Kubernetes – der Steuermann für dein Big Data Projekt!

Kubernetes ist ein Container-Orchestrierungssystem. Damit lassen sich also Anwendungen auf verschiedene Container aufteilen, wodurch sie effizient und ausfallsicher ausgeführt werden können. Kubernetes ist ein Open-Source-Projekt und wurde erstmals im Jahr 2014 veröffentlicht. Es ist sehr leistungsfähig und kann verteilte Systeme, die über Tausende von Rechnern verstreut sind, verwalten.

In diesem und in vielen anderen Beiträgen zum Thema Kubernetes wird die Abkürzung k8s genutzt. Sie kommt daher, dass das Wort Kubernetes mit k beginnt, mit s endet und dazwischen 8 Buchstaben stehen. Bevor wir beginnen, noch eine kleine Anmerkung, woher der Name Kubernetes eigentlich stammt: Das griechische Wort „Kubernetes“ bedeutet Steuermann und beschreibt genau das, was Kubernetes macht, es steuert. Es steuert verschiedene sogenannte Container und koordiniert deren Ausführung.

Was sind Container und warum brauchen wir sie?

Eines der bestimmenden Merkmale von Big Data oder Machine Learning Projekte ist, dass ein einzelner Computer in vielen Fällen nicht ausreicht, um die gewaltigen Rechenlasten bewältigen zu können. Deshalb ist es notwendig, mehrere Computer zu verwenden, die sich die Arbeit teilen können. Zusätzlich können durch ein solches System auch Ausfälle von einzelnen Computern kompensiert werden, wodurch wiederum sichergestellt ist, dass die Anwendung durchgehend erreichbar ist. Wir bezeichnen eine solche Anordnung von Computern als Computing-Cluster oder verteiltes System für paralleles Rechnen.

Im Mittelpunkt des Open Source Projektes Docker stehen die sogenannten Container. Container sind alleinstehende Einheiten, die unabhängig voneinander ausgeführt werden und immer gleich ablaufen. Docker-Container können wir uns tatsächlich relativ praktisch wie einen Frachtcontainer vorstellen. Angenommen, in diesem Container arbeiten drei Menschen an einer bestimmten Aufgabe (Ich weiß, dass dies wahrscheinlich gegen jedes geltende Arbeitsschutzgesetz verstößt, aber es passt nun mal sehr gut in unser Beispiel).

In ihrem Container finden sie alle Ressourcen und Maschinen, die sie für ihre Aufgabe benötigen. Über eine bestimmte Lucke im Container bekommen sie die Rohstoffe geliefert, die sie benötigen, und über eine andere Lucke geben sie das fertige Produkt heraus. Unser Schiffscontainer kann dadurch ungestört und weitestgehend autark arbeiten. Den Menschen darin wird es nicht auffallen, ob sich das Schiff inklusive Container gerade im Hamburger Hafen, in Brasilien oder irgendwo bei ruhigem Seegang auf offenem Meer befindet. Solange sie kontinuierlich Rohstoffe geliefert bekommen, führen sie ihre Aufgabe aus, egal wo sie sind.

Kubernetes Containers - Foto von Ian Taylor auf Unsplash

Foto von Ian Taylor auf Unsplash

Genauso verhält es sich mit Docker Containern im Softwareumfeld. Es handelt sich dabei um genau definierte, abgeschlossene Applikationen, die auf verschiedenen Maschinen/Rechnern laufen können. Solange sie die festgelegten Inputs kontinuierlich erhalten, können sie auch kontinuierlich weiterarbeiten, unabhängig von ihrer Umgebung.

Was macht Kubernetes?

Wir nutzen Computing-Cluster, um rechenintensive Projekte, wie Machine Learning Modelle, auf mehreren Rechnern zuverlässig und effizient laufen lassen zu können. In Containern wiederum programmieren wir Unteraufgaben, die in sich abgeschlossen sein können und die immer gleich ablaufen, egal ob auf Rechner 1 oder Rechner 2. Das klingt doch eigentlich ausreichend, oder?

Verteilte Systeme bieten gegenüber Einzelrechnern neben Vorteilen auch zusätzliche Herausforderungen, beispielsweise bei der gemeinsamen Nutzung von Daten oder der Kommunikation zwischen den Rechnern innerhalb des Clusters. Kubernetes übernimmt die Arbeit die Container auf das Cluster zu verteilen und sorgt für den reibungslosen Ablauf des Programmes. Dadurch können wir uns auf das eigentliche Problem, also unseren konkreten Anwendungsfall, konzentrieren.

Kubernetes ist also wie der Kapitän, oder Steuermann, auf dem großen Containerschiff, der die einzelnen Container auf seinem Schiff richtig platziert und koordiniert.

Aufbau eines Kubernetes Clusters

Kubernetes wird normalerweise auf einem Cluster von Computern installiert. Jeder Computer in diesem Cluster wird als Node bezeichnet. Auf einem Computer bzw. Node wiederum laufen mehrere sogenannte Pods. Auf den Pods sind die schlussendlichen Container mit den kleineren Applikationen installiert und können in einem lokalen System kommunizieren.

Damit die Pods und die Container darin ohne Komplikationen laufen können, gibt es einige Hilfsfunktionen und -komponenten im Kubernetes Cluster, die dafür sorgen, dass alle Systeme reibungslos funktionieren:

Aufbau Kubernetes Cluster | Abbildung: Kubernetes

Aufbau Kubernetes Cluster | Abbildung: Kubernetes

  • Control Plane: Das ist der Rechner, welcher das komplette Cluster überwacht. Auf diesem laufen keine Pods für die Anwendung. Stattdessen werden den einzelnen Pods die Container zugewiesen, die auf ihnen laufen sollen.
  • Sched: Der Scheduler hält innerhalb des Clusters Ausschau nach neu erstellen Pods und teilt diese zu bestehenden Nodes zu.
  • ETCD: Ein Speicher für alle Informationen, die im Cluster anfallen und aufbewahrt werden müssen, bspw. Metadaten zur Konfiguration.
  • Cloud Controller Manager (CCM): Wenn ein Teil des Systems auf Cloud Ressourcen läuft, kommt diese Komponente zum Einsatz und übernimmt die Kommunikation und Koordination mit der Cloud.
  • Controller Manager (CM): Die wichtigste Komponente im Kubernetes Cluster überwacht das Cluster und sucht nach ausgefallenen Nodes, um dann die Container und Pods neu zu verteilen.
  • API: Diese Schnittstelle ermöglicht die Kommunikation zwischen den Nodes und dem Control Plane.

 

Die Nodes sind deutlich schlanker aufgebaut als das Control Plane und enthalten neben den Pods zwei wesentliche Komponenten zur Überwachung:

  • Kubelet: Es ist das Control Plane innerhalb eines Nodes und sorgt dafür, dass alle Pods einwandfrei laufen.
  • Kube-Proxy (k-proxy): Diese Komponente verteilt den eingehenden Node Traffic an die Pods, indem es das Netzwerk innerhalb des Nodes erstellt.

Fazit

Ein Netzwerk aus verschiedenen Computern wird als Cluster bezeichnet und wird genutzt, um große Rechenlasten auf mehrere Computer aufteilen und dadurch effizienter gestalten zu können. Die kleinste Einheit, in die man eine Applikation aufteilen kann, ist der Docker Container. Dieser beinhaltet eine Unteraufgabe des Programms, die autark, also unabhängig vom System, ausgeführt wird.

Da es in einem Computing-Cluster sehr viele dieser Container geben kann, übernimmt Kubernetes für uns das Management der Container, also unter anderem deren Kommunikation und Koordinierung. Das Kubernetes Cluster hat dazu verschiedene Komponenten die dafür sorgen, dass alle Container laufen und das System einwandfrei funktioniert.

Moderne Business Intelligence in der Microsoft Azure Cloud

Google, Amazon und Microsoft sind die drei großen Player im Bereich Cloud Computing. Die Cloud kommt für nahezu alle möglichen Anwendungsszenarien infrage, beispielsweise dem Hosting von Unternehmenssoftware, Web-Anwendungen sowie Applikationen für mobile Endgeräte. Neben diesen Klassikern spielt die Cloud jedoch auch für Internet of Things, Blockchain oder Künstliche Intelligenz eine wichtige Rolle als Enabler. In diesem Artikel beleuchten wir den Cloud-Anbieter Microsoft Azure mit Blick auf die Möglichkeiten des Aufbaues eines modernen Business Intelligence oder Data Platform für Unternehmen.

Eine Frage der Architektur

Bei der Konzeptionierung der Architektur stellen sich viele Fragen:

  • Welche Datenbank wird für das Data Warehouse genutzt?
  • Wie sollten ETL-Pipelines erstellt und orchestriert werden?
  • Welches BI-Reporting-Tool soll zum Einsatz kommen?
  • Müssen Daten in nahezu Echtzeit bereitgestellt werden?
  • Soll Self-Service-BI zum Einsatz kommen?
  • … und viele weitere Fragen.

1 Die Referenzmodelle für Business Intelligence Architekturen von Microsoft Azure

Die vielen Dienste von Microsoft Azure erlauben unzählige Einsatzmöglichkeiten und sind selbst für Cloud-Experten nur schwer in aller Vollständigkeit zu überblicken.  Microsoft schlägt daher verschiedene Referenzmodelle für Datenplattformen oder Business Intelligence Systeme mit unterschiedlichen Ausrichtungen vor. Einige davon wollen wir in diesem Artikel kurz besprechen und diskutieren.

1a Automatisierte Enterprise BI-Instanz

Diese Referenzarchitektur für automatisierte und eher klassische BI veranschaulicht die Vorgehensweise für inkrementelles Laden in einer ELT-Pipeline mit dem Tool Data Factory. Data Factory ist der Cloud-Nachfolger des on-premise ETL-Tools SSIS (SQL Server Integration Services) und dient nicht nur zur Erstellung der Pipelines, sondern auch zur Orchestrierung (Trigger-/Zeitplan der automatisierten Ausführung und Fehler-Behandlung). Über Pipelines in Data Factory werden die jeweils neuesten OLTP-Daten inkrementell aus einer lokalen SQL Server-Datenbank (on-premise) in Azure Synapse geladen, die Transaktionsdaten dann in ein tabellarisches Modell für die Analyse transformiert, dazu wird MS Azure Analysis Services (früher SSAS on-premis) verwendet. Als Tool für die Visualisierung der Daten wird von Microsoft hier und in allen anderen Referenzmodellen MS PowerBI vorgeschlagen. MS Azure Active Directory verbindet die Tools on Azure über einheitliche User im Active Directory Verzeichnis in der Azure-Cloud.

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/data/enterprise-bi-adfQuelle:

Einige Diskussionspunkte zur BI-Referenzarchitektur von MS Azure

Der von Microsoft vorgeschlagenen Referenzarchitektur zu folgen kann eine gute Idee sein, ist jedoch tatsächlich nur als Vorschlag – eher noch als Kaufvorschlag – zu betrachten. Denn Unternehmens-BI ist hochgradig individuell und Bedarf einiger Diskussion vor der Festlegung der Architektur.

Azure Data Factory als ETL-Tool

Azure Data Factory wird in dieser Referenzarchitektur als ETL-Tool vorgeschlagen. In der Tat ist dieses sehr mächtig und rein über Mausklicks bedienbar. Darüber hinaus bietet es die Möglichkeit z. B. über Python oder Powershell orchestriert und pipeline-modelliert zu werden. Der Clue für diese Referenzarchitektur ist der Hinweis auf die On-Premise-Datenquellen. Sollte zuvor SSIS eingesetzt werden sollen, können die SSIS-Packages zu Data Factory migriert werden.

Die Auswahl der Datenbanken

Der Vorteil dieser Referenzarchitektur ist ohne Zweifel die gute Aufstellung der Architektur im Hinblick auf vielseitige Einsatzmöglichkeiten, so werden externe Daten (in der Annahme, dass diese un- oder semi-strukturiert vorliegen) zuerst in den Azure Blob Storage oder in den auf dem Blob Storage beruhenden Azure Data Lake zwischen gespeichert, bevor sie via Data Factory in eine für Azure Synapse taugliche Struktur transformiert werden können. Möglicherweise könnte auf den Blob Storage jedoch auch gut verzichtet werden, solange nur Daten aus bekannten, strukturierten Datenbanken der Vorsysteme verarbeitet werden. Als Staging-Layer und für Datenhistorisierung sind der Azure Blob Storage oder der Azure Data Lake jedoch gute Möglichkeiten, da pro Dateneinheit besonders preisgünstig.

Azure Synapse ist eine mächtige Datenbank mindestens auf Augenhöhe mit zeilen- und spaltenorientierten, verteilten In-Memory-Datenbanken wie Amazon Redshift, Google BigQuery oder SAP Hana. Azure Synapse bietet viele etablierte Funktionen eines modernen Data Warehouses und jährlich neue Funktionen, die zuerst als Preview veröffentlicht werden, beispielsweise der Einsatz von Machine Learning direkt auf der Datenbank.

Zur Diskussion steht jedoch, ob diese Funktionen und die hohe Geschwindigkeit (bei richtiger Nutzung) von Azure Synapse die vergleichsweise hohen Kosten rechtfertigen. Alternativ können MySQL-/MariaDB oder auch PostgreSQL-Datenbanken bei MS Azure eingesetzt werden. Diese sind jedoch mit Vorsicht zu nutzen bzw. erst unter genauer Abwägung einzusetzen, da sie nicht vollständig von Azure Data Factory in der Pipeline-Gestaltung unterstützt werden. Ein guter Kompromiss kann der Einsatz von Azure SQL Database sein, der eigentliche Nachfolger der on-premise Lösung MS SQL Server. MS Azure Snypase bleibt dabei jedoch tatsächlich die Referenz, denn diese Datenbank wurde speziell für den Einsatz als Data Warehouse entwickelt.

Zentrale Cube-Generierung durch Azure Analysis Services

Zur weiteren Diskussion stehen könnte MS Azure Analysis Sevice als Cube-Engine. Diese Cube-Engine, die ursprünglich on-premise als SQL Server Analysis Service (SSAS) bekannt war, nun als Analysis Service in der Azure Cloud verfügbar ist, beruhte früher noch als SSAS auf der Sprache MDX (Multi-Dimensional Expressions), eine stark an SQL angelehnte Sprache zum Anlegen von schnellen Berechnungsformeln für Kennzahlen im Cube-Datenmodellen, die grundlegendes Verständnis für multidimensionale Abfragen mit Tupeln und Sets voraussetzt. Heute wird statt MDX die Sprache DAX (Data Analysis Expression) verwendet, die eher an Excel-Formeln erinnert (diesen aber keinesfalls entspricht), sie ist umfangreicher als MDX, jedoch für den abitionierten Anwender leichter verständlich und daher für Self-Service-BI geeignet.

Punkt der Diskussion ist, dass der Cube über den Analysis-Service selbst keine Möglichkeiten eine Self-Service-BI nicht ermöglicht, da die Bearbeitung des Cubes mit DAX nur über spezielle Entwicklungsumgebungen möglich ist (z. B. Visual Studio). MS Power BI selbst ist ebenfalls eine Instanz des Analysis Service, denn im Kern von Power BI steckt dieselbe Engine auf Basis von DAX. Power BI bietet dazu eine nutzerfreundliche UI und direkt mit mausklickbaren Elementen Daten zu analysieren und Kennzahlen mit DAX anzulegen oder zu bearbeiten. Wird im Unternehmen absehbar mit Power BI als alleiniges Analyse-Werkzeug gearbeitet, ist eine separate vorgeschaltete Instanz des Azure Analysis Services nicht notwendig. Der zur Abwägung stehende Vorteil des Analysis Service ist die Nutzung des Cubes in Microsoft Excel durch die User über Power Pivot. Dies wiederum ist eine eigene Form des sehr flexiblen Self-Service-BIs.

1b Enterprise Data Warehouse-Architektur

Eine weitere Referenz-Architektur von Microsoft auf Azure ist jene für den Einsatz als Data Warehouse, bei der Microsoft Azure Synapse den dominanten Part von der Datenintegration über die Datenspeicherung und Vor-Analyse übernimmt.https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/enterprise-data-warehouseQuelle: 

Diskussionspunkte zum Referenzmodell der Enterprise Data Warehouse Architecture

Auch diese Referenzarchitektur ist nur für bestimmte Einsatzzwecke in dieser Form sinnvoll.

Azure Synapse als ETL-Tool

Im Unterschied zum vorherigen Referenzmodell wird hier statt auf Azure Data Factory auf Azure Synapse als ETL-Tool gesetzt. Azure Synapse hat die Datenintegrationsfunktionalitäten teilweise von Azure Data Factory geerbt, wenn gleich Data Factory heute noch als das mächtigere ETL-Tool gilt. Azure Synapse entfernt sich weiter von der alten SSIS-Logik und bietet auch keine Integration von SSIS-Paketen an, zudem sind einige Anbindungen zwischen Data Factory und Synapse unterschiedlich.

Auswahl der Datenbanken

Auch in dieser Referenzarchitektur kommt der Azure Blob Storage als Zwischenspeicher bzw. Staging-Layer zum Einsatz, jedoch im Mantel des Azure Data Lakes, der den reinen Speicher um eine Benutzerebene erweitert und die Verwaltung des Speichers vereinfacht. Als Staging-Layer oder zur Datenhistorisierung ist der Blob Storage eine kosteneffiziente Methode, darf dennoch über individuelle Betrachtung in der Notwendigkeit diskutiert werden.

Azure Synapse erscheint in dieser Referenzarchitektur als die sinnvolle Lösung, da nicht nur die Pipelines von Synapse, sondern auch die SQL-Engine sowie die Spark-Engine (über Python-Notebooks) für die Anwendung von Machine Learning (z. B. für Recommender-Systeme) eingesetzt werden können. Hier spielt Azure Synpase die Möglichkeiten als Kern einer modernen, intelligentisierbaren Data Warehouse Architektur voll aus.

Azure Analysis Service

Auch hier wird der Azure Analysis Service als Cube-generierende Maschinerie von Microsoft vorgeschlagen. Hier gilt das zuvor gesagte: Für den reinen Einsatz mit Power BI ist der Analysis Service unnötig, sollen Nutzer jedoch in MS Excel komplexe, vorgerechnete Analysen durchführen können, dann zahlt sich der Analysis Service aus.

Azure Cosmos DB

Die Azure Cosmos DB ist am nächsten vergleichbar mit der MongoDB Atlas (die Cloud-Version der eigentlich on-premise zu hostenden MongoDB). Es ist eine NoSQL-Datenbank, die über Datendokumente im JSON-File-Format auch besonders große Datenmengen in sehr hoher Geschwindigkeit abfragen kann. Sie gilt als die zurzeit schnellste Datenbank in Sachen Lesezugriff und spielt dabei alle Vorteile aus, wenn es um die massenweise Bereitstellung von Daten in andere Applikationen geht. Unternehmen, die ihren Kunden mobile Anwendungen bereitstellen, die Millionen parallele Datenzugriffe benötigen, setzen auf Cosmos DB.

1c Referenzarchitektur für Realtime-Analytics

Die Referenzarchitektur von Microsoft Azure für Realtime-Analytics wird die Referenzarchitektur für Enterprise Data Warehousing ergänzt um die Aufnahme von Data Streaming.

Diskussionspunkte zum Referenzmodell für Realtime-Analytics

Diese Referenzarchitektur ist nur für Einsatzszenarios sinnvoll, in denen Data Streaming eine zentrale Rolle spielt. Bei Data Streaming handelt es sich, vereinfacht gesagt, um viele kleine, ereignis-getriggerte inkrementelle Datenlade-Vorgänge bzw. -Bedarfe (Events), die dadurch nahezu in Echtzeit ausgeführt werden können. Dies kann über Webshops und mobile Anwendungen von hoher Bedeutung sein, wenn z. B. Angebote für Kunden hochgrade-individualisiert angezeigt werden sollen oder wenn Marktdaten angezeigt und mit ihnen interagiert werden sollen (z. B. Trading von Wertpapieren). Streaming-Tools bündeln eben solche Events (bzw. deren Datenhäppchen) in Data-Streaming-Kanäle (Partitionen), die dann von vielen Diensten (Consumergruppen / Receiver) aufgegriffen werden können. Data Streaming ist insbesondere auch dann ein notwendiges Setup, wenn ein Unternehmen über eine Microservices-Architektur verfügt, in der viele kleine Dienste (meistens als Docker-Container) als dezentrale Gesamtstruktur dienen. Jeder Dienst kann über Apache Kafka als Sender- und/oder Empfänger in Erscheinung treten. Der Azure Event-Hub dient dazu, die Zwischenspeicherung und Verwaltung der Datenströme von den Event-Sendern in den Azure Blob Storage bzw. Data Lake oder in Azure Synapse zu laden und dort weiter zu reichen oder für tiefere Analysen zu speichern.

Azure Eventhub ArchitectureQuelle: https://docs.microsoft.com/de-de/azure/event-hubs/event-hubs-about

Für die Datenverarbeitung in nahezu Realtime sind der Azure Data Lake und Azure Synapse derzeitig relativ alternativlos. Günstigere Datenbank-Instanzen von MariaDB/MySQL, PostgreSQL oder auch die Azure SQL Database wären hier ein Bottleneck.

2 Fazit zu den Referenzarchitekturen

Die Referenzarchitekturen sind exakt als das zu verstehen: Als Referenz. Keinesfalls sollte diese Architektur unreflektiert für ein Unternehmen übernommen werden, sondern vorher in Einklang mit der Datenstrategie gebracht werden, dabei sollten mindestens diese Fragen geklärt werden:

  • Welche Datenquellen sind vorhanden und werden zukünftig absehbar vorhanden sein?
  • Welche Anwendungsfälle (Use Cases) habe ich für die Business Intelligence bzw. Datenplattform?
  • Über welche finanziellen und fachlichen Ressourcen darf verfügt werden?

Darüber hinaus sollten sich die Architekten bewusst sein, dass, anders als noch in der trägeren On-Premise-Welt, die Could-Dienste schnelllebig sind. So sah die Referenzarchitektur 2019/2020 noch etwas anders aus, in der Databricks on Azure als System für Advanced Analytics inkludiert wurde, heute scheint diese Position im Referenzmodell komplett durch Azure Synapse ersetzt worden zu sein.

Azure Reference Architecture BI Databrikcs 2019

Azure Reference Architecture – with Databricks, old image source: https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/modern-data-warehouse

Hinweis zu den Kosten und der Administration

Die Kosten für Cloud Computing statt für IT-Infrastruktur On-Premise sind ein zweischneidiges Schwert. Der günstige Einstieg in de Azure Cloud ist möglich, jedoch bedingt ein kosteneffizienter Betrieb viel Know-How im Umgang mit den Diensten und Konfigurationsmöglichkeiten der Azure Cloud oder des jeweiligen alternativen Anbieters. Beispielsweise können über Azure Data Factory Datenbanken über Pipelines automatisiert hochskaliert und nach nur Minuten wieder runterskaliert werden. Nur wer diese dynamischen Skaliermöglichkeiten nutzt, arbeitet effizient in der Cloud.

Ferner sind Kosten nur schwer einschätzbar, da diese mehr noch von der Nutzung (Datenmenge, CPU, RAM) als von der zeitlichen Nutzung (Lifetime) abhängig sind. Preisrechner ermöglichen zumindest eine Kosteneinschätzung: https://azure.com/e/96162a623bda4911bb8f631e317affc6

Wie passt Machine Learning in eine moderne Data- & Analytics Architektur?

Einleitung

Aufgrund vielfältiger potenzieller Geschäftschancen, die Machine Learning bietet, arbeiten mittlerweile viele Unternehmen an Initiativen für datengetriebene Innovationen. Dabei gründen sie Analytics-Teams, schreiben neue Stellen für Data Scientists aus, bauen intern Know-how auf und fordern von der IT-Organisation eine Infrastruktur für “heavy” Data Engineering & Processing samt Bereitstellung einer Analytics-Toolbox ein. Für IT-Architekten warten hier spannende Herausforderungen, u.a. bei der Zusammenarbeit mit interdisziplinären Teams, deren Mitglieder unterschiedlich ausgeprägte Kenntnisse im Bereich Machine Learning (ML) und Bedarfe bei der Tool-Unterstützung haben. Einige Überlegungen sind dabei: Sollen Data Scientists mit ML-Toolkits arbeiten und eigene maßgeschneiderte Algorithmen nur im Ausnahmefall entwickeln, damit später Herausforderungen durch (unkonventionelle) Integrationen vermieden werden? Machen ML-Funktionen im seit Jahren bewährten ETL-Tool oder in der Datenbank Sinn? Sollen ambitionierte Fachanwender künftig selbst Rohdaten aufbereiten und verknüpfen, um auf das präparierte Dataset einen populären Algorithmus anzuwenden und die Ergebnisse selbst interpretieren? Für die genannten Fragestellungen warten junge & etablierte Software-Hersteller sowie die Open Source Community mit “All-in-one”-Lösungen oder Machine Learning-Erweiterungen auf. Vor dem Hintergrund des Data Science Prozesses, der den Weg eines ML-Modells von der experimentellen Phase bis zur Operationalisierung beschreibt, vergleicht dieser Artikel ausgewählte Ansätze (Notebooks für die Datenanalyse, Machine Learning-Komponenten in ETL- und Datenvisualisierungs­werkzeugen vs. Speziallösungen für Machine Learning) und betrachtet mögliche Einsatzbereiche und Integrationsaspekte.

Data Science Prozess und Teams

Im Zuge des Big Data-Hypes kamen neben Design-Patterns für Big Data- und Analytics-Architekturen auch Begriffsdefinitionen auf, die Disziplinen wie Datenintegration von Data Engineering und Data Science vonein­ander abgrenzen [1]. Prozessmodelle, wie das ab 1996 im Rahmen eines EU-Förderprojekts entwickelte CRISP-DM (CRoss-Industry Standard Process for Data Mining) [2], und Best Practices zur Organisation erfolgreich arbeitender Data Science Teams [3] weisen dabei die Richtung, wie Unternehmen das Beste aus den eigenen Datenschätzen herausholen können. Die Disziplin Data Science beschreibt den, an ein wissenschaftliches Vorgehen angelehnten, Prozess der Nutzung von internen und externen Datenquellen zur Optimierung von Produkten, Dienstleistungen und Prozessen durch die Anwendung statistischer und mathematischer Modelle. Bild 1 stellt in einem Schwimmbahnen-Diagramm einzelne Phasen des Data Science Prozesses den beteiligten Funktionen gegenüber und fasst Erfahrungen aus der Praxis zusammen [5]. Dabei ist die Intensität bei der Zusammenarbeit zwischen Data Scientists und System Engineers insbesondere bei Vorbereitung und Bereitstellung der benötigten Datenquellen und später bei der Produktivsetzung des Ergebnisses hoch. Eine intensive Beanspruchung der Server-Infrastruktur ist in allen Phasen gegeben, bei denen Hands-on (und oft auch massiv parallel) mit dem Datenpool gearbeitet wird, z.B. bei Datenaufbereitung, Training von ML Modellen etc.

Abbildung 1: Beteiligung und Interaktion von Fachbereichs-/IT-Funktionen mit dem Data Science Team

Mitarbeiter vom Technologie-Giganten Google haben sich reale Machine Learning-Systeme näher angesehen und festgestellt, dass der Umsetzungsaufwand für den eigentlichen Kern (= der ML-Code, siehe den kleinen schwarzen Kasten in der Mitte von Bild 2) gering ist, wenn man dies mit der Bereitstellung der umfangreichen und komplexen Infrastruktur inklusive Managementfunktionen vergleicht [4].

Abbildung 2: Versteckte technische Anforderungen in maschinellen Lernsystemen

Konzeptionelle Architektur für Machine Learning und Analytics

Die Nutzung aller verfügbaren Daten für Analyse, Durchführung von Data Science-Projekten, mit den daraus resultierenden Maßnahmen zur Prozessoptimierung und -automatisierung, bedeutet für Unternehmen sich neuen Herausforderungen zu stellen: Einführung neuer Technologien, Anwendung komplexer mathematischer Methoden sowie neue Arbeitsweisen, die in dieser Form bisher noch nicht dagewesen sind. Für IT-Architekten gibt es also reichlich Arbeit, entweder um eine Data Management-Plattform neu aufzubauen oder um das bestehende Informationsmanagement weiterzuentwickeln. Bild 3 zeigt hierzu eine vierstufige Architektur nach Gartner [6], ausgerichtet auf Analytics und Machine Learning.

Abbildung 3: Konzeptionelle End-to-End Architektur für Machine Learning und Analytics

Was hat sich im Vergleich zu den traditionellen Data Warehouse- und Business Intelligence-Architekturen aus den 1990er Jahren geändert? Denkt man z.B. an die Präzisionsfertigung eines komplexen Produkts mit dem Ziel, den Ausschuss weiter zu senken und in der Produktionslinie eine höhere Produktivitätssteigerung (Kennzahl: OEE, Operational Equipment Efficiency) erzielen zu können: Die an der Produktherstellung beteiligten Fertigungsmodule (Spezialmaschinen) messen bzw. detektieren über zahlreiche Sensoren Prozesszustände, speicherprogrammierbare Steuerungen (SPS) regeln dazu die Abläufe und lassen zu Kontrollzwecken vom Endprodukt ein oder mehrere hochauflösende Fotos aufnehmen. Bei diesem Szenario entsteht eine Menge interessanter Messdaten, die im operativen Betrieb häufig schon genutzt werden. Z.B. für eine Echtzeitalarmierung bei Über- oder Unterschreitung von Schwellwerten in einem vorher definierten Prozessfenster. Während früher vielleicht aus Kostengründen nur Statusdaten und Störungsinformationen den Weg in relationale Datenbanken fanden, hebt man heute auch Rohdaten, z.B. Zeitreihen (Kraftwirkung, Vorschub, Spannung, Frequenzen,…) für die spätere Analyse auf.

Bezogen auf den Bereich Acquire bewältigt die IT-Architektur in Bild 3 nun Aufgaben, wie die Übernahme und Speicherung von Maschinen- und Sensordaten, die im Millisekundentakt Datenpunkte erzeugen. Während IoT-Plattformen das Registrieren, Anbinden und Management von Hunderten oder Tausenden solcher datenproduzierender Geräte („Things“) erleichtern, beschreibt das zugehörige IT-Konzept den Umgang mit Protokollen wie MQTT, OPC-UA, den Aufbau und Einsatz einer Messaging-Plattform für Publish-/Subscribe-Modelle (Pub/Sub) zur performanten Weiterverarbeitung von Massendaten im JSON-Dateiformat. Im Bereich Organize etablieren sich neben relationalen Datenbanken vermehrt verteilte NoSQL-Datenbanken zum Persistieren eingehender Datenströme, wie sie z.B. im oben beschriebenen Produktionsszenario entstehen. Für hochauflösende Bilder, Audio-, Videoaufnahmen oder andere unstrukturierte Daten kommt zusätzlich noch Object Storage als alternative Speicherform in Frage. Neben der kostengünstigen und langlebigen Datenauf­bewahrung ist die Möglichkeit, einzelne Objekte mit Metadaten flexibel zu beschreiben, um damit später die Auffindbarkeit zu ermöglichen und den notwendigen Kontext für die Analysen zu geben, hier ein weiterer Vorteil. Mit dem richtigen Technologie-Mix und der konsequenten Umsetzung eines Data Lake– oder Virtual Data Warehouse-Konzepts gelingt es IT-Architekten, vielfältige Analytics Anwendungsfälle zu unterstützen.

Im Rahmen des Data Science Prozesses spielt, neben der sicheren und massenhaften Datenspeicherung sowie der Fähigkeit zur gleichzeitigen, parallelen Verarbeitung großer Datenmengen, das sog. Feature-Engineering eine wichtige Rolle. Dazu wieder ein Beispiel aus der maschinellen Fertigung: Mit Hilfe von Machine Learning soll nach unbekannten Gründen für den zu hohen Ausschuss gefunden werden. Was sind die bestimmenden Faktoren dafür? Beeinflusst etwas die Maschinenkonfiguration oder deuten Frequenzveränderungen bei einem Verschleißteil über die Zeit gesehen auf ein Problem hin? Maschine und Sensoren liefern viele Parameter als Zeitreihendaten, aber nur einige davon sind – womöglich nur in einer bestimmten Kombination – für die Aufgabenstellung wirklich relevant. Daher versuchen Data Scientists bei der Feature-Entwicklung die Vorhersage- oder Klassifikationsleistung der Lernalgorithmen durch Erstellen von Merkmalen aus Rohdaten zu verbessern und mit diesen den Lernprozess zu vereinfachen. Die anschließende Feature-Auswahl wählt bei dem Versuch, die Anzahl von Dimensionen des Trainingsproblems zu verringern, die wichtigste Teilmenge der ursprünglichen Daten-Features aus. Aufgrund dieser und anderer Arbeitsschritte, wie z.B. Auswahl und Training geeigneter Algorithmen, ist der Aufbau eines Machine Learning Modells ein iterativer Prozess, bei dem Data Scientists dutzende oder hunderte von Modellen bauen, bis die Akzeptanzkriterien für die Modellgüte erfüllt sind. Aus technischer Sicht sollte die IT-Architektur auch bei der Verwaltung von Machine Learning Modellen bestmöglich unterstützen, z.B. bei Modell-Versionierung, -Deployment und -Tracking in der Produktions­umgebung oder bei der Automatisierung des Re-Trainings.

Die Bereiche Analyze und Deliver zeigen in Bild 3 einige bekannte Analysefähigkeiten, wie z.B. die Bereitstellung eines Standardreportings, Self-service Funktionen zur Geschäftsplanung sowie Ad-hoc Analyse und Exploration neuer Datasets. Data Science-Aktivitäten können etablierte Business Intelligence-Plattformen inhaltlich ergänzen, in dem sie durch neuartige Kennzahlen, das bisherige Reporting „smarter“ machen und ggf. durch Vorhersagen einen Blick in die nahe Zukunft beisteuern. Machine Learning-as-a-Service oder Machine Learning-Produkte sind alternative Darreichungsformen, um Geschäftsprozesse mit Hilfe von Analytik zu optimieren: Z.B. integriert in einer Call Center-Applikation, die mittels Churn-Indikatoren zu dem gerade anrufenden erbosten Kunden einen Score zu dessen Abwanderungswilligkeit zusammen mit Handlungsempfehlungen (Gutschein, Rabatt) anzeigt. Den Kunden-Score oder andere Risikoeinschätzungen liefert dabei eine Service Schnittstelle, die von verschiedenen unternehmensinternen oder auch externen Anwendungen (z.B. Smartphone-App) eingebunden und in Echtzeit angefragt werden kann. Arbeitsfelder für die IT-Architektur wären in diesem Zusammenhang u.a. Bereitstellung und Betrieb (skalierbarer) ML-Modelle via REST API’s in der Produktions­umgebung inklusive Absicherung gegen unerwünschten Zugriff.

Ein klassischer Ansatz: Datenanalyse und Machine Learning mit Jupyter Notebook & Python

Jupyter ist ein Kommandozeileninterpreter zum interaktiven Arbeiten mit der Programmiersprache Python. Es handelt sich dabei nicht nur um eine bloße Erweiterung der in Python eingebauten Shell, sondern um eine Softwaresuite zum Entwickeln und Ausführen von Python-Programmen. Funktionen wie Introspektion, Befehlszeilenergänzung, Rich-Media-Einbettung und verschiedene Editoren (Terminal, Qt-basiert oder browserbasiert) ermöglichen es, Python-Anwendungen als auch Machine Learning-Projekte komfortabel zu entwickeln und gleichzeitig zu dokumentieren. Datenanalysten sind bei der Arbeit mit Juypter nicht auf Python als Programmiersprache begrenzt, sondern können ebenso auch sog. Kernels für Julia, R und vielen anderen Sprachen einbinden. Ein Jupyter Notebook besteht aus einer Reihe von “Zellen”, die in einer Sequenz angeordnet sind. Jede Zelle kann entweder Text oder (Live-)Code enthalten und ist beliebig verschiebbar. Texte lassen sich in den Zellen mit einer einfachen Markup-Sprache formatieren, komplexe Formeln wie mit einer Ausgabe in LaTeX darstellen. Code-Zellen enthalten Code in der Programmiersprache, die dem aktiven Notebook über den entsprechenden Kernel (Python 2 Python 3, R, etc.) zugeordnet wurde. Bild 4 zeigt auszugsweise eine Analyse historischer Hauspreise in Abhängigkeit ihrer Lage in Kalifornien, USA (Daten und Notebook sind öffentlich erhältlich [7]). Notebooks erlauben es, ganze Machine Learning-Projekte von der Datenbeschaffung bis zur Evaluierung der ML-Modelle reproduzierbar abzubilden und lassen sich gut versionieren. Komplexe ML-Modelle können in Python mit Hilfe des Pickle Moduls, das einen Algorithmus zur Serialisierung und De-Serialisierung implementiert, ebenfalls transportabel gemacht werden.

 

Abbildung 4: Datenbeschaffung, Inspektion, Visualisierung und ML Modell-Training in einem Jupyter Notebook (Pro-grammiersprache: Python)

Ein Problem, auf das man bei der praktischen Arbeit mit lokalen Jupyter-Installationen schnell stößt, lässt sich mit dem “works on my machine”-Syndrom bezeichnen. Kleine Data Sets funktionieren problemlos auf einem lokalen Rechner, wenn sie aber auf die Größe des Produktionsdatenbestandes migriert werden, skaliert das Einlesen und Verarbeiten aller Daten mit einem einzelnen Rechner nicht. Aufgrund dieser Begrenzung liegt der Aufbau einer server-basierten ML-Umgebung mit ausreichend Rechen- und Speicherkapazität auf der Hand. Dabei ist aber die Einrichtung einer solchen ML-Umgebung, insbesondere bei einer on-premise Infrastruktur, eine Herausforderung: Das Infrastruktur-Team muss physische Server und/oder virtuelle Maschinen (VM’s) auf Anforderung bereitstellen und integrieren. Dieser Ansatz ist aufgrund vieler manueller Arbeitsschritte zeitaufwändig und fehleranfällig. Mit dem Einsatz Cloud-basierter Technologien vereinfacht sich dieser Prozess deutlich. Die Möglichkeit, Infrastructure on Demand zu verwenden und z.B. mit einem skalierbaren Cloud-Data Warehouse zu kombinieren, bietet sofortigen Zugriff auf Rechen- und Speicher-Ressourcen, wann immer sie benötigt werden und reduziert den administrativen Aufwand bei Einrichtung und Verwaltung der zum Einsatz kommenden ML-Software. Bild 5 zeigt den Code-Ausschnitt aus einem Jupyter Notebook, das im Rahmen des Cloud Services Amazon SageMaker bereitgestellt wird und via PySpark Kernel auf einen Multi-Node Apache Spark Cluster (in einer Amazon EMR-Umgebung) zugreift. In diesem Szenario wird aus einem Snowflake Cloud Data Warehouse ein größeres Data Set mit 220 Millionen Datensätzen via Spark-Connector komplett in ein Spark Dataframe geladen und im Spark Cluster weiterverarbeitet. Den vollständigen Prozess inkl. Einrichtung und Konfiguration aller Komponenten, beschreibt eine vierteilige Blog-Serie [8]). Mit Spark Cluster sowie Snowflake stehen für sich genommen zwei leistungsfähige Umgebungen für rechenintensive Aufgaben zur Verfügung. Mit dem aktuellen Snowflake Connector für Spark ist eine intelligente Arbeitsteilung mittels Query Pushdown erreichbar. Dabei entscheidet Spark’s optimizer (Catalyst), welche Aufgaben (Queries) aufgrund der effizienteren Verarbeitung an Snowflake delegiert werden [9].

Abbildung 5: Jupyter Notebook in der Cloud – integriert mit Multi-Node Spark Cluster und Snowflake Cloud Data Warehouse

Welches Machine Learning Framework für welche Aufgabenstellung?

Bevor die nächsten Abschnitte weitere Werkzeuge und Technologien betrachten, macht es nicht nur für Data Scientists sondern auch für IT-Architekten Sinn, zunächst einen Überblick auf die derzeit verfügbaren Machine Learning Frameworks zu bekommen. Aus Architekturperspektive ist es wichtig zu verstehen, welche Aufgabenstellungen die jeweiligen ML-Frameworks adressieren, welche technischen Anforderungen und ggf. auch Abhängigkeiten zu den verfügbaren Datenquellen bestehen. Ein gemeinsamer Nenner vieler gescheiterter Machine Learning-Projekte ist häufig die Auswahl des falschen Frameworks. Ein Beispiel: TensorFlow ist aktuell eines der wichtigsten Frameworks zur Programmierung von neuronalen Netzen, Deep Learning Modellen sowie anderer Machine Learning Algorithmen. Während Deep Learning perfekt zur Untersuchung komplexer Daten wie Bild- und Audiodaten passt, wird es zunehmend auch für Use Cases benutzt, für die andere Frameworks besser geeignet sind. Bild 6 zeigt eine kompakte Entscheidungsmatrix [10] für die derzeit verbreitetsten ML-Frameworks und adressiert häufige Praxisprobleme: Entweder werden Algorithmen benutzt, die für den Use Case nicht oder kaum geeignet sind oder das gewählte Framework kann die aufkommenden Datenmengen nicht bewältigen. Die Unterteilung der Frameworks in Small Data, Big Data und Complex Data ist etwas plakativ, soll aber bei der Auswahl der Frameworks nach Art und Volumen der Daten helfen. Die Grenze zwischen Big Data zu Small Data ist dabei dort zu ziehen, wo die Datenmengen so groß sind, dass sie nicht mehr auf einem einzelnen Computer, sondern in einem verteilten Cluster ausgewertet werden müssen. Complex Data steht in dieser Matrix für unstrukturierte Daten wie Bild- und Audiodateien, für die sich Deep Learning Frameworks sehr gut eignen.

Abbildung 6: Entscheidungsmatrix zu aktuell verbreiteten Machine Learning Frameworks

Self-Service Machine Learning in Business Intelligence-Tools

Mit einfach zu bedienenden Business Intelligence-Werkzeugen zur Datenvisualisierung ist es für Analytiker und für weniger technisch versierte Anwender recht einfach, komplexe Daten aussagekräftig in interaktiven Dashboards zu präsentieren. Hersteller wie Tableau, Qlik und Oracle spielen ihre Stärken insbesondere im Bereich Visual Analytics aus. Statt statische Berichte oder Excel-Dateien vor dem nächsten Meeting zu verschicken, erlauben moderne Besprechungs- und Kreativräume interaktive Datenanalysen am Smartboard inklusive Änderung der Abfragefilter, Perspektivwechsel und Drill-downs. Im Rahmen von Data Science-Projekten können diese Werkzeuge sowohl zur Exploration von Daten als auch zur Visualisierung der Ergebnisse komplexer Machine Learning-Modelle sinnvoll eingesetzt werden. Prognosen, Scores und weiterer ML-Modell-Output lässt sich so schneller verstehen und unterstützt die Entscheidungsfindung bzw. Ableitung der nächsten Maßnahmen für den Geschäftsprozess. Im Rahmen einer IT-Gesamtarchitektur sind Analyse-Notebooks und Datenvisualisierungswerkzeuge für die Standard-Analytics-Toolbox Unternehmens gesetzt. Mit Hinblick auf effiziente Team-Zusammenarbeit, unternehmensinternen Austausch und Kommunikation von Ergebnissen sollte aber nicht nur auf reine Desktop-Werkzeuge gesetzt, sondern Server-Lösungen betrachtet und zusammen mit einem Nutzerkonzept eingeführt werden, um zehnfache Report-Dubletten, konkurrierende Statistiken („MS Excel Hell“) einzudämmen.

Abbildung 7: Datenexploration in Tableau – leicht gemacht für Fachanwender und Data Scientists

 

Zusätzliche Statistikfunktionen bis hin zur Möglichkeit R- und Python-Code bei der Analyse auszuführen, öffnet auch Fachanwender die Tür zur Welt des Maschinellen Lernens. Bild 7 zeigt das Werkzeug Tableau Desktop mit der Analyse kalifornischer Hauspreise (demselben Datensatz wie oben im Jupyter Notebook-Abschnitt wie in Bild 4) und einer Heatmap-Visualisierung zur Hervorhebung der teuersten Wohnlagen. Mit wenigen Klicks ist auch der Einsatz deskriptiver Statistik möglich, mit der sich neben Lagemaßen (Median, Quartilswerte) auch Streuungsmaße (Spannweite, Interquartilsabstand) sowie die Form der Verteilung direkt aus dem Box-Plot in Bild 7 ablesen und sogar über das Vorhandensein von Ausreißern im Datensatz eine Feststellung treffen lassen. Vorteil dieser Visualisierungen sind ihre hohe Informationsdichte, die allerdings vom Anwender auch richtig interpretiert werden muss. Bei der Beurteilung der Attribute, mit ihren Wertausprägungen und Abhängigkeiten innerhalb des Data Sets, benötigen Citizen Data Scientists (eine Wortschöpfung von Gartner) allerdings dann doch die mathematischen bzw. statistischen Grundlagen, um Falschinterpretationen zu vermeiden. Fraglich ist auch der Nutzen des Data Flow Editors [11] in Oracle Data Visualization, mit dem eins oder mehrere der im Werkzeug integrierten Machine Learning-Modelle trainiert und evaluiert werden können: technisch lassen sich Ergebnisse erzielen und anhand einiger Performance-Metriken die Modellgüte auch bewerten bzw. mit anderen Modellen vergleichen – aber wer kann die erzielten Ergebnisse (wissenschaftlich) verteidigen? Gleiches gilt für die Integration vorhandener R- und Python Skripte, die am Ende dann doch eine Einweisung der Anwender bzgl. Parametrisierung der ML-Modelle und Interpretationshilfen bei den erzielten Ergebnissen erfordern.

Machine Learning in und mit Datenbanken

Die Nutzung eingebetteter 1-click Analytics-Funktionen der oben vorgestellten Data Visualization-Tools ist zweifellos komfortabel und zum schnellen Experimentieren geeignet. Der gegenteilige und eher puristische Ansatz wäre dagegen die Implementierung eigener Machine Learning Modelle in der Datenbank. Für die Umsetzung des gewählten Algorithmus reichen schon vorhandene Bordmittel in der Datenbank aus: SQL inklusive mathematischer und statistische SQL-Funktionen, Tabellen zum Speichern der Ergebnisse bzw. für das ML-Modell-Management und Stored Procedures zur Abbildung komplexer Geschäftslogik und auch zur Ablaufsteuerung. Solange die Algorithmen ausreichend skalierbar sind, gibt es viele gute Gründe, Ihre Data Warehouse Engine für ML einzusetzen:

  • Einfachheit – es besteht keine Notwendigkeit, eine andere Compute-Plattform zu managen, zwischen Systemen zu integrieren und Daten zu extrahieren, transferieren, laden, analysieren usw.
  • Sicherheit – Die Daten bleiben dort, wo sie gut geschützt sind. Es ist nicht notwendig, Datenbank-Anmeldeinformationen in externen Systemen zu konfigurieren oder sich Gedanken darüber zu machen, wo Datenkopien verteilt sein könnten.
  • Performance – Eine gute Data Warehouse Engine verwaltet zur Optimierung von SQL Abfragen viele Metadaten, die auch während des ML-Prozesses wiederverwendet werden könnten – ein Vorteil gegenüber General-purpose Compute Plattformen.

Die Implementierung eines minimalen, aber legitimen ML-Algorithmus wird in [12] am Beispiel eines Entscheidungsbaums (Decision Tree) im Snowflake Data Warehouse gezeigt. Decision Trees kommen für den Aufbau von Regressions- oder Klassifikationsmodellen zum Einsatz, dabei teilt man einen Datensatz in immer kleinere Teilmengen auf, die ihrerseits in einem Baum organisiert sind. Bild 8 zeigt die Snowflake Benutzer­oberfläche und ein Ausschnitt von der Stored Procedure, die dynamisch alle SQL-Anweisungen zur Berechnung des Decision Trees nach dem ID3 Algorithmus [13] generiert.

Abbildung 8: Snowflake SQL-Editor mit Stored Procedure zur Berechnung eines Decission Trees

Allerdings ist der Entwicklungs- und Implementierungsprozess für ein Machine Learning Modell umfassender: Es sind relevante Daten zu identifizieren und für das ML-Modell vorzubereiten. Einfach Rohdaten bzw. nicht aggregierten Informationen aus Datenbanktabellen zu extrahieren reicht nicht aus, stattdessen benötigt ein ML-Modell als Input eine flache, meist sehr breite Tabelle mit vielen Aggregaten, die als Features bezeichnet werden. Erst dann kann der Prozess fortgesetzt und der für die Aufgabenstellung ausgewählte Algorithmus trainiert und die Modellgüte bewertet werden. Ist das Ergebnis zufriedenstellend, steht die Implementierung des ML-Modells in der Zielumgebung an und muss sich künftig beim Scoring „frischer Datensätze“ bewähren. Viele zeitaufwändige Teilaufgaben also, bei der zumindest eine Teilautomatisierung wünschenswert wäre. Allein die Datenaufbereitung kann schon bis zu 70…80% der gesamten Projektzeit beanspruchen. Und auch die Implementierung eines ML-Modells wird häufig unterschätzt, da in Produktionsumgebungen der unterstützte Technologie-Stack definiert und ggf. für Machine Learning-Aufgaben erweitert werden muss. Daher ist es reizvoll, wenn das Datenbankmanagement-System auch hier einsetzbar ist – sofern die geforderten Algorithmen dort abbildbar sind. Wie ein ML-Modell für die Kundenabwanderungsprognose (Churn Prediction) werkzeuggestützt mit Xpanse AI entwickelt und beschleunigt im Snowflake Cloud Data Warehouse bereitgestellt werden kann, beschreibt [14] sehr anschaulich: Die benötigten Datenextrakte sind schnell aus Snowflake entladen und stellen den Input für ein neues Xpanse AI-Projekt dar. Sobald notwendige Tabellenverknüpfungen und andere fachliche Informationen hinterlegt sind, analysiert das Tool Datenstrukturen und transformiert alle Eingangstabellen in eine flache Zwischentabelle (u.U. mit Hunderten von Spalten), auf deren Basis im Anschluss ML-Modelle trainiert werden. Nach dem ML-Modell-Training erfolgt die Begutachtung der Ergebnisse: das erstellte Dataset, Güte des ML-Modells und der generierte SQL(!) ETL-Code zur Erstellung der Zwischentabelle sowie die SQL-Repräsentation des ML-Modells, das basierend auf den Input-Daten Wahrscheinlichkeitswerte berechnet und in einer Scoring-Tabelle ablegt. Die Vorteile dieses Ansatzes sind liegen auf der Hand: kürzere Projektzeiten, der Einsatz im Rahmen des Snowflake Cloud Data Warehouse, macht das Experimentieren mit der Zuweisung dedizierter Compute-Ressourcen für die performante Verarbeitung äußerst einfach. Grenzen liegen wiederum bei der zur Verfügung stehenden Algorithmen.

Spezialisierte Software Suites für Machine Learning

Während sich im Markt etablierte Business Intelligence- und Datenintegrationswerkzeuge mit Erweiterungen zur Ausführung von Python- und R-Code als notwendigen Bestandteil der Analyse-Toolbox für den Data Science Prozess positionieren, gibt es daneben auch Machine-Learning-Plattformen, die auf die Arbeit mit künstlicher Intelligenz (KI) zugeschnittenen sind. Für den Einstieg in Data Science bieten sich die oft vorhandenen quelloffenen Distributionen an, die auch über Enterprise-Versionen mit erweiterten Möglichkeiten für beschleunigtes maschinelles Lernen durch Einsatz von Grafikprozessoren (GPUs), bessere Skalierung sowie Funktionen für das ML-Modell Management (z.B. durch Versionsmanagement und Automatisierung) verfügen.

Eine beliebte Machine Learning-Suite ist das Open Source Projekt H2O. Die Lösung des gleichnamigen kalifornischen Unternehmens verfügt über eine R-Schnittstelle und ermöglicht Anwendern dieser statistischen Programmiersprache Vorteile in puncto Performance. Die in H2O verfügbaren Funktionen und Algorithmen sind optimiert und damit eine gute Alternative für das bereits standardmäßig in den R-Paketen verfügbare Funktionsset. H2O implementiert Algorithmen aus dem Bereich Statistik, Data-Mining und Machine Learning (generalisierte Lineare Modelle, K-Means, Random Forest, Gradient Boosting und Deep Learning) und bietet mit einer In-Memory-Architektur und durch standardmäßige Parallelisierung über alle vorhandenen Prozessorkerne eine gute Basis, um komplexe Machine-Learning-Modelle schneller trainieren zu können. Bild 9 zeigt wieder anhand des Datensatzes zur Analyse der kalifornischen Hauspreise die webbasierte Benutzeroberfläche H20 Flow, die den oben beschriebenen Juypter Notebook-Ansatz mit zusätzlich integrierter Benutzerführung für die wichtigsten Prozessschritte eines Machine-Learning-Projektes kombiniert. Mit einigen Klicks kann das California Housing Dataset importiert, in einen H2O-spezifischen Dataframe umgewandelt und anschließend in Trainings- und Testdatensets aufgeteilt werden. Auswahl, Konfiguration und Training der Machine Learning-Modelle erfolgt entweder durch den Anwender im Einsteiger-, Fortgeschrittenen- oder Expertenmodus bzw. im Auto-ML-Modus. Daran anschließend erlaubt H20 Flow die Vorhersage für die Zielvariable (im Beispiel: Hauspreis) für noch unbekannte Datensätze und die Aufbereitung der Ergebnismenge. Welche Unterstützung H2O zur Produktivsetzung von ML-Modellen anbietet, wird an einem Beispiel in den folgenden Abschnitten betrachtet.

Abbildung 9: H2O Flow Benutzeroberfläche – Datenaufbereitung, ML-Modell-Training und Evaluierung.

Vom Prototyp zur produktiven Machine Learning-Lösung

Warum ist es für viele Unternehmen noch schwer, einen Nutzen aus ihren ersten Data Science-Aktivitäten, Data Labs etc. zu ziehen? In der Praxis zeigt sich, erst durch Operationalisierung von Machine Learning-Resultaten in der Produktionsumgebung entsteht echter Geschäftswert und nur im Tagesgeschäft helfen robuste ML-Modelle mit hoher Güte bei der Erreichung der gesteckten Unternehmensziele. Doch leider erweist sich der Weg vom Prototypen bis hin zum Produktiveinsatz bei vielen Initativen noch als schwierig. Bild 10 veranschaulicht ein typisches Szenario: Data Science-Teams fällt es in ihrer Data Lab-Umgebung technisch noch leicht, Prototypen leistungsstarker ML-Modelle mit Hilfe aktueller ML-Frameworks wie TensorFlow-, Keras- und Word2Vec auf ihren Laptops oder in einer Sandbox-Umgebung zu erstellen. Doch je nach verfügbarer Infrastruktur kann, wegen Begrenzungen bei Rechenleistung oder Hauptspeicher, nur ein Subset der Produktionsdaten zum Trainieren von ML-Modellen herangezogen werden. Ergebnispräsentationen an die Stakeholder der Data Science-Projekte erfolgen dann eher durch Storytelling in MS Powerpoint bzw. anhand eines Demonstrators – selten aber technisch schon so umgesetzt, dass anderere Applikationen z.B. über eine REST-API von dem neuen Risiko Scoring-, dem Bildanalyse-Modul etc. (testweise) Gebrauch machen können. Ausgestattet mit einer Genehmigung vom Management, übergibt das Data Science-Team ein (trainiertes) ML-Modell an das Software Engineering-Team. Nach der Übergabe muss sich allerdings das Engineering-Team darum kümmern, dass das ML-Modell in eine für den Produktionsbetrieb akzeptierte Programmiersprache, z.B. in Java, neu implementiert werden muss, um dem IT-Unternehmensstandard (siehe Line of Governance in Bild 10) bzw. Anforderungen an Skalierbarkeit und Laufzeitverhalten zu genügen. Manchmal sind bei einem solchen Extraschritt Abweichungen beim ML-Modell-Output und in jedem Fall signifikante Zeitverluste beim Deployment zu befürchten.

Abbildung 10: Übergabe von Machine Learning-Resultaten zur Produktivsetzung im Echtbetrieb

Unterstützt das Data Science-Team aktiv bei dem Deployment, dann wäre die Einbettung des neu entwickelten ML-Modells in eine Web-Applikation eine beliebte Variante, bei der typischerweise Flask, Tornado (beides Micro-Frameworks für Python) und Shiny (ein auf R basierendes HTML5/CSS/JavaScript Framework) als Technologiekomponenten zum Zuge kommen. Bei diesem Vorgehen müssen ML-Modell, Daten und verwendete ML-Pakete/Abhängigkeiten in einem Format verpackt werden, das sowohl in der Data Science Sandbox als auch auf Produktionsservern lauffähig ist. Für große Unternehmen kann dies einen langwierigen, komplexen Softwareauslieferungsprozess bedeuten, der ggf. erst noch zu etablieren ist. In dem Zusammenhang stellt sich die Frage, wie weit die Erfahrung des Data Science-Teams bei der Entwicklung von Webanwendungen reicht und Aspekte wie Loadbalancing und Netzwerkverkehr ausreichend berücksichtigt? Container-Virtualisierung, z.B. mit Docker, zur Isolierung einzelner Anwendungen und elastische Cloud-Lösungen, die on-Demand benötigte Rechenleistung bereitstellen, können hier Abhilfe schaffen und Teil der Lösungsarchitektur sein. Je nach analytischer Aufgabenstellung ist das passende technische Design [15] zu wählen: Soll das ML-Modell im Batch- oder Near Realtime-Modus arbeiten? Ist ein Caching für wiederkehrende Modell-Anfragen vorzusehen? Wie wird das Modell-Deployment umgesetzt, In-Memory, Code-unabhängig durch Austauschformate wie PMML, serialisiert via R- oder Python-Objekte (Pickle) oder durch generierten Code? Zusätzlich muss für den Produktiveinsatz von ML-Modellen auch an unterstützenden Konzepten zur Bereitstellung, Routing, Versions­management und Betrieb im industriellen Maßstab gearbeitet werden, damit zuverlässige Machine Learning-Produkte bzw. -Services zur internen und externen Nutzung entstehen können (siehe dazu Bild 11)

Abbildung 11: Unterstützende Funktionen für produktive Machine Learning-Lösungen

Die Deployment-Variante „Machine Learning Code-Generierung“ lässt sich gut an dem bereits mit H2O Flow besprochenen Beispiel veranschaulichen. Während Bild 9 hierzu die Schritte für Modellaufbau, -training und -test illustriert, zeigt Bild 12 den Download-Vorgang für den zuvor generierten Java-Code zum Aufbau eines ML-Modells zur Vorhersage kalifornischer Hauspreise. In dem generierten Java-Code sind die in H2O Flow vorgenommene Datenaufbereitung sowie alle Konfigurationen für den Gradient Boosting Machine (GBM)-Algorithmus gut nachvollziehbar, Bild 13 gibt mit den ersten Programmzeilen einen ersten Eindruck dazu und erinnert gleichzeitig an den ähnlichen Ansatz der oben mit dem Snowflake Cloud Data Warehouse und dem Tool Xpanse AI bereits beschrieben wurde.

Abbildung 12: H2O Flow Benutzeroberfläche – Java-Code Generierung und Download eines trainierten Models

Abbildung 13: Generierter Java-Code eines Gradient Boosted Machine – Modells zur Vorhersage kaliforn. Hauspreise

Nach Abschluss der Machine Learning-Entwicklung kann der Java-Code des neuen ML-Modells, z.B. unter Verwendung der Apache Kafka Streams API, zu einer Streaming-Applikation hinzugefügt und publiziert werden [16]. Vorteil dabei: Die Kafka Streams-Applikation ist selbst eine Java-Applikation, in die der generierte Code des ML-Modells eingebettet werden kann (siehe Bild 14). Alle zukünftigen Events, die neue Immobilien-Datensätze zu Häusern aus Kalifornien mit (denselben) Features wie Geoposition, Alter des Gebäudes, Anzahl Zimmer etc. enthalten und als ML-Modell-Input über Kafka Streams hereinkommen, werden mit einer Vorhersage des voraussichtlichen Gebäudepreises von dem auf historischen Daten trainierten ML-Algorithmus beantwortet. Ein Vorteil dabei: Weil die Kafka Streams-Applikation unter der Haube alle Funktionen von Apache Kafka nutzt, ist diese neue Anwendung bereits für den skalierbaren und geschäftskritischen Einsatz ausgelegt.

Abbildung 14: Deployment des generierten Java-Codes eines H2O ML-Models in einer Kafka Streams-Applikation

Machine Learning as a Service – “API-first” Ansatz

In den vorherigen Abschnitten kam bereits die Herausforderung zur Sprache, wenn es um die Überführung der Ergebnisse eines Datenexperiments in eine Produktivumgebung geht. Während die Mehrheit der Mitglieder eines Data Science Teams bevorzugt R, Python (und vermehrt Julia) als Programmiersprache einsetzen, gibt es auf der Abnehmerseite das Team der Softwareingenieure, die für technische Implementierungen in der Produktionsumgebung zuständig sind, womöglich einen völlig anderen Technologie-Stack verwenden (müssen). Im Extremfall droht das Neuimplementieren eines Machine Learning-Modells, im besseren Fall kann Code oder die ML-Modellspezifikation transferiert und mit wenig Aufwand eingebettet (vgl. das Beispiel H2O und Apache Kafka Streams Applikation) bzw. direkt in einer neuen Laufzeitumgebung ausführbar gemacht werden. Alternativ wählt man einen „API-first“-Ansatz und entkoppelt das Zusammenwirken von unterschiedlich implementierten Applikationen bzw. -Applikationsteilen via Web-API’s. Data Science-Teams machen hierzu z.B. die URL Endpunkte ihrer testbereiten Algorithmen bekannt, die von anderen Softwareentwicklern für eigene „smarte“ Applikationen konsumiert werden. Durch den Aufbau von REST-API‘s kann das Data Science-Team den Code ihrer ML-Modelle getrennt von den anderen Teams weiterentwickeln und damit eine Arbeitsteilung mit klaren Verantwortlichkeiten herbeiführen, ohne Teamkollegen, die nicht am Machine Learning-Aspekt des eines Projekts beteiligt sind, bei ihrer Arbeit zu blockieren.

Bild 15 zeigt ein einfaches Szenario, bei dem die Gegenstandserkennung von beliebigen Bildern mit einem Deep Learning-Verfahren umgesetzt ist. Einzelne Fotos können dabei via Kommandozeileneditor als Input für die Bildanalyse an ein vortrainiertes Machine Learning-Modell übermittelt werden. Die Information zu den erkannten Gegenständen inkl. Wahrscheinlichkeitswerten kommt dafür im Gegenzug als JSON-Ausgabe zurück. Für die Umsetzung dieses Beispiels wurde in Python auf Basis der Open Source Deep-Learning-Bibliothek Keras, ein vortrainiertes ML-Modell mit Hilfe des Micro Webframeworks Flask über eine REST-API aufrufbar gemacht. Die in [17] beschriebene Applikation kümmert sich außerdem darum, dass beliebige Bilder via cURL geladen, vorverarbeitet (ggf. Wandlung in RGB, Standardisierung der Bildgröße auf 224 x 224 Pixel) und dann zur Klassifizierung der darauf abgebildeten Gegenstände an das ML-Modell übergeben wird. Das ML-Modell selbst verwendet eine sog. ResNet50-Architektur (die Abkürzung steht für 50 Layer Residual Network) und wurde auf Grundlage der öffentlichen ImageNet Bilddatenbank [18] vortrainiert. Zu dem ML-Modell-Input (in Bild 15: Fußballspieler in Aktion) meldet das System für den Tester nachvollziehbare Gegenstände wie Fußball, Volleyball und Trikot zurück, fragliche Klassifikationen sind dagegen Taschenlampe (Torch) und Schubkarre (Barrow).

Abbildung 15: Gegenstandserkennung mit Machine Learning und vorgegebenen Bildern via REST-Service

Bei Aufbau und Bereitstellung von Machine Learning-Funktionen mittels REST-API’s bedenken IT-Architekten und beteiligte Teams, ob der Einsatzzweck eher Rapid Prototyping ist oder eine weitreichende Nutzung unterstützt werden muss. Während das oben beschriebene Szenario mit Python, Keras und Flask auf einem Laptop realisierbar ist, benötigen skalierbare Deep Learning Lösungen mehr Aufmerksamkeit hinsichtlich der Deployment-Architektur [19], in dem zusätzlich ein Message Broker mit In-Memory Datastore eingehende bzw. zu analysierende Bilder puffert und dann erst zur Batch-Verarbeitung weiterleitet usw. Der Einsatz eines vorgeschalteten Webservers, Load Balancers, Verwendung von Grafikprozessoren (GPUs) sind weitere denkbare Komponenten für eine produktive ML-Architektur.

Als abschließendes Beispiel für einen leistungsstarken (und kostenpflichtigen) Machine Learning Service soll die Bildanalyse von Google Cloud Vision [20] dienen. Stellt man dasselbe Bild mit der Fußballspielszene von Bild 15 und Bild 16 bereit, so erkennt der Google ML-Service neben den Gegenständen weit mehr Informationen: Kontext (Teamsport, Bundesliga), anhand der Gesichtserkennung den Spieler selbst  und aktuelle bzw. vorherige Mannschaftszugehörigkeiten usw. Damit zeigt sich am Beispiel des Tech-Giganten auch ganz klar: Es kommt vorallem auf die verfügbaren Trainingsdaten an, inwieweit dann mit Algorithmen und einer dazu passenden Automatisierung (neue) Erkenntnisse ohne langwierigen und teuren manuellen Aufwand gewinnen kann. Einige Unternehmen werden feststellen, dass ihr eigener – vielleicht einzigartige – Datenschatz einen echten monetären Wert hat?

Abbildung 16: Machine Learning Bezahlprodukt (Google Vision)

Fazit

Machine Learning ist eine interessante “Challenge” für Architekten. Folgende Punkte sollte man bei künftigen Initativen berücksichtigen:

  • Finden Sie das richtige Geschäftsproblem bzw geeignete Use Cases
  • Identifizieren und definieren Sie die Einschränkungen (Sind z.B. genug Daten vorhanden?) für die zu lösende Aufgabenstellung
  • Nehmen Sie sich Zeit für das Design von Komponenten und Schnittstellen
  • Berücksichtigen Sie frühzeitig mögliche organisatorische Gegebenheiten und Einschränkungen
  • Denken Sie nicht erst zum Schluss an die Produktivsetzung Ihrer analytischen Modelle oder Machine Learning-Produkte
  • Der Prozess ist insgesamt eine Menge Arbeit, aber es ist keine Raketenwissenschaft.

Quellenverzeichnis

[1] Bill Schmarzo: “What’s the Difference Between Data Integration and Data Engineering?”, LinkedIn Pulse -> Link, 2018
[2] William Vorhies: “CRISP-DM – a Standard Methodology to Ensure a Good Outcome”, Data Science Central -> Link, 2016
[3] Bill Schmarzo: “A Winning Game Plan For Building Your Data Science Team”, LinkedIn Pulse -> Link, 2018
[4] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.-F. Crespo, D. Dennison: “Hidden technical debt in Machine learning systems”. In NIPS’15 Proceedings of the 28th International Conference on Neural Information Processing Systems – Volume 2, 2015
[5] K. Bollhöfer: „Data Science – the what, the why and the how!“, Präsentation von The unbelievable Machine Company, 2015
[6] Carlton E. Sapp: “Preparing and Architecting for Machine Learning”, Gartner, 2017
[7] A. Geron: “California Housing” Dataset, Jupyter Notebook. GitHub.com -> Link, 2018
[8] R. Fehrmann: “Connecting a Jupyter Notebook to Snowflake via Spark” -> Link, 2018
[9] E. Ma, T. Grabs: „Snowflake and Spark: Pushing Spark Query Processing to Snowflake“ -> Link, 2017
[10] Dr. D. James: „Entscheidungsmatrix „Machine Learning“, it-novum.com ->  Link, 2018
[11] Oracle Analytics@YouTube: “Oracle DV – ML Model Comparison Example”, Video -> Link
[12] J. Weakley: Machine Learning in Snowflake, Towards Data Science Blog -> Link, 2019
[13] Dr. S. Sayad: An Introduction to Data Science, Website -> Link, 2019
[14] U. Bethke: Build a Predictive Model on Snowflake in 1 day with Xpanse AI, Blog à Link, 2019
[15] Sergei Izrailev: Design Patterns for Machine Learning in Production, Präsentation H2O World, 2017
[16] K. Wähner: How to Build and Deploy Scalable Machine Learning in Production with Apache Kafka, Confluent Blog -> Link, 2017
[17] A. Rosebrock: “Building a simple Keras + deep learning REST API”, The Keras Blog -> Link, 2018
[18] Stanford Vision Lab, Stanford University, Princeton University: Image database, Website -> Link
[19] A. Rosebrock: “A scalable Keras + deep learning REST API”, Blog -> Link, 2018
[20] Google Cloud Vision API (Beta Version) -> Link, abgerufen 2018

 

 

 

 

DS-GVO: Wie das moderne Data-Warehouse Unternehmen entlastet

Artikel des Blog-Sponsors: Snowflake

Viele Aktivitäten, die zur Einhaltung der DS-GVO-Anforderungen beitragen, liegen in den Händen der Unternehmen selbst. Deren IT-Anbieter sollten dazu beitragen, die Compliance-Anforderungen dieser Unternehmen zu erfüllen. Die SaaS-Anbieter eines Unternehmens sollten zumindest die IT-Sicherheitsanforderungen erfüllen, die sich vollständig in ihrem Bereich befinden und sich auf die Geschäfts- und Datensicherheit ihrer Kunden auswirken.

Snowflake wurde von Grund auf so gestaltet, dass die Einhaltung der DS-GVO erleichtert wird – und von Beginn darauf ausgelegt, enorme Mengen strukturierter und semistrukturierter Daten mit der Leichtigkeit von Standard-SQL zu verarbeiten. Die Zugänglichkeit und Einfachheit von SQL gibt Organisationen die Flexibilität, alle unter der DS-GVO erforderlichen Aktualisierungen, Änderungen oder Löschungen nahtlos vorzunehmen. Snowflakes Unterstützung für semistrukturierte Daten kann die Anpassung an neue Felder und andere Änderungen der Datensätze erleichtern. Darüber hinaus war die Sicherheit von Anfang an von grundlegender Bedeutung für Architektur, Implementierung und Betrieb von Snowflakes Data-Warehouse-as-a-Service.

Ein Grundprinzip der DS-GVO

Ein wichtiger Faktor für die Einhaltung der DS-GVO ist, zu verstehen, welche Daten eine Organisation besitzt und auf wen sie sich beziehen. Diese Anforderung macht es nötig, dass Daten strukturiert, organisiert und einfach zu suchen sind.

Die relationale SQL-Datenbankarchitektur von Snowflake bietet eine erheblich vereinfachte Struktur und Organisation, was sicherstellt, dass jeder Datensatz einen eindeutigen und leicht identifizierbaren Speicherort innerhalb der Datenbank besitzt. Snowflake-Kunden können auch relationalen Speicher mit dem Variant-Spaltentyp von Snowflake für semistrukturierte Daten kombinieren. Dieser Ansatz erweitert die Einfachheit des relationalen Formats auf die Schema-Flexibilität semistrukturierter Daten.

Snowflake ist noch leistungsfähiger durch seine Fähigkeit, massive Nebenläufigkeit zu unterstützen. Bei größeren Organisationen können Dutzende oder sogar Hunderte nebenläufiger Datenänderungen, -abfragen und -suchvorgänge zu einem bestimmten Zeitpunkt auftreten. Herkömmliche Data-Warehouses können nicht zu einem bestimmten Zeitpunkt über einen einzelnen Rechen-Cluster hinaus skaliert werden, was zu langen Warteschlangen und verzögerter Compliance führt. Snowflakes Multi-Cluster-Architektur für gemeinsam genutzte Daten löst dieses Problem, indem sie so viele einzigartige Rechen-Cluster bereitstellen kann, wie für einen beliebigen Zweck nötig sind, was zu einer effizienteren Workload-Isolierung und höherem Abfragedurchsatz führt. Jeder Mitarbeiter kann sehr große Datenmengen mit so vielen nebenläufigen Benutzern oder Operationen wie nötig speichern, organisieren, ändern, suchen und abfragen.

Rechte von Personen, deren Daten verarbeitet werden („Datensubjekte“)

Organisationen, die von der DS-GVO betroffen sind, müssen sicherstellen, dass sie Anfragen betroffener Personen nachkommen können. Einzelpersonen haben jetzt erheblich erweiterte Rechte, um zu erfahren, welche Art von Daten eine Organisation über sie besitzt, und das Recht, den Zugriff und/oder die Korrektur ihrer Daten anzufordern, die Daten zu löschen und/oder die Daten an einen neuen Provider zu übertragen. Bei der Bereitstellung dieser Dienste müssen Organisationen ziemlich schnell reagieren, in der Regel innerhalb von 30 Tagen. Daher müssen sie ihre Geschäftssysteme und ihr Data-Warehouse schnell durchsuchen können, um alle personenbezogenen Daten zu finden, die mit einer Person in Verbindung stehen, und entsprechende Maßnahmen ergreifen.

Organisationen können in großem Umfang von der Speicherung aller Daten in einem Data-Warehouse-as-a-Service mit vollen DML- und SQL-Fähigkeiten profitieren. Dies erleichtert das (mühevolle) Durchsuchen getrennter Geschäftssysteme und Datenspeicher, um die relevanten Daten zu finden. Und das wiederum hilft sicherzustellen, dass einzelne Datensätze durchsucht, gelöscht, eingeschränkt, aktualisiert, aufgeteilt und auf andere Weise manipuliert werden können, um sie an entsprechende Anfragen betroffener Personen anzupassen. Außerdem können Daten so verschoben werden, dass sie der Anforderung einer Anfrage zum „Recht auf Datenübertragbarkeit“ entsprechen. Von Anfang an wurde Snowflake mit ANSI-Standard-SQL und vollständiger DML-Unterstützung entwickelt, um sicherzustellen, dass diese Arten von Operationen möglich sind.

Sicherheit

Leider erfordern es viele herkömmliche Data-Warehouses, dass sich Unternehmen selbst um die IT-Sicherheit kümmern und diese mit anderen Services außerhalb des Kernangebots kombiniert wird. Außerdem bieten sie manchmal noch nicht einmal standardmäßige Verschlüsselung.

Als Data-Warehouse, das speziell für die Cloud entwickelt wurde und das Sicherheit als zentrales Element bietet, umfasst Snowflake unter anderem folgende integrierte Schutzfunktionen:

  • Minimaler Betriebsaufwand: Weniger Komplexität durch automatische Performance, Sicherheit und Hochverfügbarkeit, sodass die Infrastruktur nicht optimiert werden muss und kein Tuning nötig ist.
  • Durchgängige Verschlüsselung: Automatische Verschlüsselung aller Daten jederzeit (in ruhendem und bewegtem Zustand).
  • Umfassender Schutz: Zu den Sicherheitsfunktionen zählen Multi-Faktor-Authentifizierung, rollenbasierte Zugriffskontrolle, IP-Adressen-Whitelisting, zentralisierte Authentifizierung und jährliche Neuverschlüsselung verschlüsselter Daten.
  • Tri-Secret Secure: Kundenkontrolle und Datenschutz durch die Kombination aus einem vom Kunden, einem von Snowflake bereitgestellten Verschlüsselungsschlüssel und Benutzerzugangsdaten.
  • Unterstützung für AWS Private Link: Kunden können Daten zwischen ihrem virtuellen privaten Netzwerk und Snowflake übertragen, ohne über das Internet gehen zu müssen. Dadurch ist die Konnektivität zwischen den Netzwerken sicher und einfacher zu verwalten.
  • Stärkere unternehmensinterne Datenabgrenzung dank Snowflake Data Sharing: Organisationen können die Datenfreigabefunktionen von Snowflake nutzen, um nicht personenbezogene Daten mit anderen Abteilungen zu teilen, die keinen Zugriff benötigen – indem sie strengere Sicherheits- und DS-GVO-Kontrollen durchsetzen.
  • Private Umgebung: Unternehmen können eine dedizierte, verwaltete Snowflake- Instanz in einer separaten AWS Virtual Private Cloud (VPC) abrufen.

Rechenschaftspflicht

Was die Komplexität weiter erhöht: Organisationen müssen auch sicherstellen, dass sie und die Organisationen und Tools, mit denen sie arbeiten, Compliance nachweisen können. Snowflake prüft und verfeinert seine IT-Sicherheitspraxis regelmäßig mit peniblen Penetrationstests. Snowflakes Data-Warehouse-as-a-Service ist zertifiziert nach SOC 2 Type II, ist PCI-DSS-konform und unterstützt HIPAA-Compliance. Um Anfragen von Personen, deren Daten verarbeitet werden („Datensubjekte“), zu entsprechen, können Kunden genutzte Daten überprüfen.

Zusätzlich zu diesen Standardfunktionen und -validierungen schützt Snowflake seine Kunden auch durch den Datenschutznachtrag („Data Protection Addendum“), der genau auf die Anforderungen der DS-GVO abgestimmt ist. Snowflake hält sich außerdem an penibel vertraglich festgelegte Sicherheitsverpflichtungen („contractual security commitments“), um effizientere Transaktionen und eine vereinfachte Sorgfaltspflicht zu ermöglichen.

Fazit

Im Rahmen der Europäischen Datenschutz-Grundverordnung müssen Unternehmen technische Maßnahmen ergreifen, mit deren Hilfe sie den Anforderungen ihrer Kunden in Bezug auf Datenschutz und Schutz der Privatsphäre gerecht werden können. Snowflake bietet hier nicht nur den Vorteil, alle wichtigen Kundendaten an einem einzigen Ort zu speichern, sondern ermöglicht auch das schnelle Auffinden und Abrufen dieser Daten, sodass Unternehmen im Bedarfsfall schnell aktiv werden können.

R Data Frames meistern mit dplyr – Teil 2

Dieser Artikel ist Teil 2 von 2 aus der Artikelserie R Data Frames meistern mit dplyr.

Noch mehr Datenbank-Features

Im ersten Teil dieser Artikel-Serie habe ich die Parallelen zwischen Data Frames in R und Relationen in SQL herausgearbeitet und gezeigt, wie das Paket dplyr eine Reihe von SQL-analogen Operationen auf Data Frames standardisiert und optimiert. In diesem Teil möchte ich nun drei weitere Analogien aufzeigen. Es handelt sich um die

  • Window Functions in dplyr als Entsprechung zu analytischen Funktionen in SQL,
  • Joins zwischen Data Frames als Pendant zu Tabellen-Joins
  • Delegation von Data Frame-Operationen zu einer bestehenden SQL-Datenbank

Window Functions

Im letzten Teil habe ich gezeigt, wie durch die Kombination von group_by() und summarise() im Handumdrehen Aggregate entstehen. Das Verb group_by() schafft dabei, wie der Name schon sagt, eine Gruppierung der Zeilen des Data Frame anhand benannter Schlüssel, die oft ordinaler oder kategorialer Natur sind (z.B. Datum, Produkt oder Mitarbeiter).

Ersetzt man die Aggregation mit summarise() durch die Funktion mutate(), um neue Spalten zu bilden, so ist der Effekt des group_by() weiterhin nutzbar, erzeugt aber „Windows“, also Gruppen von Datensätzen des Data Frames mit gleichen Werten der Gruppierungskriterien. Auf diesen Gruppen können nun mittels mutate() beliebige R-Funktionen angewendet werden. Das Ergebnis ist im Gegensatz zu summarise() keine Verdichtung auf einen Datensatz pro Gruppe, sondern eine Erweiterung jeder einzelnen Zeile um neue Werte. Das soll folgendes Beispiel verdeutlichen:

library(dplyr)
set.seed(42)	

df <- data.frame(id = 1:20, 
                 a=sample(c("Hund","Katze","Maus","Tiger"),20,replace=T),
                 b=sample(1:10,20, replace = T))
df
   id     a  b
1   1  Maus  7
2   2  Hund  3
3   3 Katze  3
4   4  Maus  4
5   5 Tiger 10
6   6  Maus 10
7   7  Hund  8
8   8  Hund  8
9   9  Hund  6
10 10 Katze  1
11 11  Maus  7
12 12  Hund  9
13 13  Hund  8
14 14 Tiger  5
15 15 Tiger  6
16 16  Maus  6
17 17 Katze  1
18 18  Maus  4
19 19  Maus  7
20 20  Maus  9
df %>%
  group_by(a) %>%
  mutate(r = row_number(),        # aus dplyr 
         n_memb = n(),            # aus dplyr
         n_dist = n_distinct(b),  # aus dplyr
         ra=rank(desc(b)),        # aus base und dplyr
         last_b = lag(b),         # aus dplyr
         next_b = lead(b),        # aus dplyr
         mb = mean(b),            # aus base
         cs = cumsum(b)  )        # aus base
Source: local data frame [20 x 11]
Groups: a [4]

     id      a     b     r n_memb n_dist    ra last_b next_b       mb     cs
                    
1      1   Maus     7     1      8      5   4.0     NA      4 6.750000     7
2      2   Hund     3     1      6      4   6.0     NA      8 7.000000     3
3      3  Katze     3     1      3      2   1.0     NA      1 1.666667     3
4      4   Maus     4     2      8      5   7.5      7     10 6.750000    11
5      5  Tiger    10     1      3      3   1.0     NA      5 7.000000    10
6      6   Maus    10     3      8      5   1.0      4      7 6.750000    21
7      7   Hund     8     2      6      4   3.0      3      8 7.000000    11
8      8   Hund     8     3      6      4   3.0      8      6 7.000000    19
9      9   Hund     6     4      6      4   5.0      8      9 7.000000    25
10    10  Katze     1     2      3      2   2.5      3      1 1.666667     4
11    11   Maus     7     4      8      5   4.0     10      6 6.750000    28
12    12   Hund     9     5      6      4   1.0      6      8 7.000000    34
13    13   Hund     8     6      6      4   3.0      9     NA 7.000000    42
14    14  Tiger     5     2      3      3   3.0     10      6 7.000000    15
15    15  Tiger     6     3      3      3   2.0      5     NA 7.000000    21
16    16   Maus     6     5      8      5   6.0      7      4 6.750000    34
17    17  Katze     1     3      3      2   2.5      1     NA 1.666667     5
18    18   Maus     4     6      8      5   7.5      6      7 6.750000    38
19    19   Maus     7     7      8      5   4.0      4      9 6.750000    45
20    20   Maus     9     8      8      5   2.0      7     NA 6.750000    54

Das group_by() unterteilt den Data Frame nach den 4 gleichen Werten von a. Innerhalb dieser Gruppen berechnen die beispielsweise eingesetzten Funktionen

  • row_number(): Die laufende Nummer in dieser Gruppe
  • n(): Die Gesamtgröße dieser Gruppe
  • n_distinct(b): Die Anzahl verschiedener Werte von b innerhalb der Gruppe
  • rank(desc(b)): Den Rang innerhalb der selben Gruppe, absteigend nach b geordnet
  • lag(b): Den Wert von b der vorherigen Zeile innerhalb derselben Gruppe
  • lead(b): Analog den Wert von b der folgenden Zeile innerhalb derselben Gruppe
  • mean(b): Den Mittelwert von b innerhalb der Gruppe
  • cumsum(b): Die kumulierte Summe der b-Werte innerhalb der Gruppe.

Wichtig ist hierbei, dass die Anwendung dieser Funktionen nicht dazu führt, dass die ursprüngliche Reihenfolge der Datensätze im Data Frame geändert wird. Hier erweist sich ein wesentlicher Unterschied zwischen Data Frames und Datenbank-Relationen von Vorteil: Die Reihenfolge von Datensätzen in Data Frames ist stabil und definiert. Sie resultiert aus der Abfolge der Elemente auf den Vektoren, die die Data Frames bilden. Im Gegensatz dazu haben Tabellen und Views keine Reihenfolge, auf die man sich beim SELECT verlassen kann. Nur mit der ORDER BY-Klausel über eindeutige Schlüsselwerte erreicht man eine definierte, stabile Reihenfolge der resultierenden Datensätze.

Die Wirkungsweise von Window Functions wird noch besser verständlich, wenn in obiger Abfrage das group_by(a) entfernt wird. Dann wirken alle genannten Funktionen auf der einzigen Gruppe, die existiert, nämlich dem gesamten Data Frame:

df %>%
  mutate(r = row_number(),        # aus dplyr 
         n_memb = n(),            # aus dplyr
         n_dist = n_distinct(b),  # aus dplyr
         ra=rank(desc(b)),        # aus base und dplyr
         last_b = lag(b),         # aus dplyr
         next_b = lead(b),        # aus dplyr
         mb = mean(b),            # aus base
         cs = cumsum(b)  )        # aus base


   id     a  b  r n_memb n_dist   ra last_b next_b  mb  cs
1   1  Maus  7  1     20      9  9.0     NA      3 6.1   7
2   2  Hund  3  2     20      9 17.5      7      3 6.1  10
3   3 Katze  3  3     20      9 17.5      3      4 6.1  13
4   4  Maus  4  4     20      9 15.5      3     10 6.1  17
5   5 Tiger 10  5     20      9  1.5      4     10 6.1  27
6   6  Maus 10  6     20      9  1.5     10      8 6.1  37
7   7  Hund  8  7     20      9  6.0     10      8 6.1  45
8   8  Hund  8  8     20      9  6.0      8      6 6.1  53
9   9  Hund  6  9     20      9 12.0      8      1 6.1  59
10 10 Katze  1 10     20      9 19.5      6      7 6.1  60
11 11  Maus  7 11     20      9  9.0      1      9 6.1  67
12 12  Hund  9 12     20      9  3.5      7      8 6.1  76
13 13  Hund  8 13     20      9  6.0      9      5 6.1  84
14 14 Tiger  5 14     20      9 14.0      8      6 6.1  89
15 15 Tiger  6 15     20      9 12.0      5      6 6.1  95
16 16  Maus  6 16     20      9 12.0      6      1 6.1 101
17 17 Katze  1 17     20      9 19.5      6      4 6.1 102
18 18  Maus  4 18     20      9 15.5      1      7 6.1 106
19 19  Maus  7 19     20      9  9.0      4      9 6.1 113
20 20  Maus  9 20     20      9  3.5      7     NA 6.1 122

Anwendbar sind hierbei sämtliche Funktionen, die auf Vektoren wirken. Diese müssen also wie in unserem Beispiel nicht unbedingt aus dplyr stammen. Allerdings komplettiert das Package die Menge der sinnvoll anwendbaren Funktionen um einige wichtige Elemente wie cumany() oder n_distinct().

Data Frames Hand in Hand…

In relationalen Datenbanken wird häufig angestrebt, das Datenmodell zu normalisieren. Dadurch bekommt man die negativen Folgen von Datenredundanz, wie Inkonsistenzen bei Datenmanipulationen und unnötig große Datenvolumina, in den Griff. Dies geschieht unter anderem dadurch, dass tabellarische Datenbestände aufgetrennt werden Stammdaten- und Faktentabellen. Letztere beziehen sich über Fremdschlüsselspalten auf die Primärschlüssel der Stammdatentabellen. Durch Joins, also Abfragen über mehrere Tabellen und Ausnutzen der Fremdschlüsselbeziehungen, werden die normalisierten Tabellen wieder zu einem fachlich kompletten Resultat denormalisiert.

In den Data Frames von R trifft man dieses Modellierungsmuster aus verschiedenen Gründen weit seltener an als in RDBMS. Dennoch gibt es neben der Normalisierung/Denormalisierung andere Fragestellungen, die sich gut durch Joins beantworten lassen. Neben der Zusammenführung von Beobachtungen unterschiedlicher Quellen anhand charakteristischer Schlüssel sind dies bestimmte Mengenoperationen wie Schnitt- und Differenzmengenbildung.

Die traditionelle R-Funktion für den Join zweier Data Frames lautet merge(). dplyr erweitert den Funktionsumfang dieser Funktion und sorgt für sprechendere Funktionsnamen und Konsistenz mit den anderen Operationen.

Hier ein synthetisches Beispiel:

products <- data.frame(
  id = 1:5, 
  name = c("Desktop", "Laptop", "Maus", "Tablet", "Smartphone"),
  preis = c(500, 700, 10, 300, 500)  
)

set.seed(1)

(salesfacts <- data.frame(
  prod_id = sample(1:5,size = 8,replace = T),
  date = as.Date('2017-01-01') + sample(1:5,size = 8,replace = T)
)  )  

 prod_id       date
1      2 2017-01-05
2      2 2017-01-02
3      3 2017-01-03
4      5 2017-01-02
5      2 2017-01-05
6      5 2017-01-03
7      5 2017-01-05
8      4 2017-01-04

Nun gilt es, die Verkäufe aus dem Data Frame sales mit den Produkten in products zusammenzuführen und auf Basis von Produkten Bilanzen zu erstellen. Diese Denormalisierung geschieht durch das Verb inner_join() auf zweierlei Art und Weise:

salesfacts %>% 
  inner_join(products, by = c("prod_id" = "id"))

  prod_id       date       name preis
1       2 2017-01-05     Laptop   700
2       2 2017-01-02     Laptop   700
3       3 2017-01-03       Maus    10
4       5 2017-01-02 Smartphone   500
5       2 2017-01-05     Laptop   700
6       5 2017-01-03 Smartphone   500
7       5 2017-01-05 Smartphone   500
8       4 2017-01-04     Tablet   300

products %>% 
  inner_join(salesfacts, by = c("id" = "prod_id")) 

  id       name preis       date
1  2     Laptop   700 2017-01-05
2  2     Laptop   700 2017-01-02
3  2     Laptop   700 2017-01-05
4  3       Maus    10 2017-01-03
5  4     Tablet   300 2017-01-04
6  5 Smartphone   500 2017-01-02
7  5 Smartphone   500 2017-01-03
8  5 Smartphone   500 2017-01-05

Die Ergebnisse sind bis auf die Reihenfolge der Spalten und der Zeilen identisch. Außerdem ist im einen Fall der gemeinsame Schlüssel der Produkt-Id als prod_id, im anderen Fall als id enthalten. dplyr entfernt also die Spalten-Duplikate der Join-Bedingungen. Letzere wird bei Bedarf im by-Argument der Join-Funktion angegeben. R-Experten erkennen hier einen „Named Vector“, also einen Vektor, bei dem jedes Element einen Namen hat. Diese Syntax verwendet dplyr, um elegant die äquivalenten Spalten zu kennzeichnen. Wird das Argument by weggelassen, so verwendet dplyr im Sinne eines „Natural Join“ automatisch alle Spalten, deren Namen in beiden Data Frames vorkommen.

Natürlich können wir dieses Beispiel mit den anderen Verben erweitern, um z.B. eine Umsatzbilanz pro Produkt zu erreichen:

salesfacts %>% 
  inner_join(products, by = c("prod_id" = "id")) %>% 
  group_by(prod_id) %>% 
  summarise(n_verk = n(), sum_preis = sum(preis), letzt_dat = max(date))

# A tibble: 4 × 4
  prod_id n_verk sum_preis  letzt_dat
                
1       2      3      2100 2017-01-05
2       3      1        10 2017-01-03
3       4      1       300 2017-01-04
4       5      3      1500 2017-01-05

dplyr bringt insgesamt 6 verschiedene Join-Funktionen mit: Neben dem bereits verwendeten Inner Join gibt es die linksseitigen und rechtsseitigen Outer Joins und den Full Join. Diese entsprechen genau der Funktionalität von SQL-Datenbanken. Daneben gibt es die Funktion semi_join(), die in SQL etwa folgendermaßen ausgedrückt würde:

SELECT ...
FROM a
WHERE EXISTS (SELECT * FROM b WHERE b.a_id = a.id)

Das Gegenteil, also ein NOT EXISTS, realisiert die sechste Join-Funktion: anti_join(). Im folgenden Beispiel sollen alle Produkte ausgegeben werden, die noch nie verkauft wurden:

products %>% anti_join(salesfacts,c("id" = "prod_id"))

  id    name preis
1  1 Desktop   500

… und in der Datenbank

Wir schon mehrfach betont, hat dplyr eine Reihe von Analogien zu SQL-Operationen auf relationalen Datenbanken. R Data Frames entsprechen Tabellen und Views und die dplyr-Operationen den Bausteinen von SELECT-Statements. Daraus ergibt sich die Möglichkeit, dplyr-Funktionen ohne viel Zutun auf eine bestehende Datenbank und deren Relationen zu deligieren.

Mir fallen folgende Szenarien ein, wo dies sinnvoll erscheint:

  • Die zu verarbeitende Datenmenge ist zu groß für das Memory des Rechners, auf dem R läuft.
  • Die interessierenden Daten liegen bereits als Tabellen und Views auf einer Datenbank vor.
  • Die Datenbank hat Features, wie z.B. Parallelverarbeitung oder Bitmap Indexe, die R nicht hat.

In der aktuellen Version 0.5.0 kann dplyr nativ vier Datenbank-Backends ansprechen: SQLite, MySQL, PostgreSQL und Google BigQuery. Ich vermute, unter der Leserschaft des Data Science Blogs dürfte MySQL (oder der Fork MariaDB) die weiteste Verbreitung haben, weshalb ich die folgenden Beispiele darauf zeige. Allerdings muss man beachten, dass MySQL keine Window Funktionen kennt, was sich 1:1 auf die Funktionalität von dplyr auswirkt.

Im folgenden möchte ich zeigen, wie dplyr sich gegen eine bestehende MySQL-Datenbank verbindet und danach einen bestehenden R Data Frame in eine neue Datenbanktabelle wegspeichert:

mysql_db <- src_mysql(host = "localhost", user = "testuser",
                   password = "********", dbname = "test")

library(ggplot2)

str(diamonds)

Classes ‘tbl_df’, ‘tbl’ and 'data.frame':       53940 obs. of  10 variables:
 $ carat  : num  0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
 $ cut    : chr  "Ideal" "Premium" "Good" "Premium" ...
 $ color  : chr  "E" "E" "E" "I" ...
 $ clarity: chr  "SI2" "SI1" "VS1" "VS2" ...
 $ depth  : num  61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
 $ table  : num  55 61 65 58 58 57 57 55 61 61 ...
 $ price  : int  326 326 327 334 335 336 336 337 337 338 ...
 $ x      : num  3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
 $ y      : num  3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
 $ z      : num  2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...

diamonds %>% mutate(cut = as.character(cut), 
                    color = as.character(color),
                    clarity = as.character(clarity)) -> diamonds

diamonds_mysql <- copy_to(mysql_db, diamonds, name="diamonds",
                         temporary = FALSE, indexes = list(
                       c("cut", "color", "clarity"), "carat", "price"))

diamonds_mysql %>% summarise(count = n())

Source:   query [?? x 1]
Database: mysql 5.5.54-0ubuntu0.14.04.1 [testuser@localhost:/test]

  count
  <dbl>
1 53940

Die erste Anweisung verbindet R mit einer bestehenden MySQL-Datenbank. Danach lade ich den Data Frame diamonds aus dem Paket ggplot2. Mit str() wird deutlich, dass drei darin enthaltene Variablen vom Typ Factor sind. Damit dplyr damit arbeiten kann, werden sie mit mutate() in Character-Vektoren gewandelt. Dann erzeugt die Funktion copy_to() auf der MySQL-Datenbank eine leere Tabelle namens diamonds, in die die Datensätze kopiert werden. Danach erhält die Tabelle noch drei Indexe (von dem der erste aus drei Segmenten besteht), und zum Schluß führt dplyr noch ein ANALYSE der Tabelle durch, um die Werteverteilungen auf den Spalten für kostenbasierte Optimierung zu bestimmen.

Meistens aber wird bereits eine bestehende Datenbanktabelle die interessierenden Daten enthalten. In diesem Fall lautet die Funktion zum Erstellen des Delegats tbl():

diamonds_mysql2 <- tbl(mysql_db,"diamonds")

identical(diamonds_mysql,diamonds_mysql2)

[1] TRUE

Die Rückgabewerte von copy_to() und von tbl() sind natürlich keine reinrassigen Data Frames, sondern Objekte, auf die die Operationen von dplyr wirken können, indem sie auf die Datenbank deligiert werden. Im folgenden Beispiel sollen alle Diamanten, die ein Gewicht von mindestens 1 Karat haben, pro Cut, Color und Clarity nach Anzahl und mittlerem Preis bilanziert werden:

bilanz <- diamonds_mysql2 %>% 
  filter(carat >= 1) %>% 
  group_by(cut,color,clarity) %>% 
  summarise(count = n(), mean_price = mean(price))

bilanz

Source:   query [?? x 5]
Database: mysql 5.5.54-0ubuntu0.14.04.1 [testuser@localhost:/test]
Groups: cut, color

     cut color clarity count mean_price
   <chr> <chr>   <chr> <dbl>      <dbl>
1   Fair     D      I1     3   9013.667
2   Fair     D     SI1    26   6398.192
3   Fair     D     SI2    29   6138.552
4   Fair     D     VS1     1   7083.000
5   Fair     D     VS2     7   8553.429
6   Fair     D    VVS1     1  10752.000
7   Fair     D    VVS2     2   9639.000
8   Fair     E      I1     5   2469.800
9   Fair     E     SI1    28   6407.464
10  Fair     E     SI2    45   5627.489
# ... with more rows

explain(bilanz)

<SQL>
SELECT `cut`, `color`, `clarity`, count(*) AS `count`, AVG(`price`) AS `mean_price`
FROM (SELECT *
FROM `diamonds`
WHERE (`carat` >= 1.0)) `cttxnwlelz`
GROUP BY `cut`, `color`, `clarity`


<PLAN>
  id select_type      table type  possible_keys  key key_len  ref  rows
1  1     PRIMARY <derived2>  ALL           <NA> <NA>    <NA> <NA> 19060
2  2     DERIVED   diamonds  ALL diamonds_carat <NA>    <NA> <NA> 50681
                            Extra
1 Using temporary; Using filesort
2                     Using where

Die Definition der Variablen bilanz geschieht dabei komplett ohne Interaktion mit der Datenbank. Erst beim Anzeigen von Daten wird das notwendige SQL ermittelt und auf der DB ausgeführt. Die ersten 10 resultierenden Datensätze werden angezeigt. Mittels der mächtigen Funktion explain() erhalten wir das erzeugte SQL-Kommando und sogar den Ausführungsplan auf der Datenbank. SQL-Kundige werden erkennen, dass die verketteten dplyr-Operationen in verschachtelte SELECT-Statements umgesetzt werden.

Zu guter Letzt sollen aber meistens die Ergebnisse der dplyr-Operationen irgendwie gesichert werden. Hier hat der Benutzer die Wahl, ob die Daten auf der Datenbank in einer neuen Tabelle gespeichert werden sollen oder ob sie komplett nach R transferiert werden sollen. Dies erfolgt mit den Funktionen compute() bzw. collect():

compute(bilanz, name = "t_bilanz", temporary = F)

df <- collect(bilanz)

str(df)

Classes ‘grouped_df’, ‘tbl_df’, ‘tbl’ and 'data.frame': 265 obs. of  5 variables:
 $ cut       : chr  "Fair" "Fair" "Fair" "Fair" ...
 $ color     : chr  "D" "D" "D" "D" ...
 $ clarity   : chr  "I1" "SI1" "SI2" "VS1" ...
 $ count     : num  3 26 29 1 7 1 2 5 28 45 ...
 $ mean_price: num  9014 6398 6139 7083 8553 ...
...

Durch diese beiden Operationen wurde eine neue Datenbanktabelle „t_bilanz“ erzeugt und danach der Inhalt der Bilanz als Data Frame zurück in den R-Interpreter geholt. Damit schließt sich der Kreis.

Fazit

Mit dem Paket dplyr von Hadley Wickham wird die Arbeit mit R Data Frames auf eine neue Ebene gehoben. Die Operationen sind konsistent, vollständig und performant. Durch den Verkettungs-Operator %>% erhalten sie auch bei hoher Komplexität eine intuitive Syntax. Viele Aspekte der Funktionalität lehnen sich an Relationale Datenbanken an, sodass Analysten mit SQL-Kenntnissen rasch viele Operationen auf R Data Frames übertragen können.

Zurück zu R Data Frames meistern mit dplyr – Teil 1.