Training eines Neurons mit dem Gradientenverfahren

Dies ist Artikel 3 von 6 der Artikelserie –Einstieg in Deep Learning.

Das Training von neuronalen Netzen erfolgt nach der Forward-Propagation über zwei Schritte:

  1. Fehler-Rückführung über aller aktiver Neuronen aller Netz-Schichten, so dass jedes Neuron “seinen” Einfluss auf den Ausgabefehler kennt.
  2. Anpassung der Gewichte entgegen den Gradienten der Fehlerfunktion

Beide Schritte werden in der Regel zusammen als Backpropagation bezeichnet. Machen wir erstmal einen Schritt vor und betrachten wir, wie ein Neuron seine Gewichtsverbindungen zu seinen Vorgängern anpasst.

Gradientenabstiegsverfahren

Der Gradientenabstieg ist ein generalisierbarer Algorithmus zur Optimierung, der in vielen Verfahren des maschinellen Lernens zur Anwendung kommt, jedoch ganz besonders als sogenannte Backpropagation im Deep Learning den Erfolg der künstlichen neuronalen Netze erst möglich machen konnte.

Der Gradientenabstieg lässt sich vom Prinzip her leicht erklären: Angenommen, man stünde im Gebirge im dichten Nebel. Das Tal, und somit der Weg nach Hause, ist vom Nebel verdeckt. Wohin laufen wir? Wir können das Ziel zwar nicht sehen, tasten uns jedoch so heran, dass unser Gehirn den Gradienten (den Unterschied der Höhen beider Füße) berechnet, somit die Steigung des Bodens kennt und sich entgegen dieser Steigung unser Weg fortsetzt.

Konkret funktioniert der Gradientenabstieg so: Wir starten bei einem zufälligen Theta \theta (Random Initialization). Wir berechnen die Ausgabe (Forwardpropogation) und vergleichen sie über eine Verlustfunktion (z. B. über die Funktion Mean Squared Error) mit dem tatsächlich korrekten Wert. Auf Grund der zufälligen Initialisierung haben wir eine nahe zu garantierte Falschheit der Ergebnisse und somit einen Verlust. Für die Verlustfunktion berechnen wir den Gradienten für gegebene Eingabewerte. Voraussetzung dafür ist, dass die Funktion ableitbar ist. Wir bewegen uns entgegen des Gradienten in Richtung Minimum der Verlustfunktion. Ist dieses Minimum (fast) gefunden, spricht man auch davon, dass der Lernalgorithmus konvergiert.

Das Gradientenabstiegsverfahren ist eine Möglichkeit der Gradientenverfahren, denn wollten wir maximieren, würden wir uns entlang des Gradienten bewegen, was in anderen Anwendungen sinnvoll ist.

Ob als “Cost Function” oder als “Loss Function” bezeichnet, in jedem Fall ist es eine “Error Function”, aber auf die Benennung kommen wir später zu sprechen. Jedenfalls versuchen wir die Fehlerrate zu senken! Leider sind diese Funktionen in der Praxis selten so einfach konvex (zwei Berge mit einem Tal dazwischen).

 

Aber Achtung: Denn befinden wir uns nur zwischen zwei Bergen, finden wir das Tal mit Sicherheit über den Gradienten. Befinden wir uns jedoch in einem richtigen Gebirge mit vielen Bergen und Tälern, gilt es, das richtige Tal zu finden. Bei der Optimierung der Gewichtungen von künstlichen neuronalen Netzen wollen wir die besten Gewichtungen finden, die uns zu den geringsten Ausgaben der Verlustfunktion führen. Wir suchen also das globale Minimum unter den vielen (lokalen) Minima.

Programmier-Beispiel in Python

Nachfolgend ein Beispiel des Gradientenverfahrens zur Berechnung einer Regression. Wir importieren numpy und matplotlib.pyplot und erzeugen uns künstliche Datenpunkte:

import numpy as np
import matplotlib.pyplot as plt


X = 2 * np.random.rand(1000, 1)
y = 5 + 2 * X + np.random.randn(1000, 1)

plt.figure(figsize = (15, 15))
plt.plot(X, y, "b.")
plt.axis([0, 2, 0, 15])
plt.show()

Nun wollen wir einen Lernalgorithmus über das Gradientenverfahren erstellen. Im Grunde haben wir hier es bereits mit einem linear aktivierten Neuron zutun:

Bei der linearen Regression, die wir durchführen wollen, nehmen wir zwei-dimensionale Daten (wobei wir die Regression prinzipiell auch mit x-Dimensionen durchführen können, dann hätte unser Neuron weitere Eingänge). Wir empfangen einen Bias (w_0) der stets mit einer Eingangskonstante multipliziert und somit als Wert erhalten bleibt. Der Bias ist das Alpha \alpha in einer Schulmathe-tauglichen Formel wie y = \beta \cdot x + \alpha.

Beta \beta ist die Steigung, der Gradient, der Funktion.

Sowohl \alpha als auch \beta sind uns unbekannt, versuchen wir jedoch über die Betrachtung unserer Prädiktion durch Berechnung der Formel \^y = \beta \cdot x + \alpha und den darauffolgenden Abgleich mit dem tatsächlichen y herauszufinden. Anfangs behaupten wir beispielsweise einfach, sowohl \beta als auch \alpha seien 0.00. Folglich wird \^y = \beta \cdot x + \alpha ebenfalls gleich 0.00 sein und die Fehlerfunktion (Loss Function) wird maximal sein. Dies war der erste Durchlauf des Trainings, die sogenannte erste Epoche!

Die Epochen (Durchläufe) und dazugehörige Fehlergrößen. Wenn die Fehler sinken und mit weiteren Epochen nicht mehr wesentlich besser werden, heißt es, das der Lernalogorithmus konvergiert.

Als Fehlerfunktion verwenden wir bei der Regression die MSE-Funktion (Mean Squared Error):

MSE = \sum(\^y_i - y_i)^2

Um diese Funktion wird sich nun alles drehen, denn diese beschreibt den Fehler und gibt uns auch die Auskunft darüber, ob wie stark und in welche Richtung sie ansteigt, so dass wir uns entgegen der Steigung bewegen können. Wer die Regeln der Ableitung im Kopf hat, weiß, dass die Ableitung der Formel leichter wird, wenn wir sie vorher auf halbe Werte runterskalieren. Da die Proportionen dabei erhalten bleiben und uns quadrierte Fehlerwerte unserem menschlichen Verstand sowieso nicht so viel sagen (unser Gehirn denkt nunmal nicht exponential), stört das nicht:

MSE = \frac{\frac{1}{2} \cdot \sum(\^y_i - y_i)^2}{n}

MSE = \frac{\frac{1}{2} \cdot \sum(w^T \cdot x_i - y_i)^2}{n}

Wenn die Mathematik der partiellen Ableitung (Ableitung einer Funktion nach jedem Gradienten) abhanden gekommen ist, bitte nochmal folgende Regeln nachschlagen, um die nachfolgende Ableitung verstehen zu können:

  • Allgemeine partielle Ableitung
  • Kettenregel

Ableitung der MSD-Funktion nach dem einen Gewicht w bzw. partiell nach jedem vorhandenen w_j:

\frac{\partial}{\partial w_j}MSE = \frac{\partial}{\partial w} \frac{1}{2} \cdot \sum(\^y - y_i)^2

\frac{\partial}{\partial w_j}MSE = \frac{\partial}{\partial w} \frac{1}{2} \cdot \sum(w^T \cdot x_i - y_i)^2

\frac{\partial}{\partial w_j}MSE = \frac{2}{n} \cdot \sum(w^T \cdot x_i - y_i) \cdot x_{ij}

Woher wir das x_{ij} am Ende her haben? Das ergibt sie aus der Kettenregel: Die äußere Funktion wurde abgeleitet, so wurde aus \frac{1}{2} \cdot \sum(w^T \cdot x_i - y_i)^2 dann \frac{2}{n} \cdot \sum(w^T \cdot x_i - y_i). Jedoch muss im Sinne eben dieser Kettenregel auch die innere Funktion abgeleitet werden. Da wir nach w_j ableiten, bleibt nur x_ij erhalten.

Damit können wir arbeiten! So kompliziert ist die Formel nun auch wieder nicht: \frac{2}{n} \cdot \sum(w^T \cdot x_i - y_i) \cdot x_{ij}

Mit dieser Formel können wir unsere Gewichte an den Fehler anpassen: (f\nabla ist der Gradient der Funktion!)

w_j = w_j - \nabla MSE(w_j)

Initialisieren der Gewichtungen

Die Gewichtungen \alpha und \beta müssen anfänglich mit Werten initialisiert werden. In der Regression bietet es sich an, die Gewichte anfänglich mit 0.00 zu initialisieren.

Bei vielen neuronalen Netzen, mit nicht-linearen Aktivierungsfunktionen, ist das jedoch eher ungünstig und zufällige Werte sind initial besser. Gut erprobt sind normal-verteilte Zufallswerte.

Lernrate

Nur eine Kleinigkeit haben wir bisher vergessen: Wir brauchen einen Faktor, mit dem wir anpassen. Hier wäre der Faktor 1. Das ist in der Regel viel zu groß. Dieser Faktor wird geläufig als Lernrate (Learning Rate) \eta (eta) bezeichnet:

w_j = w_j - \eta \cdot \nabla MSE(w_j)

Die Lernrate \eta ist ein Knackpunkt und der erste Parameter des Lernalgorithmus, den es anzupassen gilt, wenn das Training nicht konvergiert.

Die Lernrate \eta darf nicht zu groß klein gewählt werden, da das Training sonst zu viele Epochen benötigt. Ungeduldige erhöhen die Lernrate möglicherweise aber so sehr, dass der Lernalgorithmus im Minimum der Fehlerfunktion vorbeiläuft und diesen stets überspringt. Hier würde der Algorithmus also sozusagen konvergieren, weil nicht mehr besser werden, aber das resultierende Modell wäre weit vom Optimum entfernt.

Beginnen wir mit der Implementierung als Python-Klasse:

class LinearRegressionGD(object):
    
    def __init__(self, eta = 0.0001, n_iter = 50):
        
        self.eta = eta                  # Lernrate
        self.n_iter = n_iter            # Epochen
        
    def fit(self, X, y):
        
        self.w_ = np.zeros(1 + X.shape[1]) # <- 1 für den Bias + alle weiteren Columns für die Steigungen
                                           # In diesem Beispiel self.w_ = [0.0, 0.] = [Alpha, Beta]
                                           # Dabei initialisieren wir Alpha und Beta mit 0.00-Werten
        
        self.cost_ = []                    # Cost Function (der Verlauf der Loss Function MSE)
        
        for i in range(self.n_iter):       # Für jede Epoche...
            
            output = self.predict(X)       # Die Funktion x * Beta + Alpha ausrechnen  
                                           # Batch-Verfahren, denn wir trainieren jede Epoche mit allen X-Werten

            errors = y.flatten() - output  # y_predicted - y_real

            mse = ((errors ** 2).sum() / 2.0) / len(X)  # Loss Function MSE
            
            self.cost_.append(mse)                      # Loss Function wird Teil der Cost Function
            
            self.w_[1:] += self.eta * X.T.dot(errors)   # Anpassen des Gewichts Beta (und falls es sie gäbe: aller weiteren Gewichte)
            self.w_[0] += self.eta * errors.sum()      # Anpassen des Gewichts Alpha
            
            
            #print(output)
            #print(errors)
            #print("Beta  -> ", self.w_[1:])
            #print("Alpha -> ", self.w_[0])                   
            
        return self
        
    def predict(self, X):
        return np.dot(X, self.w_[1:]) + self.w_[0]      # y = x * Beta + Alpha

Die Klasse sollte so funktionieren, bevor wir sie verwenden, sollten wir die Input-Werte standardisieren:

x_std = (X - X.mean()) / X.std()
y_std = (y - y.mean()) / y.std()

Bei diesem Beispiel mit künstlich erzeugten Werten ist das Standardisieren bzw. das Fehlen des Standardisierens zwar nicht kritisch, aber man sollte es sich zur Gewohnheit machen. Testweise es einfach mal weglassen 🙂

Kommen wir nun zum Einsatz der Klasse, die die Regression via Gradientenabstieg absolvieren soll:

lrGD = LinearRegressionGD()  # Instanziieren
lrGD.fit(x_std, y_std)       # Trainieren (das ".fit()" entspricht dem Wording von scikit-learn, ".train()" wäre mir sonst lieber 🙂

Was tut diese Instanz der Klasse LinearRegressionGD nun eigentlich?

Bildlich gesprochen, legt sie eine Gerade auf den Boden des Koordinatensystems, denn die Gewichtungen werden mit 0.00 initialisiert, y ist also gleich 0.00, egal welche Werte in x enthalten sind. Der Fehler ist dann aber sehr groß (sollte maximal sein, im Vergleich zu zukünftigen Epochen). Die Gewichte werden also angepasst, die Gerade somit besser in die Punktwolke platziert. Mit jeder Epoche wird die Gerade erneut in die Punktwolke gelegt, der Gesamtfehler (über alle x, da wir es hier mit dem Batch-Verfahren zutun haben) berechnet, die Werte angepasst… bis die vorgegebene Zahl an Epochen abgelaufen ist.

Schauen wir uns das Ergebnis des Trainings an:

plt.figure(figsize = (15, 15))
plt.plot(x_std, y_std, "b.")                                # Scatter, wie zuvor!
plt.plot(x_std, lrGD.predict(x_std), "r-", linewidth = 5)   # Regressionsgerade als Linie
plt.show()

Die Linie sieht passend aus, oder? Da wir hier nicht zu sehr in die Theorie der Regressionsanalyse abdriften möchten, lassen wir das testen und prüfen der Akkuratesse mal aus, hier möchte ich auf meinen Artikel Regressionsanalyse in Python mit Scikit-Learn verweisen.

Prüfen sollten wir hingegen mal, wie schnell der Lernalgorithmus mit der vorgegebenen Lernrate eta konvergiert:

plt.figure(figsize = (15, 15))
plt.plot(range(1, lrGD.n_iter + 1), lrGD.cost_)
plt.xlabel('Epochen')
plt.ylabel('Summe quadrierter Abweichungen')
plt.show()

Hier die Verlaufskurve der Cost Function:

Die Kurve zeigt uns, dass spätestens nach 40 Epochen kaum noch Verbesserung (im Sinne der Gesamtfehler-Minimierung) erreicht wird.

Wichtige Hinweise

Natürlich war das nun nur ein erster kleiner Einstieg und wer es verstanden hat, hat viel gewonnen. Denn erst dann kann man sich vorstellen, wie ein einzelnen Neuron eines künstlichen neuronalen Netzes grundsätzlich trainiert werden kann.

Folgendes sollte noch beachtet werden:

  • Lernrate \eta:
    Die Lernrate ist ein wichtiger Parameter. Wer das Programmier-Beispiel bei sich zum Laufen gebracht hat, einfach mal die Lernrate auf Werte zwischen 10.00 und 0.00000001 setzen, schauen was passiert 🙂
  • Globale Minima vs lokale Minima:
    Diese lineare zwei-dimensionale Regression ist ziemlich einfach. Neuronale Netze sind hingegen komplexer und haben nicht einfach nur eine simple konvexe Fehlerfunktion. Hier gibt es mehrere Hügel und Täler in der Fehlerfunktion und die Gefahr ist groß, in einem lokalen, nicht aber in einem globalen Minimum zu landen.
  • Stochastisches Gradientenverfahren:
    Wir haben hier das sogenannte Batch-Verfahren verwendet. Dieses ist grundsätzlich besser als die stochastische Methode. Denn beim Batch verwenden wir den gesamten Stapel an x-Werten für die Fehlerbestimmung. Allerdings ist dies bei großen Daten zu rechen- und speicherintensiv. Dann werden kleinere Unter-Stapel (Sub-Batches) zufällig aus den x-Werten ausgewählt, der Fehler daraus bestimmt (was nicht ganz so akkurat ist, wie als würden wir den Fehler über alle x berechnen) und der Gradient bestimmt. Dies ist schon Rechen- und Speicherkapazität, erfordert aber meistens mehr Epochen.

Buchempfehlung

Die folgenden zwei Bücher haben mir bei der Erstellung dieses Beispiels geholfen und kann ich als hilfreiche und deutlich weiterführende Lektüre empfehlen:

 

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional) Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques for Building Intelligent Systems

 

Machine Learning mit Python – Minimalbeispiel

Maschinelles Lernen (Machine Learning) ist eine Gebiet der Künstlichen Intelligenz (KI, bzw. AI von Artificial Intelligence) und der größte Innovations- und Technologietreiber dieser Jahre. In allen Trendthemen – wie etwa Industrie 4.0 oder das vernetzte und selbstfahrende Auto – spielt die KI eine übergeordnete Rolle. Beispielsweise werden in Unternehmen viele Prozesse automatisiert und auch Entscheidungen auf operativer Ebene von einer KI getroffen, zum Beispiel in der Disposition (automatisierte Warenbestellungen) oder beim Festsetzen von Verkaufspreisen.

Aufsehen erregte Google mit seiner KI namens AlphaGo, einem Algortihmus, der den Weltmeister im Go-Spiel in vier von fünf Spielen besiegt hatte. Das Spiel Go entstand vor mehr als 2.500 Jahren in China und ist auch heute noch in China und anderen asiatischen Ländern ein alltägliches Gesellschaftsspiel. Es wird teilweise mit dem westlichen Schach verglichen, ist jedoch einfacher und komplexer zugleich (warum? das wird im Google Blog erläutert). Machine Learning kann mit einer Vielzahl von Methoden umgesetzt werden, werden diese Methoden sinnvoll miteinander kombiniert, können durchaus äußerst komplexe KIs erreicht werden.  Der aktuell noch gängigste Anwendungsfall für Machine Learning ist im eCommerce zu finden und den meisten Menschen als die Produktvorschläge von Amazon.com bekannt: Empfehlungsdienste (Recommender System).

Klassifikation via K-Nearest Neighbour Algorithmus

Ein häufiger Zweck des maschinellen Lernens ist, technisch gesehen, die Klassifikation von Daten in Abhängigkeit von anderen Daten. Es gibt mehrere ML-Algorithmen, die eine Klassifikation ermöglichen, die wohl bekannteste Methode ist der k-Nearest-Neighbor-Algorithmus (Deutsch:„k-nächste-Nachbarn”), häufig mit “kNN” abgekürzt. Das von mir interviewte FinTech StartUp Number26 nutzt diese Methodik beispielsweise zur Klassifizierung von Finanztransaktionen.

Um den Algorithmus Schritt für Schritt aufbauen zu können, müssen wir uns

Natürlich gibt es in Python, R und anderen Programmiersprachen bereits fertige Bibliotheken, die kNN bereits anbieten, denen quasi nur Matrizen übergeben werden müssen. Am bekanntesten ist wohl die scikit-learn Bibliothek für Python, die mehrere Nächste-Nachbarn-Modelle umfasst. Mit diesem Minimalbeispiel wollen wir den grundlegenden Algorithmus von Grund auf erlernen. Wir wollen also nicht nur machen, sondern auch verstehen.

Vorab: Verwendete Bibliotheken

Um den nachstehenden Python-Code (Python 3.x, sollte allerdings auch mit Python 2.7 problemlos funktionieren) ausführen zu können, müssen folgende Bibliotheken  eingebunden werden:

import numpy as numpy
import matplotlib.pyplot as pyplot
from mpl_toolkits.mplot3d import Axes3D #Erweiterung für die Matplotlib - siehe: http://matplotlib.org/mpl_toolkits/

Übrigens: Eine Auflistung der wohl wichtigsten Pyhton-Bibliotheken für Datenanalyse und Datenvisualisierung schrieb ich bereits hier.

Schritt 1 – Daten betrachten und Merkmale erkennen

Der erste Schritt ist tatsächlich der aller wichtigste, denn erst wenn der Data Scientist verstanden hat, mit welchen Daten er es zu tun hat, kann er die richtigen Entscheidungen treffen, wie ein Algorithmus richtig abgestimmt werden kann und ob er für diese Daten überhaupt der richtige ist.

In der Realität haben wir es oft mit vielen verteilten Daten zu tun, in diesem Minimalbeispiel haben wir es deutlich einfacher: Der Beispiel-Datensatz enthält Informationen über Immobilien über vier Spalten.

  • Quadratmeter: Größe der nutzbaren Fläche der Immobilie in der Einheit m²
  • Wandhoehe: Höhe zwischen Fußboden und Decke innerhalb der Immobilie in der Einheit m
  • IA_Ratio: Verhältnis zwischen Innen- und Außenflächen (z. B. Balkon, Garten)
  • Kategorie: Enthält eine Klassifizierung der Immobilie als “Haus”, “Wohnung” und “Büro”

 

beispiel-txt-file

[box]Hinweis für Python-Einsteiger: Die Numpy-Matrix ist speziell für Matrizen-Kalkulationen entwickelt. Kopfzeilen oder das Speichern von String-Werten sind für diese Datenstruktur nicht vorgesehen![/box]

def readDataSet(filename):

    fr = open(filename)                 # Datei-Stream vorbereiten

    numberOfLines = len(fr.readlines()) # Anzahl der Zeilen ermitteln

    returnMat = numpy.zeros((numberOfLines-1,3)) # Eine Numpy-Matrix in Höhe der Zeilenanzahl (minus Kopfzeile) und in Breite der drei Merkmal-Spalten

    classLabelVector = [] # Hier werden die tatsächlichen Kategorien (Haus, Wohnung, Büro) vermerkt
    classColorVector = [] # Hier werden die Kategorien über Farben vermerkt (zur späteren Unterscheidung im 3D-Plot!)
    
    #print(returnMat)   # Ggf. mal die noch die ausge-null-te Matrix anzeigen lassen (bei Python 2.7: die Klammern weglassen!)
    
    fr = open(filename) # Datei-Stream öffnen
    index = 0
    
    for line in fr.readlines():  # Zeile für Zeile der Datei lesen
        if index != 0:           # Kopfzeile überspringen
            line = line.strip()
            listFromLine = line.split('\t') # Jede Zeile wird zur temporären Liste (Tabulator als Trennzeichen)

            returnMat[index-1,:] = listFromLine[1:4] #Liste in die entsprechende Zeile der Matrix überführen
            
            classLabel = listFromLine[4]  # Kategorie (Haus, Wohnung, Büro) für diese Zeile merken
            
            if classLabel == "Buero":
                color = 'yellow'
            elif classLabel == "Wohnung":
                color = 'red'
            else:
                color = 'blue'
                        
            classLabelVector.append(classLabel) # Kategorie (Haus, Wohnung, Büro) als Text-Label speichern
            classColorVector.append(color)      # Kategorie als Farbe speichern (Büro = gelb, Wohnung = rot, Haus = Blau)
        
        index += 1


return returnMat,classLabelVector, classColorVector

Aufgerufen wird diese Funktion dann so:

dataSet, classLabelVector, classColorVector = readDataSet("K-Nearst_Neighbour-DataSet.txt")

Die Matrix mit den drei Spalten (Quadratmeter, Wandhohe, IA_Ratio) landen in der Variable “dataSet”.

Schritt 2 – Merkmale im Verhältnis zueinander perspektivisch betrachten

Für diesen Anwendungsfall soll eine Klassifizierung (und gewissermaßen die Vorhersage) erfolgen, zu welcher Immobilien-Kategorie ein einzelner Datensatz gehört. Im Beispieldatensatz befinden sich vier Merkmale: drei Metriken und eine Kategorie (Wohnung, Büro oder Haus). Es stellt sich zunächst die Frage, wie diese Merkmale zueinander stehen. Gute Ideen der Datenvisualisierung helfen hier fast immer weiter. Die gängigsten 2D-Visualisierungen in Python wurden von mir bereits hier zusammengefasst.

[box]Hinweis: In der Praxis sind es selten nur drei Dimensionen, mit denen Machine Learning betrieben wird. Das Feature-Engineering, also die Suche nach den richtigen Features in verteilten Datenquellen, macht einen wesentlichen Teil der Arbeit eines Data Scientists aus – wie auch beispielsweise Chief Data Scientist Klaas Bollhoefer (siehe Interview) bestätigt.[/box]

fig = pyplot.figure()
ax = fig.add_subplot(111)
ax.scatter(dataSet[:,0], dataSet[:,1], marker='o', color=classColorVector)
ax.set_xlabel("Raumflaeche in Quadratmeter")
ax.set_ylabel("Wandhohe")
ax.set_xlim(xmin=0)
ax.set_ylim(ymin=0)
pyplot.show()
fig = pyplot.figure()
ax = fig.add_subplot(111)
ax.scatter(dataSet[:,0], dataSet[:,2], marker='o', color=classColorVector)
ax.set_xlabel("Raumflaeche in Quadratmeter")
ax.set_ylabel("IA_Ratio")
ax.set_xlim(xmin=0)
ax.set_ylim(ymin=0)
pyplot.show()

Die beiden Scatter-Plots zeigen, das Häuser (blau) in allen Dimensionen die größte Varianz haben. Büros (gelb) können größer und höher ausfallen, als Wohnungen (rot), haben dafür jedoch tendenziell ein kleineres IA_Ratio. Könnten die Kategorien (blau, gelb, rot) durch das Verhältnis innerhalb von einem der beiden Dimensionspaaren in dem zwei dimensionalen Raum exakt voneinander abgegrenzt werden, könnten wir hier stoppen und bräuchten auch keinen kNN-Algorithmus mehr. Da wir jedoch einen großen Überschneidungsbereich in beiden Dimensionspaaren haben (und auch Wandfläche zu IA_Ratio sieht nicht besser aus),

Eine 3D-Visualisierung eignet sich besonders gut, einen Überblick über die Verhältnisse zwischen den drei Metriken zu erhalten: (die Werte wurden hier bereits normalisiert, liegen also zwischen 0,00 und 1,00)

3D Scatter Plot in Python [Matplotlib]
fig = pyplot.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(dataSet[:,0], dataSet[:,2], dataSet[:,1], marker='o', color=classColorVector)
ax.set_xlabel("Raumflaeche in Quadratmeter")
ax.set_ylabel("IA_Ratio")
ax.set_zlabel("Wandhoehe in Meter")
ax.set_xlim(xmin=0)
ax.set_ylim(ymin=0)
ax.set_zlim(zmin=0)
pyplot.show()

Es zeigt sich gerade in der 3D-Ansicht recht deutlich, dass sich Büros und Wohnungen zum nicht unwesentlichen Teil überschneiden und hier jeder Algorithmus mit der Klassifikation in Probleme geraten wird, wenn uns wirklich nur diese drei Dimensionen zur Verfügung stehen.

Schritt 3 – Kalkulation der Distanzen zwischen den einzelnen Punkten

Bei der Berechnung der Distanz in einem Raum hilft uns der Satz des Pythagoras weiter. Die zu überbrückende Distanz, um von A nach B zu gelangen, lässt sich einfach berechnen, wenn man entlang der Raumdimensionen Katheten aufspannt.

c = \sqrt{a^2+ b^2}

Die Hypotenuse im Raum stellt die Distanz dar und berechnet sich aus der Wurzel aus der Summe der beiden Katheten im Quadrat. Die beiden Katheten bilden sich aus der Differenz der Punktwerte (q, p) in ihrer jeweiligen Dimension.Bei mehreren Dimensionen gilt der Satz entsprechend:

Distanz = \sqrt{(q_1-p_1)^2+(q_2-p_2)^2+…+(q_n-p_n)^2}

Um mit den unterschiedlichen Werte besser in ihrer Relation zu sehen, sollten sie einer Normalisierung unterzogen werden. Dabei werden alle Werte einer Dimension einem Bereich zwischen 0.00 und 1.00 zugeordnet, wobei 0.00 stets das Minimum und 1.00 das Maximum darstellt.

NormWert = \frac{Wert - Min}{Wertspanne} = \frac{Wert - Min}{Max - Min}

$

def normalizeDataSet(dataSet):
    
    dataSet_n = numpy.zeros(numpy.shape(dataSet))     #[[ 0. 0. 0.]
                                                      # [ 0. 0. 0.]
                                                      # [ 0. 0. 0.]
                                                      # ..., 
                                                      # [ 0. 0. 0.]
                                                      # [ 0. 0. 0.]
                                                      # [ 0. 0. 0.]]
    
    minValues = dataSet.min(0)                        # [ 10. 2.6 0.]
    ranges = dataSet.max(0) - dataSet.min(0)          # [ 1775. 2.4 68.]
    
    minValues = dataSet.min(0)                        # [ 10. 2.6 0.]
    maxValues = dataSet.max(0)                        # [ 1785. 5. 68.]
 
    ranges = maxValues - minValues                    # [ 1775. 2.4 68.]
 
    rowCount = dataSet.shape[0]                       # 1039 
    
    # numpy.tile() wiederholt Sequenzen (hier:  [[ 10. 2.6 0. ], ..., [ 10. 2.6 0. ]]

    dataSet_n = dataSet - numpy.tile(minValues, (rowCount, 1))  #[[ 2.56000000e+02 9.00000000e-01 1.80000000e+01]
                                                                # [ 6.60000000e+01 2.00000000e-01 5.40000000e+01]
                                                                # [ 3.32000000e+02 1.50000000e-01 1.00000000e+01]
                                                                # ..., 
                                                                # [ 1.58000000e+02 6.00000000e-01 0.00000000e+00]
                                                                # [ 5.70000000e+01 1.00000000e-01 5.20000000e+01]
                                                                # [ 1.68000000e+02 2.00000000e-01 0.00000000e+00]]

    dataSet_n = dataSet_n / numpy.tile(ranges, (rowCount, 1))   #[[ 0.14422535 0.375 0.26470588]
                                                                # [ 0.0371831 0.08333333 0.79411765]
                                                                # [ 0.18704225 0.0625 0.14705882]
                                                                # ..., 
                                                                # [ 0.08901408 0.25 0.]
                                                                # [ 0.03211268 0.04166667 0.76470588]
                                                                # [ 0.09464789 0.08333333 0.]]

    #print(dataSet_n)
        
    return dataSet_n, ranges, minValues

Die Funktion kann folgendermaßen aufgerufen werden:

dataSet_n, ranges, minValues = normalizeDataSet(dataSet)

Schritt 4 & 5 – Klassifikation durch Eingrenzung auf k-nächste Nachbarn

Die Klassifikation erfolgt durch die Kalkulation entsprechend der zuvor beschriebenen Formel für die Distanzen in einem mehrdimensionalen Raum, durch Eingrenzung über die Anzahl an k Nachbarn und Sortierung über die berechneten Distanzen.

def classify(inX, dataSet, labels, k):

    rowCount = dataSet.shape[0]              # Anzahl an Zeilen bestimmen

    diffMat = numpy.tile(inX, (rowCount,1)) - dataSet # Berechnung der Katheten 
                                                      # (über tile() wird der Eingangsdatensatz über die Zeilenanzahl des dataSet vervielfacht,
                                                      # der dataSet davon substrahiert)
 
    sqDiffMat = diffMat**2                   # Quadrat der Katheten
    sqDistances = sqDiffMat.sum(axis=1)      # Aufsummieren der Differenzpaare
    distances = sqDistances**0.5             # Quadratwurzel über alle Werte
    sortedDistIndicies = distances.argsort() # Aufsteigende Sortierung
    
    classCount = {}
    
    #print("inX = %s, k = %s" % (inX, k))
    #print(sortedDistIndicies)
    
    for i in range(k):                                        # Eingrenzung auf k-Werte in der sortierten Liste 
        closest = labels[sortedDistIndicies[i]]               # Label (Kategorie [Büro, Wohnung, Haus] entsprechend der Sortierung aufnehmen
        classCount[closest] = classCount.get(closest, 0) + 1  # Aufbau eines Dictionary über die 
    
    sortedClassCount = sorted(classCount, key = classCount.get, reverse=True) # Absteigende Sortierung der gesammelten Labels in k-Reichweite
                                                                              # wobei die Sortierung über den Count (Value) erfolgt
    
    #print(classCount)       
    #print(sortedClassCount[0])
    
    return sortedClassCount[0]   # Liefere das erste Label zurück 
                                 # also das Label mit der höchsten Anzahl innerhalb der k-Reichweite

Über folgenden Code rufen wir die Klassifikations-Funktion auf und legen die k-Eingrenzung fest, nebenbei werden Fehler gezählt und ausgewertet. Hier werden der Reihe nach die ersten 30 Zeilen verarbeitet:

 errorCount = 0
    
 k = 5                             # k-Eingrenzung (hier: auf 5 Nachbarn einschränken)

 rowCount = dataSet_n.shape[0]     # Anzahl der Zeilen im gesamten Datensatz
 
 numTestVectors = 30               # Datensätze 0 - 29 werden zum testen von k verwendet,
                                   # die Datensätze ab Zeile 30 werden zur Klassifikation verwendet
 
 for i in range(0, numTestVectors): # Aufruf des Klassifikators von 0 bis 29 
    
    result = classify(dataSet_n[i,:], dataSet_n[numTestVectors:rowCount,:], classLabelVector[numTestVectors:rowCount], k)
    
    print("%s - the classifier came back with: %s, the real answer is: %s" %(i, result, classLabelVector[i]))
 
    if (result != classLabelVector[i]):
       errorCount += 1.0

 print("Error Count: %d" % errorCount)

Nur 30 Testdatensätze auszuwählen ist eigentlich viel zu knapp bemessen und hier nur der Übersichtlichkeit geschuldet. Besser ist für dieses Beispiel die Auswahl von 100 bis 300 Datensätzen. Die Ergebnisse sind aber bereits recht ordentlich, allerdings fällt dem Algorithmus – wie erwartet – noch die Unterscheidung zwischen Wohnungen und Büros recht schwer.

0 – klassifiziert wurde: Buero, richtige Antwort: Buero
1 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
2 – klassifiziert wurde: Buero, richtige Antwort: Buero
3 – klassifiziert wurde: Buero, richtige Antwort: Buero
4 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
5 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
6 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
7 – klassifiziert wurde: Wohnung, richtige Antwort: Buero
8 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
9 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
10 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
11 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
12 – klassifiziert wurde: Buero, richtige Antwort: Buero
13 – klassifiziert wurde: Wohnung, richtige Antwort: Buero
14 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
15 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
16 – klassifiziert wurde: Buero, richtige Antwort: Buero
17 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
18 – klassifiziert wurde: Haus, richtige Antwort: Haus
19 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
20 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
21 – klassifiziert wurde: Buero, richtige Antwort: Buero
22 – klassifiziert wurde: Buero, richtige Antwort: Buero
23 – klassifiziert wurde: Buero, richtige Antwort: Buero
24 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
25 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
26 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
27 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
28 – klassifiziert wurde: Wohnung, richtige Antwort: Wohnung
29 – klassifiziert wurde: Buero, richtige Antwort: Buero
Error Count: 2

Über weitere Tests wird deutlich, dass k nicht zu niedrig und auch nicht zu hoch gesetzt werden darf.

 Datensätze  k Fehler
 150 1   25
 150 3   23
 150 5   21
 150 20   26

Ein nächster Schritt wäre die Entwicklung eines Trainingprogramms, dass die optimale Konfiguration (k-Eingrenzung, Gewichtung usw.) ermittelt.

Fehlerraten herabsenken

Die Fehlerquote ist im Grunde niemals ganz auf Null herabsenkbar, sonst haben wir kein maschinelles Lernen mehr, sondern könnten auch feste Regeln ausmachen, die wir nur noch einprogrammieren (hard-coding) müssten. Wer lernt, macht auch Fehler! Dennoch ist eine Fehlerquote von 10% einfach zu viel für die meisten Anwendungsfälle. Was kann man hier tun?

  1. Den Algorithmus verbessern (z. B. optimale k-Konfiguration und Gewichtung finden)
  2. mehr Merkmale finden (= mehr Dimensionen)
  3. mehr Daten hinzuziehen (gut möglich, dass alleine dadurch z. B. Wohnungen und Büros besser unterscheidbar werden)
  4. einen anderen Algorithmus probieren (kNN ist längst nicht für alle Anwendungen ideal!)

Das Problem mit den Dimensionen

Theoretisch kann kNN mit undenklich vielen Dimensionen arbeiten, allerdings steigt der Rechenaufwand damit auch ins unermessliche. Der k-nächste-Nachbar-Algorithmus ist auf viele Daten und Dimensionen angewendet recht rechenintensiv.

In der Praxis hat nicht jedes Merkmal die gleiche Tragweite in ihrer Bedeutung für die Klassifikation und mit jeder weiteren Dimension steigt auch die Fehleranfälligkeit, insbesondere durch Datenfehler (Rauschen). Dies kann man sich bei wenigen Dimensionen noch leicht bildlich vorstellen, denn beispielsweise könnten zwei Punkte in zwei Dimensionen nahe beieinander liegen, in der dritten Dimension jedoch weit auseinander, was im Ergebnis dann eine lange Distanz verursacht. Wenn wir beispielsweise 101 Dimensionen berücksichtigen, könnten auch hier zwei Punkte in 100 Dimensionen eng beieinander liegen, läge jedoch in der 101. Dimension (vielleicht auch auf Grund eines Datenfehlers) eine lange Distanz vor, wäre die Gesamtdistanz groß. Mit Gewichtungen könnten jedoch als wichtiger einzustufenden Dimensionen bevorzugt werden und als unsicher geltende Dimensionen entsprechend entschärft werden.

Je mehr Dimensionen berücksichtigt werden sollen, desto mehr Raum steht zur Verfügung, so dass um wenige Datenpunkte viel Leerraum existiert, der dem Algorithmus nicht weiterhilft. Je mehr Dimensionen berücksichtigt werden, desto mehr Daten müssen zu Verfügung gestellt werden, im exponentiellen Anstieg – Wo wir wieder beim Thema Rechenleistung sind, die ebenfalls exponentiell ansteigen muss.

Weiterführende Literatur


Machine Learning in Action

 


Introduction to Machine Learning with Python

Einführung in Data Science: Grundprinzipien der Datenanalyse mit Python