Posts

Sechs Eigenschaften einer modernen Business Intelligence

Völlig unabhängig von der Branche, in der Sie tätig sind, benötigen Sie Informationssysteme, die Ihre geschäftlichen Daten auswerten, um Ihnen Entscheidungsgrundlagen zu liefern. Diese Systeme werden gemeinläufig als sogenannte Business Intelligence (BI) bezeichnet. Tatsächlich leiden die meisten BI-Systeme an Mängeln, die abstellbar sind. Darüber hinaus kann moderne BI Entscheidungen teilweise automatisieren und umfassende Analysen bei hoher Flexibilität in der Nutzung ermöglichen.


english-flagRead this article in English:
“Six properties of modern Business Intelligence”


Lassen Sie uns die sechs Eigenschaften besprechen, die moderne Business Intelligence auszeichnet, die Berücksichtigungen von technischen Kniffen im Detail bedeuten, jedoch immer im Kontext einer großen Vision für die eigene Unternehmen-BI stehen:

1.      Einheitliche Datenbasis von hoher Qualität (Single Source of Truth)

Sicherlich kennt jeder Geschäftsführer die Situation, dass sich seine Manager nicht einig sind, wie viele Kosten und Umsätze tatsächlich im Detail entstehen und wie die Margen pro Kategorie genau aussehen. Und wenn doch, stehen diese Information oft erst Monate zu spät zur Verfügung.

In jedem Unternehmen sind täglich hunderte oder gar tausende Entscheidungen auf operative Ebene zu treffen, die bei guter Informationslage in der Masse sehr viel fundierter getroffen werden können und somit Umsätze steigern und Kosten sparen. Demgegenüber stehen jedoch viele Quellsysteme aus der unternehmensinternen IT-Systemlandschaft sowie weitere externe Datenquellen. Die Informationsbeschaffung und -konsolidierung nimmt oft ganze Mitarbeitergruppen in Anspruch und bietet viel Raum für menschliche Fehler.

Ein System, das zumindest die relevantesten Daten zur Geschäftssteuerung zur richtigen Zeit in guter Qualität in einer Trusted Data Zone als Single Source of Truth (SPOT) zur Verfügung stellt. SPOT ist das Kernstück moderner Business Intelligence.

Darüber hinaus dürfen auch weitere Daten über die BI verfügbar gemacht werden, die z. B. für qualifizierte Analysen und Data Scientists nützlich sein können. Die besonders vertrauenswürdige Zone ist jedoch für alle Entscheider diejenige, über die sich alle Entscheider unternehmensweit synchronisieren können.

2.      Flexible Nutzung durch unterschiedliche Stakeholder

Auch wenn alle Mitarbeiter unternehmensweit auf zentrale, vertrauenswürdige Daten zugreifen können sollen, schließt das bei einer cleveren Architektur nicht aus, dass sowohl jede Abteilung ihre eigenen Sichten auf diese Daten erhält, als auch, dass sogar jeder einzelne, hierfür qualifizierte Mitarbeiter seine eigene Sicht auf Daten erhalten und sich diese sogar selbst erstellen kann.

Viele BI-Systeme scheitern an der unternehmensweiten Akzeptanz, da bestimmte Abteilungen oder fachlich-definierte Mitarbeitergruppen aus der BI weitgehend ausgeschlossen werden.

Moderne BI-Systeme ermöglichen Sichten und die dafür notwendige Datenintegration für alle Stakeholder im Unternehmen, die auf Informationen angewiesen sind und profitieren gleichermaßen von dem SPOT-Ansatz.

3.      Effiziente Möglichkeiten zur Erweiterung (Time to Market)

Bei den Kernbenutzern eines BI-Systems stellt sich die Unzufriedenheit vor allem dann ein, wenn der Ausbau oder auch die teilweise Neugestaltung des Informationssystems einen langen Atem voraussetzt. Historisch gewachsene, falsch ausgelegte und nicht besonders wandlungsfähige BI-Systeme beschäftigen nicht selten eine ganze Mannschaft an IT-Mitarbeitern und Tickets mit Anfragen zu Änderungswünschen.

Gute BI versteht sich als Service für die Stakeholder mit kurzer Time to Market. Die richtige Ausgestaltung, Auswahl von Software und der Implementierung von Datenflüssen/-modellen sorgt für wesentlich kürzere Entwicklungs- und Implementierungszeiten für Verbesserungen und neue Features.

Des Weiteren ist nicht nur die Technik, sondern auch die Wahl der Organisationsform entscheidend, inklusive der Ausgestaltung der Rollen und Verantwortlichkeiten – von der technischen Systemanbindung über die Datenbereitstellung und -aufbereitung bis zur Analyse und dem Support für die Endbenutzer.

4.      Integrierte Fähigkeiten für Data Science und AI

Business Intelligence und Data Science werden oftmals als getrennt voneinander betrachtet und geführt. Zum einen, weil Data Scientists vielfach nur ungern mit – aus ihrer Sicht – langweiligen Datenmodellen und vorbereiteten Daten arbeiten möchten. Und zum anderen, weil die BI in der Regel bereits als traditionelles System im Unternehmen etabliert ist, trotz der vielen Kinderkrankheiten, die BI noch heute hat.

Data Science, häufig auch als Advanced Analytics bezeichnet, befasst sich mit dem tiefen Eintauchen in Daten über explorative Statistik und Methoden des Data Mining (unüberwachtes maschinelles Lernen) sowie mit Predictive Analytics (überwachtes maschinelles Lernen). Deep Learning ist ein Teilbereich des maschinellen Lernens (Machine Learning) und wird ebenfalls für Data Mining oder Predictvie Analytics angewendet. Bei Machine Learning handelt es sich um einen Teilbereich der Artificial Intelligence (AI).

In der Zukunft werden BI und Data Science bzw. AI weiter zusammenwachsen, denn spätestens nach der Inbetriebnahme fließen die Prädiktionsergebnisse und auch deren Modelle wieder in die Business Intelligence zurück. Vermutlich wird sich die BI zur ABI (Artificial Business Intelligence) weiterentwickeln. Jedoch schon heute setzen viele Unternehmen Data Mining und Predictive Analytics im Unternehmen ein und setzen dabei auf einheitliche oder unterschiedliche Plattformen mit oder ohne Integration zur BI.

Moderne BI-Systeme bieten dabei auch Data Scientists eine Plattform, um auf qualitativ hochwertige sowie auf granularere Rohdaten zugreifen zu können.

5.      Ausreichend hohe Performance

Vermutlich werden die meisten Leser dieser sechs Punkte schon einmal Erfahrung mit langsamer BI gemacht haben. So dauert das Laden eines täglich zu nutzenden Reports in vielen klassischen BI-Systemen mehrere Minuten. Wenn sich das Laden eines Dashboards mit einer kleinen Kaffee-Pause kombinieren lässt, mag das hin und wieder für bestimmte Berichte noch hinnehmbar sein. Spätestens jedoch bei der häufigen Nutzung sind lange Ladezeiten und unzuverlässige Reports nicht mehr hinnehmbar.

Ein Grund für mangelhafte Performance ist die Hardware, die sich unter Einsatz von Cloud-Systemen bereits beinahe linear skalierbar an höhere Datenmengen und mehr Analysekomplexität anpassen lässt. Der Einsatz von Cloud ermöglicht auch die modulartige Trennung von Speicher und Rechenleistung von den Daten und Applikationen und ist damit grundsätzlich zu empfehlen, jedoch nicht für alle Unternehmen unbedingt die richtige Wahl und muss zur Unternehmensphilosophie passen.

Tatsächlich ist die Performance nicht nur von der Hardware abhängig, auch die richtige Auswahl an Software und die richtige Wahl der Gestaltung von Datenmodellen und Datenflüssen spielt eine noch viel entscheidender Rolle. Denn während sich Hardware relativ einfach wechseln oder aufrüsten lässt, ist ein Wechsel der Architektur mit sehr viel mehr Aufwand und BI-Kompetenz verbunden. Dabei zwingen unpassende Datenmodelle oder Datenflüsse ganz sicher auch die neueste Hardware in maximaler Konfiguration in die Knie.

6.      Kosteneffizienter Einsatz und Fazit

Professionelle Cloud-Systeme, die für BI-Systeme eingesetzt werden können, bieten Gesamtkostenrechner an, beispielsweise Microsoft Azure, Amazon Web Services und Google Cloud. Mit diesen Rechnern – unter Einweisung eines erfahrenen BI-Experten – können nicht nur Kosten für die Nutzung von Hardware abgeschätzt, sondern auch Ideen zur Kostenoptimierung kalkuliert werden. Dennoch ist die Cloud immer noch nicht für jedes Unternehmen die richtige Lösung und klassische Kalkulationen für On-Premise-Lösungen sind notwendig und zudem besser planbar als Kosten für die Cloud.

Kosteneffizienz lässt sich übrigens auch mit einer guten Auswahl der passenden Software steigern. Denn proprietäre Lösungen sind an unterschiedliche Lizenzmodelle gebunden und können nur über Anwendungsszenarien miteinander verglichen werden. Davon abgesehen gibt es jedoch auch gute Open Source Lösungen, die weitgehend kostenfrei genutzt werden dürfen und für viele Anwendungsfälle ohne Abstriche einsetzbar sind.

Die Total Cost of Ownership (TCO) gehören zum BI-Management mit dazu und sollten stets im Fokus sein. Falsch wäre es jedoch, die Kosten einer BI nur nach der Kosten für Hardware und Software zu bewerten. Ein wesentlicher Teil der Kosteneffizienz ist komplementär mit den Aspekten für die Performance des BI-Systems, denn suboptimale Architekturen arbeiten verschwenderisch und benötigen mehr und teurere Hardware als sauber abgestimmte Architekturen. Die Herstellung der zentralen Datenbereitstellung in adäquater Qualität kann viele unnötige Prozesse der Datenaufbereitung ersparen und viele flexible Analysemöglichkeiten auch redundante Systeme direkt unnötig machen und somit zu Einsparungen führen.

In jedem Fall ist ein BI für Unternehmen mit vielen operativen Prozessen grundsätzlich immer günstiger als kein BI zu haben. Heutzutage könnte für ein Unternehmen nichts teurer sein, als nur nach Bauchgefühl gesteuert zu werden, denn der Markt tut es nicht und bietet sehr viel Transparenz.

Dennoch sind bestehende BI-Architekturen hin und wieder zu hinterfragen. Bei genauerem Hinsehen mit BI-Expertise ist die Kosteneffizienz und Datentransparenz häufig möglich.

Process Mining Tools – Artikelserie

Process Mining ist nicht länger nur ein Buzzword, sondern ein relevanter Teil der Business Intelligence. Process Mining umfasst die Analyse von Prozessen und lässt sich auf alle Branchen und Fachbereiche anwenden, die operative Prozesse haben, die wiederum über operative IT-Systeme erfasst werden. Um die zunehmende Bedeutung dieser Data-Disziplin zu verstehen, reicht ein Blick auf die Entwicklung der weltweiten Datengenerierung an. Waren es 2010 noch 2 Zettabytes (ZB), sind laut Statista für das Jahr 2020 mehr als 50 ZB an Daten zu erwarten. Für 2025 wird gar mit einem Bestand von 175 ZB gerechnet.

Hier wird das Datenvolumen nach Jahren angezeit

Abbildung 1 zeigt die Entwicklung des weltweiten Datenvolumen (Stand 2018). Quelle: https://www.statista.com/statistics/871513/worldwide-data-created/

Warum jetzt eigentlich Process Mining?

Warum aber profitiert insbesondere Process Mining von dieser Entwicklung? Der Grund liegt in der Unordnung dieser Datenmenge. Die Herausforderung der sich viele Unternehmen gegenübersehen, liegt eben genau in der Analyse dieser unstrukturierten Daten. Hinzu kommt, dass nahezu jeder Prozess Datenspuren in Informationssystemen hinterlässt. Die Betrachtung von Prozessen auf Datenebene birgt somit ein enormes Potential, welches in Anbetracht der Entwicklung zunehmend an Bedeutung gewinnt.

Was war nochmal Process Mining?

Process Mining ist eine Analysemethodik, welche dazu befähigt, aus den abgespeicherten Datenspuren der Informationssysteme eine Rekonstruktion der realen Prozesse zu schaffen. Diese Prozesse können anschließend als Prozessflussdiagramm dargestellt und ausgewertet werden. Die klassischen Anwendungsfälle reichen von dem Aufspüren (Discovery) unbekannter Prozesse, über einen Soll-Ist-Vergleich (Conformance) bis hin zur Anpassung/Verbesserung (Enhancement) bestehender Prozesse. Mittlerweile setzen viele Firmen darüber hinaus auf eine Integration von RPA und Data Science im Process Mining. Und die Analyse-Tiefe wird zunehmen und bis zur Analyse einzelner Klicks reichen, was gegenwärtig als sogenanntes „Task Mining“ bezeichnet wird.

Hier wird ein typischer Process Mining Workflow dargestellt

Abbildung 2 zeigt den typischen Workflow eines Process Mining Projektes. Oftmals dient das ERP-System als zentrale Datenquelle. Die herausgearbeiteten Event-Logs werden anschließend mittels Process Mining Tool visualisiert.

In jedem Fall liegt meistens das Gros der Arbeit auf die Bereitstellung und Vorbereitung der Daten und der Transformation dieser in sogenannte „Event-Logs“, die den Input für die Process Mining Tools darstellen. Deshalb arbeiten viele Anbieter von Process Mining Tools schon länger an Lösungen, um die mit der Datenvorbereitung verbundenen zeit -und arbeitsaufwendigen Schritte zu erleichtern. Während fast alle Tool-Anbieter vorgefertigte Protokolle für Standardprozesse anbieten, gehen manche noch weiter und bieten vollumfängliche Plattform Lösungen an, welche eine effiziente Integration der aufwendigen ETL-Prozesse versprechen. Der Funktionsumfang der Process Mining Tools geht daher mittlerweile deutlich über eine reine Darstellungsfunktion hinaus und deckt ggf. neue Trends sowie optimierte Einsteigerbarrieren mit ab.

Motivation dieser Artikelserie

Die Motivation diesen Artikel zu schreiben liegt nicht in der Erläuterung der Methode des Process Mining. Hierzu gibt es mittlerweile zahlreiche Informationsquellen. Eine besonders empfehlenswerte ist das Buch „Process Mining“ von Will van der Aalst, einem der Urväter des Process Mining. Die Motivation dieses Artikels liegt viel mehr in der Betrachtung der zahlreichen Process Mining Tools am Markt. Sehr oft erlebe ich als Data-Consultant, dass Process Mining Projekte im Vorfeld von der Frage nach dem „besten“ Tool dominiert werden. Diese Fragestellung ist in Ihrer Natur sicherlich immer individuell zu beantworten. Da individuelle Projekte auch einen individuellen Tool-Einsatz bedingen, beschäftige ich mich meist mit einem großen Spektrum von Process Mining Tools. Daher ist es mir in dieser Artikelserie ein Anliegen einen allgemeingültigen Überblick zu den üblichen Process Mining Tools zu erarbeiten. Dabei möchte ich mich nicht auf persönliche Erfahrungen stützen, sondern die Tools anhand von Testdaten einem praktischen Vergleich unterziehen, der für den Leser nachvollziehbar ist.

Um den Umfang der Artikelserie zu begrenzen, werden die verschiedenen Tools nur in Ihren Kernfunktionen angewendet und verglichen. Herausragende Funktionen oder Eigenschaften der jeweiligen Tools werden jedoch angemerkt und ggf. in anderen Artikeln vertieft. Das Ziel dieser Artikelserie soll sein, dem Leser einen ersten Einblick über die am Markt erhältlichen Tools zu geben. Daher spricht dieser Artikel insbesondere Einsteiger aber auch Fortgeschrittene im Process Mining an, welche einen Überblick über die Tools zu schätzen wissen und möglicherweise auch mal über den Tellerand hinweg schauen mögen.

Die Tools

Die Gruppe der zu betrachteten Tools besteht aus den folgenden namenhaften Anwendungen:

Die Auswahl der Tools orientiert sich an den „Market Guide for Process Mining 2019“ von Gartner. Aussortiert habe ich jene Tools, mit welchen ich bisher wenig bis gar keine Berührung hatte. Diese Auswahl an Tools verspricht meiner Meinung nach einen spannenden Einblick von verschiedene Process Mining Tools am Markt zu bekommen.

Die Anwendung in der Praxis

Um die Tools realistisch miteinander vergleichen zu können, werden alle Tools die gleichen Datengrundlage benutzen. Die Datenbasis wird folglich über die gesamte Artikelserie hinweg für die Darstellungen mit den Tools genutzt. Ich werde im nächsten Artikel explizit diese Datenbasis kurz erläutern.

Das Ziel der praktischen Untersuchung soll sein, die Beispieldaten in die verschiedenen Tools zu laden, um den enthaltenen Prozess zu visualisieren. Dabei möchte ich insbesondere darauf achten wie bedienbar und anpassungsfähig/flexibel die Tools mir erscheinen. An dieser Stelle möchte ich eindeutig darauf hinweisen, dass dieser Vergleich und seine Bewertung meine Meinung ist und keineswegs Anspruch auf Vollständigkeit beansprucht. Da der Markt in Bewegung ist, behalte ich mir ferner vor, diese Artikelserie regelmäßig anzupassen.

Die Kriterien

Neben der Bedienbarkeit und der Anpassungsfähigkeit der Tools möchte ich folgende zusätzliche Gesichtspunkte betrachten:

  • Bedienbarkeit: Wie leicht gehen die Analysen von der Hand? Wie einfach ist der Einstieg?
  • Anpassungsfähigkeit: Wie flexibel reagiert das Tool auf meine Daten und Analyse-Wünsche?
  • Integrationsfähigkeit: Welche Schnittstellen bringt das Tool mit? Läuft es auch oder nur in der Cloud?
  • Skalierbarkeit: Ist das Tool dazu in der Lage, auch große und heterogene Daten zu verarbeiten?
  • Zukunftsfähigkeit: Wie steht es um Machine Learning, ETL-Modeller oder Task Mining?
  • Preisgestaltung: Nach welchem Modell bestimmt sich der Preis?

Die Datengrundlage

Die Datenbasis bildet ein Demo-Datensatz der von Celonis für die gesamte Artikelserie netter Weise zur Verfügung gestellt wurde. Dieser Datensatz bildet einen Versand Prozess vom Zeitpunkt des Kaufes bis zur Auslieferung an den Kunden ab. In der folgenden Abbildung ist der Soll Prozess abgebildet.

Hier wird die Variante 1 der Demo Daten von Celonis als Grafik dargestellt

Abbildung 4 zeigt den gewünschten Versand Prozess der Datengrundlage von dem Kauf des Produktes bis zur Auslieferung.

Die Datengrundlage besteht aus einem 60 GB großen Event-Log, welcher lokal in einer Microsoft SQL Datenbank vorgehalten wird. Da diese Tabelle über 600 Mio. Events beinhaltet, wird die Datengrundlage für die Analyse der einzelnen Tools auf einen Ausschnitt von 60 Mio. Events begrenzt. Um die Performance der einzelnen Tools zu testen, wird jedoch auf die gesamte Datengrundlage zurückgegriffen. Der Ausschnitt der Event-Log Tabelle enthält 919 verschiedene Varianten und weisst somit eine ausreichende Komplexität auf, welche es mit den verschiednene Tools zu analysieren gilt.

Folgender Veröffentlichungsplan gilt für diese Artikelserie und wird mit jeder Veröffentlichung verlinkt:

  1. Celonis
  2. PAFnow
  3. MEHRWERK (erscheint demnächst)
  4. Lana Labs (erscheint demnächst)
  5. Signavio (erscheint demnächst)
  6. Process Gold (erscheint demnächst)
  7. Fluxicon Disco (erscheint demnächst)
  8. Aris Process Mining der Software AG (erscheint demnächst)

Was der BREXIT für die Cloud-Strategie bedeutet

Datensouveränität wird nach dem Brexit eine der größten Herausforderungen für Unternehmen sein. Geschäftsführer sind sich der Bedeutung dessen bewusst und fürchten die Gefahr eines „Data cliff edge“, wenn die Trennung Großbritanniens von der EU endgültig beschlossene Sache sein wird.

Ohne ein klares Gespür dafür zu haben, welche Vorschriften und Compliance-Anforderungen bald gelten werden, versuchen britische Unternehmen herauszufinden, wie sie ihre Daten bestmöglich schützen, Geschäftsverzögerungen verhindern und kostspielige Fehler vermeiden können. Die Vieldeutigkeit rund um den Brexit wirft mehr Fragen als Antworten auf, darunter: Wo sollten britische Unternehmen ihre Daten speichern? Sollten sie alle ihre Rechenzentren nach Großbritannien verlegen? Wie wirkt sich der Besitz von Rechenzentren auf den Datenschutz aus? Welche Bedrohungen bestehen, wenn nach Abschluss des Brexit Daten innerhalb oder außerhalb des Vereinigten Königreichs gespeichert werden?

Für Führungskräfte sind der Mangel an Antworten und die Angst vor dem Unbekannten frustrierend. In dieser ungewissen Zeit können smarte Geschäftsführer aber den Brexit für ihre Zwecke lenken, indem sie ihn als Chance und nicht als Hindernis für sich nutzen.

Die unsicher regulierte Zukunft

Für Unternehmen mit Sitz in Großbritannien, die Datenspeicherung und private Cloud-Dienste anbieten, ist vor allem der Ort, an dem sich die Daten befinden, von Belang. Die Gewährleistung der Sicherheit und Kontrolle über eigene Daten ist von zentraler Bedeutung. Gleichzeitig ist jedoch auch die Einhaltung unbekannter zukünftiger Vorschriften und Gesetze zum Datenschutz und zum Datentransfer ein Muss.

Grundlage ist die Einhaltung der Datenschutzverordnung (DSGVO) vom 25. Mai 2018, da das Vereinigte Königreich zu diesem Zeitpunkt noch immer Teil der EU war. Nach Angaben des Information Commissioner’s Office (ICO) des Vereinigten Königreichs – einer unabhängigen Behörde, die sich für die Wahrung von Informations- und Datenschutzrechten von Einzelpersonen einsetzt – bestätigte die britische Regierung, dass ein Austritt aus der EU keine Auswirkungen auf die DSGVO haben wird. Was in diesem Jahr, wenn sich Großbritannien und die EU endgültig voneinander trennen, passieren wird, kann man nur vermuten. Die Ratschläge von ICO sind richtungsweisend: „Bereiten Sie sich darauf vor, die Bestimmungen der DSGVO zu erfüllen und voranzukommen.“

Bemerkenswerterweise schreibt die DSGVO nicht vor, wo Unternehmen ihre Daten aufbewahren müssen. Es ist lediglich erforderlich, dass die EU-Organisationen ihre Daten innerhalb der EU speichern und außerhalb der EU unzugänglich machen müssen. Ausnahme: die Daten betreffen eine DSGVO-konforme Organisation. Wie sich dieses Mandat auf das Vereinigte Königreich auswirkt, muss noch gesehen werden. Denn das Vereinigte Königreich war ja zum Zeitpunkt der Ausarbeitung der Verordnung Teil der EU. Es ist unklar, ob das Vereinigte Königreich am Ende mit der DSGVO konform sein wird.

Aus globaler Sicht muss Großbritannien herausfinden, wie der Datenaustausch und der grenzüberschreitende Datenfluss reguliert werden können. Der freie Datenfluss ist wichtig für Unternehmen und Innovation, was bedeutet, dass das Vereinigte Königreich Vereinbarungen, wie die EU sie mit den USA getroffen haben, benötigt. Ein Privacy Shield, das den Austausch personenbezogener Daten zu gewerblichen Zwecken ermöglicht. Ob das Vereinigte Königreich Vereinbarungen wie den Privacy Shield umsetzen kann, oder neue Vereinbarungen mit Ländern wie den USA treffen muss, ist etwas, was nur die Zeit zeigen wird.

Wo sind die Daten?

Rechenzentren können heute durch freien Datenfluss, sowohl im Vereinigten Königreich als auch in der EU betrieben werden. Das Vereinigte Königreich unterliegt gleichem Schutz und gleichen Vorschriften wie die EU. Viele Spekulationen beinhalten allerdings, dass in naher Zukunft britische Kunden von einem in Großbritannien ansässigen Rechenzentrum bedient werden müssen, ebenso wie europäische Kunden ein EU-Rechenzentrum benötigen. Es gibt keine Garantien. Unklar ist auch, ob diese Situation die Anbieter von Rechenzentren dazu veranlassen wird, den Umzug aus Großbritannien in Betracht zu ziehen, um sich stärker auf den Kontinent zu konzentrieren, oder ob sie sich an beiden Standorten gleichzeitig niederlassen werden. Das Wahrscheinlichste: Die Anbieter tendieren zu letzterem, wie auch Amazon Web Services (AWS). Selbst nach dem Brexit-Votum hielt Amazon an seinem Wort fest und eröffnete Ende letzten Jahres sein erstes AWS-Rechenzentrum in London. Dies unterstreicht sowohl sein Engagement für Großbritannien als auch das unternehmerische Engagement.

Aus dem Brexit eine Geschäftsmöglichkeit machen

Die Automatisierung des IT-Betriebs und die Einführung einer Cloud-Strategie könnten die ersten Schritte sein, um die unbeantworteten Fragen des Brexit zu lösen und daraus einen Vorteil zu machen. Es ist an der Zeit, die Vorteile dessen zu erkennen, teure Hardware und Software von Unternehmen vor Ort durch den Umstieg auf die öffentliche Cloud zu ersetzen. Dies ist nicht nur die kostengünstigere Option. Cloud-Anbieter wie AWS, Microsoft Azure und Google Cloud Platform (GCP) ersparen in diesem politischen Umfeld sogar Unternehmen die Verwaltung und Wartung von Rechenzentren. Einige Unternehmen sind möglicherweise besorgt über die steigenden Raten von Public-Cloud-Anbietern, ihre Preisanpassungen scheinen jedoch an den relativen Wertverlust des Sterlings gebunden zu sein. Selbst bei geringen Erhöhungen sind die Preise einiger Anbieter, wie AWS, noch immer deutlich niedriger als die Kosten, die mit dem Betrieb von Rechenzentren und privaten Clouds vor Ort verbunden sind, insbesondere wenn Wartungskosten einbezogen werden. Wenn man diesen Gedanken noch einen Schritt weiterführt, wie kann der Brexit als eine Chance für Unternehmen betrachtet werden?Organisationen sammeln alle Arten von Daten. Aber nur eine Handvoll von ihnen verwendet effektive Datenanalysen, die Geschäftsentscheidungen unterstützen. Nur wenige Unternehmen tun mehr, als ihre Daten zu speichern, da ihnen die Tools und Ressourcen fehlen, um nahtlos auf ihre Daten zuzugreifen, oder weil Abfragen teuer sind. Ohne ein für die Cloud konstruiertes Data Warehouse ist dieser Prozess bestenfalls eine Herausforderung, und der wahre Wert der Daten geht dabei verloren. Ironischerweise bietet der Brexit die Möglichkeit, dies zu ändern, da Unternehmen ihre IT-Abläufe neu bewerten und alternative, kostengünstigere Methoden zum Speichern von Daten suchen müssen. Durch den Wechsel zu einer öffentlichen Cloud und die Nutzung eines Data Warehouses für die Cloud können Unternehmen Beschränkungen und Einschränkungen ihrer Daten aufheben und diese für die Entscheidungsfindung zugänglich machen.

Der Brexit dient also als Katalysator einer datengesteuerten Organisation, die Daten verwendet, anstatt sie für schlechte Zeiten zu speichern. Am Ende scheint die Prognose der Verhandlungen in Brüssel doch eine ziemlich stürmische zu sein.

DS-GVO: Wie das moderne Data-Warehouse Unternehmen entlastet

Artikel des Blog-Sponsors: Snowflake

Viele Aktivitäten, die zur Einhaltung der DS-GVO-Anforderungen beitragen, liegen in den Händen der Unternehmen selbst. Deren IT-Anbieter sollten dazu beitragen, die Compliance-Anforderungen dieser Unternehmen zu erfüllen. Die SaaS-Anbieter eines Unternehmens sollten zumindest die IT-Sicherheitsanforderungen erfüllen, die sich vollständig in ihrem Bereich befinden und sich auf die Geschäfts- und Datensicherheit ihrer Kunden auswirken.

Snowflake wurde von Grund auf so gestaltet, dass die Einhaltung der DS-GVO erleichtert wird – und von Beginn darauf ausgelegt, enorme Mengen strukturierter und semistrukturierter Daten mit der Leichtigkeit von Standard-SQL zu verarbeiten. Die Zugänglichkeit und Einfachheit von SQL gibt Organisationen die Flexibilität, alle unter der DS-GVO erforderlichen Aktualisierungen, Änderungen oder Löschungen nahtlos vorzunehmen. Snowflakes Unterstützung für semistrukturierte Daten kann die Anpassung an neue Felder und andere Änderungen der Datensätze erleichtern. Darüber hinaus war die Sicherheit von Anfang an von grundlegender Bedeutung für Architektur, Implementierung und Betrieb von Snowflakes Data-Warehouse-as-a-Service.

Ein Grundprinzip der DS-GVO

Ein wichtiger Faktor für die Einhaltung der DS-GVO ist, zu verstehen, welche Daten eine Organisation besitzt und auf wen sie sich beziehen. Diese Anforderung macht es nötig, dass Daten strukturiert, organisiert und einfach zu suchen sind.

Die relationale SQL-Datenbankarchitektur von Snowflake bietet eine erheblich vereinfachte Struktur und Organisation, was sicherstellt, dass jeder Datensatz einen eindeutigen und leicht identifizierbaren Speicherort innerhalb der Datenbank besitzt. Snowflake-Kunden können auch relationalen Speicher mit dem Variant-Spaltentyp von Snowflake für semistrukturierte Daten kombinieren. Dieser Ansatz erweitert die Einfachheit des relationalen Formats auf die Schema-Flexibilität semistrukturierter Daten.

Snowflake ist noch leistungsfähiger durch seine Fähigkeit, massive Nebenläufigkeit zu unterstützen. Bei größeren Organisationen können Dutzende oder sogar Hunderte nebenläufiger Datenänderungen, -abfragen und -suchvorgänge zu einem bestimmten Zeitpunkt auftreten. Herkömmliche Data-Warehouses können nicht zu einem bestimmten Zeitpunkt über einen einzelnen Rechen-Cluster hinaus skaliert werden, was zu langen Warteschlangen und verzögerter Compliance führt. Snowflakes Multi-Cluster-Architektur für gemeinsam genutzte Daten löst dieses Problem, indem sie so viele einzigartige Rechen-Cluster bereitstellen kann, wie für einen beliebigen Zweck nötig sind, was zu einer effizienteren Workload-Isolierung und höherem Abfragedurchsatz führt. Jeder Mitarbeiter kann sehr große Datenmengen mit so vielen nebenläufigen Benutzern oder Operationen wie nötig speichern, organisieren, ändern, suchen und abfragen.

Rechte von Personen, deren Daten verarbeitet werden („Datensubjekte“)

Organisationen, die von der DS-GVO betroffen sind, müssen sicherstellen, dass sie Anfragen betroffener Personen nachkommen können. Einzelpersonen haben jetzt erheblich erweiterte Rechte, um zu erfahren, welche Art von Daten eine Organisation über sie besitzt, und das Recht, den Zugriff und/oder die Korrektur ihrer Daten anzufordern, die Daten zu löschen und/oder die Daten an einen neuen Provider zu übertragen. Bei der Bereitstellung dieser Dienste müssen Organisationen ziemlich schnell reagieren, in der Regel innerhalb von 30 Tagen. Daher müssen sie ihre Geschäftssysteme und ihr Data-Warehouse schnell durchsuchen können, um alle personenbezogenen Daten zu finden, die mit einer Person in Verbindung stehen, und entsprechende Maßnahmen ergreifen.

Organisationen können in großem Umfang von der Speicherung aller Daten in einem Data-Warehouse-as-a-Service mit vollen DML- und SQL-Fähigkeiten profitieren. Dies erleichtert das (mühevolle) Durchsuchen getrennter Geschäftssysteme und Datenspeicher, um die relevanten Daten zu finden. Und das wiederum hilft sicherzustellen, dass einzelne Datensätze durchsucht, gelöscht, eingeschränkt, aktualisiert, aufgeteilt und auf andere Weise manipuliert werden können, um sie an entsprechende Anfragen betroffener Personen anzupassen. Außerdem können Daten so verschoben werden, dass sie der Anforderung einer Anfrage zum „Recht auf Datenübertragbarkeit“ entsprechen. Von Anfang an wurde Snowflake mit ANSI-Standard-SQL und vollständiger DML-Unterstützung entwickelt, um sicherzustellen, dass diese Arten von Operationen möglich sind.

Sicherheit

Leider erfordern es viele herkömmliche Data-Warehouses, dass sich Unternehmen selbst um die IT-Sicherheit kümmern und diese mit anderen Services außerhalb des Kernangebots kombiniert wird. Außerdem bieten sie manchmal noch nicht einmal standardmäßige Verschlüsselung.

Als Data-Warehouse, das speziell für die Cloud entwickelt wurde und das Sicherheit als zentrales Element bietet, umfasst Snowflake unter anderem folgende integrierte Schutzfunktionen:

  • Minimaler Betriebsaufwand: Weniger Komplexität durch automatische Performance, Sicherheit und Hochverfügbarkeit, sodass die Infrastruktur nicht optimiert werden muss und kein Tuning nötig ist.
  • Durchgängige Verschlüsselung: Automatische Verschlüsselung aller Daten jederzeit (in ruhendem und bewegtem Zustand).
  • Umfassender Schutz: Zu den Sicherheitsfunktionen zählen Multi-Faktor-Authentifizierung, rollenbasierte Zugriffskontrolle, IP-Adressen-Whitelisting, zentralisierte Authentifizierung und jährliche Neuverschlüsselung verschlüsselter Daten.
  • Tri-Secret Secure: Kundenkontrolle und Datenschutz durch die Kombination aus einem vom Kunden, einem von Snowflake bereitgestellten Verschlüsselungsschlüssel und Benutzerzugangsdaten.
  • Unterstützung für AWS Private Link: Kunden können Daten zwischen ihrem virtuellen privaten Netzwerk und Snowflake übertragen, ohne über das Internet gehen zu müssen. Dadurch ist die Konnektivität zwischen den Netzwerken sicher und einfacher zu verwalten.
  • Stärkere unternehmensinterne Datenabgrenzung dank Snowflake Data Sharing: Organisationen können die Datenfreigabefunktionen von Snowflake nutzen, um nicht personenbezogene Daten mit anderen Abteilungen zu teilen, die keinen Zugriff benötigen – indem sie strengere Sicherheits- und DS-GVO-Kontrollen durchsetzen.
  • Private Umgebung: Unternehmen können eine dedizierte, verwaltete Snowflake- Instanz in einer separaten AWS Virtual Private Cloud (VPC) abrufen.

Rechenschaftspflicht

Was die Komplexität weiter erhöht: Organisationen müssen auch sicherstellen, dass sie und die Organisationen und Tools, mit denen sie arbeiten, Compliance nachweisen können. Snowflake prüft und verfeinert seine IT-Sicherheitspraxis regelmäßig mit peniblen Penetrationstests. Snowflakes Data-Warehouse-as-a-Service ist zertifiziert nach SOC 2 Type II, ist PCI-DSS-konform und unterstützt HIPAA-Compliance. Um Anfragen von Personen, deren Daten verarbeitet werden („Datensubjekte“), zu entsprechen, können Kunden genutzte Daten überprüfen.

Zusätzlich zu diesen Standardfunktionen und -validierungen schützt Snowflake seine Kunden auch durch den Datenschutznachtrag („Data Protection Addendum“), der genau auf die Anforderungen der DS-GVO abgestimmt ist. Snowflake hält sich außerdem an penibel vertraglich festgelegte Sicherheitsverpflichtungen („contractual security commitments“), um effizientere Transaktionen und eine vereinfachte Sorgfaltspflicht zu ermöglichen.

Fazit

Im Rahmen der Europäischen Datenschutz-Grundverordnung müssen Unternehmen technische Maßnahmen ergreifen, mit deren Hilfe sie den Anforderungen ihrer Kunden in Bezug auf Datenschutz und Schutz der Privatsphäre gerecht werden können. Snowflake bietet hier nicht nur den Vorteil, alle wichtigen Kundendaten an einem einzigen Ort zu speichern, sondern ermöglicht auch das schnelle Auffinden und Abrufen dieser Daten, sodass Unternehmen im Bedarfsfall schnell aktiv werden können.

Kontrolle und Steuerung von Spark Applikationen über REST

Apache Spark erfreut sich zunehmender Beliebtheit in der Data Science Szene da es in Geschwindigkeit und Funktionalität eine immense Verbesserung bzw. Erweiterung des reinen Hadoop MapReduce Programmiermodells ist. Jedoch bleibt Spark ebenso wie Hadoop eine Technologie für Experten. Es erfordert zumindest Kenntnisse von Unix-Skripten und muss über die Command-Line gesteuert werden. Die vorhandenen Weboberflächen bieten nur sehr rudimentäre Einblicke in den Status von Spark Applikationen:

spark basic ui

Der Spark JobServer ist ein Open-Source Projekt, das eine REST-Schnittstelle (Representational State Transfer) für Spark anbietet. (In diesem YouTube Video wird anschaulich erläutert, was ein REST API ist und wozu es verwendet werden kann.) Vereinfacht gesagt, ermöglicht es der JobServer, Spark über diese REST-Schnittstelle als Webservice zu nutzen. Es ist möglich, über den JobServer Spark Kontexte und Applikationen (Jobs) zu managen und Kontexte über verschiedene Aufrufe der REST-Schnittstelle hinweg wiederzuverwenden. Jar Files mit Job Implementierungen können vorab über die gleiche Schnittstelle installiert werden, so dass es z.B. möglich ist, auch sehr feingranulare Jobs über die Schnittstelle zu steuern (vollständige Liste der Features).

Der Spark JobServer ist bereits bei verschiedenen Organisationen (u.a. Netflix, Zed Worldwide, KNIME, Azavea und Maana) im Einsatz. Diese Nutzer des JobServers verwenden ihn meist versteckt „unter der Haube“, um so ihre jeweiligen Werkzeuge Big-Data tauglich zu machen. So nutzt KNIME ab dem nächsten Release (Oktober 2015) den JobServer. Anwendern können dann Spark Jobs über eine grafische Oberfläche bequem von ihrem lokalen Rechner aus starten, monitoren und stoppen. In der folgenden Abbildung sehen Sie, wie Trainingsdaten auf den Server hochgeladen werden, um daraus verschiedene Machine Learning Modelle zu erstellen. Diese Modelle können dann auf Testdaten angewandt werden, die z.B. aus einer HIVE-Tabelle nach Spark importiert werden:

spark knime hive jobs

Jeder der dargestellten Knoten mit der Überschrift „Spark ***“, wie z.B. „Spark Decision Tree“, ist ein Spark Job im Sinne des JobServers. Weitere Beispiele für Spark Jobs sind verschiedene Vorverarbeitungsaufgaben wie das Sampling einer Tabelle oder ein Join über mehrere Tabellen.

Spark kann über den JobServer im Standalone-, Mesos- oder im Yarn-Client-Modus angesteuert werden. Eine sehr hilfreiche Erweiterung der eigentlichen Spark-Funktionalität bietet der JobServer über die sogenannten „Named RDDs“ an. Ein Resilient Distributed Dataset (RDD) ist im Prinzip ein Datensatz bzw. eine Tabelle in Spark. „Named RDDs“ erlauben die Weiterverwendung von RDDs über einzelne Jobs hinweg. So kann man Jobs modularer aufbauen und leichter Zwischenergebnisse inspizieren.

Ich kann aus eigener Erfahrung sagen, dass der JobServer die geeignete Middleware zwischen einer benutzerfreundlichen Oberfläche und Spark ist. Die Open-Source Community ist hier sehr aktiv und der JobServer lässt sich bei Bedarf gut erweitern.