Posts

Process Mining Tools – Artikelserie

Process Mining ist nicht länger nur ein Buzzword, sondern ein relevanter Teil der Business Intelligence. Process Mining umfasst die Analyse von Prozessen und lässt sich auf alle Branchen und Fachbereiche anwenden, die operative Prozesse haben, die wiederum über operative IT-Systeme erfasst werden. Um die zunehmende Bedeutung dieser Data-Disziplin zu verstehen, reicht ein Blick auf die Entwicklung der weltweiten Datengenerierung an. Waren es 2010 noch 2 Zettabytes (ZB), sind laut Statista für das Jahr 2020 mehr als 50 ZB an Daten zu erwarten. Für 2025 wird gar mit einem Bestand von 175 ZB gerechnet.

Hier wird das Datenvolumen nach Jahren angezeit

Abbildung 1 zeigt die Entwicklung des weltweiten Datenvolumen (Stand 2018). Quelle: https://www.statista.com/statistics/871513/worldwide-data-created/

Warum jetzt eigentlich Process Mining?

Warum aber profitiert insbesondere Process Mining von dieser Entwicklung? Der Grund liegt in der Unordnung dieser Datenmenge. Die Herausforderung der sich viele Unternehmen gegenübersehen, liegt eben genau in der Analyse dieser unstrukturierten Daten. Hinzu kommt, dass nahezu jeder Prozess Datenspuren in Informationssystemen hinterlässt. Die Betrachtung von Prozessen auf Datenebene birgt somit ein enormes Potential, welches in Anbetracht der Entwicklung zunehmend an Bedeutung gewinnt.

Was war nochmal Process Mining?

Process Mining ist eine Analysemethodik, welche dazu befähigt, aus den abgespeicherten Datenspuren der Informationssysteme eine Rekonstruktion der realen Prozesse zu schaffen. Diese Prozesse können anschließend als Prozessflussdiagramm dargestellt und ausgewertet werden. Die klassischen Anwendungsfälle reichen von dem Aufspüren (Discovery) unbekannter Prozesse, über einen Soll-Ist-Vergleich (Conformance) bis hin zur Anpassung/Verbesserung (Enhancement) bestehender Prozesse. Mittlerweile setzen viele Firmen darüber hinaus auf eine Integration von RPA und Data Science im Process Mining. Und die Analyse-Tiefe wird zunehmen und bis zur Analyse einzelner Klicks reichen, was gegenwärtig als sogenanntes „Task Mining“ bezeichnet wird.

Hier wird ein typischer Process Mining Workflow dargestellt

Abbildung 2 zeigt den typischen Workflow eines Process Mining Projektes. Oftmals dient das ERP-System als zentrale Datenquelle. Die herausgearbeiteten Event-Logs werden anschließend mittels Process Mining Tool visualisiert.

In jedem Fall liegt meistens das Gros der Arbeit auf die Bereitstellung und Vorbereitung der Daten und der Transformation dieser in sogenannte „Event-Logs“, die den Input für die Process Mining Tools darstellen. Deshalb arbeiten viele Anbieter von Process Mining Tools schon länger an Lösungen, um die mit der Datenvorbereitung verbundenen zeit -und arbeitsaufwendigen Schritte zu erleichtern. Während fast alle Tool-Anbieter vorgefertigte Protokolle für Standardprozesse anbieten, gehen manche noch weiter und bieten vollumfängliche Plattform Lösungen an, welche eine effiziente Integration der aufwendigen ETL-Prozesse versprechen. Der Funktionsumfang der Process Mining Tools geht daher mittlerweile deutlich über eine reine Darstellungsfunktion hinaus und deckt ggf. neue Trends sowie optimierte Einsteigerbarrieren mit ab.

Motivation dieser Artikelserie

Die Motivation diesen Artikel zu schreiben liegt nicht in der Erläuterung der Methode des Process Mining. Hierzu gibt es mittlerweile zahlreiche Informationsquellen. Eine besonders empfehlenswerte ist das Buch „Process Mining“ von Will van der Aalst, einem der Urväter des Process Mining. Die Motivation dieses Artikels liegt viel mehr in der Betrachtung der zahlreichen Process Mining Tools am Markt. Sehr oft erlebe ich als Data-Consultant, dass Process Mining Projekte im Vorfeld von der Frage nach dem „besten“ Tool dominiert werden. Diese Fragestellung ist in Ihrer Natur sicherlich immer individuell zu beantworten. Da individuelle Projekte auch einen individuellen Tool-Einsatz bedingen, beschäftige ich mich meist mit einem großen Spektrum von Process Mining Tools. Daher ist es mir in dieser Artikelserie ein Anliegen einen allgemeingültigen Überblick zu den üblichen Process Mining Tools zu erarbeiten. Dabei möchte ich mich nicht auf persönliche Erfahrungen stützen, sondern die Tools anhand von Testdaten einem praktischen Vergleich unterziehen, der für den Leser nachvollziehbar ist.

Um den Umfang der Artikelserie zu begrenzen, werden die verschiedenen Tools nur in Ihren Kernfunktionen angewendet und verglichen. Herausragende Funktionen oder Eigenschaften der jeweiligen Tools werden jedoch angemerkt und ggf. in anderen Artikeln vertieft. Das Ziel dieser Artikelserie soll sein, dem Leser einen ersten Einblick über die am Markt erhältlichen Tools zu geben. Daher spricht dieser Artikel insbesondere Einsteiger aber auch Fortgeschrittene im Process Mining an, welche einen Überblick über die Tools zu schätzen wissen und möglicherweise auch mal über den Tellerand hinweg schauen mögen.

Die Tools

Die Gruppe der zu betrachteten Tools besteht aus den folgenden namenhaften Anwendungen:

Die Auswahl der Tools orientiert sich an den „Market Guide for Process Mining 2019“ von Gartner. Aussortiert habe ich jene Tools, mit welchen ich bisher wenig bis gar keine Berührung hatte. Diese Auswahl an Tools verspricht meiner Meinung nach einen spannenden Einblick von verschiedene Process Mining Tools am Markt zu bekommen.

Die Anwendung in der Praxis

Um die Tools realistisch miteinander vergleichen zu können, werden alle Tools die gleichen Datengrundlage benutzen. Die Datenbasis wird folglich über die gesamte Artikelserie hinweg für die Darstellungen mit den Tools genutzt. Ich werde im nächsten Artikel explizit diese Datenbasis kurz erläutern.

Das Ziel der praktischen Untersuchung soll sein, die Beispieldaten in die verschiedenen Tools zu laden, um den enthaltenen Prozess zu visualisieren. Dabei möchte ich insbesondere darauf achten wie bedienbar und anpassungsfähig/flexibel die Tools mir erscheinen. An dieser Stelle möchte ich eindeutig darauf hinweisen, dass dieser Vergleich und seine Bewertung meine Meinung ist und keineswegs Anspruch auf Vollständigkeit beansprucht. Da der Markt in Bewegung ist, behalte ich mir ferner vor, diese Artikelserie regelmäßig anzupassen.

Die Kriterien

Neben der Bedienbarkeit und der Anpassungsfähigkeit der Tools möchte ich folgende zusätzliche Gesichtspunkte betrachten:

  • Bedienbarkeit: Wie leicht gehen die Analysen von der Hand? Wie einfach ist der Einstieg?
  • Anpassungsfähigkeit: Wie flexibel reagiert das Tool auf meine Daten und Analyse-Wünsche?
  • Zukunftsfähigkeit: Wie steht es um Machine Learning, ETL-Modeller oder Task Mining?
  • Integrationsfähigkeit: Welche Schnittstellen bringt das Tool mit? Läuft es auch oder nur in der Cloud?
  • Skalierbarkeit: Ist das Tool dazu in der Lage, auch große und heterogene Daten zu verarbeiten?
  • Preisgestaltung: Nach welchem Modell bestimmt sich der Preis?

Die Datengrundlage

Die Datenbasis bildet ein Demo-Datensatz der von Celonis für die gesamte Artikelserie netter Weise zur Verfügung gestellt wurde. Dieser Datensatz bildet einen Versand Prozess vom Zeitpunkt des Kaufes bis zur Auslieferung an den Kunden ab. In der folgenden Abbildung ist der Soll Prozess abgebildet.

Hier wird die Variante 1 der Demo Daten von Celonis als Grafik dargestellt

Abbildung 4 zeigt den gewünschten Versand Prozess der Datengrundlage von dem Kauf des Produktes bis zur Auslieferung.

Die Datengrundlage besteht aus einem 60 GB großen Event-Log, welcher lokal in einer Microsoft SQL Datenbank vorgehalten wird. Da diese Tabelle über 600 Mio. Events beinhaltet, wird die Datengrundlage für die Analyse der einzelnen Tools auf einen Ausschnitt von 60 Mio. Events begrenzt. Um die Performance der einzelnen Tools zu testen, wird jedoch auf die gesamte Datengrundlage zurückgegriffen. Der Ausschnitt der Event-Log Tabelle enthält 919 verschiedene Varianten und weisst somit eine ausreichende Komplexität auf, welche es mit den verschiednene Tools zu analysieren gilt.

Folgender Veröffentlichungsplan gilt für diese Artikelserie und wird mit jeder Veröffentlichung verlinkt:

  1. Celonis (erscheint demnächst)
  2. PAFnow (erscheint demnächst)
  3. MEHRWERK (erscheint demnächst)
  4. Lana Labs (erscheint demnächst)
  5. Signavio (erscheint demnächst)
  6. Process Gold (erscheint demnächst)
  7. Fluxicon Disco (erscheint demnächst)
  8. Aris Process Mining der Software AG (erscheint demnächst)

Wie Process Mining 2020 Ihre erfolgreiche Geschäftstransformation 2020 sicherstellt

Fehlende Informationen über bestehende Prozesse sorgen dafür, dass 70% aller großen Transformationsprojekte und rund 50% aller RPA-Projekte scheitern. Grund hierfür sind mangelndes Verständnis der bestehenden Prozesse und die fehlende Verbindung zwischen der Ermittlung, Visualisierung, Analyse und Ausführung vorhandener Daten. Durch den Einsatz von Process Mining-Technologie erhalten Sie die notwendigen Informationen, die Transparenz und die quantifizierbaren Zahlen, die zur Verbesserung der Ende-zu-Ende-Prozesse für eine nachhaltige Transformation erforderlich sind.


Read this article in English:

Six ways process mining in 2020 can save your business transformation

 


Process Mining im Jahr 2020

Ihr Datenabdruck

Betrachtet man die oben genannten Zahlen (von McKinsey bzw. Ernst & Young (EY)) wird eines deutlich: Die Digitalisierung von Produkten und Dienstleistungen zwingt Unternehmen aller Größen und Branchen dazu, ihre bestehenden Geschäftsmodelle und Prozesse drastisch zu überdenken. Umso wichtiger wird Process Mining. Die Technik nutzt eindeutige Daten – sozusagen den geschäftlichen Fingerabdruck Ihres Unternehmens – um automatisch alle bestehenden Geschäftsprozesse zusammenzufügen und digital darzustellen.

Dieser digitale Nachweis ermöglicht es uns, die Funktionsweise von Prozessen (sowohl in konventioneller als auch variabler Ausführung) bis hin zu einzelnen Prozessinstanzen genau zu visualisieren. Mit anderen Worten: Process Mining deckt verborgene oder inaktive Prozesse auf, legt versteckten Mehrwert offen und ermöglicht ein sofortiges Verständnis.

Mit den richtigen Prozessen zum Erfolg

Mithilfe standardisierter und konfigurierbarer Benachrichtigungen und KPIs können Sie die unmittelbaren Auswirkungen von Prozessänderungen besser nachvollziehen. Auf diese Weise werden Fehlerraten gesenkt und das Vertrauen in das Unternehmen gestärkt. Und das ist noch nicht alles: Jeder, vom neuen Mitarbeiter bis zur C-Suite, kann die Prozesse seiner Organisation besser visualisieren, verstehen und erklären. Dies stellt sicher, dass Prozesse langfristig erfolgreich verändert werden.

Das Potenzial von Prozessen voll ausschöpfen

Im Geschäftsleben ist nicht nur die Kommunikation von entscheidender Bedeutung, sondern auch die Reaktion auf Probleme mit passenden Lösungen. Die täglichen Unternehmensabläufe – gemeint sind die zugrunde liegenden Prozesse – bilden die Verbindung zur eingesetzten Geschäftstechnologie, vom Process Mining bis zur robotergestützten „Prozessautomatisierung“. Ohne ein Verständnis für die Prozesse und tatsächliche Funktionsweise eines Unternehmens ist die Technologie jedoch redundant. Prozesse sind sozusagen das Lebenselixier eines Unternehmens.

 

Process Mining: Ihr Differenzierungsmerkmal

Integration transformativer, digitaler Technologien

Process Mining bietet weit mehr als Erkennen, Visualisieren und Analysieren: Anhand Ihrer vorhandenen Daten können Sie die Ausführung von Prozessen automatisch in Echtzeit überwachen. Diese einfache Bewertung per Mausklick ermöglicht ein sofortiges Verständnis komplexer Prozesse. Innerhalb von Transformationsprojekten, die aufgrund ihrer Natur tief greifende Änderungen in geschäftlichen und organisatorischen Aktivitäten erfordern, liefert Process Mining die visuelle Übersicht und ermöglicht sofortige Maßnahmen.

Dieser selbsttragende Ansatz führt zu nachhaltigen Ergebnissen und schafft eine Prozesskultur innerhalb des gesamten Unternehmens. Experten für digitale Transformation und Excellence können mithilfe eines solch Ansatzes leichter Prozesse nutzen, ihre Projekte und Programme untermauern und Herausforderungen bei Verhaltensänderungen bewältigen. Hierzu zählen eine leichtere Integration transformativer, digitaler Technologien, bessere operative Agilität und Flexibilität, optimierte Unternehmensführung und -kultur sowie Mitarbeiterförderung.

Drei Wege zu einem erfolgreichen Transformationsprojekt mithilfe von Process Mining:

  • Sie benötigen 100% operative Transparenz: Um all Ihre Transaktionen darstellen zu können, ist vollständige Prozesstransparenz erforderlich. Sie ermöglicht den direkten Vergleich zwischen dem Ist-Zustand und dem geplanten Prozessverlauf. Diese Konformitätsprüfung kann automatisch die Probleme und Aufgaben mit der höchsten Priorität identifizieren und die Hauptursachen für Diskrepanzen zwischen Soll und Ist hervorheben, sodass sofort Maßnahmen ergriffen werden können.
  • Sie müssen Kosten senken und die Effizienz steigern: Untersuchungen von Signavio zeigen, dass fast 60% der Unternehmen aufgrund von Ineffizienzen bei den Prozessen unnötige zusätzliche Kosten tragen mussten. Process Mining kann Ihrem Unternehmen helfen, die Kosten zu senken, da es Schwachstellen und Abweichungen entdeckt und gleichzeitig aufzeigt, welche Prozesse ausbremsen – einschließlich der Engpässe und Ineffizienzen, die sich auf den Umsatz auswirken. Process Mining bietet die Möglichkeit zu Prozessverbesserungen und vorausschauenden Strategien und somit zu positiven geschäftlichen Veränderungen.
  • Sie müssen den Einkaufs- und Verkaufszyklus optimieren: Dauert der Versand zu lange? Welcher Lieferant unterstützt Sie unzureichend? Welcher Lieferant ist der Beste? Process Mining ist Ihr One Click Trick, um Antworten auf solche Fragen zu finden und zu ermitteln, welche Einheiten die beste Leistung erbringen und welche nur Zeit und Geld verschwenden.

Process Mining und Robotic Process Automation (RPA)

Die vorteilhafte Kombination beider Technologien

RPA (Robotic Process Automation) ermöglicht die Automatisierung manueller, sich wiederholender und fehleranfälliger Aufgaben. Dies setzt jedoch voraus, dass Prozessverantwortliche genau wissen, wie und mit welchem Ziel sie Software-Roboter einsetzen und ihre Leistung kontinuierlich messen. Daher bietet die Kombination aus RPA und Process Mining Unternehmen viele Vorteile: Über die gesamte RPA-Initiative hinweg können sie die Leistung und die Vorteile ihrer Software-Roboter messen und sie bestmöglich für ihr Szenario einsetzen.

Upgrade robotergestützter Automatisierung

Mit diesen Erkenntnissen eignet sich Process Mining hervorragend als Vorbereitung für die Prozessautomatisierung: Um die Vorteile der robotergesteuerten Automatisierung vollumfänglich auszuschöpfen, müssen Organisationen nicht nur ihre bestehenden Systeme verstehen, sondern auch Möglichkeiten zur Automatisierung ermitteln. Process Mining-Werkzeuge bieten während des gesamten RPA-Zyklus wertvolle Erkenntnisse über die Prozessdaten: von der Festlegung der Strategie bis hin zu kontinuierlichen Verbesserungen und Innovationen.

 Drei Wege zu einem erfolgreichen RPA Lifecycle-Projekt mithilfe von Process Mining:

  • Sie benötigen Prozessübersichten nach bestimmten Kriterien: Um einen vollständigen Überblick über die Ende-zu-Ende-Prozesse zu erhalten, müssen Prozesse mit hohem ROI identifiziert werden, die sich für die RPA-Implementierung eignen. Auf diese Weise können Sie den optimalen Prozessfluss/-pfad ermitteln und redundante Prozesse aufdecken, die Ihnen vor der Automatisierung möglicherweise gar nicht bewusst waren.
  • Sie sind unsicher, wie Sie die Mensch-Maschine-Zyklen am besten optimieren: Indem Sie den optimalen Prozessfluss/-pfad ermitteln, können Sie auch ineffiziente Mensch-Roboter-Übergaben besser erkennen und erhalten quantifizierbare Daten zu den finanziellen Auswirkungen jedes „digitalen Mitarbeiters“ oder Prozesses. Auf diese Weise können Sie die Arbeit von Mensch und Roboter in Bezug auf Genauigkeit, Effizienz, Kosten und Projektdauer vergleichen.
  • Sie müssen besser verstehen, wie RPA ältere Prozesse und Systeme unterstützt: Durch die Integration in Cloud- und Web-/App-basierte Services können Unternehmen dank RPA auch ihre Legacy-Systeme weiter nutzen. Auf diese Weise lassen sich Legacy-Funktionen mit modernen Tools, Anwendungen und sogar mobilen Apps verbinden. Effizienz und Effektivität werden in allen wichtigen Unternehmensabteilungen, einschließlich HR, Finanzwesen und Legal, verbessert.

Process Mining für ein besseres Kundenerlebnis und Mapping

Denken Sie Kundenzufriedenheit neu

Die Integration von Process Mining in andere Technologien ist auch für eine bessere Prozessqualität und das Wachstum am Markt von entscheidender Bedeutung. So steht beim Prozessmanagement bereits die Kundenbindung im Fokus. Ein erfolgreiches Prozessmanagement ermöglicht es Unternehmen, den Kunden im Rahmen von umfassenden Effektivitätszielen zu geringstmöglichen Kosten zu begeistern, anstatt einseitige Effizienzziele zu verfolgen.

Darüber hinaus bietet Process Mining im Rahmen des Customer Journey Mapping (CJM) – insbesondere in Verknüpfung mit den zugrunde liegenden Prozessen – die Möglichkeit, bessere geschäftliche Erkenntnisse zu erzielen und diese Prozesse mit einer Outside-In-Kundenperspektive zu betrachten. Durch die Kombination aus Process Mining mit einer kundenorientierten Sicht auf die geschäftlichen Tätigkeiten wird die Kundenzufriedenheit zu einem strategischen Faktor für den geschäftlichen Erfolg.

Das volle Potenzial von Prozessen nutzen

Setzen Sie bei Process Mining-Initiativen auf Signavio Process Intelligence und erfahren Sie in unserem kostenlosen Whitepaper Erfolgreiches Process Mining mit Signavio Process Intelligence, wie Ihr Unternehmen den versteckten Mehrwert von Prozessen für sich nutzen, neue Ideen generieren und Zeit und Geld sparen kann.

Im Interview mit Henny Selig zu Process Mining: “Für den Kunden sind solche Aha-Momente toll“

Henny Selig ist Spezialistin für Process Mining und verfügt über umfassende Erfahrung bei der Umsetzung von Process-Mining-Lösungen und der Unterstützung von Kunden bei der Prozessanalyse. Als Solution Owner bei Signavio ist Henny auch mit der Implementierung von Signavio Process Intelligence bei Unternehmen jeglicher Größe bestens vertraut. In diesem Interview geht Henny auf die Herausforderungen und Chancen von Process Mining ein. 


Read this interview in English:

Looking for the ‘aha moment’: An expert’s insights on process mining

 


Henny, wie würdest du das Konzept „Process Mining“ erklären?

Process Mining ist eine Kombination aus Datenanalyse und Business Process Management. Nahezu jeder Geschäftsprozess stützt sich auf IT-Systeme und hinterlässt digitale Spuren. Aus diesen IT-Systemen extrahieren wir alle Daten, die einen bestimmten Prozess betreffen, visualisieren sie und werten diese dann mithilfe von Data Science-Technologien aus.

Kurz gesagt: Process Mining bildet eine wichtige Brücke zwischen Fachabteilungen, Prozessverantwortlichen und dem Management. Damit sind datengestützte und faktenbasierte Diskussionen zur Optimierung von Geschäftsprozessen möglich. So lassen sich vor allem Übergaben und abteilungsübergreifende Schritte transparent gestalten und Silo-Denken vermeiden.

Welche Fragen beschäftigen Unternehmen, die mit Process Mining beginnen? Gibt es bestimmte Erwartungen, die durch den Einsatz von Process Mining erfüllt werden sollen?

Jedes Unternehmen ist anders und hat unterschiedliche Fragen und Erwartungen. Ein Beispiel: Ein Beschaffungsmanager, mit dem ich vor Kurzem zusammengearbeitet habe, war von den analysierten Daten überrascht. Denn es stellte sich heraus, dass zu einem bestimmten Zeitpunkt im Prozess eine Genehmigung vorlag, die eigentlich in einem anderen Moment erfolgen sollte. Für den Kunden sind solche Aha-Momente toll. Sie treten ganz automatisch auf, wenn man eine objektive und transparente Sicht auf den jeweiligen Prozess hat. 

Es wurden auch Fragen von uns aufgeworfen, die das Unternehmen bisher nicht berücksichtigt hatte, z. B. wie sich der Prozessablauf bei einem Bestellbetrag unter 1.000 Euro gestaltet und wie oft dies vorkommt. Fragen, die einem Außenstehenden klar erscheinen, die sich Prozessverantwortliche aber oft nicht stellen.

Ahnen Unternehmen häufig nur, dass ein Prozess nicht wie gewünscht läuft? Oder wissen die Meisten um spezifische Probleme in einem Bereich? 

Es gibt Unternehmen, die wissen, dass ein Prozess prinzipiell gut läuft, ein bestimmtes Problem aber immer wieder auftritt. Die involvierten Mitarbeiter sagen in diesen Fällen häufig, dass sie kein bestimmtes Anliegen oder keine konkrete Frage haben. Das stimmt natürlich nicht: Bei genauerem Nachfragen äußern sie dann erste Vermutungen oder Ideen.

Wenn man Mitarbeiter eines Unternehmens direkt fragt, wie sie bestimmte Dinge erledigen, sorgt das oft völlig unbeabsichtigt für Stress. Viele halten zunächst Informationen zurück, weil sie das Gefühl haben, dass der von ihnen beschriebene Prozess oder Workflow nicht perfekt ist. So wollen sie Vorwürfe vermeiden. 

Das oben erwähnte Genehmigungsbeispiel ist mein Favorit, weil es so eindeutig ist. Im betreffenden Unternehmen gab es zum Beispiel ein Team, das immer wieder sagte: „Diese Art von Anträgen genehmigen wir nicht.“ Die Daten sagten jedoch etwas ganz anderes – dem Team war das überhaupt nicht bewusst. 

Wir sprachen dann mit dem Manager. Dieser hatte sich bisher über ganz andere Dinge Gedanken gemacht wie etwa Risiken, den Prozessfluss im Allgemeinen und vieles andere. Nur allein durch dieses Gespräch konnten wir schon die Unstimmigkeiten zwischen dem Management und dem Team beseitigen, noch bevor der eigentliche Prozess selbst optimiert wurde. 

Gibt es noch andere Aspekte, die Unternehmen beachten sollten, wenn sie mit ihrer Process Mining-Initiative beginnen?

Nicht jede Varianz jenseits des Soll-Modells eines Prozesses ist automatisch negativ. Die wenigsten Prozesse, die nicht rein automatisiert ablaufen, sind zu 100% prozesskonform – selbst wenn die Rahmenbedingungen ideal sind. Daher wird es immer Ausnahmen geben, die einen anderen Ansatz erfordern. Und genau das ist die Herausforderung im Projekt: Man muss herausfinden, welche Variationen gewünscht und wo notwendige Ausnahmen zu treffen sind.

Würdest du sagen, dass eine datenbasierte Prozessanalyse eine Teamleistung ist?

Absolut! In jeder Phase eines Process Mining-Projekts sind ganz unterschiedliche Projektmitglieder involviert. Die IT stellt die Daten bereit und hilft bei deren Interpretation. Analysten führen dann die Prozessanalyse durch und diskutieren die gefundenen Auffälligkeiten mit der IT, den Prozessverantwortlichen und den Experten aus den Fachabteilungen. Denn manchmal gibt es gute Gründe für ein bestimmtes Prozessverhalten, das ohne das Wissen der Experten nicht erklärbar ist. 

Bei der Diskussion hilft es natürlich ungemein, den Gedankengang des Teams mit technischen Mitteln wie Signavio Process Intelligence zu dokumentieren. Auf diese Weise ist es möglich, die Analyse auf einzelne Prozesse herunterzubrechen und die richtige Person an der richtigen Stelle in die Diskussion einzubeziehen. So verliert man auch nicht den roten Faden. Und der nächste Kollege, der sich mit dem Thema beschäftigt, kann die Analyse nachvollziehen und das Ergebnis richtig einordnen.

Weitere Informationen dazu, wie Sie mit Process Mining Ihre Geschäftsprozesse besser verstehen und optimieren können, finden Sie auf der Produktseite von Signavio Process Intelligence. Oder melden Sie sich noch heute für eine kostenlose  bei Signavio an und legen Sie direkt los.

Mit Dashboards zur Prozessoptimierung

Geschäftlicher Erfolg ergibt sich oft aus den richtigen Fragen – zum Beispiel: „Wie kann ich sicherstellen, dass mein Produkt das beste ist?“, „Wie hebe ich mich von meinen Mitbewerbern ab?“ und „Wie baue ich mein Unternehmen weiter aus?“ Moderne Unternehmen gehen über derartige Fragen hinaus und stellen vielmehr die Funktionsweise ihrer Organisation in den Fokus. Fragen auf dieser Ebene lauten dann: „Wie kann ich meine Geschäftsprozesse so effizient wie möglich gestalten?“, „Wie kann ich Zusammenarbeit meiner Mitarbeiter verbessern?“ oder auch „Warum funktionieren die Prozesse meines Unternehmens nicht so, wie sie sollten?“


Read this article in English: 
“Process Paradise by the Dashboard Light”


Um die Antworten auf diese (und viele andere!) Fragen zu erhalten, setzen immer mehr Unternehmen auf Process Mining. Process Mining hilft Unternehmen dabei, den versteckten Mehrwert in ihren Prozessen aufzudecken, indem Informationen zu Prozessmodellen aus den verschiedenen IT-Systemen eines Unternehmens automatisch erfasst werden. Auf diese Weise kann die End-to-End-Prozesslandschaft eines Unternehmens kontinuierlich überwacht werden. Manager und Mitarbeiter profitieren so von operativen Erkenntnissen und können potenzielle Risiken ebenso erkennen wie Möglichkeiten zur Verbesserung.

Process Mining ist jedoch keine „Wunderwaffe“, die Daten auf Knopfdruck in Erkenntnisse umwandelt. Eine Process-Mining-Software ist vielmehr als Werkzeug zu betrachten, das Informationen erzeugt, die anschließend analysiert und in Maßnahmen umgesetzt werden. Hierfür müssen die generierten Informationen den Entscheidungsträgern jedoch auch in einem verständlichen Format zur Verfügung stehen.

Bei den meisten Process-Mining-Tools steht nach wie vor die Verbesserung der Analysefunktionen im Fokus und die generierten Daten müssen von Experten oder Spezialisten innerhalb einer Organisation bewertet werden. Dies führt zwangsläufig dazu, dass es zwischen den einzelnen Schritten zu Verzögerungen kommt und die Abläufe bis zur Ergreifung von Maßnahmen ins Stocken geraten.

Process-Mining-Software, die einen kooperativeren Ansatz verfolgt und dadurch das erforderliche spezifische Fachwissen verringert, kann diese Lücke schließen. Denn nur wenn Informationen, Hypothesen und Analysen mit einer Vielzahl von Personen geteilt und erörtert werden, können am Ende aussagekräftige Erkenntnisse gewonnen werden.

Aktuelle Process-Mining-Software kann natürlich standardisierte Berichte und Informationen generieren. In einem sich immer schneller ändernden Geschäftsumfeld reicht dies jedoch möglicherweise nicht mehr aus. Das Erfolgsgeheimnis eines wirklich effektiven Process Minings besteht darin, Herausforderungen und geschäftliche Möglichkeiten vorherzusehen und dann in Echtzeit auf sie zu reagieren.

Dashboards der Zukunft

Nehmen wir ein analoges Beispiel, um aufzuzeigen, wie sich das Process Mining verbessern lässt. Der technologische Fortschritt soll die Dinge einfacher machen: Denken Sie beispielsweise an den Unterschied zwischen der handschriftlichen Erfassung von Ausgaben und einem Tabellenkalkulator. Stellen Sie sich nun vor, die Tabelle könnte Ihnen genau sagen, wann Sie sie lesen und wo Sie beginnen müssen, und würde Sie auf Fehler und Auslassungen aufmerksam machen, bevor Sie überhaupt bemerkt haben, dass sie Ihnen passiert sind.

Fortschrittliche Process-Mining-Tools bieten Unternehmen, die ihre Arbeitsweise optimieren möchten, genau diese Art der Unterstützung. Denn mit der richtigen Process-Mining-Software können individuelle operative Cockpits erstellt werden, die geschäftliche Daten in Echtzeit mit dem Prozessmanagement verbinden. Der Vorteil: Es werden nicht nur einzelne Prozesse und Ergebnisse kontinuierlich überwacht, sondern auch klare Einblicke in den Gesamtzustand eines Unternehmens geboten.

Durch die richtige Kombination von Process Mining mit den vorhandenen Prozessmodellen eines Unternehmens werden statisch dargestellte Funktionsweisen eines bestimmten Prozesses in dynamische Dashboards umgewandelt. Manager und Mitarbeiter erhalten so Warnungen über potenzielle Probleme und Schwachstellen in Ihren Prozessen. Und denken Sie daran, dynamisch heißt nicht zwingend störend: Die richtige Process-Mining-Software setzt an der richtigen Stelle in Ihren Prozessen an und bietet ein völlig neues Maß an Prozesstransparenz und damit an Prozessverständnis.

Infolgedessen können Transformationsinitiativen und andere Verbesserungspläne jederzeit angepasst und umstrukturiert werden und Entscheidungsträger mittels automatisierter Nachrichten sofort über Probleme informiert werden, sodass sich Korrekturmaßnahmen schneller als je zuvor umsetzen lassen. Der Vorteil: Unternehmen sparen Zeit und Geld, da Zykluszeiten verkürzt, Engpässe lokalisiert und nicht konforme Prozesse in der Prozesslandschaft der Organisation aufgedeckt werden.

Dynamische Dashboards von Signavio

 Testen Sie Signavio Process Intelligence und erleben Sie selbst, wie die modernste und fortschrittlichste Process-Mining-Software Ihnen dabei hilft, umsetzbare Einblicke in die Funktionsweise Ihres Unternehmens zu erhalten. Mit Signavios Live Insights profitieren Sie von einer zentralen Ansicht Ihrer Prozesse und Informationen, die in Form eines Ampelsystems dargestellt werden. Entscheiden Sie einfach, welche Prozesse und Aktivitäten Sie innerhalb eines Prozesses überwachen möchten, platzieren Sie Indikatoren und wählen Sie Grenzwerte aus. Alles Weitere übernimmt Signavio Process Intelligence, das Ihre Prozessmodelle mit den Daten verbindet.

Lassen Sie veraltete Arbeitsweisen hinter sich. Setzen Sie stattdessen auf faktenbasierte Erkenntnisse, um Ihre Geschäftstransformation zu unterstützen und Ihre Prozessmanagementinitiativen schneller zum Erfolg zu führen. Erfahren Sie mehr über Signavio Process Intelligence oder registrieren Sie sich für eine kostenlose 30-Tage-Testversion über www.signavio.com/try.

Erfahren Sie in unserem kostenlosen Whitepaper mehr über erfolgreiches Process Mining mit Signavio Process Intelligence.

Treffen Sie bessere Entscheidungen

Entscheidungen prägen unseren Alltag, dies beginnt schon bei der Frage, was man anziehen oder essen soll. Andere hingegen mögen auf den ersten Blick unbedeutend erscheinen, können das Leben aber gravierend verändern, wie beispielsweise die Entscheidung, ob die Überquerung einer Straße sicher ist. Je größer die relative Macht eines Entscheidungsträgers ist, desto größer ist natürlich auch die Auswirkung seiner Entscheidungen.


Read this article in English: 
“How to Make Better Decisions”


Auch der Unternehmensalltag ist geprägt durch Entscheidungen. Tatsächlich kann man ein Unternehmen als die Summe großer und kleiner Entscheidungen betrachten: Welche neuen Märkte erschlossen werden sollen, über die nächste große Werbekampagne bis hin zur Wandfarbe für das neue Büro. Im Idealfall wäre jede einzelne Entscheidung innerhalb einer Organisation Teil einer konsistenten, kohärenten Unternehmensstrategie.

Leider ist eine derartige Konsistenz für viele Unternehmen schwer umsetzbar. Den Überblick darüber zu behalten, was in der gestrigen Sitzung beschlossen wurde, geschweige denn vor Wochen, Monaten oder gar Jahren, kann schwierig sein. Die Erkennung, Kategorisierung und Standardisierung der Entscheidungsfindung kann daher eine Möglichkeit sein, diese Herausforderung zu meistern.

Strategische, taktische und operative Entscheidungen

Grundsätzlich gibt es in einem Unternehmen drei Entscheidungsebenen: Strategische Entscheidungen haben einen großen Einfluss auf das gesamte Unternehmen, wie bspw. Fusionen und Übernahmen oder die Aufgabe eines leistungsschwachen Geschäftsbereichs. Taktische Entscheidungen werden zu bestimmten Themen getroffen, z. B. wo und wie eine Marketingkampagne durchgeführt werden soll.

Und schließlich gibt es noch die operativen Entscheidungen, auf die jeder Mitarbeiter täglich in jedem Unternehmen trifft: Beispielsweise wie viele Treuepunkte ein Kunde erhält, bei welchem ​​Lieferanten Materialien und Dienstleistungen gekauft werden oder ob ein Kunde einen Kredit erhält. Millionen dieser Entscheidungen werden jeden Tag getroffen.

Der kumulative Effekt dieser operativen Entscheidungen hat einen enormen Einfluss auf die geschäftliche Leistung eines Unternehmens. Nicht unbedingt in dem Maße wie sich strategische oder taktische Entscheidungen auswirken, aber sie nehmen Einfluss darauf, wie reibungslos und effektiv die Dinge innerhalb des Unternehmens tatsächlich erledigt werden.

Risiken einer schlechten Entscheidungsfindung

Auf operativer Ebene können sich selbst kleine Entscheidungen erheblich auf das gesamte Unternehmen auswirken – vor allem dann, wenn sich diese Entscheidungen wiederholen. In vielen Fällen bedeutet dies:

  • Compliance-Verstöße: Mitarbeiter und Systeme wissen nicht, was das Management erwartet, oder welches das richtige Verfahren ist. Mit der Zeit kann dies dazu führen, dass Richtlinien generell nicht eingehalten werden.
  • Weniger Agilität: Unkontrolliert oder unstrukturiert getroffene Entscheidungen lassen sich nur schwer ändern, um schnell auf neue interne oder externe Umstände reagieren zu können.
  • Reduzierte Genauigkeit: Ohne einen klaren Entscheidungsrahmen können sich unklar und unpräzise ausgerichtete Prozesse und Praktiken weiterverbreiten.
  • Mangelnde Transparenz: Mitarbeiter und Management können möglicherweise die Faktoren nicht erkennen und verstehen, die jedoch für eine effektive Entscheidungsfindung zu berücksichtigen sind.
  • Zunehmende Nichteinhaltung gesetzlicher Vorschriften: Viele Entscheidungen betreffen Themen wie Steuern, Finanzen und Umwelt, sodass falsch getroffene Entscheidungen zu potenziellen Verstößen gegen Gesetze und Vorschriften und damit letztlich zu Straf- und Rechtskosten führen können.

Diese Risiken können sich wiederholen, wenn Entscheidungen nicht prozessbasiert, sondern aus dem Bauch heraus getroffen werden oder wenn Entscheidungsträger erst Anwendungsfälle, Berichte und Prozesse durchsuchen müssen.

Treffen Sie bessere Entscheidungen

Die richtige Entscheidung zur richtigen Zeit zu treffen, ist für den Geschäftserfolg entscheidend; doch nur wenige Unternehmen verwalten ihre Entscheidungen als separate Instanzen. Die meisten Unternehmen nutzen KPIs oder Ähnliches, um die Auswirkungen ihrer Entscheidungen zu messen, statt die eigentlichen Entscheidungsprozesse im Vorfeld zu definieren.

Hier kommt Business Decision Management (BDM) ins Spiel, mit dem Entscheidungen identifiziert, katalogisiert und modelliert werden können – insbesondere die bereits genannten operativen Entscheidungen. BDM kann zudem ihre Auswirkungen auf die Leistung quantifizieren und Metriken und Schlüsselindikatoren für die Entscheidungen erstellen.

Mit einem effektiven BDM-Ansatz und der Decision Model and Notation (DMN) können Unternehmen Modelle zur Entscheidungsfindung erstellen. DMN bietet ein klares, benutzerfreundliches Notationssystem, das Geschäftsentscheidungen einschließlich der zugrunde liegenden Richtlinien und Daten beschreibt.

Bessere Entscheidungen mit Signavio

Die Signavio Business Transformation Suite unterstützt nicht nur den DMN-Standard, sondern auch den Aufbau einer umfassenden Umgebung zur kollaborativen Ermittlung, Verwaltung und Verbesserung Ihrer Entscheidungen.

Mit dem Signavio Process Manager können Sie Entscheidungen über mehrere Geschäftsbereiche hinweg standardisieren, replizieren und wiederverwenden und diese Entscheidungen mit Ihren Geschäftsprozessen verknüpfen. Der Signavio Process Manager ermöglicht es Ihren Mitarbeitern, stets die beste Entscheidung für ihre Arbeit zu treffen – egal, wie komplex die Aufgaben sind.

Profitieren Sie von den vielen Vorteilen wie verbesserte Leistung und geringere Risiken und trennen Sie die Entscheidungsfindung von unklaren Prozessen und unsicheren Technologien. Registrieren Sie sich noch heute für eine kostenlose 30-Tage-Testversion und lernen Sie die Signavio Business Transformation Suite und ihre Vorteile kennen. Mehr zum Thema lesen Sie in unserem kostenlosen Whitepaper.

Process Mining als Radar: So spüren Sie Optimierungspotenziale auf!

Unklare Prozesse können den Erfolg einer digitalen Transformation schnell behindern. Process Mining kann an dieser Stelle der Initiative zum Erfolg verhelfen. 

Process Mining, funktioniert wie ein Radar. Mithilfe dieser Methode lassen sich Prozesse überwachen und Schwachstellen identifizieren. Dabei werden Prozessoptimierung und Data Mining kombiniert. Unternehmen sind so in der Lage, bessere und faktenbasierte Entscheidungen zu treffen.

Dadurch erhalten Sie einen beispiellosen „Zugriff“ auf den versteckten Mehrwert in Ihren Prozessen. Es ist, als ob Sie auf Schatzsuche sind und genau wissen, wo Sie suchen müssen – mit einem „Bodenradar“ als Vorteil. Die Technologie bietet wertvolle, detaillierte Erkenntnisse für Ihre Entscheidungsfindung und zeigt zugleich verborgene Schätze und Möglichkeiten zur Umsatzsteigerung bei bisher unentdeckten Transformationsinitiativen auf.

 

Prozesse für geschäftliche Erkenntnisse in Echtzeit

Die Ermittlung von Prozessen basierend auf Ihren Daten kann über die Standards Ihrer Mitbewerber hinausgehen, sodass Sie diesen einen Schritt voraus sind. Mithilfe von Process Mining können Sie in digitalen Transformationsprojekten genau nachvollziehen, was in Ihrem Unternehmen vor sich geht. Die umfangreichen digitalen Daten zu tatsächlichen Ereignissen, Entscheidungen und Prozesspfaden zeigen Ihnen auf, was initiiert oder bereits realisiert wurde. Aus den Analysen lassen sich anschließend konkrete Ansätze ableiten, wie etwa Maßnahmen zur Kosteneinsparung oder einem genau definierten ROI.

Dies kann sogar auf ein ganzheitliches digitales Managementsystem für die dynamische und kontinuierliche Nutzung von Erkenntnissen aus einem Unternehmen ausgeweitet werden. Process Mining ist die Grundlage der digitalen Transformation und der erforderlichen neuen Strategien, um zu verstehen, wie ein Unternehmen funktioniert.

 

Ticktack: Zeit, den Ist-Zustand des Prozesses zu ermitteln

Mit einem expansiven Process-Mining-Ansatz wird die Optimierung zu einem Kernelement der DNA Ihres Unternehmens. Durch das Aufspüren spezifischer Abläufe, die mit herkömmlichen Methoden in der Regel unentdeckt bleiben, erleichtert Process Mining das Steuern der Prozesspfade. Dies bedeutet, dass die Funktionsweise eines Unternehmens besser analysiert und gesteuert werden kann, sodass die Prozessentwicklung und -optimierung zum Wegweiser von Unternehmen wird.

Der erste Schritt zur kontinuierlichen Verbesserung besteht darin, die besten Prozesse zu ermitteln, die gemeinsam in einem Unternehmen genutzt werden können, oder die Engpässe und Ineffizienzen zu ermitteln, die sich negativ auf Ihr Unternehmensergebnis auswirken.

Neue (Prozess-) Landschaften entdecken

Im Wesentlichen ist Process Mining der nächste Baustein für den Aufbau eines effizienten Prozessmanagements sowie für Prozessoptimierungsprojekte, die Mehrwert schaffen. Es kombiniert auf innovative Weise bewährte Methoden aus Prozessmodellierung und Business Intelligence. Process Mining verbessert die Effizienz und reduziert Risiken, sodass Sie von einem signifikant höheren Mehrwert profitieren können.

Was Process Mining für Initiativen zur digitalen Transformation jedoch noch spannender macht, ist die Möglichkeit, durch unentdeckte Bereiche der Prozesslandschaft zu navigieren. Auf diese Weise können Sie den Prozesswildwuchs reduzieren und genau die Prozesse und Zusammenhänge untersuchen, die bisher auf der Strecke geblieben sind. Hierzu zählen beispielsweise unterschiedliche Abläufe, Extremfälle, Ineffizienzen, Schwachstellen und ähnliches. In der Tat müssen im Rahmen von Initiativen zur Prozessoptimierung und -transformation genau diese Prozessarten am häufigsten ermittelt und analysiert werden. Denn am Ende ist ein Unternehmen nur so stark wie sein schwächster Prozess.

Nur, wenn wir Prozesse über ihre Grenzen hinweg genau analysieren, können wir Engpässe und Schwachstellen aufdecken und die Gründe hierfür verstehen. Ist das Problem beispielsweise ein Mitarbeiter, der Standort oder der Prozess selbst? Oder sind Prozesse immer durch den geschäftlichen Kontext gerechtfertigt  – sollten Fertigungsmaschinen ununterbrochen auch ohne Auftrag anlaufen oder sollten Mitarbeiter die Arbeitsabläufe diktieren?

Versteckter Mehrwert: Verbessern Sie Ihr Kundenerlebnis

Denken Sie daran, dass nicht nur das Datenvolumen wichtig ist, sondern auch, wie Unternehmen diese Daten nutzen. Unternehmen müssen die gewonnenen Informationen zur Verbesserung des Kundenerlebnisses einsetzen, z. B. mithilfe von Customer Journey Mapping (CJM), um die tägliche Entscheidungsfindung zu optimieren und um kontinuierlich Innovationen zu entwickeln. Damit Unternehmen in der Digital Economy von heute wettbewerbsfähig bleiben und gleichzeitig den zukünftigen Erfolg sicherstellen können, müssen sie Prozesse effektiv nutzen und steuern. Jetzt! Zum Beispiel:

  • Sie sorgen für mehr Transparenz und Sichtbarkeit Ihrer operativen Abläufe, überwinden Abteilungssilos und fördern die Kommunikation und Zusammenarbeit.
  • Sie standardisieren bestimmte Aktivitäten in Ihrer Organisation, sodass alle Mitarbeiter/innen sich an verbindliche Abläufe halten und Verantwortlichkeiten wirklich geklärt sind.
  • Sie bringen das ganze Team an einen Tisch und bieten Ihrem Team die Möglichkeit, Teilaufgaben zu automatisieren.

Unternehmen, die der technologischen Entwicklung immer einen Schritt voraus sind, können agile Abläufe aufbauen, um unterschiedliche und anspruchsvollere Kundenerwartungen zu erfüllen. Zugleich können sie die Effizienz der operativen Lieferkette durch bessere Strategien für die Zusammenarbeit und Einbeziehung der Lieferanten gewährleisten.

 

Prozesse für das neue digitale Transformationszeitalter (DTx)

Ob Ihr Unternehmen bereit ist oder nicht, das digitale Transformationszeitalter ist da und die Konvergenz von Mobilität und Cloud-Speicher hat zu einer wahren Explosion an digitalen Daten geführt. Benutzer haben jederzeit, überall und auf unzähligen Geräten Online-Zugriff und generieren jede Minute Unmengen an Informationen. Einer der führenden IT-Marktanalysten, International Data Corporation (IDC), prognostiziert, dass die Welt bis 2025 rund 160 Billionen Gigabyte an Daten erzeugen wird!

Um mit der verbesserten digitalen Kohärenz Schritt zu halten, können Experten für Digitale Transformation und Excellence mithilfe von Process-Mining-Daten faktenbasierte Entscheidungen treffen und schnell auf Veränderungen reagieren. Hierzu zählen eine leichtere Integration transformativer digitaler Technologien, bessere operative Agilität und Flexibilität, optimierte Unternehmensführung und -kultur sowie die Mitarbeiterförderung. Solch ein selbsttragender Ansatz führt zu nachhaltigen Ergebnissen und schafft eine Prozesskultur innerhalb des gesamten Unternehmens.

Aufbau einer Prozesskultur in Ihrem Unternehmen

Process Mining bietet weit mehr als Erkennen, Visualisieren, Analysieren: Anhand Ihrer vorhandenen Daten können Sie die Ausführung von Prozessen automatisch in Echtzeit überwachen. Diese einfache Bewertung per Mausklick ermöglicht ein sofortiges Verständnis komplexer Prozesse. Innerhalb von Transformationsprojekten, die aufgrund ihrer Natur tiefgreifende Änderungen in geschäftlichen und organisatorischen Aktivitäten, Prozessen, Kompetenzen und Modellen erfordern, liefert Process Mining die visuelle Übersicht und ermöglicht sofortige Maßnahmen.

Mit diesen Einsichten gewinnen Sie wertvolle Gesichtspunkte zu Fragen wie:

  • Wie können Sie digitale Datenspuren nutzen, um fundiertere Entscheidungen auf Ihrem Weg der Prozessverbesserung zu treffen?
  • Wie kann die Prozessleistung überwacht und der Soll- mit dem Ist-Zustand verglichen werden?
  • Wie können überflüssige Prozesse beseitigt werden, während die Prozesse erhalten bleiben, die einen echten Mehrwert bieten?

Die Zukunft des Prozesses verstehen

Je weiter die Globalisierung voranschreitet, desto mehr ist von Führungskräften die Bereitschaft gefordert, Prozesse ganzheitlich zu verstehen und sich neuen Denkweisen zu öffnen. Eine Investition in Systeme, Verfahren, Menschen und Technologien wird nur dann erfolgreich sein, wenn es eine progressive Führung und die Offenheit für Veränderungen gibt. 

Process Mining zeichnet sich nicht nur durch umfassende Vorteile aus, sondern auch durch komplexe Möglichkeiten. Der Zugriff auf Prozesse kann jedoch einfach sein. Das Verständnis und die Anpassung an sich schnell ändernde Umstände muss über einmalige, kopflastige Prozesskorrekturen hinausgehen. Stattdessen müssen kontinuierlich Verbesserung stattfinden. Dies bedeutet jedoch auch, dass sich die DNA eines Unternehmens ständig verändert, um für neue Herausforderungen gewappnet zu sein. Ein Entwicklungsprozess, so revolutionär, dynamisch und kontinuierlich wie die konstante Veränderung des Geschäfts … und des Lebens selbst.

Starten Sie Ihre eigene Schatzsuche!

Schöpfen Sie mit Signavio Process Intelligence das Potenzial von Process Mining voll aus und erfahren Sie, wie Ihr Unternehmen den versteckten Mehrwert von Prozessen für sich nutzen, neue Ideen generieren und Zeit und Geld sparen kann. 

Das Potenzial von Prozessanalysen

Haben Sie das große Ganze im Blick? Die Diskussion rund um einen Prozess und seine Schnittstellen zwischen verschiedenen Abteilungen hat sich in den vergangenen Jahren verändert und eine neue Qualität erhalten. Unternehmen möchten nicht mehr erraten, wie die Abläufe organisiert sind. Stattdessen konzentrieren sie sich auf objektive Fakten wie Durchlaufzeiten, Prozessvarianten und deren Optimierung.

Daten liefern wertvolle Erkenntnisse über das Unternehmen, Benutzer, Kundenstämme und Märkte. Diese Daten müssen jedoch bestmöglich analysiert und genutzt werden, was oftmals eine Herausforderung darstellt. Tatsächlich ist für gewöhnlich nicht die Menge an Daten das Problem, sondern deren Aufschlüsselung und erfolgreiche Nutzung. Unsicherheiten bei der Bewertung und Analyse von Prozessen können den Go-Live behindern und das Zusammenspiel von Prozessen und Geschäftsabläufen ineffizient machen. Ohne eine zuverlässige Datenanalyse könnte Ihr Unternehmen Kapital, Talente und sogar Kunden verlieren.

So geht es bei der Prozessanalyse letztlich darum, aus Daten Erkenntnisse zu gewinnen, die zu einem besseren Verständnis Ihres Unternehmens und der geschäftlichen Abläufe führen.

Die „Ist“-Prozesse

Die Analyse des Ist-Zustands hilft Unternehmen, Prozesse zu dokumentieren, nachzuverfolgen und zu optimieren, mit dem Ziel, die Leistung und Effizienz zu steigern und bessere Geschäftsergebnisse zu erzielen. Die Kontextualisierung von Daten eröffnet Ihnen die Möglichkeit, Prozesse zu steuern und zu organisieren, Engpässe zu beseitigen, geschäftliche Präferenzen festzulegen und mithilfe von Process-Mining-Initiativen eine optimale Strategie zu planen. Dies kann sowohl auf Unternehmensebene als auch nur auf einen bestimmten Prozess innerhalb einer Abteilung oder eines Teams angewandt werden.

Es gibt mehrere wichtige Ziele und Gründe für die Analyse des Ist-Zustands, wie beispielsweise:

  • Kosteneinsparungen und Verbesserung des ROI
  • Optimierung bestehender Prozesse oder Schaffung neuer Prozesse
  • Steigerung der Kundenzufriedenheit und -erlebnisse
  • Verbesserung der Koordination von Geschäften und der Reaktionsfähigkeit des Unternehmens
  • Einhaltung neuer regulatorischer Standards
  • Anpassung von Methoden nach einer Fusion oder Akquisition

 Die „Soll“-Prozesse

Einfach ausgedrückt: Der Ist-Zustand stellt dar, wie Ihre Prozesse aktuell verlaufen, der Soll-Zustand, wie Ihre Prozesse zukünftig verlaufen sollen. Bei der Planung der Soll-Prozesse wird der zukünftige Prozessverlauf dokumentiert. Mithilfe des Ist-Diagramms können Sie gemeinsam mit Stakeholdern Entwicklungs- und Optimierungsmöglichkeiten des aktuellen Prozesses identifizieren und notwendige Änderungen dann in Ihrer Roadmap der Soll-Prozesse skizzieren.

Solch eine Analyse kann Ihnen dabei helfen, optimale geschäftliche und innovative OpEx-Entscheidungen für Ihr Unternehmen zu treffen. Führende Unternehmen wie Google und Amazon nutzen Daten beispielsweise, um auf der Basis von Analyseergebnissen datengesteuerte Entscheidungen zu treffen. Oder denken Sie an die Vorteile, die Ihnen Recommendation Engines, PageRank- und Demand-Forecasting-Systeme bieten. Grundlage hierfür sind fortschrittliche Techniken des maschinellen Lernens und der statistischen Modellierung, die zu verbesserten Datenergebnissen führen. Interessanterweise werden diese Techniken – da sie sich auf umfangreiche Datensätze beziehen und Analysen und Ergebnisse in Echtzeit widerspiegeln – auf Bereiche angewendet, die über die menschliche Entscheidungsfindung hinausgehen.

Die Analyse und kontinuierliche Überwachung von qualitativen und quantitativen Daten ermöglicht es uns zudem, Erkenntnisse über potenzielle Risiken und Verbesserungspotenziale zu erhalten. Mithilfe der leistungsstarken Kombination aus Process Discovery, Prozessanalyse und Conformance-Check können Sie Prozesse verbessern und gewinnbringende Informationen über das eigene Unternehmen erhalten. Zum Beispiel:

  • Über welche Vorfälle möchte ich sofort informiert werden, um entsprechend proaktiv zu handeln?
  • An welchen Stellen kann eine bessere Priorisierung der Aufgaben dabei helfen, die Performance des Unternehmens zu verbessern?
  • Wie kann mehr Transparenz mein Unternehmen voranbringen?
  • Wie lerne ich, in Prozessen zu denken, anstatt nur auf das Bauchgefühl zu vertrauen?

Das geschäftliche Umfeld verändert sich kontinuierlich. Um Schritt zu halten, müssen moderne Unternehmen prozessbasierte Ansätze verfolgen und dabei ist die Prozessanalyse die perfekte Basis.

Mithilfe der Process-Mining-Technologie können moderne Unternehmen ihre Prozessherausforderungen über die Grenzen der Implementierung hinweg bewältigen. Dabei können wir den Proof of Concept für alle vorgeschlagenen Verbesserungen auswerten und relevante Informationen aus einem homogenen Datensatz gewinnen. Zudem kann mithilfe von Prozessmodellierung und Business Process Management (BPM) die möglicherweise schwierige Integrationsphase überwunden werden.

Initiativen für Process-Mining und Prozessanalyse

Process-Mining- und Process-Discovery-Initiativen liefern wichtige Einblicke in den Automatisierungsstatus und in jede Phase der Robotic Process Automation (RPA) – von der Festlegung der Strategie bis zur kontinuierlichen Optimierung und Innovation. Durch datenbasiertes Process Mining kann die Prozessanalyse sogar auf Teams und einzelne Personen ausgedehnt werden. Indem Automatisierungsmöglichkeiten ermittelt und validiert werden, können IT-Störfälle schneller behoben und die Arbeitsgewohnheiten verbessert werden.

Ein weiterer Bereich, in dem sich die Vorteile von Process Mining und der strategischen Prozessanalyse/-ausrichtung bereits auszahlen, ist das IT-Incident-Management. Als „Incident“ wird ein IT-Störfall bezeichnet. Hierbei kann es sich um den vollständigen Ausfall oder um die eingeschränkte Ausführung eines IT-Services handeln. Ziel des Incident-Managements ist es, den IT-Service so schnell wie möglich wiederherzustellen und die Auswirkungen auf den Geschäftsbetrieb zu minimieren. Daher zählt das IT-Incident- Management zu den kritischen Prozessen der Information Technology Library (ITIL).

Process Mining hat das Potenzial, die Incident-Management-Prozesse im Ist-Zustand zu verbessern. Zudem trägt es zu einer höheren Transparenz über die IT-Prozesse bei und bietet so Informationen über außergewöhnliche und unerwünschte Prozessschritte. Durch die Methode ist es ebenfalls möglich, die unterschiedlichen Arbeitsgewohnheiten von verschiedenen Personen und auch Teams zu erfassen. Die Bearbeitungszeiten von Störfällen lassen sich auf diese Weise reduzieren und die Auswirkungen auf Kundenprozesse besser überblicken.

Positive und praktische Erfahrungen mit branchenübergreifendem Process Mining haben zudem zu einer dynamischen Entwicklung von Tools, Anwendungsfällen und auch der Benutzer-Community geführt. Selbst sehr erfahrene Prozessverantwortliche stellen fest, dass durch die Visualisierung von Prozessen neue Ideen und Anregungen für weitere Verbesserungen entstehen.

Der Einsatz von Process Mining für das Incident-Management bietet jedoch noch weitaus mehr potenzielle Vorteile:

  • Ermittlung der Regeln und Abläufe für Eskalationen,
  • Berechnung von Incident-Management-KPIs einschließlich Service Level Agreements (SLA),
  • Ursachenforschung für auftretende Prozessprobleme,
  • Verständnis über die zugrunde liegende Schnittstelle und deren Auswirkung (E-Mail, Webformular, Telefon usw.),
  • Kostenberechnung für störungsanfällige Prozesse,
  • Verknüpfung der Incident-Management-Systeme mit den entsprechenden Prozessen für auftretende Störungen.

Robotic Process Automation (RPA)

RPA (Robotic Process Automation) ermöglicht die Automatisierung manueller, sich wiederholender und fehleranfälliger Aufgaben. Dies setzt jedoch voraus, dass Prozessverantwortliche genau wissen, wie und mit welchem Ziel sie Software-Roboter einsetzen und ihre Leistung messen.

Daher bietet die Kombination aus RPA und Process Mining Unternehmen viele Vorteile: Über den gesamten RPA-Zyklus hinweg können sie die Leistung und die Vorteile ihrer Software-Roboter messen und sie bestmöglich für ihr Szenario einsetzen. Damit eignet sich Process Mining hervorragend als Vorbereitung für Prozessautomatisierung: Durch Process Mining verstehen wir besser, was wir heute für erfolgreiche Prozessinitiativen von morgen benötigen.

Um die Vorteile der robotergesteuerten Automatisierung vollumfänglich auszuschöpfen, müssen Organisationen nicht nur ihre bestehenden Systeme verstehen, sondern auch Möglichkeiten zur Automatisierung ermitteln. Process-Mining-Tools bieten während des gesamten RPA-Zyklus wertvolle Erkenntnisse über die Prozessdaten: von der Festlegung der Strategie bis hin zu kontinuierlichen Verbesserungen und Innovationen.

Zu den Vorteilen von Process Mining und Prozessanalyse im RPA-Zyklus zählen:

  1. Überblick der Prozesslandschaft in einem Unternehmen, basierend auf spezifischen Kriterien,
  2. Identifikation von Prozessen, die während der Vorbereitungsphase für RPA geeignet sind,
  3. Erarbeitung des optimalen Prozessflusses,
  4. Besseres Verständnis darüber, wie RPA auch in veralteten Prozessen und IT-Systemen eingesetzt werden kann,
  5. Überwachung und Analyse der Leistung von RPA-Initiativen während der Implementierungsphase,
  6. Überwachung und kontinuierliche Verbesserung von RPA nach der Implementierung.

Der Weg zu besseren Erkenntnissen

Jedes Unternehmen ist anders und bringt damit ganz unterschiedliche Fragen in Bezug auf seine Prozesse mit. Einige Muster sind trotzdem erkennbar. Beispielsweise stehen Kunden, die datengestützte Prozessanalysen im Rahmen der Geschäftstransformation einführen, in der Regel vor der Herausforderung, Prozesse aus unterschiedlichen Sparten oder Standorten zu harmonisieren. An dieser Stelle sollten Organisationen sich die Daten und Statistiken der jeweiligen Prozesse vor Augen zu führen, anstatt sich auf das Gefühl oder auf die Einschätzung Einzelner zu verlassen.

Auf diese Weise führt eine datengestützte Prozessanalyse zu faktenbasierten Diskussionen und bildet eine wichtige Brücke zwischen der Fachabteilung, Prozessverantwortlichen und dem Management. So lassen sich vor allem Übergaben und abteilungsübergreifende Schritte transparent gestalten und Silo-Denken vermeiden.

Mit anderen Worten: Die richtigen Prozesse von heute sorgen für eine erfolgreiche Transformation von morgen.

Erfahren Sie mehr über Process Mining mit Signavio Process Intelligence und wie Ihr Unternehmen den versteckten Mehrwert von Prozessen für sich nutzen, neue Ideen generieren sowie Zeit und Kosten sparen kann.

Von BI zu PI: Der nächste Schritt auf dem Weg zu datengetriebenen Entscheidungen

„Alles ist stetig und fortlaufend im Wandel.“ „Das Tempo der Veränderungen nimmt zu.“ „Die Welt wird immer komplexer und Unternehmen müssen Schritt halten.“ Unternehmen jeder Art und Größe haben diese Sätze schon oft gehört – vielleicht zu oft! Und dennoch ist es für den Erfolg eines Unternehmens von entscheidender Bedeutung, sich den Veränderungen anzupassen.


Read this article in English: 
“From BI to PI: The Next Step in the Evolution of Data-Driven Decisions”


Sie müssen die zugrunde liegenden organisatorischen Bausteine verstehen, um sicherzustellen, dass die von Ihnen getroffenen Entscheidungen sich auch in die richtige Richtung entwickeln. Es geht sozusagen um die DNA Ihres Unternehmens: die Geschäftsprozesse, auf denen Ihre Arbeitsweise basiert, und die alles zu einer harmonischen Einheit miteinander verbinden. Zu verstehen, wie diese Prozesse verlaufen und an welcher Stelle es Verbesserungsmöglichkeiten gibt, kann den Unterschied zwischen Erfolg und Misserfolg ausmachen.

Unternehmen, die ihren Fokus auf Wachstum gesetzt haben, haben dies bereits erkannt. In der Vergangenheit wurde Business Intelligence als die Lösung für diese Herausforderung betrachtet. In jüngerer Zeit sehen sich zukunftsorientierte Unternehmen damit konfrontiert, Lösungen zu überwachen, die mit dem heutigen Tempo der Veränderungen Schritt halten können. Gleichzeitig erkennen diese Unternehmen, dass die zunehmende Komplexität der Geschäftsprozesse dazu führt, dass herkömmliche Methoden nicht mehr ausreichen.

Anpassung an ein sich änderndes Umfeld? Die Herausforderungen von BI

Business Intelligence ist nicht notwendigerweise überholt oder unnötig. In einer schnelllebigen und sich ständig verändernden Welt stehen die BI-Tools und -Lösungen jedoch vor einer Reihe von Herausforderungen. Hierzu können zählen:

  • Hohe Datenlatenz – Die Datenlatenz gibt an, wie lange ein Benutzer benötigt, um Daten beispielsweise über ein Business-Intelligence-Dashboard abzurufen. In vielen Fällen kann dies mehr als 24 Stunden dauern. Ein geschäftskritischer Zeitraum, da Unternehmen Geschäftschancen für sich nutzen möchten, die möglicherweise ein begrenztes Zeitfenster haben.
  • Unvollständige Datensätze – Business Intelligence verfolgt einen breiten Ansatz, sodass Prüfungen möglicherweise zwar umfassend, aber nicht tief greifend sind. Dies erhöht die Wahrscheinlichkeit, dass Daten übersehen werden; insbesondere in Fällen, in denen die Prüfungsparameter durch die Tools selbst nur schwer geändert werden können.
  • Erkennung statt Analyse – Business-Intelligence-Tools sind in erster Linie darauf ausgelegt, Daten zu finden. Der Fokus hierbei liegt vor allem auf Daten, die für ihre Benutzer nützlich sein können. An dieser Stelle endet jedoch häufig die Leistungsfähigkeit der Tools, da sie Benutzern keine einfachen Optionen bieten, die Daten tatsächlich zu analysieren. Die Möglichkeit, umsetzbare Erkenntnisse zu gewinnen, verringert sich somit.
  • Eingeschränkte Skalierbarkeit – Im Allgemeinen bleibt Business Intelligence ein Bereich für Spezialisten und Experten mit dem entsprechenden Know-how, über das Mitarbeiter im operativen Bereich oftmals nicht verfügen. Ohne umfangreiches Verständnis für die geschäftlichen Prozesse und deren Analyse innerhalb des Unternehmens bleibt die optimierte Anwendung eines bestimmten Business-Intelligence-Tools aber eingeschränkt.
  • Nicht nachvollziehbare Metriken – Werden Metriken verwendet, die nicht mit den Geschäftsprozessen verknüpft sind, kann Business Intelligence kaum positive Veränderungen innerhalb eines Unternehmens unterstützen. Für Benutzer ist es schwierig, Ergebnisse richtig auszuwerten und zu verstehen und diese Ergebnisse zweckdienlich zu nutzen.

Process Intelligence: der nächste wegweisende Schritt

Es bedarf einer effektiveren Methode zur Prozessanalyse, um eine effiziente Arbeitsweise und fundierte Entscheidungsfindung sicherzustellen. An dieser Stelle kommt Process Intelligence (PI) ins Spiel. PI bietet die entscheidenden Hintergrundinformationen für die Beantwortung von Fragen, die mit Business-Intelligence-Tools unbeantwortet bleiben.

Process Intelligence ermöglicht die durchgehende Visualisierung von Prozessabläufen mithilfe von Rohdaten. Mit dem richtigen Process-Intelligence-Tool können diese Rohdaten sofort analysiert werden, sodass Prozesse präzise angezeigt werden. Der Endbenutzer kann diese Informationen nach Bedarf einsehen und bearbeiten, ohne eine Vorauswahl für die Analyse treffen zu müssen.

Zum Vergleich: Da Business Intelligence vordefinierte Analysekriterien benötigt, kann BI nur dann wirklich nützlich sein, wenn diese Kriterien auch definiert sind. Unternehmen können verzögerte Analysen vermeiden, indem sie Process Intelligence zur Ermittlung der Hauptursache von Prozessproblemen nutzen, und dann die richtigen Kriterien zur Bestimmung des Analyserahmens auswählen.

Anschließend können Sie Ihre Systemprozesse analysieren und erkennen die Diskrepanzen und Varianten zwischen dem angestrebten Geschäftsprozess und dem tatsächlichen Verlauf Ihrer Prozesse. Und je schneller Sie Echtzeit-Einblicke in Ihre Prozesse gewinnen, desto schneller können Sie in Ihrem Unternehmen positive Veränderungen auf den Weg bringen.

Kurz gesagt: Business Intelligence eignet sich dafür, ein breites Verständnis über die Abläufe in einem Unternehmen zu gewinnen. Für einige Unternehmen kann dies ausreichend sein. Für andere hingegen ist ein Überblick nicht genug.

Sie suchen nach einer Möglichkeit um festzustellen, wie jeder Prozess in Ihrer Organisation tatsächlich funktioniert? Die Antwort hierauf lautet Software. Software, die Prozesserkennung, Prozessanalyse und Konformitätsprüfung miteinander kombiniert.

Mit den richtigen Process-Intelligence-Tools können Sie nicht nur Daten aus den verschiedenen IT-Systemen in Ihrem Unternehmen gewinnen, sondern auch Ihre End-to-End-Prozesse kontinuierlich überwachen. So erhalten Sie Erkenntnisse über mögliche Risiken und Verbesserungspotenziale. PI steht für einen kollaborativen Ansatz zur Prozessverbesserung, der zu einem bahnbrechenden Verständnis über die Abläufe in Ihrem Unternehmen führt, und wie diese optimiert werden können.

Erhöhtes Potenzial mit Signavio Process Intelligence

Mit Signavio Process Intelligence erhalten Sie wegweisende Erkenntnisse über Ihre Prozesse, auf deren Basis Sie bessere Geschäftsentscheidungen treffen können. Erlangen Sie eine vollständige Sicht auf Ihre Abläufe und ein Verständnis dafür, was in Ihrer Organisation tatsächlich geschieht.

Als Teil der Signavio Business Transformation Suite lässt sich Signavio Process Intelligence perfekt mit der Prozessmodellierung und -automatisierung kombinieren. Als eine vollständig cloudbasierte Process-Mining-Lösung erleichtert es die Software, organisationsweit zusammenzuarbeiten und Wissen zu teilen.

Generieren Sie neue Ideen, sparen Sie Aufwand und Kosten ein und optimieren Sie Ihre Prozesse. Erfahren Sie mehr über Signavio Process Intelligence.

Von der Datenanalyse zur Prozessverbesserung: So gelingt eine erfolgreiche Process-Mining-Initiative

Den Prozessdaten auf der Spur: Systematische Datenanalyse kombiniert mit Prozessmanagement

Die Digitalisierung verändert Organisationen aller Branchen. In zahlreichen Unternehmen werden alltägliche Betriebsabläufe softwarebasiert modelliert, automatisiert und optimiert. Damit hinterlässt fast jeder Prozess elektronische Spuren in den CRM-, ERP- oder anderen IT-Systemen einer Organisation. Process Mining gilt als effektive Methode, um diese Datenspuren zusammenzuführen und für umfassende Auswertungen zu nutzen. Sie kombiniert die systematische Datenanalyse mit Geschäftsprozessmanagement: Dabei werden Prozessdaten aus den verschiedenen IT-Systemen einer Organisation extrahiert und mit Hilfe von Data-Science-Technologien visualisiert und ausgewertet.


Read this article in English: From BI to PI: The Next Step in the Evolution of Data-Driven Decisions

 


Professionelle Process-Mining-Lösungen erlauben, die Ergebnisse dieser Prozessauswertungen auf Dashboards darzustellen und nach bestimmten Prozessen, Transaktionen, Abteilungen oder Kunden zu filtern. So ist es möglich, die Performance, Durchlaufzeiten und die Kosten einzelner Betriebsabläufe zu erfassen. Prozessverantwortliche werden auf diesem Wege auf Verzögerungen, ineffiziente Abläufe und mögliche Prozessverbesserungen aufmerksam.

Praxisbeispiel: Einkaufsprozess – Prozessabweichungen als Kosten- und Risikofaktor

Ein Beispiel aus dem Unternehmensalltag ist ein einfacher Einkaufsprozess: Ein Mitarbeiter benötigt einen neuen Laptop. Im Normalfall beginnt der Prozess mit der Anfrage des Mitarbeiters, die durch seinen Manager bestätigt wird. Ist kein Laptop vorrätig, löst das für den Einkauf zuständige Team die Bestellung aus. Zu einem späteren Zeitpunkt wird der Laptop dem Mitarbeiter übergeben und das Unternehmen erhält eine Rechnung. Diese Rechnung wird geprüft und fristgemäß gemäß den vorgegebenen Konditionen beglichen. Obwohl dieser alltägliche Prozess nicht sehr komplex ist, weicht er im Unternehmensalltag häufig vom modellierten Idealzustand ab, was unnötige Kosten und möglicherweise auch Risiken verursacht.

Die Gründe sind vielfältig:

  • Freigaben fehlen
  • Während des Bestellprozesses sind Informationen unvollständig
  • Rechnungen werden aufgrund von unvollständigen Informationen mehrfach korrigiert

Process Mining ermöglicht, den gesamten Prozessverlauf alltäglicher Betriebsabläufe unter die Lupe zu nehmen und faktenbasierte Diskussionen zwischen den Fachabteilungen, Prozessverantwortlichen sowie dem Management in einer Organisation anzuregen. So werden unternehmensweite Prozessverbesserungen möglich – vorausgesetzt, die Methode wird richtig angewandt und ist strategisch durchdacht. Doch wie gelingt eine erfolgreiche unternehmensweite Process-Mining-Initiative über Abteilungsgrenzen hinaus?

Wie sich eine erfolgreiche Process-Mining-Initiative auf den Weg bringen lässt

Jedes Unternehmen ist einzigartig und geht mit unterschiedlichen Fragestellungen an eine Process-Mining-Initiative heran: ob einzelne Prozesse gezielt verbessert, Prozesslebenszyklen verkürzt oder abteilungsübergreifende Abläufe an unterschiedlichen Standorten miteinander verglichen werden. Sie alle haben etwas gemeinsam: Eine erfolgreiche Process-Mining-Initiative erfordert ein strategisches Vorgehen.

Schritt 1: Mit Weitsicht planen und richtig kommunizieren

Wie definiere ich die Ziele und den Umfang der Process-Mining-Initiative?

Die Anfangsphase einer Process-Mining-Initiative dient der Planung und entscheidet häufig über den Erfolg eines Projektes. In erster Linie kommt es darauf an, die Ziele des Projektes zu definieren und die Erfolgsfaktoren zu bestimmen. Die Ziele einer erfolgreichen Process-Mining-Initiative sind SMART definiert: spezifisch, messbar, attainable/relevant, reasonable/umsetzbar und zeitgebunden/time-bound. Mögliche Ziele für das Projekt lassen sich zum Beispiel wie folgt formulieren:

  • Prozessdauer auf 25 Tage reduzieren
  • Hauptunterschiede zwischen zwei Ländern hinsichtlich bestimmter Prozesse identifizieren
  • Prozessautomatisierung um 25% steigern

Unter diesen Voraussetzungen lässt sich auch der Rahmen der Process-Mining-Initiative festlegen: Sie halten fest, welche Prozesse, konkret betroffen sind und wie sie mit den IT-Systemen und Mitarbeiterrollen in Ihrer Organisation verknüpft sind.

Welche Rollen und Verantwortlichkeiten gibt es?

Die Ziele Ihrer Process-Mining-Initiative sollten unternehmensweit geteilt werden: Dies erfordert neben einer klaren Strategie eine transparente Kommunikation in der gesamten Organisation: Indem Sie Ihren Mitarbeitern das nötige Wissen an die Hand geben, um die Initiative erfolgreich mitzugestalten, sichern Sie sich auch ihre Unterstützung.

So verstehen sie nicht nur, warum dieses Projekt sinnvoll ist, sondern sind auch in der Lage, das Wissen auf ihre individuelle Rolle und Situation zu übertragen. Im Rahmen einer Process-Mining-Initiative sind verschiedene Projektbeteiligte in unterschiedlichen Rollen aktiv:

Während Projektträger verantwortlich für die Prozessanalyse sind (z. B. Chief Procurement Officer oder Process Owner), wissen Prozessexperten, wie ein bestimmter Prozess verläuft und kennen die verschiedenen Variationen. Sie nutzen Methoden wie Process Mining, um ihr Wissen zu vertiefen und Diskussionen über die gewonnenen Daten anzustoßen. Sie arbeiten eng mit Business-Analysten zusammen, die die Prozessanalyse vorantreiben. Datenexperten wiederum verfolgen die einzelnen Spuren, die ein Prozess in der IT-Landschaft einer Organisation hinterlässt und bereiten sie so auf, dass sie Aufschluss über die Performance eines Prozesses geben.

Wie gestaltet sich die Zusammenarbeit?

Diese unterschiedlichen Rollen gilt es im Rahmen einer erfolgreichen Process-Mining-Initiative an einen Tisch zu bringen: So können die gewonnen Erkenntnisse gemeinsam im Team interpretiert und diskutiert werden, um die richtigen Veränderungen anzustoßen. Die daraus gewonnen Prozessverbesserungen spiegeln das Know-how des gesamten Teams wider und sind das Ergebnis einer erfolgreichen Zusammenarbeit.

Schritt 2: Die technischen Voraussetzungen schaffen

Wie werden Prozessdaten systemübergreifend aggregiert und aufbereitet?

Nun wird es Zeit für die technischen Vorbereitungen: Entscheidend ist es, alle Anforderungen an die beteiligten IT-Systeme zu durchdenken und die IT-Verantwortlichen so früh wie möglich einzubeziehen. Um valide Daten für Prozessverbesserungen zu generieren, sind diese drei Teilschritte nötig:

  1.  Datenextraktion: Relevante Daten aus unterschiedlichen IT-Systemen werden aggregiert (Datenquellen sind datenbasierte Tabellen aus ERP- und CRM-Lösungen, analytische Daten wie Reports, Logdateien, CSV-Dateien usw.)
  2.  Datenumwandlung gemäß den Anforderungen für Process Mining: Die extrahierten Daten werden in Cases (Abfolge verschiedener Prozessschritte) umgewandelt, mit einem Zeitstempel versehen und in Event-Logs gespeichert.
  3.  Datenübertragung: Die Process-Mining-Software greift auf die gespeicherten Event-Logs zu.

Welche Rolle spielen Konnektoren?

Diese Teilschritte werden erfahrungsgemäß mittels eines Software-Konnektors durchgeführt und in regelmäßigen Abständen wiederholt. Ein Software-Konnektor hat die Aufgabe, die Daten aus der IT-Landschaft eines Unternehmens nach den Anforderungen der Process-Mining-Lösung zu übersetzen. Er wird speziell für die Kombination mit bestimmten IT-Systemen wie SAP, Oracle oder Salesforce entwickelt und steuert die gesamte Datenintegration von der Extraktion über die Umwandlung bis zur Datenübertragung.

Process-Mining-Lösungen wie Signavio Process Intelligence verfügen über Standardkonnektoren sowie über eine API für individuell entwickelte Konnektoren. Im Rahmen der technischen Vorbereitungen gilt es, mit Blick auf das jeweilige Szenario über die Möglichkeiten der Umsetzbarkeit zu entscheiden und andere technische Lösungen zu evaluieren.

Schritt 3: Von der Prozessanalyse zur Prozessverbesserung

Wie lassen sich die ermittelten Daten für Verbesserungen nutzen?

Sind die umgewandelten Daten in der Process-Mining-Lösung verfügbar, beginnt die Prozessauswertung. Durch IT-gestütztes Process Mining erhalten Prozessexperten die Möglichkeit, alle vorliegenden Daten zu visualisieren und einzelne Prozesse detailliert auszuwerten. Die vorliegenden Prozesse werden nun hinsichtlich unterschiedlicher Faktoren untersucht, etwa mit Blick auf Durchlaufzeiten, Performance und den Prozessfluss. Im direkten Vergleich lässt sich auf diesem Wege ermitteln, welche Faktoren sich auf die Erfolgskennzahlen auswirken und an welchen Stellen Verzögerungen oder Abweichungen auftreten.

Die so gewonnen Erkenntnisse bilden eine wichtige Grundlage für faktenbasierte Diskussionen zwischen den verschiedenen Stakeholdern der Process-Mining-Initiative. Doch erst die konkreten Schritte, die aus dieser Datenbasis abgeleitet werden, entscheiden über den Erfolg des Projektes: Entscheidend ist, wie diese Erkenntnisse in die Praxis umgesetzt werden.

 

Eine Process-Mining-Lösung, die nicht als reines Analysetool zur Verfügung steht, sondern in eine umfassende Lösung für die Modellierung, Automatisierung und Analyse professioneller Geschäftsprozesse integriert ist, erleichtert den Schritt von der Business Process Discovery zur Prozessverbesserung. Schließlich gilt es, konkrete Prozessverbesserungen und Änderungen zu planen, in den Unternehmensalltag zu integrieren und die Ergebnisse auszuwerten – auch über das Ende der Process-Mining-Initiative hinaus.

Warum ist ein Process-Mining-Projekt nie vollständig abgeschlossen?  

Wer einmal mit der Prozessverbesserung beginnt, wird feststellen: Viele weitere Stellen in den Prozessen warten nur darauf, verbessert zu werden. Daher lohnt es sich, einige Wochen nach der initialen Prozessverbesserung neue Daten zu extrahieren, um herauszufinden, welche Veränderungen nachweislich zu mehr Effizienz geführt haben. Eine kontinuierliche Messung und Auswertung erleichtert einen umfassenden Blick auf die eigene Organisation:

  • Funktionieren die überarbeiteten Prozesse wie geplant?
  • Haben Prozessveränderungen unvorhersehbare Effekte?
  • Treten Schwachstellen in anderen Prozessen auf?
  • Haben sich die Prozesse verändert, seitdem sie überarbeitet wurden?
  • Wie lässt sich ein bestimmter Prozess weiter verbessern?

Somit lässt sich zusammenfassen: Wem es gelingt, die Datenspuren in den IT-Systemen der eigenen Organisation zu verfolgen, ist auf dem richtigen Weg zur kontinuierlichen Verbesserung. Davon profitieren nicht nur die Prozesse und IT-Systeme, sondern auch die Mitarbeiter in den Organisationen.

Process-Mining: Es werde Licht

Anzeige

Nur wer seine Prozesse kennt, kann sie optimieren

Gewachsene und in verschiedenen Systemen umgesetzte Prozesse sind meist nicht definiert und dokumentiert. Wer hat einen Prozess wann, warum und wofür angelegt? Nach welchem Schema verläuft er? Gibt es verschiedene Prozessvarianten, die durch unterschiedliche Parameter gesteuert sind? Diese Fragen können viele Unternehmen nicht beantworten und ihre betrieblichen Abläufe nicht optimieren – mit der Folge, dass sie weder ihre Transparenz steigern noch die Kosten senken und von Wettbewerbsvorteilen profitieren können.

Ohne transparente, aktuelle und einheitliche Prozessdokumentation ist der Aufwand zur Aneignung des Prozesswissens unnötig hoch – zumal die Intransparenz sehr teuer ist. Insbesondere für Unternehmen im Finance-Umfeld ist eine transparente, aktuelle Dokumentation Pflicht. Nur so können Wirtschaftsprüfer oder Revisionsabteilungen Unregelmäßigkeiten und Verstöße gegen Compliance-Richtlinien in Prozessen identifizieren und nachweisen, dass Firmen normative Vorgaben wie die Mindestanforderungen an das Risikomanagement (MaRisk) der BaFin (Bundesanstalt für Finanzdienstleistungsaufsicht) einhalten.

Prozesse sichtbar machen

Durchblick gewährt das Process-Mining. Es macht die in Technik verborgenen Prozesse sichtbar. Als Bestandteil des Business-Process-Managements (BPM) ermöglicht es, Prozesse aus ihren digitalen Spuren in ERP-, CRM- oder proprietären Systemen zu rekonstruieren und auszuwerten. Viele Unternehmen wissen nicht, wie viele digitale Abläufe es gibt, wie sie chronologisch vonstattengehen, wie sie zusammenhängen, welche Prozessvariante wie viele Anwender wie häufig durchlaufen – und was das kostet. Ausgangspunkt des Process-Minings ist eine Sammlung der Prozessschritte. Mit statistischen Modellen lässt sich dann der Kernprozess ermitteln, der als Basis für alle Prozessabläufe Abweichungen offenbart.

Beispiel: Bestellanforderung in SAP anlegen

Der Standardprozess ist einfach: Bestellanforderung ins SAP-System eingeben, an Prozessfreigeber senden, von ihm prüfen und freigeben lassen. Die Realität könnte aber so sein: Mitarbeiter A bittet Mitarbeiter B per E-Mail, den Prozess einer Bestellanforderung in SAP anzulegen. Also sammelt Mitarbeiter B Informationen in einer Excel-Liste und legt sie auf dem Server ab – und weicht damit vom Standard ab. Da Mitarbeiter B die Freigabe des Vorgesetzten von A benötigt, fragt er ihn per E-Mail, ob er die Bestellung auslösen darf – eine weitere Abweichung. Nach Freigabe schickt Mitarbeiter B die Bestellung an den Lieferanten, ohne den Prozess in SAP anzulegen – schließlich drängt die Zeit. Die Folge: Im ERP-System fehlen Bestellanforderung und Freigabe. Wieso und warum, ist im Nachhinein nicht mehr nachvollziehbar.

Prozesse visualisieren und modellieren

Licht ins Dunkel bringt die Prozessvisualisierung. Sind Prozesse in Dashboards, Diagrammen, Tabellen und Tachoelementen dargestellt, können Unternehmen einfach nachvollziehen, wie Prozesse samt Varianten ablaufen und wie sie verknüpft sind. Auf Basis der Visualisierung ist es möglich, einzelne Abläufe zu modellieren: Man überträgt Prozessabläufe in ein standardisiertes Modell, das Prozessinformationen wie In- und Outputs, beteiligte Rollen, Dokumente und IT-Systeme beinhaltet. Umfangreiche Analysen und Simulationen erlauben dann, Prozesse zu bewerten und Optimierungspotenziale aufzudecken. Ist nachvollziehbar, wie ein Gesamtprozess mit allen Varianten abläuft, können Unternehmen Modifikationen abbauen und einen effizienten Prozess definieren.

Prozesse freigeben, versionieren und publizieren

Neben der Prozessvisualisierung sollte die Process-Mining-Lösung auch die Prozessfreigabe unter Berücksichtigung der Governance-Vorgaben unterstützen. Das erlaubt, Mitarbeitern Rollen wie Prozesseigner, -freigeber oder -prüfer zuzuweisen und eine automatisierte Freigabe zu etablieren. Sind die Daten sauber versioniert und zentral abgelegt, ist für eine lückenlose Dokumentation gesorgt. Um die Mitarbeiter entsprechend zu informieren, sollte das Tool eine einfache Publizierung unterstützen und Informationen zu Risiken, Kennzahlen und IT-Systemen bereitstellen. Außerdem sollten sich Mitarbeiter in die Prozessgestaltung einbringen können.

Informationen auslesen und auswerten – auch in der Cloud

Um eine Prozessdokumentation automatisiert zu erstellen, braucht es einen Algorithmus, der prozessrelevante Informationen aus allen IT-Systemen und Applikationen in das BPM-Tool einspielt. Über Konnektoren zu SAP ERP, Microsoft Dynamics CRM und proprietären IT-Lösungen lässt es sich an Bestandssysteme nahtlos anbinden. Das erlaubt, Informationen zielführend abzugleichen, bedarfsgerecht aufzubereiten und gewinnbringend zu nutzen. Idealerweise ist eine Process-Mining-Software fester Bestandteil eines BPM-Systems (BPMS), das die Prozessplanung, -ausführung, -analyse und -optimierung unterstützt. Eine Monitoring-Komponente sollte es gestatten, Kennzahlen zu erfassen, zu überwachen und auszuwerten. Für maximale Flexibilität ist gesorgt, wenn sich das BPM-System in der Cloud betreiben und bedarfsgerecht anpassen lässt. So können Anwender auf zyklische Lastspitzen mit einem individuellen Ressourcenmanagement reagieren.

Augen auf bei der Anbieter-Auswahl

Neben dem Funktionsumfang ist auch der IT-Dienstleister wichtig. Idealerweise bietet er eine BPM-Suite mit Process-Mining als Teilkomponente. Ein großer, internationaler IT-Systemintegrator mit Erfahrung in allen Branchen hat die nötige Manpower und Erfahrung für komplexe BPM-Projekte. Im Idealfall bietet er Unternehmen State-of-the-art-Technologie und stellt ihnen kompetente, erfahrene Prozessberater zur Seite, die sie in technischen Belangen wie Setup, Integration und Inbetriebnahme sowie dem Auslesen der Daten aus IT-Systemen unterstützen – für eine zielführende Prozessoptimierung und ein wirksames Change-Management. Wenn der Dienstleister über das BPM-Projekt hinaus wertvolle Hilfestellung leistet, können Unternehmen dank Process-Mining wettbewerbsfähiger, innovativer und damit langfristig erfolgreicher werden.