführende Lektüre empfehlen:

 

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional) Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques for Building Intelligent Systems

 

Einstieg in Natural Language Processing – Teil 2: Preprocessing von Rohtext mit Python

Dies ist der zweite Artikel der Artikelserie Einstieg in Natural Language Processing.

In diesem Artikel wird das so genannte Preprocessing von Texten behandelt, also Schritte die im Bereich des NLP in der Regel vor eigentlichen Textanalyse durchgeführt werden.

Tokenizing

Um eingelesenen Rohtext in ein Format zu überführen, welches in der späteren Analyse einfacher ausgewertet werden kann, sind eine ganze Reihe von Schritten notwendig. Ganz allgemein besteht der erste Schritt darin, den auszuwertenden Text in einzelne kurze Abschnitte – so genannte Tokens – zu zerlegen (außer man bastelt sich völlig eigene Analyseansätze, wie zum Beispiel eine Spracherkennung anhand von Buchstabenhäufigkeiten ect.).

Was genau ein Token ist, hängt vom verwendeten Tokenizer ab. So bringt NLTK bereits standardmäßig unter anderem BlankLine-, Line-, Sentence-, Word-, Wordpunkt- und SpaceTokenizer mit, welche Text entsprechend in Paragraphen, Zeilen, Sätze, Worte usw. aufsplitten. Weiterhin ist mit dem RegexTokenizer ein Tool vorhanden, mit welchem durch Wahl eines entsprechenden Regulären Ausdrucks beliebig komplexe eigene Tokenizer erstellt werden können.

Üblicherweise wird ein Text (evtl. nach vorherigem Aufsplitten in Paragraphen oder Sätze) schließlich in einzelne Worte und Interpunktionen (Satzzeichen) aufgeteilt. Hierfür kann, wie im folgenden Beispiel z. B. der WordTokenizer oder die diesem entsprechende Funktion word_tokenize() verwendet werden.

rawtext = 'This is a short example text that needs to be cleaned.'

tokens = nltk.word_tokenize(rawtext)

tokens
['This', 'is', 'a', 'short', 'example', 'text', 'that', 'needs', 'to',  'be',  'cleaned',  '.']

Stemming & Lemmatizing

Andere häufig durchgeführte Schritte sind Stemming sowie Lemmatizing. Hierbei werden die Suffixe der einzelnen Tokens des Textes mit Hilfe eines Stemmers in eine Form überführt, welche nur den Wortstamm zurücklässt. Dies hat den Zweck verschiedene grammatikalische Formen des selben Wortes (welche sich oft in ihrer Endung unterscheiden (ich gehe, du gehst, er geht, wir gehen, …) ununterscheidbar zu machen. Diese würden sonst als mehrere unabhängige Worte in die darauf folgende Analyse eingehen.

Neben bereits fertigen Stemmern bietet NLTK auch für diesen Schritt die Möglichkeit sich eigene Stemmer zu programmieren. Da verschiedene Stemmer Suffixe nach unterschiedlichen Regeln entfernen, sind nur die Wortstämme miteinander vergleichbar, welche mit dem selben Stemmer generiert wurden!

Im forlgenden Beispiel werden verschiedene vordefinierte Stemmer aus dem Paket NLTK auf den bereits oben verwendeten Beispielsatz angewendet und die Ergebnisse der gestemmten Tokens in einer Art einfachen Tabelle ausgegeben:

# Ready-to-use stemmers in nltk
porter = nltk.PorterStemmer()
lancaster = nltk.LancasterStemmer()
snowball = nltk.SnowballStemmer(language='english')

# Printing a table to compare the different stemmers
header = 'Token\tPorter\tLancas.\tSnowball'
print(header + '\n' + len(header) * '-')
for token in tokens:
    print('\t'.join([token, porter.stem(token), lancaster.stem(token), snowball.stem(token)]))


Token	Porter	Lancas.	Snowball
-----------------------------
This	thi 	thi 	this
is  	is  	is  	is
a    	a    	a    	a
short	short	short	short
example	exampl	exampl	exampl
text	text	text	text
that	that	that	that
needs	need	nee	need
to  	to  	to  	to
be  	be  	be  	be
cleaned	clean	cle 	clean
.   	.   	.   	.

Sehr ähnlich den Stemmern arbeiten Lemmatizer: Auch ihre Aufgabe ist es aus verschiedenen Formen eines Wortes die jeweilige Grundform zu bilden. Im Unterschied zu den Stemmern ist das Lemma eines Wortes jedoch klar als dessen Grundform definiert.

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

lemmas = [lemmatizer.lemmatize(t) for t in tokens()]

Vokabular

Auch das Vokabular, also die Menge aller verschiedenen Worte eines Textes, ist eine informative Kennzahl. Bezieht man die Größe des Vokabulars eines Textes auf seine gesamte Anzahl verwendeter Worte, so lassen sich hiermit Aussagen zu der Diversität des Textes machen.

Außerdem kann das auftreten bestimmter Worte später bei der automatischen Einordnung in Kategorien wichtig werden: Will man beispielsweise Nachrichtenmeldungen nach Themen kategorisieren und in einem Text tritt das Wort „DAX“ auf, so ist es deutlich wahrscheinlicher, dass es sich bei diesem Text um eine Meldung aus dem Finanzbereich handelt, als z. B. um das „Kochrezept des Tages“.

Dies mag auf den ersten Blick trivial erscheinen, allerdings können auch mit einfachen Modellen, wie dem so genannten „Bag-of-Words-Modell“, welches nur die Anzahl des Auftretens von Worten prüft, bereits eine Vielzahl von Informationen aus Texten gewonnen werden.

Das reine Vokabular eines Textes, welcher in der Variable “rawtext” gespeichert ist, kann wie folgt in der Variable “vocab” gespeichert werden. Auf die Ausgabe wurde in diesem Fall verzichtet, da diese im Falle des oben als Beispiel gewählten Satzes den einzelnen Tokens entspricht, da kein Wort öfter als ein Mal vorkommt.

from nltk import wordpunct_tokenizer
from nltk.stem import WordNetLemmatizer

lemma = WordNetLemmatizer()

vocab = set([WordNetLemmatizer().lemmatize(t) for t in wordpunct_tokenize(text.lower())])

Stopwords

Unter Stopwords werden Worte verstanden, welche zwar sehr häufig vorkommen, jedoch nur wenig Information zu einem Text beitragen. Beispiele in der beutschen Sprache sind: der, und, aber, mit, …

Sowohl NLTK als auch cpaCy bringen vorgefertigte Stopwordsets mit. 

from nltk.corpus import stopwords
stoplist = stopwords.words('english')
stopset = set(stopwords.words('english'))

[t for t in tokens if not t in stoplist]
['This', 'short', 'example', 'text', 'needs', 'cleaned', '.']

Vorsicht: NLTK besitzt eine Stopwordliste, welche erst in ein Set umgewandelt werden sollte um die lookup-Zeiten kurz zu halten – schließlich muss jedes einzelne Token des Textes auf das vorhanden sein in der Stopworditerable getestet werden!

%timeit [w for w in tokens if not w in stopset] # 1.11 ms
%timeit [w for w in tokens if not w in stoplist] # 26.6 ms

POS-Tagging

POS-Tagging steht für „Part of Speech Tagging“ und entspricht ungefähr den Aufgaben, die man noch aus dem Deutschunterricht kennt: „Unterstreiche alle Subjekte rot, alle Objekte blau…“. Wichtig ist diese Art von Tagging insbesondere, wenn man später tatsächlich strukturiert Informationen aus dem Text extrahieren möchte, da man hierfür wissen muss wer oder was als Subjekt mit wem oder was als Objekt interagiert.

Obwohl genau die selben Worte vorkommen, bedeutet der Satz „Die Katze frisst die Maus.“ etwas anderes als „Die Maus frisst die Katze.“, da hier Subjekt und Objekt aufgrund ihrer Reihenfolge vertauscht sind (Stichwort: Subjekt – Prädikat – Objekt ).

Weniger wichtig ist dieser Schritt bei der Kategorisierung von Dokumenten. Insbesondere bei dem bereits oben erwähnten Bag-of-Words-Modell, fließen POS-Tags überhaupt nicht mit ein.

Und weil es so schön einfach ist: Die obigen Schritte mit spaCy

Die obigen Methoden und Arbeitsschritte, welche Texte die in natürlicher Sprache geschrieben sind, allgemein computerzugänglicher und einfacher auswertbar machen, können beliebig genau den eigenen Wünschen angepasst, einzeln mit dem Paket NLTK durchgeführt werden. Dies zumindest einmal gemacht zu haben, erweitert das Verständnis für die funktionsweise einzelnen Schritte und insbesondere deren manchmal etwas versteckten Komplexität. (Wie muss beispielsweise ein Tokenizer funktionieren der den Satz “Schwierig ist z. B. dieser Satz.” korrekt in nur einen Satz aufspaltet, anstatt ihn an jedem Punkt welcher an einem Wortende auftritt in insgesamt vier Sätze aufzuspalten, von denen einer nur aus einem Leerzeichen besteht?) Hier soll nun aber, weil es so schön einfach ist, auch das analoge Vorgehen mit dem Paket spaCy beschrieben werden:

import spacy

nlp = spacy.load('en')
doc = nlp(rawtext)

Dieser kurze Codeabschnitt liest den an spaCy übergebenen Rohtext in ein spaCy Doc-Object ein und führt dabei automatisch bereits alle oben beschriebenen sowie noch eine Reihe weitere Operationen aus. So stehen neben dem immer noch vollständig gespeicherten Originaltext, die einzelnen Sätze, Worte, Lemmas, Noun-Chunks, Named Entities, Part-of-Speech-Tags, ect. direkt zur Verfügung und können.über die Methoden des Doc-Objektes erreicht werden. Des weiteren liegen auch verschiedene weitere Objekte wie beispielsweise Vektoren zur Bestimmung von Dokumentenähnlichkeiten bereits fertig vor.

Die Folgende Übersicht soll eine kurze (aber noch lange nicht vollständige) Übersicht über die automatisch von spaCy generierten Objekte und Methoden zur Textanalyse geben:

# Textabschnitte
doc.text                                 # Originaltext
sents = doc.sents                        # Sätze des Dokuments
tokens = [token for token in doc]        # Tokens/Worte des Dokuments
parags = doc.text_with_ws.split('\n\n')  # Absätze des Dokuments

# Eigenschaften einzelner Tokens
[t.lemma_ for t in doc]                  # Lemmata der einzelnen Tokens
[t.tag_ for t in doc]                    # POS-Tags der einzelnen Tokens

# Objekte zur Textanalyse
doc.vocab                                # Vokabular des Dokuments
doc.sentiment                            # Sentiment des Dokuments
doc.noun_chunks                          # NounChunks des Dokuments
entities = [ent for ent in doc.ents]     # Named Entities (Persons, Locations, Countrys)

# Objekte zur Dokumentenklassifikation
doc.vector                               # Vektor
doc.tensor                               # Tensor

Diese „Vollautomatisierung“ der Vorabschritte zur Textanalyse hat jedoch auch seinen Preis: spaCy geht nicht gerade sparsam mit Ressourcen wie Rechenleistung und Arbeitsspeicher um. Will man einen oder einige Texte untersuchen so ist spaCy oft die einfachste und schnellste Lösung für das Preprocessing. Anders sieht es aber beispielsweise aus, wenn eine bestimmte Analyse wie zum Beispiel die Einteilung in verschiedene Textkategorien auf eine sehr große Anzahl von Texten angewendet werden soll. In diesem Fall, sollte man in Erwägung ziehen auf ressourcenschonendere Alternativen wie zum Beispiel gensim auszuweichen.

Wer beim lesen genau aufgepasst hat, wird festgestellt haben, dass ich im Abschnitt POS-Tagging im Gegensatz zu den anderen Abschnitten auf ein kurzes Codebeispiel verzichtet habe. Dies möchte ich an dieser Stelle nachholen und dabei gleich eine Erweiterung des Pakets spaCy vorstellen: displaCy.

Displacy bietet die Möglichkeit, sich Zusammenhänge und Eigenschaften von Texten wie Named Entities oder eben POS-Tagging graphisch im Browser anzeigen zu lassen.

import spacy
from spacy import displacy

rawtext = 'This is a short example sentence that needs to be cleaned.'

nlp = spacy.load('en')
doc = nlp(rawtext)
displacy.serve(doc, style='dep')

Nach ausführen des obigen Codes erhält man eine Ausgabe die wie folgt aussieht:

Serving on port 5000...
Using the 'dep' visualizer

Nun öffnet man einen Browser und ruft die URL ‘http://127.0.0.1:5000’ auf (Achtung: localhost anstatt der IP funktioniert – warum auch immer – mit displacy nicht). Im Browser sollte nun eine Seite mit einem SVG-Bild geladen werden, welches wie folgt aussieht

Die Abbildung macht deutlich was POS-Tagging genau ist und warum es von Nutzen sein kann wenn man Informationen aus einem Text extrahieren will. Jedem Word (Token) ist eine Wortart zugeordnet und die Beziehung der einzelnen Worte durch Pfeile dargestellt. Dies ermöglicht es dem Computer zum Beispiel in dem Satzteil “der grüne Apfel”, das Adjektiv “grün” auf das Nomen “Apfel” zu beziehen und diesem somit als Eigenschaft zuzuordnen.

Nachdem dieser Artikel wichtige Schritte des Preprocessing von Texten beschrieben hat, geht es im nächsten Artikel darum was man an Texten eigentlich analysieren kann und welche Analysemöglichkeiten die verschiedenen für Python vorhandenen Module bieten.

Einstieg in Natural Language Processing – Teil 1: Natürliche vs. Formale Sprachen

Dies ist Artikel 1 von 4 der Artikelserie Einstieg in Natural Language Processing – Artikelserie.

Versuche und erste Ansätze, Maschinen beizubringen menschliche Sprache zu verstehen, gibt es bereits seit den 50er Jahren. Trotz der jahrzehntelangen Forschung und Entwicklung gelingt dies bis heute nicht umfassend. Woran liegt dies?

Um diese Frage zu beantworten, hilft es, sich die Unterschiede zwischen „natürlichen“, also sich selbstständig entwickelnden, typischerweise von Menschen gesprochenen Sprachen und den von Computern interpretieren formalen Sprachen klar zu machen. Formale Sprachen, wie zum Beispiel Python zum Ausführen der Codebeispiele in dieser Artikelserie, HTML (Hyper Text Markup Language) zur Darstellung von Webseiten und andere typische Programmier- und Skriptsprachen, sind üblicherweise sehr streng strukturiert.

Alle diese Sprachen weisen eine Reihe von Gemeinsamkeiten auf, welche es Computern einfach machen, sie korrekt zu interpretieren (also den Informationsinhalt zu “verstehen”). Das vermutlich auffälligste Merkmal formaler Sprachen ist eine relativ strikte Syntax, welche (wenn überhaupt) nur geringe Abweichungen von einem Standard erlaubt. Wie penibel die jeweilige Syntax oft einzuhalten ist, wird am ehesten deutlich, wenn diese verletzt wird:

>>> print('Correct Syntax')
Correct Syntax

>>> print{'Wrong Syntax'}
    print{'Wrong Syntax'}
         ^
SyntaxError: invalid syntax

Solche so genannten “Syntax Error”  gehören daher zu den häufigsten Fehlern beim Schreiben von Quellcode.

Ganz anders dagegen sieht es in der Kommunikation mit natürlichen Sprachen aus. Zwar fördert falsche Komma-Setzung in der Regel nicht die Leserlichkeit eines Textes, jedoch bleibt dieser in der Regel trotzdem verständlich. Auch macht es keinen Unterschied ob ich sage „Es ist heiß heute.“ oder „Heute ist es heiß.“. Genau wie in der deutschen Sprache funktioniert dieses Beispiel auch im Englischen sowie in anderen natürlichen Sprachen. Insbesondere Spanisch ist ein Beispiel für eine Sprache mit extrem variabler Satzstellung. Jedoch kann in anderen Fällen eine andere Reihenfolge der selben Worte deren Bedeutung auch verändern. So ist „Ist es heute heiß?“ ganz klar eine Frage, obwohl exakt die selben Worte wie in den Beispielsätzen oben vorkommen.

Ein weiterer wichtiger, hiermit verwandter Unterschied ist, dass es bei formalen Sprachen in der Regel einen Ausdruck gibt, welcher eine spezifische Bedeutung besitzt, während es in natürlichen Sprachen oft viele Synonyme gibt, die ein und dieselbe Sache (oder zumindest etwas sehr ähnliches) ausdrücken. Ein wahrer boolscher Wert wird in Python als

True

geschrieben. Es gibt keine andere Möglichkeit, diesen Wert auszudrücken (zumindest nicht ohne irgend eine Art von Operatoren wie das Doppelgleichheitszeichen zu benutzen und damit z. B. “0 == 0” zu schreiben).  Anders hingegen zum Beispiel in der Deutschen Sprache: Wahr, richtig, korrekt, stimmt, ja,

Um einen Vorstellung davon zu bekommen, wie verbreitet Synonyme in natürlichen Sprachen sind, lässt sich die Internetseite https://www.openthesaurus.de verwenden. Beispielshalber findet man dutzende Synonyme für das Wort „schnell“ hier: https://www.openthesaurus.de/synonyme/schnell

Eine weitere große Schwierigkeit, welche in den meisten natürlichen Sprachen und nahezu allen Arten von Texten zu finden ist, stellen verschiedene grammatikalische Formen eines Wortes dar. So sind die Worte bin, wäre, sind, waren, wirst, werden… alles Konjugationen desselben Verbs, nämlich sein. Eine durchaus beeindruckende Übersicht über die verwirrende Vielfalt von Konjugationen dieses kleinen Wörtchens, findet sich unter: https://www.verbformen.de/konjugation/sein.htm.

Dieses Problem wird um so schwerwiegender, da viele Verben, insbesondere die am häufigsten genutzten, sehr unregelmäßige Konjugationsformen besitzen und damit keiner generellen Regel folgen. Daher ist computerintern oft ein Mapping für jede mögliche Konjugationsform bei vielen Verben die einzige Möglichkeit, an die Grundform zu kommen (mehr dazu in Teil 3 dieser Artikelserie).

Die Liste der sprachlichen Schwierigkeiten beim computergestützten Auswerten natürlicher Sprache ließe sich an diesem Punkt noch beliebig weiter fortsetzen:

  • Rechtschreibfehler
  • falsche Grammatik
  • Smileys
  • der „Substantivverkettungswahn“ im Deutschen
  • mehrdeutige Worte und Abkürzungen
  • abwegige Redewendungen (z. B. “ins Gras beißen”)
  • Ironie
  • und, und, und …

Ob und welche Rolle jede dieser Schwierigkeiten im einzelnen spielt, hängt natürlich sehr stark von den jeweiligen Texten ab und kann nicht pauschalisiert werden – ein typischer Chatverlauf wird ganz andere Probleme bereithalten als ein Wikipedia-Artikel. Wie man einige dieser Probleme in der Praxis vereinfachen oder sogar lösen kann und welche Ansätze und Methoden zur Verfügung stehen und regelmäßig zur Anwendung kommen wird im nächsten Teil dieser Artikelserie an praktischen Codebeispielen genauer unter die Lupe genommen.

NLTK vs. Spacy – Eine kurze Übersicht

Möchte man einen (oder auch einige) Text(e) mit den Methoden des natural language processings untersuchen um die darin verwendete Sprache auswerten oder nach bestimmten Informationen suchen, so sind insbesondere die Pakete NLTK und spaCy zu empfehlen (bei sehr vielen Texten sieht das schon wieder anders aus und wird am Ende der Artikelserie mit dem Paket gensim vorgestellt); beide bieten eine unglaubliche Vielzahl von Analysemöglichkeiten, vorgefertigten Wortsets, vortrainierte Stemmer und Lemmatiser, POS Tagger und, und, und…

Ist man vor allem an den Ergebnissen der Analyse selbst interessiert, so bietet sich spaCy an, da hier bereits mit wenigen Zeilen Code viele interessante Informationen generiert werden können.

Wer dagegen gerne selber bastelt oder wissen möchte wie die einzelnen Tools und Teilschritte genau funktionieren oder sich seine eigenen Stemmer, Tagger ect. trainieren will, ist vermutlich mit NLTK besser beraten. Zwar ist hier oft mehr Quellcode für das gleiche Ergebnis notwendig, allerdings kann das Preprocessing der Texte hierbei relativ einfach exakt den eigenen Vorstellungen angepasst werden. Zudem bietet NLTK eine Vielzahl von Beispieltexten und bereits fertig getagte Daten, mit welchen eigene Tagger trainiert und getestet werden können.

Einstieg in Natural Language Processing – Artikelserie

Unter Natural Language Processing (NLP) versteht man ein Teilgebiet der Informatik bzw. der Datenwissenschaft, welches sich mit der Analyse und Auswertung , aber auch der Synthese natürlicher Sprache befasst. Mit natürlichen Sprachen werden Sprachen wie zum Beispiel Deutsch, Englisch oder Spanisch bezeichnet, welche nicht geplant entworfen wurden, sondern sich über lange Zeit allein durch ihre Benutzung entwickelt haben. Anders ausgedrückt geht es um die Schnittstelle zwischen unserer im Alltag verwendeten und für uns Menschen verständlichen Sprache auf der einen, und um deren computergestützte Auswertung auf der anderen Seite.

Diese Artikelserie soll eine Einführung in die Thematik des Natural Language Processing sein, dessen Methoden, Möglichkeiten, aber auch der Grenzen . Im einzelnen werden folgende Themen näher behandelt:

1. Artikel – Natürliche vs. Formale Sprachen
2. Artikel – Preprocessing von Rohtext mit Python (erscheint demnächst…)
3. Artikel – Möglichkeiten/Methoden der Textanalyse an Beispielen (erscheint demnächst…)
4. Artikel – NLP, was kann es? Und was nicht? (erscheint demnächst…)

Zur Verdeutlichung der beschriebenen Zusammenhänge und Methoden und um Interessierten einige Ideen für mögliche Startpunkte aufzuzeigen, werden im Verlauf der Artikelserie an verschiedenen Stellen Codebeispiele in der Programmiersprache Python vorgestellt.
Von den vielen im Internet zur Verfügung stehenden Python-Paketen zum Thema NLP, werden in diesem Artikel insbesondere die drei Pakete NLTK, Gensim und Spacy verwendet.

I. Einführung in TensorFlow: Einleitung und Inhalt

 

 

 

1. Einleitung und Inhalt

Früher oder später wird jede Person, welche sich mit den Themen Daten, KI, Machine Learning und Deep Learning auseinander setzt, mit TensorFlow in Kontakt geraten. Für diejenigen wird der Zeitpunkt kommen, an dem sie sich damit befassen möchten/müssen/wollen.

Und genau für euch ist diese Artikelserie ausgelegt. Gemeinsam wollen wir die ersten Schritte in die Welt von Deep Learning und neuronalen Netzen mit TensorFlow wagen und unsere eigenen Beispiele realisieren. Dabei möchten wir uns auf das Wesentlichste konzentrieren und die Thematik Schritt für Schritt in 4 Artikeln angehen, welche wie folgt aufgebaut sind:

  1. In diesem und damit ersten Artikel wollen wir uns erst einmal darauf konzentrieren, was TensorFlow ist und wofür es genutzt wird.
  2. Im zweiten Artikel befassen wir uns mit der grundlegenden Handhabung von TensorFlow und gehen den theoretischen Ablauf durch.
  3. Im dritten Artikel wollen wir dann näher auf die Praxis eingehen und ein Perzeptron – ein einfaches künstliches Neuron – entwickeln. Dabei werden wir die Grundlagen anwenden, die wir im zweiten Artikel erschlossen haben.

Wenn ihr die Praxisbeispiele in den Artikeln 3 & 4 aktiv mit bestreiten wollt, dann ist es vorteilhaft, wenn ihr bereits mit Python gearbeitet habt und die Grundlagen dieser Programmiersprache beherrscht. Jedoch werden alle Handlungen und alle Zeilen sehr genau kommentiert, so dass es leicht verständlich bleibt.

Neben den Programmierfähigkeiten ist es hilfreich, wenn ihr euch mit der Funktionsweise von neuronalen Netzen auskennt, da wir im späteren Verlauf diese modellieren wollen. Jedoch gehen wir vor der Programmierung  kurz auf die Theorie ein und werden das Wichtigste nochmal erwähnen.

Zu guter Letzt benötigen wir für unseren Theorie-Teil ein Mindestmaß an Mathematik um die Grundlagen der neuronalen Netze zu verstehen. Aber auch hier sind die Anforderungen nicht hoch und wir sind vollkommen gut  damit bedient, wenn wir unser Wissen aus dem Abitur noch nicht ganz vergessen haben.

2. Ziele dieser Artikelserie

Diese Artikelserie ist speziell an Personen gerichtet, welche einen ersten Schritt in die große und interessante Welt von Deep Learning wagen möchten, die am Anfang nicht mit zu vielen Details überschüttet werden wollen und lieber an kleine und verdaulichen Häppchen testen wollen, ob dies das Richtige für sie ist. Unser Ziel wird sein, dass wir ein Grundverständnis für TensorFlow entwickeln und die Grundlagen zur Nutzung beherrschen, um mit diesen erste Modelle zu erstellen.

3. Was ist TensorFlow?

Viele von euch haben bestimmt von TensorFlow in Verbindung mit Deep Learning bzw. neuronalen Netzen gehört. Allgemein betrachtet ist TensorFlow ein Software-Framework zur numerischen Berechnung von Datenflussgraphen mit dem Fokus maschinelle Lernalgorithmen zu beschreiben. Kurz gesagt: Es ist ein Tool um Deep Learning Modelle zu realisieren.

Zusatz: Python ist eine Programmiersprache in der wir viele Paradigmen (objektorientiert, funktional, etc.) verwenden können. Viele Tutorials im Bereich Data Science nutzen das imperative Paradigma; wir befehlen Python also Was gemacht und Wie es ausgeführt werden soll. TensorFlow ist dahingehend anders, da es eine datenstrom-orientierte Programmierung nutzt. In dieser Form der Programmierung wird ein Datenfluss-Berechnungsgraph (kurz: Datenflussgraph) erzeugt, welcher durch die Zusammensetzung von Kanten und Knoten charakterisiert wird. Die Kanten enthalten Daten und können diese an Knoten weiterleiten. In den Knoten werden Operationen wie z. B. Addition, Multiplikation oder auch verschiedenste Variationen von Funktionen ausgeführt. Bekannte Programme mit datenstrom-orientierten Paradigmen sind Simulink, LabView oder Knime.

Für das Verständnis von TensorFlow verrät uns der Name bereits erste Informationen über die Funktionsweise. In neuronalen Netzen bzw. in Deep-Learning-Netzen können Eingangssignale, Gewichte oder Bias verschiedene Erscheinungsformen haben; von Skalaren, zweidimensionalen Tabellen bis hin zu mehrdimensionalen Matrizen kann alles dabei sein. Diese Erscheinungsformen werden in Deep-Learning-Anwendungen allgemein als Tensoren bezeichnet, welche durch ein Datenflussgraph ‘fließen’. [1]

Abb.1 Namensbedeutung von TensorFlow: Links ein Tensor in Form einer zweidimensionalen Matrix; Rechts ein Beispiel für einen Datenflussgraph

 

4. Warum TensorFlow?

Wer in die Welt der KI einsteigen und Deep Learning lernen will, hat heutzutage die Qual der Wahl. Neben TensorFlow gibt es eine Vielzahl von Alternativen wie Keras, Theano, Pytorch, Torch, Caffe, Caffe2, Mxnet und vielen anderen. Warum also TensorFlow?

Das wohl wichtigste Argument besteht darin, dass TensorFlow eine der besten Dokumentationen hat. Google – Herausgeber von TensorFlow – hat TensorFlow stets mit neuen Updates beliefert. Sicherlich aus genau diesen Gründen ist es das meistgenutzte Framework. Zumindest erscheint es so, wenn wir die Stars&Forks auf Github betrachten. [3] Das hat zur Folge, dass neben der offiziellen Dokumentation auch viele Tutorials und Bücher existieren, was die Doku nur noch besser macht.

Natürlich haben alle Frameworks ihre Vor- und Nachteile. Gerade Pytorch von Facebook erfreut sich derzeit großer Beliebtheit, da die Berechnungsgraphen dynamischer Natur sind und damit einige Vorteile gegenüber TensorFlow aufweisen.[2] Auch Keras wäre für den Einstieg eine gute Alternative, da diese Bibliothek großen Wert auf eine einsteiger- und nutzerfreundliche Handhabung legt. Keras kann man sich als eine Art Bedienoberfläche über unsere Frameworks vorstellen, welche vorgefertigte neuronale Netze bereitstellt und uns einen Großteil der Arbeit abnimmt.

Möchte man jedoch ein detailreiches und individuelles Modell bauen und die Theorie dahinter nachvollziehen können, dann ist TensorFlow der beste Einstieg in Deep Learning! Es wird einige Schwierigkeiten bei der Gestaltung unserer Modelle geben, aber durch die gute Dokumentation, der großen Community und der Vielzahl an Beispielen, werden wir gewiss eine Lösung für aufkommende Problemstellungen finden.

 

Abb.2 Beliebtheit von DL-Frameworks basierend auf Github Stars & Forks (10.06.2018)

 

5. Zusammenfassung und Ausblick

Fassen wir das Ganze nochmal zusammen: TensorFlow ist ein Framework, welches auf der datenstrom-orientierten Programmierung basiert und speziell für die Implementierung von Machine/Deep Learning-Anwendungen ausgelegt ist. Dabei fließen unsere Daten durch eine mehr oder weniger komplexe Anordnung von Berechnungen, welche uns am Ende ein Ergebnis liefert.

Die wichtigsten Argumente zur Wahl von TensorFlow als Einstieg in die Welt des Deep Learnings bestehen darin, dass TensorFlow ausgezeichnet dokumentiert ist, eine große Community besitzt und relativ einfach zu lesen ist. Außerdem hat es eine Schnittstelle zu Python, welches durch die meisten Anwender im Bereich der Datenanalyse bereits genutzt wird.

Wenn ihr es bis hier hin geschafft habt und immer noch motiviert seid den Einstieg mit TensorFlow zu wagen, dann seid gespannt auf den nächsten Artikel. In diesem werden wir dann auf die Funktionsweise von TensorFlow eingehen und einfache Berechnungsgraphen aufbauen, um ein Grundverständnis von TensorFlow zu bekommen. Bleibt also gespannt!

Quellen

[1] Hope, Tom (2018): Einführung in TensorFlow: DEEP-LEARNING-SYSTEME PROGRAMMIEREN, TRAINIEREN, SKALIEREN UND DEPLOYEN, 1. Auflage

[2] https://www.marutitech.com/top-8-deep-learning-frameworks/

[3] https://github.com/mbadry1/Top-Deep-Learning

[4] https://www.bigdata-insider.de/was-ist-keras-a-726546/

Analyse der Netzwerktopologie des Internets auf Basis des IPv4-Protokolls

Wie kommen Daten die man via Internet quer durch die Welt sendet eigentlich an ihr Ziel? Welchen Weg nehmen beispielsweise die Datenpakete, wenn ich von mir zu Hause eine Datei an meinen Nachbarn ein Haus weiter sende? Wie groß ist der “Umweg”, den die Daten nehmen? Und macht es eigentlich einen Unterschied, ob ich www.google.de, www.google.com oder www.google.nl aufrufe, oder gehen alle Suchanfragen sowieso an dasselbe Ziel?

Fragen wie diese lassen sich durch eine Kombination von Tools wie traceroute oder tracepath und geoiplookup beantworten und unter Verwendung des Python-Paketes geoplotlib sogar graphisch auf einer Weltkarte darstellen. Die so gewonnenen Ergebnisse zeigen Teile der Netzwerktopologie des Internets auf und führen zu interessanten, teils unerwarteten Erkenntnissen.

Ziel dieses Artikels soll sein, ein möglichst einfaches Tutorial zum selber mitbasteln bereit zu stellen. Die einzelnen Schritte die hierfür notwendig sind, werden möglichst einfach verständlich dargestellt und erklärt, trotzdem sind zum vollständigen Verständnis grundlegende Kenntnisse in Python sowie der Kommandozeile hilfreich. Er richtet sich aber auch an alle, die sich einfach einmal etwas in ihrer virtuellen Umgebung „umschauen“ möchten oder einfach nur an den Ergebnissen interessiert sind, ohne sich mit den Details und wie diese umgesetzt werden, auseinander setzen zu wollen.  Am Ende des Artikels werden die einzelnen Skripte des Projekts als zip-Datei bereitgestellt.

Hinweis: Diese Anleitung bezieht sich auf ein Linux-System und wurde unter Ubuntu getestet. Windows-User können beispielsweise mit dem Befehl tracert (als Ersatz für traceroute) ähnliche Ergebnisse erziehlen, jedoch muss dann das Parsing der IP-Adressen abgeändert werden.

1. Grundsätzliches Erkunden der Route, die ein Datenpaket nimmt

Hierfür wird ein Programm wie traceroute, tracepath oder nmap benötigt, welches durch Versenden von „abgelaufenen Datenpaketen“ die Hosts „auf dem Weg“ zum Ziel dazu bringt, ihre IPv4-Adresse zurück zu geben. In diesem Artikel wird beispielhaft traceroute verwendet, da dieses unter den meisten Linux-Versionen bereits zur „Grundausstattung“ gehört und somit für diesen Schritt keine weitere Software installiert werden muss. Die Verwendung von traceroute folgt der Syntax:

sudo traceroute ${ZIEL}

Als Ziel muss hier die IP-Adresse bzw. der Domainname des Zielrechners angegeben werden. Ein Beispiel soll dies vereinfachen:

$ sudo traceroute www.google.de
traceroute to www.google.de (172.217.22.99), 64 hops max
  1   192.168.0.1  167,148ms  3,200ms  11,636ms 
  2   83.169.183.11  21,389ms  19,380ms  88.134.203.107  16,746ms 
  3   88.134.203.107  27,431ms  24,063ms  * 
  4   88.134.237.6  1679,865ms  *  130,818ms 
  5   88.134.235.207  58,815ms  84,150ms  * 
  6   72.14.198.218 144,998ms  107,364ms  108.170.253.68  121,851ms 
  7   108.170.253.84  58,323ms  101,127ms  216.239.57.218  44,461ms 
  8   216.239.57.218  43,722ms  91,544ms  172.253.50.100  67,971ms 
  9   172.253.50.214  106,689ms  96,100ms  216.239.56.130  110,334ms 
 10   209.85.241.145  63,720ms  61,387ms  209.85.252.76  73,724ms 
 11   209.85.252.28  71,214ms  61,828ms  108.170.251.129  81,470ms 
 12   108.170.251.129  64,262ms  52,056ms  72.14.234.115  71,661ms 
 13   72.14.234.113  262,988ms  55,005ms  172.217.22.99  66,043ms 

Im Beispiel wird die Route zum Hostrechner mit der Domain www.google.de ermittelt. In der ersten Spalte der Ausgabe ist die Nummer des jeweiligen „Hops“ zu sehen. Wichtig ist insbesondere die zweite Spalte, welche die IPv4-Adresse des jeweiligen Rechners auf dem Weg zum Ziel darstellt. Die folgenden Spalten enthalten weitere Informationen wie Antwortzeiten der jeweiligen Server und die IP-Adressen der Folge-Server.

Um die Ausgabe in eine Form umzuwandeln, welche später einfacher von Python gelesen werden kann, muss diese noch ausgelesen werden (Parsing). zuerst soll die erste Zeile der Ausgabe herausgeschnitten werden, da diese zwar informativ, jedoch kein Teil der eigentlichen Route ist. Dies kann sehr einfach durchgeführt werden, indem die Ausgabe des traceroute-Befehls an einen Befehl wie beispielsweise sed „gepiped“ (also weitergeleitet) wird. Die dabei entstehende Pipe sieht dann wie folgt aus:

sudo traceroute ${ZIEL} | sed '1d'

Um bei unserem Beispiel mit der Route zu www.google.de zu bleiben, sieht der Befehl und die Entsprechende Ausgabe wie folgt aus:

$ sudo traceroute   | sed '1d'
  1   192.168.0.1  167,148ms  3,200ms  11,636ms 
  2   83.169.183.11  21,389ms  19,380ms  88.134.203.107  16,746ms 
  3   88.134.203.107  27,431ms  24,063ms  * 
  4   88.134.237.6  1679,865ms  *  130,818ms 
  5   88.134.235.207  58,815ms  84,150ms  * 
  6   72.14.198.218 144,998ms  107,364ms  108.170.253.68  121,851ms 
  7   108.170.253.84  58,323ms  101,127ms  216.239.57.218  44,461ms 
  8   216.239.57.218  43,722ms  91,544ms  172.253.50.100  67,971ms 
  9   172.253.50.214  106,689ms  96,100ms  216.239.56.130  110,334ms 
 10   209.85.241.145  63,720ms  61,387ms  209.85.252.76  73,724ms 
 11   209.85.252.28  71,214ms  61,828ms  108.170.251.129  81,470ms 
 12   108.170.251.129  64,262ms  52,056ms  72.14.234.115  71,661ms 
 13   72.14.234.113  262,988ms  55,005ms  172.217.22.99  66,043ms 

Anschließend soll die zweite Spalte der Ausgabe herausgeschnitten werden. Dies ist am einfachsten mit dem Befehl awk zu bewerkstelligen. Das Prinzip dahinter ist das gleiche wie im obigen Schritt: die Ausgabe des vorherigen Befehls wird dem Befehl awk als Eingabe weitergeleitet, womit der gesamte Befehl nun wie folgt aussieht:

sudo traceroute ${ZIEL} | sed '1d' | awk '{ print $2 }'

Bezogen auf das google-Beispiel sehen Ein- und Ausgabe nun so aus:

$ sudo traceroute | sed '1d' | awk '{ print $2 }'
192.168.0.1
83.169.183.11
88.134.203.107
88.134.237.6
88.134.235.207
72.14.198.218
108.170.253.84
216.239.57.218
172.253.50.214
209.85.241.145
209.85.252.28
108.170.251.129
72.14.234.113

Im letzten Schritt sollen die einzelnen IP-Adressen durch Leerzeichen getrennt in eine einzelne Zeile geschrieben werden. Sinn dieses Schrittes ist, dass später viele Zielrechner nacheinander aus einer Datei eingelesen werden können und jede Route zu einem Zielrechner als eine einzelne Zeile in eine Zieldatei geschrieben wird.
Auch dieser Schritt funktioniert ähnlich wie die obigen Schritte, indem die Ausgabe des letzten Schrittes an einen weiteren Befehl weitergeleitet wird, der diese Funktion erfüllt. Dieser Schritt könnte wieder mit dem Befehl sed durchgeführt werden, da aber nur ein einzelnes Zeichen (nämlich das Zeilenumbruch-Zeichen bzw. Newline) durch ein Leerzeichen ersetzt werden soll, wird hier aufgrund der einfacheren Syntax der Befehl tr verwendet.
Der fertige Befehl sieht nun wie folgt aus:

sudo traceroute ${ZIEL} | sed '1d' | awk '{ print $2 }' | tr '\n' ' '

Oder im fertigen Beispiel mit www.google.de:

$ sudo traceroute   | sed '1d' | awk '{ print $2 }' | tr '\n' ' '
192.168.0.1 83.169.183.11 88.134.203.107 88.134.237.6 88.134.235.207 72.14.198.218 108.170.253.84 216.239.57.218 172.253.50.214 209.85.241.145 209.85.252.28 108.170.251.129 72.14.234.113

Hiermit ist das Parsen abgeschlossen und die fertige Ausgabe kann nun in eine Ergebnisdatei geschrieben werden. Um automatisch viele Zielrechner aus einer Datei einzulesen und alle gefundenen Routen in eine Zieldatei zu schreiben, wird der obige Befehl in eine Schleife „verpackt“ welche die Zielrechner Zeile für Zeile aus der Datei zieladressen.txt ausliest und die gefundenen Routen ebenso Zeile für Zeile in die Datei routen.csv schreibt. Die Datei routen.csv kann später zur Ermittlung verschiedener Informationen zu den gefunden IP-Adressen einfach mit einem Python-Skript eingelesen und geparst werden.

In diesem Artikel wird das fertige Skript ohne weitere Erklärung in der beiliegenden zip-Datei bereitgestellt. Wen die genaue Funktionsweise der Schleife interessiert, sei angehalten sich generell über die Funktionsweise von Shellskripten einzulesen, da dies den Rahmen des Artikels sprengen würde.

#/bin/sh

cat zieladressen.txt | while read ZIEL; do
    printf 'Ermittle Route nach: %s\n' "${ZIEL}"
    traceroute ${ZIEL} | sed '1d' | awk '{ print $2 }' | tr '\n' ' ' >> routes.csv
    printf '\n' >> routes.csv
done

cat routes.csv | tr -d \* | tr -s ' ' > routes_corrected.csv
mv routes_corrected.csv routes.csv

Dieses Skript benötigt die Datei zieladressen.txt welche wie folgt aussehen muss (anstatt Domainnamen können auch direkt IPv4-Adressen verwendet werden):

www.google.de
www.github.com
www.google.nl
...

2. Sammeln von (Geo-)Informationen zu bestimmten IPv4-Adressen

Die gefundenen IPv4-Adressen können anschließend mit dem Befehl geoiplookup oder über die Internetseite http://geoiplookup.net/ relativ genau (meißtens auf Städteniveau) lokalisiert werden. Dies funktioniert, da einzelne Subnets in der Regel bestimmten Regionen und Internetprovidern zugeordnet sind.

Der Befehl geoiplookup greift hierbei auf eine vorher installierte und lokal gespeicherte Datenbank zu, welche je nach installierter Version als Country- oder City-Edition vorliegt. Da geoiplookup nicht zu den Standartbordmitteln unter Linux gehört und um die weiteren Schritte auch Benutzern anderer Betriebssysteme zu ermöglichen, wird hier nur ein kurzes Beispiel der Benutzung dieses Befehls und dessen Ausgabe gegeben und im weiteren die Online-Abfrage mittels eines Python-Skriptes beschrieben.

$ geoiplookup 172.217.22.99
GeoIP Country Edition: US, United States
GeoIP City Edition, Rev 1: US, CA, California, Mountain View, 94043, 37.419201, -122.057404, 807, 650
GeoIP ASNum Edition: AS15169 Google Inc.

Die Internetseite http://geoiplookup.net bietet einen Onlineservice welcher Geo- und weitere Informationen zu gegebenen IPv4-Adressen bereitstellt. Öffnet man die Seite ohne Angabe einer IP-Adresse in einem Browser, so erhält man die entsprechenden Informationen über die eigene IP-Adresse. (Achtung: die Verwendung eines Proxies oder gar Tor führt zwangsläufig zu falschen Ergebnissen.)

Da die Seite auch über eine API (also eine automatisierte Abfrageschnittstelle) unter der Adresse “http://api.geoiplookup.net/?query=${IPADRESSE}” verfügt, kann man die entsprechenden Informationen zu den IP-Adressen mittels eines Pythonskriptes abfragen und auswerten. Als Antwort erhält man eine XML‑Datei welche beispielsweise folgendermaßen aussieht:

<ip>
  <results>
    <result>
      <ip>77.20.253.87</ip>
      <host>77.20.253.87</host>
      <isp>Vodafone Kabel Deutschland</isp>
      <city>Hamburg</city>
      <countrycode>DE</countrycode>
      <countryname>Germany</countryname>
      <latitude>53.61530</latitude>
      <longitude>10.1162</longitude>
    </result>
  </results>
</ip>

Diese kann im Browser z. B. unter der Adresse http://api.geoiplookup.net/?query=77.20.253.87 aufgerufen werden (oder unter: http://api.geoiplookup.net/ für die eigene Adresse).

Um die hierin enthaltenen Informationen mit Hilfe von Python auszulesen lässt sich ElementTree aus aus dem Modul xml.etree, das in der Python-Standartbibliothek vorhanden ist, verwenden. Dies wird im beiliegenden Skript mit der Funktion get_hostinfo() bewerkstelligt:

def get_hostinfo(ipv4):
    ''' Returns geoiplookup information of agiven host adress as a dictionary.
    The adress can be given as a string representation 0f a DNS or IPv4 adress.

    get_hostinfo(str) -> dict

    Examples: get_hostinfo("www.github.com")
              get_hostinfo("151.101.12.133")
    '''

    apiurl = 'http://api.geoiplookup.net/?query='
    hostinfo = defaultdict(str, {})
    try:
        xml = urllib.request.urlopen(apiurl + dns2ipv4(ipv4)).read().decode()
        xml = xml.replace('&', '')
        tree = ETree.fromstring(xml)
        for element in tree.getiterator():
            hostinfo[element.tag] = element.text
    except:
        return hostinfo
    finally:
        return hostinfo

Diese parst die XML-Datei automatisch zu einem Python-DefaultDict das dann die entsprechenden Informationen enthält (das DefaultDict wird verwendet da normale Python Dictionaries zu Fehlern führen, wenn nicht gesetzte Werte abgefragt werden). Die Ausgabe der Funktion sieht dann wie folgt aus:

In [3]: get_hostinfo('www.google.com')
Out[3]:
defaultdict(str,
            {'city': 'Mountain View',
             'countrycode': 'US',
             'countryname': 'United States',
             'host': '172.217.22.99',
             'ip': '172.217.22.99',
             'isp': 'Google',
             'latitude': '37.4192',
             'longitude': '-122.0574',
             'result': None,
             'results': None})

3. Plotten der gefundenen Routen mit geoplotlib auf einer Weltkarte

Wichtig für das anschließende Plotten ist hierbei die Geolocation also ‘latitude’ und ‘longitude’. Mit den Werten kann man anschließend die mit traceroute gefundenen Pfade als Basemap plotten. Dies funktioniert mit der Funktion drawroutes2map():

def drawroutes2map(routesfile='routes.csv'):
    drawroutes = list()
    for route in open(routesfile).readlines():
        ips = [ip2location(ip) for ip in route.strip().split(',')]
        print(ips)
        locs = [loc for loc in ips if not loc == None]
        longs = [loc[0] for loc in locs]
        lats = [loc[1] for loc in locs]
        m = minimalmap()
        drawroutes.append(tuple(m(lats, longs)))
        for drawroute in drawroutes:
            m.plot(drawroute[0], drawroute[1], '-', markersize=0, linewidth=1, color=rand_color())
            pickleto(drawroutes, 'tracedlocs.plk')
    plt.savefig('world.svg', format='svg')
    plt.savefig('world.png', format='png')
    plt.show()

Der Plot einer Verbindungsanfrage an www.google.de aus Berlin sieht beispielsweise folgendermaßen aus:

Hier wird deutlich, dass Datenpakete durchaus nicht immer den kürzesten Weg nehmen, sondern teilweise rund um die Welt gesendet werden (Deutschland – USA – Sydney(!) – USA), bevor sie an ihrem Ziel ankommen und dass das Ziel einer Verbindung zu einer Domain mit der Endung „de“ nicht unbedingt in Deutschland liegen muss.

Mit Default-Einstellungen werden von der Funktion drawroutes2map() alle Routen in zufälligen Farben geplottet, welche in der Datei routen.csv gefunden werden.

Lässt man viele Routen plotten wird hierbei die Netzwerkstruktur deutlich, über die die Daten im Internet verteilt werden. Auf dem obigen Plot kann man recht gut erkennen, dass die meisten Internetseiten in Europa oder den USA gehostet werden, einige noch in China und Japan, dagegen beispielsweise Afrika praktisch unbedeutend ist.

Auf dem nächsten Plot wiederum ist zu erkennen, dass es tatsächlich eine Art “Hotspots” gibt über die fast alle Daten laufen, wie z. B. Frankfurt am Main, Zürich und Madrid.

4. Schematische Darstellung der Routen als directed Graph mit graphviz

Mit graphviz lassen sich schematische Graphen darstellen. Mit dem Paket pygraphviz existiert hiefür auch eine Python-Anbindung. Die schematische Darstellung als Graph ist in vielen Fällen deutlich übersichtlicher als die Darstellung auf einer Weltkarte und die Topologie des Netzwerkes wird besser sichtbar.

Die entsprechende Python-Funktion, die alle Routen aus der Datei routes.csv als geplotteten Graph ausgibt ist drawroutes2graph():

def drawroutes2graph(routesfile='routes.csv'):
    '''Draws all routes found in the routesfile with graphviz to a Graph

        drawroutes2graph(file)

    '''
    routes = open(routesfile).readlines()
    for i in range(len(routes)):
        routes[i] = routes[i].replace('*', '').split()
        G = pgv.AGraph(strict=False, directed=True)

    for l in routes:
        for i in range(len(l)-1):
            if not (l[i], l[i+1]) in set(G.edges()):
                G.add_edge(l[i], l[i+1])

    for n in G.nodes():
        if get_hostinfo(n)['countrycode'] == 'DE':
            n.attr['color'] = 'green'
        elif get_hostinfo(n)['countrycode'] == 'US':
            n.attr['color'] = 'red'
        elif get_hostinfo(n)['countrycode'] == 'ES':
            n.attr['color'] = 'yellow'
        elif get_hostinfo(n)['countrycode'] == 'CH':
            n.attr['color'] = 'blue'
        elif get_hostinfo(n)['countrycode'] == 'CN':
            n.attr['color'] = 'magenta'

        G.write('routes.dot')
        
        G.layout('dot')
        G.draw('dot.png')

        G.layout()
        G.draw('neato.png')

Die Funktion schreibt den erstellten Graph in der Dot-Language in die Datei routes.dot und erstellt zwei verschiedene visuelle Darstellungen als png-Dateien.

Da mit der Funktion get_hostinfo() auch weitere Informationen zu den jeweiligen IP-Adressen verfügbar sind  können diese auch visuell im Graph dargestellt werden. So sind in der folgenden Darstellung Hosts in verschiedenen Ländern in unterschiedlichen Farben dargestellt. (Deutschland in grün, USA in rot, Spanien in gelb, Schweiz in blau, China in magenta und alle übrigen Länder und Hosts ohne Länderinformation in schwarz).

Diese Art der Darstellung vereint damit die Vorteile der schematischen Darstellung mit der Geoinformation zu den jeweiligen Hosts. Aus der Grafik lässt sich beispielsweise sehr gut erkennen, dass, trotz oft vieler Zwischenstationen innerhalb eines Landes, Landesgrenzen überschreitende Verbindungen relativ selten sind.

Auch interessant ist, dass das Netzwerk durchaus Maschen aufweist – mit anderen Worten: Dass ein und dieselbe Station bei verschiedenen Verbindungsanfragen über verschiedene Zwischenstationen angesprochen wird und Daten, die von Punkt A nach Punkt B gesendet werden, nicht immer denselben Weg nehmen.

5. Schlussfolgerung

Was kann man hieraus denn nun letztendlich an Erkenntnissen ziehen? Zum einen natürlich, wie Daten via Internet über viele Zwischenstationen rund um die Welt gesendet und hierbei mit jeder Station neu sortiert werden. Vor allem aber auch, dass mit dem entsprechenden Know-How und etwas Kreativität mit bemerkenswert wenig Code bereits Unmengen an Daten gesammelt, geordnet und ausgewertet werden können. Alle möglichen Daten werden in unserer heutigen Welt gespeichert und sind zu einem nicht unbeträchtlichen Teil auch für jeden, der weiß, wer diese Daten hat oder wie man sie selber ermitteln kann, verfügbar und oft lassen sich hier interessante Einblicke in die Funktionsweise unserer Welt gewinnen.

Lineare Regression in Python mit Scitkit-Learn

Die lineare Regressionsanalyse ist ein häufiger Einstieg ins maschinelle Lernen um stetige Werte vorherzusagen (Prediction bzw. Prädiktion). Hinter der Regression steht oftmals die Methode der kleinsten Fehlerquadrate und die hat mehr als eine mathematische Methode zur Lösungsfindung (Gradientenverfahren und Normalengleichung). Alternativ kann auch die Maximum Likelihood-Methode zur Regression verwendet werden. Wir wollen uns in diesem Artikel nicht auf die Mathematik konzentrieren, sondern uns direkt an die Anwendung mit Python Scikit-Learn machen:

Haupt-Lernziele:

  • Einführung in Machine Learning mit Scikit-Learn
  • Lineare Regression mit Scikit-Learn

Neben-Lernziele:

  • Datenvorbereitung (Data Preparation) mit Pandas und Scikit-Learn
  • Datenvisualisierung mit der Matplotlib direkt und indirekt (über Pandas)

Was wir inhaltlich tun:

Der Versuch einer Vorhersage eines Fahrzeugpreises auf Basis einer quantitativ-messbaren Eigenschaft eines Fahrzeuges.


Die Daten als Download

Für dieses Beispiel verwende ich die Datei “Automobil_data.txt” von Kaggle.com. Die Daten lassen sich über folgenden Link downloaden, nur leider wird ein (kostenloser) Account benötigt:
https://www.kaggle.com/toramky/automobile-dataset/downloads/automobile-dataset.zip
Sollte der Download-Link unerwartet mal nicht mehr funktionieren, freue ich mich über einen Hinweis als Kommentar 🙂

Die Entwicklungsumgebung

Ich verwende hier die Python-Distribution Anaconda 3 und als Entwicklungs-Umgebung Spyder (in Anaconda enthalten). Genauso gut funktionieren jedoch auch Jupyter Notebook, Eclipse mit PyDev oder direkt die IPython QT-Console.


Zuerst einmal müssen wir die Daten in unsere Python-Session laden und werden einige Transformationen durchführen müssen. Wir starten zunächst mit dem Importieren von drei Bibliotheken NumPy und Pandas, deren Bedeutung ich nicht weiter erläutern werde, somit voraussetze.

import matplotlib.pyplot as plt  # Die Nr.1 der Bibliotheken zur Datenvisualisierung
import numpy as np               # Bibliothek "Nummerisches Python"
import pandas as pd              # Bibliothek "Panel Data"

Wir nutzen die Pandas-Bibliothek, um die “Automobile_data.txt” in ein pd.DataFrame zu laden.

dataSet = pd.read_csv("Automobile_data.txt",  # Hier liegt die Datei im selben Verzeichnis wie das Python-Skript!
                      delimiter = ',',
                      thousands = None,
                      decimal = '.')

Schauen wir uns dann die ersten fünf Zeilen in IPython via dataSet.head().

In : dataSet.head()
Out: 
   symboling normalized-losses         make fuel-type aspiration num-of-doors  \
0          3                 ?  alfa-romero       gas        std          two   
1          3                 ?  alfa-romero       gas        std          two   
2          1                 ?  alfa-romero       gas        std          two   
3          2               164         audi       gas        std         four   
4          2               164         audi       gas        std         four   

    body-style drive-wheels engine-location  wheel-base  ...    engine-size  \
0  convertible          rwd           front        88.6  ...            130   
1  convertible          rwd           front        88.6  ...            130   
2    hatchback          rwd           front        94.5  ...            152   
3        sedan          fwd           front        99.8  ...            109   
4        sedan          4wd           front        99.4  ...            136   

   fuel-system  bore  stroke compression-ratio horsepower  peak-rpm city-mpg  \
0         mpfi  3.47    2.68               9.0        111      5000       21   
1         mpfi  3.47    2.68               9.0        111      5000       21   
2         mpfi  2.68    3.47               9.0        154      5000       19   
3         mpfi  3.19     3.4              10.0        102      5500       24   
4         mpfi  3.19     3.4               8.0        115      5500       18   

  highway-mpg  price  
0          27  13495  
1          27  16500  
2          26  16500  
3          30  13950  
4          22  17450  

[5 rows x 26 columns]

Hinweis: Der Datensatz hat viele Spalten, so dass diese in der Darstellung mit einem Backslash \ umgebrochen werden.

Gleich noch eine weitere Ausgabe dataSet.info(), die uns etwas über die Beschaffenheit der importierten Daten verrät:

In : dataSet.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
symboling            205 non-null int64
normalized-losses    205 non-null object
make                 205 non-null object
fuel-type            205 non-null object
aspiration           205 non-null object
num-of-doors         205 non-null object
body-style           205 non-null object
drive-wheels         205 non-null object
engine-location      205 non-null object
wheel-base           205 non-null float64
length               205 non-null float64
width                205 non-null float64
height               205 non-null float64
curb-weight          205 non-null int64
engine-type          205 non-null object
num-of-cylinders     205 non-null object
engine-size          205 non-null int64
fuel-system          205 non-null object
bore                 205 non-null object
stroke               205 non-null object
compression-ratio    205 non-null float64
horsepower           205 non-null object
peak-rpm             205 non-null object
city-mpg             205 non-null int64
highway-mpg          205 non-null int64
price                205 non-null object
dtypes: float64(5), int64(5), object(16)
memory usage: 41.7+ KB

Einige Spalten entsprechen hinsichtlich des Datentypes nicht der Erwartung. Für die Spalten ‘horsepower’ und ‘peak-rpm’ würde ich eine Ganzzahl (Integer) erwarten, für ‘price’ hingegen eine Fließkommazahl (Float), allerdings sind die drei Spalten als Object deklariert. Mit Trick 17 im Data Science, der Anzeige der Minimum- und Maximum-Werte einer zu untersuchenden Datenreihe, kommen wir dem Übeltäter schnell auf die Schliche:

dataSet['horsepower'].min()
Out: '100'

dataSet['horsepower'].max()
Out: '?'

Datenbereinigung

Für eine Regressionsanalyse benötigen wir nummerische Werte (intervall- oder ratioskaliert), diese möchten wir auch durch richtige Datentypen-Deklaration herstellen. Nun wird eine Konvertierung in den gewünschten Datentyp jedoch an den (mit ‘?’ aufgefüllten) Datenlücken scheitern.

Schauen wir uns doch einmal die Datenreihen an, in denen in der Spalte ‘peak-rpm’ Fragezeichen stehen:

dataSet[dataSet['peak-rpm'] == '?'][['engine-type', 'num-of-cylinders']]
Out: 
    engine-type num-of-cylinders
130         ohc             four
131         ohc             four

Zwei Datenreihen sind vorhanden, bei denen ‘peak-rpm’ mit einem ‘?’ aufgefüllt wurde. Nun könnten wir diese Datenreihen einfach rauslöschen. Oder mit sinnvollen (im Sinne von wahrscheinlichen) Werten auffüllen. Vermutlichen haben beide Einträge – beide sind OHC-Motoren mit 4 Zylindern – eine ähnliche Drehzahl-Angabe wie vergleichbare Motoren. Mit folgendem Quellcode, gruppieren wir die Spalten ‘engine-type’ und ‘num-of-cylinders’ und bilden für diese Klassen den arithmetischen Mittelwert (.mean()) für die ‘peak-rpm’.

dataSet_rpm = dataSet[dataSet['peak-rpm'] != '?'][['engine-type', 'num-of-cylinders','peak-rpm']]
dataSet_rpm['peak-rpm'] = dataSet_rpm['peak-rpm'].astype(float)
dataSet_rpm_grouped = dataSet_rpm.groupby(['engine-type', 'num-of-cylinders'])
dataSet_rpm_grouped['peak-rpm'].mean()

Und schauen wir uns das Ergebnis an:

dataSet_rpm_grouped['peak-rpm'].mean()
Out: 
engine-type  num-of-cylinders
dohc         four                5700.000000 -- 
             six                 5050.000000
dohcv        eight               5750.000000
l            four                4668.181818
             three               5100.000000
ohc          five                5081.818182
             four                5155.468750
             six                 4821.428571
ohcf         four                4775.000000
             six                 5900.000000
ohcv         eight               4625.000000
             six                 5212.500000
             twelve              5000.000000
rotor        two                 6000.000000
Name: peak-rpm, dtype: float64

Ein Vier-Zylinder-OHC-Motor hat demnach durchschnittlich einen Drehzahl-Peak von 5155 Umdrehungen pro Minute. Ohne nun (fahrlässigerweise) auf die Verteilung in dieser Klasse zu achten, nehmen wir einfach diesen Schätzwert, um die zwei fehlende Datenpunkte zu ersetzen.

Wir möchten jedoch die Original-Daten erhalten und legen ein neues DataSet (dataSet_c) an, in welches wir die Korrekturen vornehmen:

dataSet_c = dataSet.copy()   # das "c"-Anhängsel steht für "corrected"

Nun können wir die fehlenden Peak-RPM-Einträge mit unserem Schätzwert ersetzen:

dataSet_c.loc[dataSet_c['peak-rpm'] == '?', 'peak-rpm'] = 5155

Was bei einer Drehzahl-Angabe noch funktionieren mag, ist für anderen Spalten bereits etwas schwieriger: Die beiden Spalten ‘price’ und ‘horsepower’ sind ebenfalls vom Typ Object, da sie ‘?’ enthalten. Verzichten wir einfach auf die betroffenen Zeilen:

dataSet_c = dataSet_c[dataSet_c['price'] != '?']                    # entsprechende Zeilen herausfiltern
dataSet_c['price'] = dataSet_c['price'].astype(float)               # Typ-Konvertierung zu Float

dataSet_c = dataSet_c[dataSet_c.horsepower != '?']                  # entsprechende Zeilen herausfiltern
dataSet_c['horsepower'] = dataSet_c['horsepower'].astype(float)     # Typ-Konvertierung in Int

Datenvisualisierung mit Pandas

Wir wollen uns nicht lange vom eigentlichen Ziel ablenken, dennoch nutzen wir die Visualisierungsfähigkeiten der Pandas-Library (welche die Matplotlib inkludiert), um uns dann die Anzahlen an Einträgen nach Hersteller der Fahrzeuge (Spalte ‘make’) anzeigen zu lassen:

dataSet_grouped_make = dataSet_c.groupby('make')
dataSet_grouped_make['make'].count().plot(kind = 'bar', figsize = (10, 10))
plt.show()    # Besser jedes Plot abschließen! Auch wenn es in Pandas entstanden ist.

Oder die durchschnittliche PS-Zahl nach Hersteller:

(dataSet_c.groupby('make'))['horsepower'].mean().plot(kind = 'barh',
                                                      title = 'Mean Horsepower',
                                                      figsize = (10, 10))
plt.show()

Vorbereitung der Regressionsanalyse

Nun kommen wir endlich zur Regressionsanalyse, die wir mit Scikit-Learn umsetzen möchten. Die Regressionsanalyse können wir nur mit intervall- oder ratioskalierten Datenspalten betreiben, daher beschränken wir uns auf diese. Die “price”-Spalte nehmen wir jedoch heraus und setzen sie als unsere Zielgröße fest.

""" ----- Vorbereitung für die Regressionsanalyse ----- """
cols_ratio = ['horsepower', 'wheel-base', 'length', 'width', 'height', 'curb-weight', 'engine-size', 'compression-ratio', 'city-mpg', 'highway-mpg']
cols_target = ['price']

dataSet_ratio = dataSet_c.loc[:, cols_ratio]
dataSet_target = dataSet_c[cols_target]

Interessant ist zudem die Betrachtung vorab, wie die einzelnen nummerischen Attribute untereinander korrelieren. Dafür nehmen wir auch die ‘price’-Spalte wieder in die Betrachtung hinein und hinterlegen auch eine Farbskala mit dem Preis (höhere Preise, hellere Farben).

grr = pd.plotting.scatter_matrix(dataSet_c[cols_target + cols_ratio]
                                 ,c = dataSet_target
                                 ,figsize=(15, 15)
                                 ,marker = 'o'
                                 ,hist_kwds={'bins' : 20}
                                 ,s = 60
                                 ,alpha = 0.8)
plt.show()

Die lineare Korrelation ist hier sehr interessant, da wir auch nur eine lineare Regression beabsichtigen.

Wie man in dieser Scatter-Matrix recht gut erkennen kann, scheinen einige Größen-Paare nahezu perfekt zu korrelieren, andere nicht.

Korrelation…

  • …nahezu perfekt linear: highway-mpg vs city-mpg (mpg = Miles per Gallon)
  • … eher nicht gegeben: highway-mpg vs height
  • … nicht linear, dafür aber nicht-linear: highway-mpg vs price

Nun, wir wollen den Preis eines Fahrzeuges vorhersagen, wenn wir eine andere quantitative Größe gegeben haben. Auf den Preis bezogen, erscheint mir die Motorleistung (Horsepower) einigermaßen linear zu korrelieren. Versuchen wir hier die lineare Regression und setzen somit die Spalte ‘horsepower’ als X und ‘price’ als y fest.

X = dataSet_ratio[['horsepower']] # doppelte [], da eine Liste von Spalten zu übergeben ist
y = dataSet_c[cols_target]

Die gängige Konvention ist übrigens, X groß zu schreiben, weil hier auch mehrere x-Dimensionen enthalten sein dürfen (multivariate Regression). y hingegen, ist stets nur eine Zielgröße (eine Dimension).

Die lineare Regression ist ein überwachtes Verfahren des maschinellen Lernens, somit müssen wir unsere Prädiktionsergebnisse mit Test-Daten testen, die nicht für das Training verwendet werden dürfen. Scitkit-Learn (oder kurz: sklearn) bietet hierfür eine Funktion an, die uns das Aufteilen der Daten abnimmt:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size = 0.3,     # 70% der Daten für das Training
                                                    random_state = None) # bei Bedarf kann hier "dem Zufall auf die Sprünge geholfen" werden

Zu beachten ist dabei, dass die Daten vor dem Aufteilen in Trainings- und Testdaten gut zu durchmischen sind. Auch dies übernimmt die train_test_split-Funktion für uns, nur sollte man im Hinterkopf behalten, dass die Ergebnisse (auf Grund der Zufallsauswahl) nach jedem Durchlauf immer wieder etwas anders aussehen.

Lineare Regression mit Scikit-Learn

Nun kommen wir zur Durchführung der linearen Regression mit Scitkit-Learn, die sich in drei Zeilen trainieren lässt:

""" ----- Lineare Regressionsanalyse ------- """

from sklearn.linear_model import LinearRegression   # importieren der Klasse

lr = LinearRegression()                             # instanziieren der Klasse

lr.fit(X_train, y_train)                            # trainieren

Aber Vorsicht! Bevor wir eine Prädiktion durchführen, wollen wir festlegen, wie wir die Güte der Prädiktion bewerten wollen. Die gängigsten Messungen für eine lineare Regression sind der MSE und R².

MSE = \frac{\sum_{i=1}^n (y_i - \hat{y_i})^2}{n}

Ein großer MSE ist schlecht, ein kleiner gut.

R^2 = 1 - \frac{MSE}{Var(y)}= \frac{\frac{1}{n} \cdot \sum_{i=1}^n (y_i - \hat{y_i})^2}{\frac{1}{n} \cdot \sum_{i=1}^n (y_i - \hat{\mu_y})^2}

Ein kleines R² ist schlecht, ein großes R² gut. Ein R² = 1.0 wäre theoretisch perfekt (da der Fehler = 0.00 wäre), jedoch in der Praxis unmöglich, da dieser nur bei absolut perfekter Korrelation auftreten würde. Die Klasse LinearRegression hat eine R²-Messmethode implementiert (score(x, y)).

print('------ Lineare Regression -----')
print('Funktion via sklearn: y = %.3f * x + %.3f' % (lr.coef_[0], lr.intercept_))
print("Alpha: {}".format(lr.intercept_))
print("Beta: {}".format(lr.coef_[0]))
print("Training Set R² Score: {:.2f}".format(lr.score(X_train, y_train)))
print("Test Set R² Score: {:.2f}".format(lr.score(X_test, y_test)))
print("\n")

Die Ausgabe (ein Beispiel!):

------ Lineare Regression -----
Funktion via sklearn: y = 170.919 * x + -4254.701     # Die Funktion ist als y = 171 * x - 4254.7
Alpha: [-4254.70114803]                               # y-Achsenschnitt bei x = 0
Beta: [ 170.91919086]                                 # Steigung der Gerade
Training Set R² Score: 0.62                           
Test Set R² Score: 0.73

Nach jedem Durchlauf ändert sich mit der Datenaufteilung (train_test_split()) das Modell etwas und auch R² schwankt um eine gewisse Bandbreite. Berauschend sind die Ergebnisse dabei nicht, und wenn wir uns die Regressionsgerade einmal ansehen, wird auch klar, warum:

plt.figure(figsize=(10,10))
plt.scatter(X_train, y_train, color = 'blue')                 # Blaue Punkte sind Trainingsdaten
plt.scatter(X_test, y_test, color = 'green')                  # Grüne Punkte sind Testdaten
plt.plot(X_train, lr.predict(X_train), color = 'red')         # Hier ensteht die Gerade (x, y) = (x, lr.predict(x)
plt.xlabel(X_train.columns[0])
plt.ylabel(cols_target[0])
plt.show()

Bei kleineren Leistungsbereichen, etwa bis 100 PS, ist die Preis-Varianz noch annehmbar gering, doch bei höheren Leistungsbereichen ist die Spannweite deutlich größer. (Nachträgliche Anmerkung vom 06.05.2018: relativ betrachtet, bleibt der Fehler über alle Wertebereiche ungefähr gleich [relativer Fehler]. Die absoluten Fehlerwerte haben jedoch bei größeren x-Werten so eine Varianz der möglichen y-Werte, dass keine befriedigenden Prädiktionen zu erwarten sind.)

Egal wie wir eine Gerade in diese Punktwolke legen, wir werden keine befriedigende Fehlergröße erhalten.

Nehmen wir einmal eine andere Spalte für X, bei der wir vor allem eine nicht-lineare Korrelation erkannt haben: “highway-mpg”

X = dataSet_ratio[['highway-mpg']]
y = dataSet_c[cols_target]

Wenn wir dann das Training wiederholen:

------ Lineare Regression -----
Funktion via sklearn: y = -868.787 * x + 40575.036
Alpha: [ 40575.03556055]
Beta: [-868.7869183]
Training Set R² Score: 0.49
Test Set R² Score: 0.40

Die R²-Werte sind nicht gerade berauschend, und das erklärt sich auch leicht, wenn wir die Trainings- und Testdaten sowie die gelernte Funktionsgerade visualisieren:

Die Gerade lässt sich nicht wirklich gut durch diese Punktwolke legen, da letztere eher eine Kurve als eine Gerade bildet. Im Grunde könnte eine Gerade noch einigermaßen gut in den Bereich von 22 bis 43 mpg passen und vermutlich annehmbare Ergebnisse liefern. Die Wertebereiche darunter und darüber jedoch verzerren zu sehr und sorgen zudem dafür, dass die Gerade auch innerhalb des mittleren Bereiches zu weit nach oben verschoben ist (ggf. könnte hier eine Ridge-/Lasso-Regression helfen).

Richtig gute Vorhersagen über nicht-lineare Verhältnisse können jedoch nur mit einer nicht-linearen Regression erreicht werden.

Nicht-lineare Regression mit Scikit-Learn

Nicht-lineare Regressionsanalysen erlauben es uns, nicht-lineare korrelierende Werte-Paare als Funktion zu erlernen. Im folgenden Scatter-Plot sehen wir zum einen die gewohnte lineare Regressionsgerade (y = a * x + b) in rot, eine polinominale Regressionskurve dritten Grades (y = a * x³ + b * x² + c * x + d) in violet sowie einen Entscheidungsweg einer Entscheidungsbaum-Regression in gelb.

Nicht-lineare Regressionsanalysen passen sich dem Verlauf der Punktwolke sehr viel besser an und können somit in der Regel auch sehr gute Vorhersageergebnisse liefern. Ich ziehe hier nun jedoch einen Gedankenstrich, liefere aber den Quellcode für die lineare Regression als auch für die beiden nicht-linearen Regressionen mit:

Python Script Regression via Scikit-Learn

Weitere Anmerkungen

  • Bibliotheken wie Scitkit-Learn erlauben es, machinelle Lernverfahren schnell und unkompliziert anwenden zu können. Allerdings sollte man auch verstehen, wei diese Verfahren im Hintergrund mathematisch arbeiten. Diese Bibliotheken befreien uns also nicht gänzlich von der grauen Theorie.
  • Statt der “reinen” lineare Regression (LinearRegression()) können auch eine Ridge-Regression (Ridge()), Lasso-Regression (Lasso()) oder eine Kombination aus beiden als sogenannte ElasticNet-Regression (ElasticNet()). Bei diesen kann über Parametern gesteuert werden, wie stark Ausreißer in den Daten berücksichtigt werden sollen.
  • Vor einer Regression sollten die Werte skaliert werden, idealerweise durch Standardisierung der Werte (sklearn.preprocessing.StandardScaler()) oder durch Normierung (sklearn.preprocessing.Normalizer()).
  • Wir haben hier nur zwei-dimensional betrachtet. In der Praxis ist das jedoch selten ausreichend, auch der Fahrzeug-Preis ist weder von der Motor-Leistung, noch von dem Kraftstoffverbrauch alleine abhängig – Es nehmen viele Größen auf den Preis Einfluss, somit benötigen wir multivariate Regressionsanalysen.

Entropie – Und andere Maße für Unreinheit in Daten

Dieser Artikel ist Teil 1 von 4 der Artikelserie Maschinelles Lernen mit Entscheidungsbaumverfahren.

Hierarchische Klassifikationsmodelle, zu denen das Entscheidungsbaumverfahren (Decision Tree) zählt, zerlegen eine Datenmenge iterativ oder rekursiv mit dem Ziel, die Zielwerte (Klassen) im Rahmen des Lernens (Trainingsphase des überwachten Lernens) möglichst gut zu bereiningen, also eindeutige Klassenzuordnungen für bestimmte Eigenschaften in den Features zu erhalten. Die Zerlegung der Daten erfolgt über einen Informationsgewinn, der für die Klassifikation mit einem Maß der Unreinheit berechnet wird (im nächsten Artikel der Serie werden wir die Entropie berechnen!) Read more

Der Blick für das Wesentliche: Die Merkmalsselektion

In vielen Wissensbasen werden Datensätze durch sehr große Merkmalsräume beschrieben. Während der Generierung einer Wissensbasis wird versucht jedes mögliche Merkmal zu erfassen, um einen Datensatz möglichst genau zu beschreiben. Dabei muss aber nicht jedes Merkmal einen nachhaltigen Wert für das Predictive Modelling darstellen. Ein Klassifikator arbeitet mit reduziertem Merkmalsraum nicht nur schneller, sondern in der Regel auch weitaus effizienter. Oftmals erweist sich ein automatischer Ansatz der Merkmalsselektion besser, als ein manueller, da durchaus Zusammenhänge existieren können, die wir selbst so nicht identifizieren können.

Die Theorie: Merkmalsselektion

Automatische Merkmalsselektionsverfahren unterscheiden 3 verschiedene Arten: Filter, Wrapper und Embedded Methods. Einen guten Überblick über Filter- und Wrapper-Verfahren bieten Kumari et al. in ihrer Arbeit “Filter versus wrapper feature subset selection in large dimensionality micro array: A review” (Download als PDF).

Der Filter-Ansatz bewertet die Merkmale unabhängig des Klassifikators. Dabei werden univariate und multivariate Methoden unterschieden. Univariate Methoden bewerten die Merkmale separat, während der multivariate Ansatz mehrere Merkmale kombiniert. Für jedes Merkmal bzw. jedes Merkmalspaar wird ein statistischer Wert berechnet, der die Eignung der Merkmale für die Klassifikation angibt. Mithilfe eines Schwellwertes werden dann geeignete Merkmale herausgefiltert. Der Filter-Ansatz bietet eine schnelle und, aufgrund der geringen Komplexität, leicht skalierbare Lösung für die Merkmalsselektion. Der Nachteil von Filter-Selektoren besteht in der Missachtung der Abhängigkeiten zwischen den Merkmalen. So werden redundante Merkmale ähnlich bewertet und verzerren später die Erfolgsrate des Klassifikators. Bekannte Beispiele für Filter-Selektoren sind unter anderem die Euklidische Distanz und der Chi-2-Test.

Der Wrapper-Ansatz verbindet die Merkmalsbewertung mit einem Klassifikator. Innerhalb des Merkmalsraumes werden verschiedene Teilmengen von Merkmalen generiert und mithilfe eines trainierten Klassifikators getestet. Um alle möglichen Teilmengen des Merkmalsraumes zu identifizieren, wird der Klassifikator mit einem Suchalgorithmus kombiniert. Da der Merkmalsraum mit Zunahme der Anzahl der Merkmale exponentiell steigt, werden heuristische Suchmethoden für die Suche nach optimalen Teilmengen genutzt. Im Gegensatz zu den Filtern können hier redundante Merkmale abgefangen werden. Die Nutzung eines Klassifikators zur Bewertung der Teilmengen ist zugleich Vor- und Nachteil. Da die generierte Teilmenge auf einen speziellen Klassifikator zugeschnitten wird, ist nicht gewährleistet, dass die Menge auch für andere Klassifikatoren optimal ist. Somit ist dieser Ansatz zumeist abhängig vom gewählten Klassifikator. Zudem benötigt der Wrapper-Ansatz eine viel höhere Rechenzeit. Wrapper-Selektoren werden beispielsweise durch Genetische Algorithmen und Sequentielle Forward/Backward-Selektoren vertreten.

Embedded-Ansätze stellen eine Sonderform der Wrapper-Methode da. Allerdings werden Merkmalssuche und Klassifikatoren-Training nicht getrennt. Die Suche der optimalen Teilmenge ist hier im Modelltraining eingebettet. Dadurch liefern Embedded-Ansätze die gleichen Vorteile wie die Wrapper-Methoden, während die Rechenzeit dabei erheblich gesenkt werden kann. Der reduzierte Merkmalsraum ist aber auch hier vom jeweiligen Klassifikator abhängig. Klassifikatoren, die den Embedded-Ansatz ermöglichen sind beispielsweise der Random-Forest oder die Support-Vector-Maschine.

Entwicklungsgrundlage

Analog zum letzten Tutorial wird hier Python(x,y) und die Datenbasis „Human Activity Recognition Using Smartphones“ genutzt. Die Datenbasis beruht auf erfassten Sensordaten eines Smartphones während speziellen menschlichen Aktivitäten: Laufen, Treppen hinaufsteigen, Treppen herabsteigen, Sitzen, Stehen und Liegen. Auf den Aufzeichnungen von Gyroskop und Accelerometer wurden mehrere Merkmale erhoben. Die Datenmenge, alle zugehörigen Daten und die Beschreibung der Daten sind frei verfügbar.

(https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones)

Alle Daten liegen im Textformat vor. Für ein effizienteres Arbeiten mit der Datenbasis wurden diese im Vorfeld in das csv-Dateiformat überführt.

Python-Bibliotheken

Alle für das Data Mining relevanten Bibliotheken sind in Python(x,y) bereits enthalten. Für die Umsetzung werden folgende Bibliotheken genutzt:

import numpy as np
import pandas as pd

from sklearn.cross_validation import StratifiedKFold
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import f_classif, RFECV, SelectKBest
from sklearn.svm import SVC

Die Bibliotheken NumPy und Pandas unterstützen die Arbeit mit verschiedenen Datenstrukturen und scikit-learn umfasst alle Funktionen des maschinellen Lernens.

Daten vorbereiten

Vor der Anwendung der einzelnen Verfahren werden die Daten vorbereitet. Das Data Frame wird eingelesen, die Klassen in numerische Labels überführt und das Datenfeld in Merkmale (X) und Klassenspalte (y) separiert. Weiterhin wird die informationslose Spalte subject entfernt.

index = 0
selected_features = []

# reading database
data = pd.read_csv("data/measures.csv", sep = ';', decimal = ',')

# converting textual class labels to numeric classes like description
data = data.replace({'WALKING': 1, 'WALKING_UPSTAIRS': 2, 'WALKING_DOWNSTAIRS': 3,
              'SITTING': 4, 'STANDING': 5, 'LAYING': 6})

# drop subject column
data = data.drop('subject', 1)

# remove class column from data set
print "removing class column from training set.."
X = data.drop('activity', 1)
y = data['activity']

columns = X.columns.values.tolist()

1. Verfahren: RFECV

Der RFECV (Recursive Feature Elimination with Cross Validation) ist ein Vertreter des Wrapper-Ansatzes. In diesem Beispiel wird die Merkmalsselektion mit einem Support Vector Klassifikator kombiniert. Der RFECV berechnet ein Ranking über die einzelnen Merkmale. Dabei bestimmt der Selektor selbst die optimale Menge der Merkmale. Alle Merkmale mit Platz 1 im Ranking bilden den optimalen Merkmalsraum.

''' ########## METHOD 1: RFE with cross validation and SVC ########## '''
print "create classifier for feature selection.."
svc = SVC(kernel = 'linear')

# fit the feature selector
print "create the feature selector.."
rfecv = RFECV(estimator = svc, step = 1, cv = StratifiedKFold(y, 3), scoring = 'accuracy')
print "fit the selector for data set.."
rfecv.fit(X, y)

print "The estimated number of optimal features is: " + str(rfecv.n_features_)

# get the most importent features
feat_importence = zip(rfecv.ranking_, columns)

# prepare list of selected features for new DataFrame
for i in range(len(feat_importence)):
    if(feat_importence[i][0] == 1):#>= np.nanmean(rfecv.ranking_)):
        selected_features.append(feat_importence[i][1])
        print "added feature: " + str(feat_importence[i][1]) + ".."

2. Verfahren: Random Forest-Klassifikator

Der Random-Forest-Klassifikator gehört zu den Modellen, die einen Embedded-Ansatz ermöglichen. Während des Klassifikatoren-Trainings wird jedem Merkmal ein Wert zugeordnet. Je höher der Wert, desto bedeutsamer das Merkmal. Allerdings ist hier eine manuelle Filterung notwendig, da anders als beim RFECV kein internes Optimum ermittelt wird. Mithilfe eines geeigneten Schwellwertes können die zu wählenden Merkmale bestimmt werden. In diesem Beispiel werden alle Merkmale selektiert, die eine Wichtung größer dem Mittelwert erhalten.

''' ########## METHOD 2: Random Forrest Classifier Feat Importance ########## '''
print "create classifier for feature selection.."
rfc = RandomForestClassifier(n_estimators = 500, criterion = 'entropy', max_depth = 4)
rfc = rfc.fit(X, y)

# get the most importent features
feat_importence = zip(rfc.feature_importances_, columns)

# prepare list of selected features for new DataFrame
for i in range(len(feat_importence)):
    if(feat_importence[i][0] >= np.mean(rfc.feature_importances_)):
        selected_features.append(feat_importence[i][1])
        print "added feature: " + str(feat_importence[i][1]) + ".."

3. Verfahren: Select K Best

Das Select K Best-Verfahren gehört den Filter-Ansätzen an. Daher kommt hier anders als bei den anderen beiden Verfahren kein Klassifikator zum Einsatz. Auch in diesem Verfahren wird für jedes Merkmal ein Wert berechnet, der die Wichtigkeit des Merkmals beziffert. Für die Berechnung der Werte können verschiedene Methoden verwendet werden. In diesem Beispiel wird eine Varianzanalyse genutzt (Parameter f_classif). Auch hier wird mithilfe eines manuellen Schwellwertes der reduzierte Merkmalsraum bestimmt.

''' ########## METHOD 3: Select K Best Features ########## '''
print "create classifier for feature selection.."
skb = SelectKBest(f_classif)
skb = skb.fit(X, y)

# get the most importent features
feat_importence = zip(skb.scores_, columns)

# prepare list of selected features for new DataFrame
for i in range(len(feat_importence)):
    if(feat_importence[i][0] >= np.nanmean(skb.scores_)):
        selected_features.append(feat_importence[i][1])
        print "added feature: " + str(feat_importence[i][1]) + ".."

Ergebnisse

Für die Bewertung der einzelnen Selektionsverfahren werden die einzelnen Verfahren in den Data-Mining-Prozess (siehe vorheriges Tutorial: Einstieg in das maschinelle Lernen mit Python(x,y)) integriert. Die nachfolgende Tabelle veranschaulicht die Ergebnisse der Klassifikation der einzelnen Verfahren.

 

Selektionsverfahren

Anzahl der Merkmale

Erfolgsrate Klassifikation

Ohne

561

93,96%

RFECV

314

94,03%

Random Forest

118

90,43%

Select K Best

186

92,30%

 

Durch den RFECV konnte das Ergebnis der Klassifikation leicht verbessert werden. Die anderen Selektionsverfahren, die auch deutlich weniger Merkmale nutzen, verschlechtern das Ergebnis sogar. Dies liegt vor allem an der manuellen Regulierung des Schwellwertes.